EP2748533A2 - Chambre de combustion annulaire tangentielle comprenant un prémélange d'air et de carburant destinée à être utilisée dans des moteurs à turbine à gaz - Google Patents

Chambre de combustion annulaire tangentielle comprenant un prémélange d'air et de carburant destinée à être utilisée dans des moteurs à turbine à gaz

Info

Publication number
EP2748533A2
EP2748533A2 EP11871342.9A EP11871342A EP2748533A2 EP 2748533 A2 EP2748533 A2 EP 2748533A2 EP 11871342 A EP11871342 A EP 11871342A EP 2748533 A2 EP2748533 A2 EP 2748533A2
Authority
EP
European Patent Office
Prior art keywords
combustor
fuel
air
nozzles
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11871342.9A
Other languages
German (de)
English (en)
Other versions
EP2748533A4 (fr
Inventor
Majed Toqan
Brent Allan Gregory
Jonathan David Regele
Ryan Sadao Yamane
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2748533A2 publication Critical patent/EP2748533A2/fr
Publication of EP2748533A4 publication Critical patent/EP2748533A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/14Gas-turbine plants characterised by the use of combustion products as the working fluid characterised by the arrangement of the combustion chamber in the plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/06Arrangement of apertures along the flame tube
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/283Attaching or cooling of fuel injecting means including supports for fuel injectors, stems, or lances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • F23R3/34Feeding into different combustion zones
    • F23R3/343Pilot flames, i.e. fuel nozzles or injectors using only a very small proportion of the total fuel to insure continuous combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/50Combustion chambers comprising an annular flame tube within an annular casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/58Cyclone or vortex type combustion chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/10Stators
    • F05D2240/12Fluid guiding means, e.g. vanes
    • F05D2240/128Nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/30Arrangement of components
    • F05D2250/31Arrangement of components according to the direction of their main axis or their axis of rotation
    • F05D2250/314Arrangement of components according to the direction of their main axis or their axis of rotation the axes being inclined in relation to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00002Gas turbine combustors adapted for fuels having low heating value [LHV]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03041Effusion cooled combustion chamber walls or domes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03044Impingement cooled combustion chamber walls or subassemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/03045Convection cooled combustion chamber walls provided with turbolators or means for creating turbulences to increase cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/28Continuous combustion chambers using liquid or gaseous fuel characterised by the fuel supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/42Continuous combustion chambers using liquid or gaseous fuel characterised by the arrangement or form of the flame tubes or combustion chambers
    • F23R3/46Combustion chambers comprising an annular arrangement of several essentially tubular flame tubes within a common annular casing or within individual casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • Y02T50/678Aviation using fuels of non-fossil origin

