EP2741636A2 - Body support modified with viscous gel and method of manufacturing a body support using the same - Google Patents
Body support modified with viscous gel and method of manufacturing a body support using the sameInfo
- Publication number
- EP2741636A2 EP2741636A2 EP12832003.3A EP12832003A EP2741636A2 EP 2741636 A2 EP2741636 A2 EP 2741636A2 EP 12832003 A EP12832003 A EP 12832003A EP 2741636 A2 EP2741636 A2 EP 2741636A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- foam
- layer
- body support
- support cushion
- gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47C—CHAIRS; SOFAS; BEDS
- A47C27/00—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
- A47C27/14—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays
- A47C27/15—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas with foamed material inlays consisting of two or more layers
-
- A—HUMAN NECESSITIES
- A47—FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
- A47C—CHAIRS; SOFAS; BEDS
- A47C27/00—Spring, stuffed or fluid mattresses or cushions specially adapted for chairs, beds or sofas
- A47C27/08—Fluid mattresses or cushions
- A47C27/085—Fluid mattresses or cushions of liquid type, e.g. filled with water or gel
Definitions
- body support includes without limitation any deformable element or structure adapted to support one or more parts of (or the entire body of ) a human or animal in one or more positions.
- body supports include but are not limited to mattresses, pillows, and cushions of any type, including those for use in beds, seats, and other applications.
- Body supports are often constructed entirely or partially out of foam material.
- foam material For example, polyurethane foam is commonly used in many mattresses, pillows, and cushions, and can be used alone or in combination with other types of cushion materials.
- viscoelastic material is used, providing the body support with an increased ability to conform to a user and to thereby distribute the weight or other load of the user.
- Some viscoelastic body support materials are also temperature sensitive, thereby also enabling the body support to change firmness based at least in part upon the temperature of the body part(s) supported thereon.
- Polyurethane foam inherently has characteristics that define design limitations for manufacturers of body supports desiring to use the foam for particular applications.
- some body supports include one or more layers of foam in which uniform characteristics of the foam throughout the thickness of the foam is not necessarily a design objective. Modifying the layers of foam to enhance physical and thermal properties could aid in making the foam layer(s) and/or body support suitable for a particular application. This is particularly the case when one or more of the layers of the body support include viscoelastic foam material, which can dramatically change firmness and shape in use.
- a body support having at least one layer of reticulated or non-reticulated viscoelastic foam is provided, and includes at least one surface upon which a viscous gel has been applied to modify at least one characteristic of the viscoelastic foam.
- Some embodiments of the present invention provide a method of producing a body support including the steps of directing one or more nozzles toward a surface of a layer of reticulated or non-reticulated viscoelastic foam, spraying a viscous gel from the nozzle(s) upon the surface of the layer of viscoelastic foam, and permitting the gel to set on the layer of viscoelastic foam.
- this method further includes permitting the gel to penetrate the surface of the layer of viscoelastic foam to occupy an interior of the layer of viscoelastic foam to a desired depth below the surface.
- FIG. 1 is a perspective view of a body support according to an embodiment of the present invention.
- Fig. 1A is a section view of the body support of Fig. 1 taken along line A-A of Fig. 1.
- FIG. 2 is an exploded perspective view of a body support according to another embodiment of the present invention.
- Fig. 3 is an exploded perspective view of a body support according to yet another embodiment of the present invention. DETAILED DESCRIPTION
- a body support 10 according to an embodiment of the present invention is illustrated in Fig. 1.
- the body support 10 includes a top surface 12 oriented to support a user and a bottom surface 14 positioned to be proximate a frame, floor, or other surface to support the body support 10.
- the body support 10 illustrated in Fig. 1 comprises a single layer of foam (described in greater detail below)
- the body support 10 can instead include any number of additional layers of foam (described in greater detail in connection with Figs. 2 and 3), and in some embodiments can also include one or more layers of other material.
- the body support 10 illustrated in Figs. 1 and 2 is a mattress. However, in other embodiments, the body support 10 is only a portion of a mattress or other body support, and therefore defines a component of a larger body support. Also, the body support 10 can take other forms, such as a mattress topper, overlay, or futon. It will be appreciated that the features of the body support 10 described herein are applicable to any type of body support having any size and shape. By way of example only, these features are equally applicable to head pillows, seat cushions (including the base and/or back cushions of a seat), neck pillows, leg spacer pillows, eye masks, and any other structure used to support and/or cushion any part or all of a human's or animal's body.
- body support refers to any and all of such structures (in addition to mattresses, mattress toppers, overlays, sleeper sofas, and futons) and portions of such structures. It should also be noted that each of the body supports described and/or illustrated herein is presented in a particular form, such as a mattress, mattress topper, overlay, or futon. However, absent description herein to the contrary, any or all of the features of each such body support can be applied to any other type of body support having any other shape and size, including the various types of body supports mentioned above.
- the body support 10 can be enclosed within a cover of any type (not shown), such as a woven or non-woven material, a knitted material, a material comprising cotton, wool, or other natural fiber, polyester, rayon, nylon, foam, or other synthetic material, and a material that is liquid and vapor impermeable, liquid impermeable and vapor permeable, or liquid and vapor permeable.
- a cover of any type such as a woven or non-woven material, a knitted material, a material comprising cotton, wool, or other natural fiber, polyester, rayon, nylon, foam, or other synthetic material, and a material that is liquid and vapor impermeable, liquid impermeable and vapor permeable, or liquid and vapor permeable.
- the body support 10 illustrated in Fig. 1 comprises a layer of viscoelastic foam 10 having an upper surface 12 and a lower surface 14 opposite the upper surface 12.
- the upper surface 12 is also the top surface of the body support 10, whereas the lower surface 14 is also the bottom surface of the body support 10.
- the viscoelastic foam of the body support 10 be reticulated or non-reticulated foam, and/or can comprise any expanded polymer (e.g., expanded ethylene vinyl acetate, polypropylene, polystyrene, or polyethylene), latex, and the like.
- the viscoelastic foam can, in some embodiments, be temperature-sensitive to the body heat of a user, thereby changing in firmness in response to receiving the body heat of a user upon the foam.
- the viscoelastic foam of the body support 10 can comprise reticulated viscoelastic foam.
- Reticulated foam is a cellular foam structure in which the cells of the foam are essentially skeletal.
- the cells of the reticulated foam are each defined by a plurality of apertured windows surrounded by cell struts.
- the cell windows of reticulated foam can be entirely gone (leaving only the cell struts) or substantially gone.
- the foam is considered "reticulated” if at least 50% of the windows of the cells are missing (i.e., windows having apertures therethrough, or windows that are completely missing and therefore leaving only the cell struts).
- Such structures can be created by destruction or other removal of cell window material, or preventing the complete formation of cell windows during the manufacturing process of the foam.
- a quantity of viscous gel 32 is applied to the upper surface 12 of the viscoelastic foam of the body support 10.
- the gel 32 in Fig. 1 has been applied across the entire upper surface 12 (or substantially the entire upper surface 12) of the viscoelastic foam.
- the viscous gel 32 can be applied to any fraction of the upper surface 12 (e.g., only in a central location of the upper surface 12, in bands or islands on the upper surface 12, and the like), and in any number of separate or connected regions of the upper surface 12.
- the viscous gel 32 can also or instead be applied to any other surface of the viscoelastic foam, such as on any one or more of the sides shown in Fig. 1 , on the lower surface 14 of the viscoelastic foam, and the like.
- Viscous gel can be used to modify and enhance both the physical and thermal properties of the viscoelastic foam.
- the viscous gel applied to the viscoelastic foam provides a way of modifying the foam after its manufacture to increase desired properties of the viscoelastic foam and articles made from the viscoelastic foam, including without limitation an increase in the density of the article (by increasing the mass of the foam on which the gel is deposited), an increase in the bulk heat capacity or other property of the viscoelastic foam, and the like.
- the viscous gel can also or instead alter the softness or "feel" of the body support 10, such as in cases where the viscous gel cures or otherwise hardens to a significantly firmer and/or less flexible state.
- the viscous gel 32 is applied by spraying the viscous gel from one or more spray nozzles (not shown) directed toward the upper surface 12.