Definitions

  • This invention relates to devices in gas turbine engines that aid in containing and producing the combustion of a fuel and air mixture.
  • Such devices include but are not limited to fuel-air nozzles, combustor liners and casings and flow transition pieces that are used in military and commercial aircraft, power generation, and other gas turbine related applications.
  • Gas turbine engines include machinery that extracts work from combustion gases flowing at very high temperatures, pressures and velocity. The extracted work can be used to drive a generator for power generation, drive compression devices or for providing the required thrust for an aircraft.
  • a typical gas turbine engine consists of multistage compressor where the atmospheric air is compressed to high pressures. The compressed air is then mixed at a specified fuel/air ratio in a combustor wherein its temperature is increased. The high temperature and pressure combustion gases are then expanded through a turbine to extract work so as to provide the required thrust or drive a generator depending on the application.
  • the turbine includes at least a single stage with each stage consisting of a row of blades and a row of vanes. The blades are circumferentially distributed on a rotating hub with the height of each blade covering the hot gas flow path. Each stage of non-rotating vanes is placed circumferentially, which also extends across the hot gas flow path.
  • the included invention involves the combustor of gas turbine engines and components that introduce the fuel and air into the said device.
  • the combustor portion of a gas turbine engine can be of several different types: silo, can/tubular, annular, and a combination of the last two forming a can-annular combustor. It is through this component that the compressed fuel-air mixture passes through fuel-air swirlers and a combustion reaction of the mixture takes place, creating a hot gas flow causing it to drop in density and accelerate downstream.
  • the can type combustor typically comprises of individual, circumferentially spaced cans that contain the flame of each nozzle separately. Flow from each can is then directed through a duct and combined in an annular transition piece before it enters the first stage NGV.
  • annular combustor In the annular combustor type, fuel-air nozzles are typically distributed circumferentially and introduce the mixture into a single annular chamber where combustion takes place. Flow simply exits the downstream end of the annulus into the first stage turbine, without the need for a transition piece.
  • a can- annular combustor The key difference of the last type, a can- annular combustor, is that it has individual cans encompassed by an annular casing that contains the air being fed into each can. Each variation has its benefits and disadvantages, depending on the application.
  • a fuel air nozzle can take on different configurations such as single to multiple annular inlets with swirling vanes on each one.
  • a typical method for cooling the combustor is effusion cooling, implemented by surrounding the combustion liner with an additional, offset liner, which between the two, compressor discharge air passes through and enters the hot gas flow path through dilution holes and cooling passages. This technique removes heat from the component as well as forms a thin boundary layer film of cool air between the liner and the combusting gases, preventing heat transfer to the liner.
  • the dilution holes serve two purposes depending on its axial position on the liner: a dilution hole closer to the fuel-air nozzles will aid in the mixing of the gases to enhance combustion as well as provide unburned air for combustion, second, a hole that is placed closer to the turbine will cool the hot gas flow and can be designed to manipulate the combustor outlet temperature profile.
  • a novel and improved combustor design that is capable of operating in a typical fashion while minimizing the pollutant emissions that are a result of combustion of a fuel and air mixture.
  • the invention consists of a typical annular combustor with premixed fuel-air nozzles and/or dilution holes that introduce the compressor discharge air and pressurized fuel into the combustor at various locations in the longitudinal and circumferential directions.
  • the original feature of the invention is that the fuel and air inlets are placed in such a way as to create an environment with enhanced mixing of combustion reactants and products.
  • Staging the premixed fuel and air nozzles to have more fuel upstream from another set of downstream nozzles enhances the mixing of the combustion reactants and creates a specific oxygen concentration in the combustion region that greatly reduces the production of NOx.
  • the introduction of compressor discharge air downstream of the combustion region allows for any CO produced during combustion to be burned/consumed before entering the first stage turbine.
  • the combustor will improve gas turbine emission levels, thus reducing the need for emission control devices as well as minimize the environmental impact of such devices.
  • the tangentially firing fuel and fuel- air nozzles directs its flames to the adjacent burner, greatly enhancing the ignition process of the combustor and the resulting flow exiting the combustor has a significant circumferential velocity component that reduces the required size of the first stage NOV.
  • FIG. 1 is a two-dimensional sketch showing the nozzles that attach to the outer combustor liner and have a circumferential and radial direction into the combustor (possible longitudinal direction of the nozzle not shown);
  • FIG. 2 is an isometric side view of an example annular combustor with the proposed staged fuel and air injection;
  • FIG. 3 is an isometric section view with the cutting plane defined by the engine centerline and a radius;
  • FIG. 4A is an isometric side view looking forward to aft that shows the front wall and the perforated front wall that the said invention may have;
  • FIG. 4B is a close up view of the image from FIG. 4A;
  • FIG. 5A is an isometric front view of the example combustor from an aft to front perspective that shows the outlet and inlet nozzles;
  • FIG. 5B is a close up view of the image from FIG. 5A.
  • FIG. 6 is a two dimensional diagram showing a generic nozzle cross section layout of the fuel-air nozzles.
  • FIG. 1 shows the general premise of an annular combustor with tangentially directed fuel-air nozzles.
  • the combustor is composed of an outer shell (or liner) 1, an inner shell (or liner) 2, both of which can have a constant or varying radius in the longitudinal direction, and a front wall 6 that connects the inner and outer liners 1, 2.
  • an example configuration of the invention shows premixed fuel-air nozzles 3 pointing mainly in a circumferential direction, where the angle 10 is formed between a line 8 tangent to the outer liner and the nozzle 3 centerlines 9, but may have a radial or longitudinal component to its direction.
  • These various nozzles 3 may share a common plane defined by the longitudinal direction and a point along the engine centerline and may be equally spaced circumferentially or have pattern to the spacing in this direction.
  • the nozzles introduce a premixed fuel- air mixture 4 into the combustor volume created by the inner and outer shell 1, 2 and the front wall 6.
  • the reactants that are injected by the fuel and air nozzles 3 combust within this region and create a flow field 5 through the combustor that rotates about the engine centerline.
  • the said nozzles through which fuel, air, or premixed fuel and air pass through take on the general layout as seen in FIG. 6.
  • a circular region 12 coaxial to the nozzle encompasses a region which may hold an axial s wirier and/or pilot fuel/air nozzles.
  • the concentric annular flow passage 11 may impart little to no swirl on the air or premixed fuel-air mixture that is passing through. A minimal if any amount of swirl is introduced to the flow through the annular passage in order to maintain a significant tangential velocity that enters the combustor. This configuration allows for the flow to keep a maximum circumferential velocity component at the combustor exit, which reduces the required
  • FIG. 2 shows an example configuration for the invention where fuel nozzles 3 are placed upstream (to the left) of a second set of fuel-air nozzles that share a common plane and are circumferentially spaced.
  • the number of fuel nozzles 3 may be at least one, and up to an unlimited amount.
  • Compressor discharge air may also be introduced to the combustor volume through a perforated front wall 6 as seen in FIG. 3, 4 A and 4B.
  • the hot combustion products then exit the combustor through an annular opening 7 as seen in FIG. 5A and 5B where it enters the first stage turbine of the gas turbine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