- a substantially even and well-distributed coating of viscous gel 32 can be applied to the upper surface 12, and in some embodiments can penetrate to a depth within the viscoelastic foam at least partially due to the spray force.
- the viscous gel 32 can penetrate to a depth within the viscoelastic foam based at least in part upon the porosity and/or pore sizes within the viscoelastic foam.
- the term "gel” refers to a gel elastomer - a highly viscoelastic polymer gel that is flowable prior to setting, and that assumes a deformable and elastic shape when set.
- a polyurethane gel can produce excellent results in some applications.
- the viscous gel 32 can be a polyurethane gel.
- the viscous gel has a hardness of no greater than about 90 Shore OOO and no less than about 10 Shore OOO at room temperature (i.e., 21-23 degrees Celsius).
- a viscous gel hardness of no greater than about 80 Shore OOO and no less than about 25 Shore OOO at room temperature can provide good performance results in a number of body support applications.
- a viscous gel hardness of no greater than about 70 Shore OOO and no less than about 40 Shore OOO at room temperature can provide good performance results in a number of body support applications. All such measurements are made after any necessary set time of the viscous gel.
- a desirable characteristic of some viscous gels used in embodiments of the present invention is the density of such gels, as the density of such gels can correlate to the overall elastomeric properties of the gels.
- the viscous gel 32 has a density of no less than about 100 kg/m 3 and no greater than about 1500 kg/m 3 .
- a viscous gel density of no less than about 250 kg/m 3 and no greater than about 1200 kg/m 3 can provide good performance results in a number of body support applications.
- a viscous gel density of no less than about 500 kg/m 3 and no greater than about 1000 kg/m 3 can provide good performance results in a number of body support applications.
- a viscous gel density of no less than about 900 kg/m and no greater than about 1000 kg/m 3 can provide good performance results in a number of body support applications.
- the viscous gel can have a complex viscosity of about 900 Pa at 1 HZ shear frequency and at 25°C. All such measurements are made after any necessary set time of the viscous gel.
- the viscous gel 32 is applied at or near room temperature (i.e., between about 15 degrees Celsius and about 20 degrees Celsius). However, in other embodiments, it may not be required to heat up the viscous gel 32 prior to applying the viscous gel 32 to one or more surfaces of the body support 10. However, it should be noted that in various embodiments, the viscous gel 32 can be applied within a broad range of temperatures above and below room temperature, such as between about 0 degrees Celsius and about 100 degrees Celsius.
- the viscous gel 32 can be applied as a surface gel in some embodiments, and in other embodiments, the viscous gel 32 can penetrate the layer of viscoeiastic foam into the interior of the viscoeiastic foam to set and bond to struts of the viscoeiastic foam cells. For example, in some embodiments, the viscous gel 32 permeates about 1 -2 mm into the layer of viscoeiastic foam. The amount of layer penetration can depend at least in part upon the properties of the viscoeiastic foam used for the layer of the body support 10.
- a deeper penetration i.e., greater than 2 mm
- some non-reticulated viscoeiastic foams provide little to no viscous gel penetration.
- the viscous gel 32 penetrates the viscoeiastic foam to a depth of at least about 5mm. In other embodiments, the viscous gel 32 penetrates the viscoelastic foam to a depth of no greater than about 3mm.
- spraying the viscous gel on the viscoelastic foam layer increases the density of the viscoelastic foam layer (by virtue of the fact that the gel increases the mass on or in the layer).
- the density of the layer increases within the depth of viscoelastic foam penetrated by the viscous gel - in some embodiments without sacrifice of permeability of the viscoelastic foam layer. It will be appreciated that the gel can be spray-applied using one of many known spraying applications and systems.
- the viscous gel 32 acts as a medium to contain and transport other substances onto and/or into the viscoelastic foam, thereby further modifying the properties of the viscoelastic foam layer.
- the viscous gel 32 can be used to carry a phase change material (PCM), e.g., microspheres 34 containing PCM dispersed within the viscous gel 32.
- PCM phase change material
- a phase change material can modify the thermal properties of the viscoelastic foam, in addition to the increased viscoelastic foam density provided by the viscous gel 32 as described above.