Un dispositif de combustion utilisé dans des moteurs à turbine à gaz permettant de produire une propulsion ou d'entraîner un arbre en rotation pour la génération d'énergie comprend une chambre de combustion annulaire dotée d'un système de passages d'admission d'air et de carburant et de buses permettant d'obtenir une combustion étagée du prémélange d'air et de carburant. Les admissions d'air et de carburant sont placées en divers emplacements longitudinaux de façon circonférentielle et peuvent adopter différentes configurations dans lesquelles toutes les buses injectent un mélange air/carburant, certaines d'entre elles pouvant injecter uniquement de l'air. Le dispositif de combustion permet d'obtenir un mélange optimal d'air et de carburant, de créer un environnement de combustion permettant de réduire les émissions de polluants et par conséquent le recours à des dispositifs coûteux de lutte contre la pollution, d'améliorer l'allumage et la stabilité de la flamme, de réduire les problèmes de pilotage, d'améliorer la flexibilité du combustible, de réduire la taille requise pour l'aube de guidage de buse du premier étage (NGV) et d'améliorer la réduction des vibrations.
EP11871342.9A 2011-08-22 2011-08-22 Chambre de combustion annulaire tangentielle comprenant un prémélange d'air et de carburant destinée à être utilisée dans des moteurs à turbine à gaz Withdrawn EP2748533A4 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2011/048595 WO2013028164A2 (fr) 2011-08-22 2011-08-22 Chambre de combustion annulaire tangentielle comprenant un prémélange d'air et de carburant destinée à être utilisée dans des moteurs à turbine à gaz

Publications (2)

Publication Number Publication Date
EP2748533A2 true EP2748533A2 (fr) 2014-07-02
EP2748533A4 EP2748533A4 (fr) 2015-03-04

Family

ID=47747017

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11871342.9A Withdrawn EP2748533A4 (fr) 2011-08-22 2011-08-22 Chambre de combustion annulaire tangentielle comprenant un prémélange d'air et de carburant destinée à être utilisée dans des moteurs à turbine à gaz

Country Status (6)

Country Link
EP (1) EP2748533A4 (fr)
JP (1) JP6110854B2 (fr)
KR (1) KR101774630B1 (fr)
CN (1) CN103930723A (fr)
RU (1) RU2626887C2 (fr)
WO (1) WO2013028164A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2748531T3 (pl) * 2011-08-22 2018-05-30 CPS-Holding Limited Sposób wtrysku reagentów spalania do komory spalania
CN104180398A (zh) * 2014-08-24 2014-12-03 武汉英康汇通电气有限公司 一种环形燃烧室
CN104949154B (zh) * 2015-03-11 2017-10-31 龚雨晋 实现定容燃烧的装置及包括该装置的动力系统
US11378277B2 (en) 2018-04-06 2022-07-05 General Electric Company Gas turbine engine and combustor having air inlets and pilot burner
CN108826357A (zh) * 2018-07-27 2018-11-16 清华大学 发动机的环形燃烧室
CN110081429B (zh) * 2019-05-31 2024-04-12 南方电网电力科技股份有限公司 一种污泥与垃圾掺混焚烧方法及其装置
US11035298B1 (en) * 2020-03-16 2021-06-15 Heleng Inc. Turbine engine system
US11448175B1 (en) * 2021-06-03 2022-09-20 General Electric Company Fuel nozzle
KR102583222B1 (ko) * 2022-01-06 2023-09-25 두산에너빌리티 주식회사 연소기용 노즐, 연소기 및 이를 포함하는 가스 터빈