- the PCM can modify the surface properties of the viscoelastic foam, and in those embodiments in which the viscous gel 32 penetrates the surface of the viscoelastic foam, the PCM can also modify the internal thermal properties of the viscoelastic foam.
- FIG. 2 illustrates another embodiment of a body support 1 10 according to the present invention.
- This embodiment employs much of the same structure and has many of the same properties as the embodiments of the body support 10 described above in connection with Fig. 1. Accordingly, the following description focuses primarily upon the structure and features that are different than the embodiments described above in connection with Fig. 1. Reference should be made to the description above in connection with Fig. 1 for additional information regarding the structure and features, and possible alternatives to the structure and features of the body support illustrated in Fig. 2 and described below. Structure and features of the embodiment shown in Fig. 2 that correspond to structure and features of the embodiment of Fig. 1 are designated hereinafter in the 100 series of reference numbers.
- the body support 1 10 shown in Fig. 2 has two layers of foam: a top layer 120 and a bottom layer 126 underlying the top layer 120.
- the top layer 120 has an upper surface 1 12 and a lower surface 124 opposite the upper surface 1 12.
- the upper surface 1 12 of the top layer 120 is also the top surface of the body support 1 10 (which may or may not be provided with a cover, as described above).
- the bottom layer 126 has an upper surface 128 and a lower surface 130 opposite the upper surface 128.
- the lower surface 130 of the bottom layer 126 is also the bottom surface 1 14 of the body support 1 10.
- either or both layers 120, 126 are entirely or partially enclosed in a covering material (not shown), as described in greater detail above in connection with the illustrated embodiment of Fig. 1.
- each of the layers 120, 126 is entirely or partially enclosed within a respective cover, thereby enabling the layers 120, 126 to be moved and positioned with respect to one another more easily.
- the top layer 120 and the bottom layer 126 of the body support 1 10 comprise foam material, such as a polyurethane foam, latex foam, any expanded polymer (e.g., expanded ethylene vinyl acetate, polypropylene, polystyrene, or polyethylene), and the like, and can be reticulated or non-reticulated.
- foam material such as a polyurethane foam, latex foam, any expanded polymer (e.g., expanded ethylene vinyl acetate, polypropylene, polystyrene, or polyethylene), and the like, and can be reticulated or non-reticulated.
- either or both layers 120, 126 comprise viscoelastic foam which can, in some embodiments, be temperature-sensitive to the body heat of a user, thereby changing in firmness in response to receiving the body heat of a user upon the body support 1 10.
- the body 110 illustrated in Fig. 2 is an example of how viscous gel 132 can be applied to other surfaces of a body support 1 10, such as to any layer in a multi-layer body support 1 10 as shown in Fig. 1.
- a quantity of viscous gel 132 is applied to a region of the upper surface 128 of a bottom layer 126 of viscoelastic foam.
- viscous gel 132 can be applied to any portion of the upper surface 128 of the viscoelastic foam, such as to the entire upper surface 128 of the bottom layer 126, to any number of regions of the upper surface 128, and/or to the sides and or lower surface 130 of the bottom layer 126.
- the viscous gel 132 is illustrated in Fig. 2 as being applied only to the bottom layer 126 of the body support 1 10, the viscous gel 132 can also or instead be applied to any surface of the top layer 120.
- a method of assembling the body support 1 10 illustrated in Fig. 2 includes applying the viscous gel 132 to the bottom layer 126, and then positioning the top layer 120 on the modified bottom layer 126 following the application of the viscous gel 132.
- the top layer 120 is coupled to the bottom layer 126 by adhesive or cohesive bonding material, or in any other suitable manner.
- the viscous gel 132 can be applied to the body support 1 10 by sprayin as described in greater detail above, or in any of the other manners described herein.
- FIG. 3 illustrates another embodiment of a body support 210 according to the present invention.
- This embodiment employs much of the same structure and has many of the same properties as the embodiments of the body support 10, 1 10 described above in connection with Figs. 1 and 2. Accordingly, the following description focuses primarily upon the structure and features that are different than the embodiments described above in connection with Figs. 1 and 2. Reference should be made to the description above in connection with Figs. 1 and 2 for additional information regarding the structure and features, and possible alternatives to the structure and features of the body support illustrated in Fig. 3 and described below. Structure and features of the embodiment shown in Fig. 3 that correspond to structure and features of the embodiments of Figs. 1 and 2 are designated hereinafter in the 200 series of reference numbers.
- the body support 210 can have any number of layers of foam (and other materials, if desired) coupled together by an adhesive or cohesive bonding material, or in any other suitable manner.
- the body support 210 illustrated in Fig. 3 is another example of a multi-layered body support 210 in which a viscous gel 232 has been applied to viscoelastic foam.
- the body support 210 illustrated in Fig. 3 includes a top layer 220 having an upper surface 212 and a lower surface 224 on an opposite side of the top layer 220.
- the top layer 220 is a pillow top layer, and can be at least partially defined by a layer of viscoelastic or non-viscoelastic foam that is either reticulated or non-reticulated.
- the top layer 220 of the body support 210 illustrated in Fig. 3 is a layer of viscoelastic foam, and can be quilted in some embodiments.
- the body support 210 illustrated in Fig. 3 also includes a bottom layer 226 having an upper surface 228 and a lower surface 214 opposite the upper surface 228.
- the body support 210 illustrated in Fig. 3 also includes a middle layer 244 positioned between the top layer 220 and the bottom layer 226.
- the middle layer 244 has an upper surface 246 positioned adjacent the lower surface 224 of top layer 220, and a lower surface 248 opposite the upper surface 246 and positioned adjacent the upper surface 228 of the bottom layer 226.
- the middle and bottom layers 244, 226 can comprise any other material desired, including without limitation any combination of viscoelastic foam, non-viscoelastic foam, latex foam, reticulated foam, non- reticulated foam, any expanded polymer (e.g., expanded ethylene vinyl acetate, polypropylene, polystyrene, or polyethylene), and the like.
- any expanded polymer e.g., expanded ethylene vinyl acetate, polypropylene, polystyrene, or polyethylene
- viscous gel 232 extends across substantially the entire surface area of the top surface 228 of the bottom layer 226 and the bottom surface 248 of the middle layer 244, whereas viscous gel 232 on the top and middle layers 220, 244 is located only in discrete areas between the top and middle layers 220, 244, it being understood that the viscous gel 232 can be located in any other number of areas having any other locations, shapes, and sizes between the top and middle layers 220, 244.
- the locations, shapes, and sizes of the viscous gel areas on the top, middle, and bottom layers 220, 244 and 226, respectively, in the embodiment of Fig. 3 are illustrated by way of example only, and are not intended to limit the scope of the present invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Mattresses And Other Support Structures For Chairs And Beds (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161535045P | 2011-09-15 | 2011-09-15 | |
PCT/US2012/055730 WO2013040543A2 (en) | 2011-09-15 | 2012-09-17 | Body support modified with viscous gel and method of manufacturing a body support using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2741636A2 true EP2741636A2 (en) | 2014-06-18 |
EP2741636A4 EP2741636A4 (en) | 2015-03-11 |
Family
ID=47884016
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12832003.3A Withdrawn EP2741636A4 (en) | 2011-09-15 | 2012-09-17 | Body support modified with viscous gel and method of manufacturing a body support using the same |
Country Status (7)
Country | Link |
---|---|
US (1) | US20150040327A1 (en) |
EP (1) | EP2741636A4 (en) |
JP (1) | JP2014526346A (en) |
CN (1) | CN104135897A (en) |
CA (1) | CA2848770A1 (en) |