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3433015A (en) * 1965-06-23 1969-03-18 Nasa Gas turbine combustion apparatus
US4216652A (en) * 1978-06-08 1980-08-12 General Motors Corporation Integrated, replaceable combustor swirler and fuel injector
US4891936A (en) * 1987-12-28 1990-01-09 Sundstrand Corporation Turbine combustor with tangential fuel injection and bender jets
SU1575010A1 (ru) * 1988-05-17 1990-06-30 Производственное объединение "Невский завод" им.В.И.Ленина Камера сгорани газотурбинной установки
US5113647A (en) * 1989-12-22 1992-05-19 Sundstrand Corporation Gas turbine annular combustor
US5177955A (en) * 1991-02-07 1993-01-12 Sundstrand Corp. Dual zone single manifold fuel injection system
US5669218A (en) * 1995-05-31 1997-09-23 Dresser-Rand Company Premix fuel nozzle
US6453658B1 (en) * 2000-02-24 2002-09-24 Capstone Turbine Corporation Multi-stage multi-plane combustion system for a gas turbine engine
US6397603B1 (en) * 2000-05-05 2002-06-04 The United States Of America As Represented By The Secretary Of The Air Force Conbustor having a ceramic matrix composite liner
US6655146B2 (en) * 2001-07-31 2003-12-02 General Electric Company Hybrid film cooled combustor liner
US6751961B2 (en) * 2002-05-14 2004-06-22 United Technologies Corporation Bulkhead panel for use in a combustion chamber of a gas turbine engine
US7052231B2 (en) * 2003-04-28 2006-05-30 General Electric Company Methods and apparatus for injecting fluids in gas turbine engines
US20070107437A1 (en) * 2005-11-15 2007-05-17 Evulet Andrei T Low emission combustion and method of operation
US7665307B2 (en) * 2005-12-22 2010-02-23 United Technologies Corporation Dual wall combustor liner
US8015814B2 (en) * 2006-10-24 2011-09-13 Caterpillar Inc. Turbine engine having folded annular jet combustor
FR2917487B1 (fr) * 2007-06-14 2009-10-02 Snecma Sa Chambre de combustion de turbomachine a circulation helicoidale de l'air
US20090133854A1 (en) * 2007-11-27 2009-05-28 Bruce Carlyle Johnson Flameless thermal oxidation apparatus and methods
US20100192582A1 (en) * 2009-02-04 2010-08-05 Robert Bland Combustor nozzle
US8234872B2 (en) * 2009-05-01 2012-08-07 General Electric Company Turbine air flow conditioner
US8904799B2 (en) * 2009-05-25 2014-12-09 Majed Toqan Tangential combustor with vaneless turbine for use on gas turbine engines
US8388307B2 (en) * 2009-07-21 2013-03-05 Honeywell International Inc. Turbine nozzle assembly including radially-compliant spring member for gas turbine engine

Also Published As

Publication number Publication date
JP2014524562A (ja) 2014-09-22
WO2013028164A8 (fr) 2014-04-10
WO2013028164A2 (fr) 2013-02-28
WO2013028164A3 (fr) 2014-03-20
EP2748533A4 (fr) 2015-03-04
CN103930723A (zh) 2014-07-16
KR101774630B1 (ko) 2017-09-19
RU2014110629A (ru) 2015-09-27
JP6110854B2 (ja) 2017-04-05
RU2626887C2 (ru) 2017-08-02
KR20140090141A (ko) 2014-07-16

Similar Documents

Publication Publication Date Title
US8904799B2 (en) Tangential combustor with vaneless turbine for use on gas turbine engines
US9052114B1 (en) Tangential annular combustor with premixed fuel and air for use on gas turbine engines
EP2748444B1 (fr) Chambre de combustion annulaire en forme de boîte présentant des buses de carburant-air étagées et tangentielles, en vue d'une utilisation sur des moteurs à turbine à gaz
JP4578800B2 (ja) タービン内蔵システム及びそのインジェクタ
WO2013028164A2 (fr) Chambre de combustion annulaire tangentielle comprenant un prémélange d'air et de carburant destinée à être utilisée dans des moteurs à turbine à gaz
US10072846B2 (en) Trapped vortex cavity staging in a combustor
EP2738355B1 (fr) Système de moteur à turbine à gaz et procédé associé
US20070227150A1 (en) Combustor
KR101774094B1 (ko) 가스 터빈 엔진에서 사용되는 예비혼합형 접선방향 연료-공기 노즐을 가진 캔-애뉼러형 연소실
US9181812B1 (en) Can-annular combustor with premixed tangential fuel-air nozzles for use on gas turbine engines
US9091446B1 (en) Tangential and flameless annular combustor for use on gas turbine engines
US20140352312A1 (en) Injector for introducing a fuel-air mixture into a combustion chamber
US8739511B1 (en) Can-annular combustor with staged and tangential fuel-air nozzles for use on gas turbine engines
EP2748531B1 (fr) Procédé d'injection de réactants dans une CHAMBRE DE COMBUSTION

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140320

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20150130

RIC1 Information provided on ipc code assigned before grant

Ipc: F23R 3/28 20060101AFI20150126BHEP

Ipc: F23R 3/58 20060101ALI20150126BHEP

Ipc: F23R 3/04 20060101ALI20150126BHEP

Ipc: F23R 3/54 20060101ALI20150126BHEP

Ipc: F23R 3/50 20060101ALI20150126BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150828