HK (1) | HK1199802A1 (en) |
WO (1) | WO2013040543A2 (en) |
Families Citing this family (47)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD693148S1 (en) | 2010-03-03 | 2013-11-12 | Noel Group Llc | Mattress bed cushion |
USD694553S1 (en) | 2010-03-03 | 2013-12-03 | Noel Group Llc | Mattress bed cushion |
USD693145S1 (en) | 2010-03-03 | 2013-11-12 | Noel Group Llc | Mattress bed cushion |
USD693144S1 (en) | 2010-03-03 | 2013-11-12 | Noel Group Llc | Mattress bed cushion |
USD688492S1 (en) | 2010-03-03 | 2013-08-27 | Noel Group Llc | Mattress bed cushion |
WO2012177321A2 (en) | 2011-04-29 | 2012-12-27 | Nomaco Inc. | Unitary composite/hybrid cushioning structures(s) and profile(s) comprised of a thermoplastic foam(s) and a thermoset material (s) and related mothods |
WO2013049570A1 (en) | 2011-09-30 | 2013-04-04 | Nomaco Inc. | Cellular mattress assemblies and related methods |
ES2583207T3 (en) * | 2012-01-25 | 2016-09-19 | Sealy Technology Llc | Foams designed for foam mattress structures |
USD691400S1 (en) | 2012-02-10 | 2013-10-15 | Nomaco Inc. | Stackable base for mattress assembly |
USD693147S1 (en) | 2012-04-27 | 2013-11-12 | Noel Group Llc | Mattress bed cushion |
USD693146S1 (en) | 2012-04-27 | 2013-11-12 | Noel Group Llc | Mattress bed cushion |
USD694552S1 (en) | 2012-04-27 | 2013-12-03 | Noel Group Llc | Mattress bed cushion |
USD693149S1 (en) | 2012-04-27 | 2013-11-12 | Noel Group Llc | Mattress bed cushion |
USD692693S1 (en) | 2012-04-27 | 2013-11-05 | Noel Group Llc | Mattress bed cushion |
USD697337S1 (en) | 2012-07-03 | 2014-01-14 | Nomaco, Inc. | Stackable base for mattress assembly |
USD690536S1 (en) | 2012-07-26 | 2013-10-01 | Nomaco Inc. | Motion isolation insulator pad |
CA2885402C (en) | 2012-07-27 | 2020-08-18 | Tempur-Pedic Management, Llc | Body support cushion having multiple layers of phase change material |
USD694041S1 (en) | 2012-09-28 | 2013-11-26 | Noel Group Llc | Mattress bed cushion |
USD692694S1 (en) | 2012-09-28 | 2013-11-05 | Noel Group Llc | Mattress bed cushion |
USD688069S1 (en) | 2012-09-28 | 2013-08-20 | Noel Group Llc | Mattress bed cushion |
USD709301S1 (en) | 2012-11-09 | 2014-07-22 | Noel Group Llc | Mattress bed cushion |
USD707467S1 (en) | 2012-11-09 | 2014-06-24 | Noel Group Llc | Mattress bed cushion |
USD701713S1 (en) | 2012-11-09 | 2014-04-01 | Noel Group, Llc | Mattress bed cushion |
USD707468S1 (en) | 2012-11-09 | 2014-06-24 | Noel Group Llc | Mattress bed cushion |
US10045633B2 (en) | 2013-04-26 | 2018-08-14 | Noel Group Llc | Cushioning assemblies with thermoplastic elements encapsulated in thermoset providing customizable support and airflow, and related methods |
CN103358601A (en) * | 2013-07-25 | 2013-10-23 | 苏州市伦琴工业设计有限公司 | Multilayer cushion |
USD704962S1 (en) | 2013-09-09 | 2014-05-20 | Noel Group Llc | Mattress bed cushion |
US9888785B2 (en) | 2014-04-21 | 2018-02-13 | Casper Sleep Inc. | Mattress |
CA2956140A1 (en) * | 2014-07-28 | 2016-02-04 | Tempur-Pedic Management, Llc | Mattress assembly including mattress overlay and multiple covers |
US10124515B2 (en) * | 2014-09-16 | 2018-11-13 | Tempur-Pedic Management, Llc | Gel molded pillow and method of producing the same |
JP6657208B2 (en) * | 2014-10-28 | 2020-03-04 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | Mattress to provide phototherapy to the subject |
USD852541S1 (en) * | 2015-08-07 | 2019-07-02 | Soft-Tex International, Inc. | Pillow |
USD786584S1 (en) * | 2015-08-07 | 2017-05-16 | Soft-Tex International, Inc. | Pillow |
CA3010287C (en) | 2015-12-30 | 2023-11-21 | Tempur-Pedic Management, Llc | Cooling support cushion and method of producing the same |
CN105949497A (en) * | 2016-05-25 | 2016-09-21 | 泉州恒昂工贸有限公司 | Latex mattress or pillow with gel coating on surface and production of latex mattress or pillow |
US10531746B2 (en) * | 2016-06-21 | 2020-01-14 | Donald C. Vesey | Modular mattress |
US9888782B1 (en) * | 2017-01-27 | 2018-02-13 | Eastern Sleep Products Company | Temperature controlled mattress system |
US20180310719A1 (en) * | 2017-04-28 | 2018-11-01 | Hill-Rom Services, Inc. | Adaptable Mattress |
JP2019030519A (en) * | 2017-08-08 | 2019-02-28 | 南京優尼可国際貿易有限公司 | Cool feeling sheet and its manufacturing method |
KR20200040825A (en) | 2017-08-14 | 2020-04-20 | 캐스퍼 슬립 인크. | Mattress with ergonomic stiffness-adjustable endoskeleton |
DE202018100163U1 (en) | 2018-01-12 | 2018-01-25 | Recticel N.V. | Mattress suspension |
WO2019209733A1 (en) | 2018-04-23 | 2019-10-31 | Casper Sleep Inc. | Temperature-regulating mattress |
ES2930233T3 (en) | 2018-08-21 | 2022-12-09 | Dow Global Technologies Llc | Coated open cell polyurethane foam structures with thermal absorption capabilities |
US12108879B2 (en) * | 2018-08-24 | 2024-10-08 | Soft-Tex International, Inc. | Cooling mattresses, pads or mats, and mattress protectors |
USD908398S1 (en) | 2019-08-27 | 2021-01-26 | Casper Sleep Inc. | Mattress |
USD927889S1 (en) | 2019-10-16 | 2021-08-17 | Casper Sleep Inc. | Mattress layer |
EP4132327A4 (en) * | 2020-04-06 | 2024-04-17 | Purple Innovation, LLC | Ventilated mattresses |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2290256B (en) * | 1994-06-03 | 1997-10-29 | Fagerdala World Foams Ab | Laminated supports |
US6866915B2 (en) * | 2000-01-11 | 2005-03-15 | Tempur World, Llc | Cushion |
US6602579B2 (en) * | 2000-01-11 | 2003-08-05 | Tempur World, Inc. | Cushion |
ATE401375T1 (en) * | 2001-07-19 | 2008-08-15 | Bock Healthcare Gmbh | POLYURETHANE GEL MATERIAL, PRODUCTION PROCESS AND USES |
US20070061978A1 (en) * | 2005-03-21 | 2007-03-22 | Technogel Italia Srl | Support apparatus with gel layer |
GB0513286D0 (en) * | 2005-06-29 | 2005-08-03 | Seating Design & Dev Ltd | A mattress |
US20070226911A1 (en) * | 2006-04-03 | 2007-10-04 | Dreamwell, Ltd | Mattress or mattress pad with gel section |
US20130146211A1 (en) * | 2006-04-25 | 2013-06-13 | Technogel Italia Srl | Process for preparing an apparatus comprising a gel layer |
US20070246157A1 (en) * | 2006-04-25 | 2007-10-25 | Technogel Gmbh & Co. | Process for preparing an apparatus comprising a gel layer |
MX2010005896A (en) * | 2007-11-29 | 2010-12-21 | Polyworks Inc | Composite material, method of making and articles formed thereby. |
US7793372B2 (en) * | 2008-05-23 | 2010-09-14 | Latex Foam International Holdings, Inc. | Latex foam bedding products including phase change microcapsules |
CN102292209A (en) * | 2008-12-23 | 2011-12-21 | 泰普尔-佩迪克管理公司 | Inter-layer gelatinous body support adhesive and method of manufacturing a body support using the same |
WO2010075300A1 (en) * | 2008-12-24 | 2010-07-01 | Tempur-Pedic Management, Inc. | Body support including gelatinous material and method of manufacturing a body support having the same |
US20100237082A1 (en) * | 2009-03-20 | 2010-09-23 | Products Of Tomorrow, Inc. | Gel cushion mat |
US7886388B2 (en) * | 2009-04-24 | 2011-02-15 | Foamex Innovations Operating Company | Mattress adapted for supporting heavy weight persons |
US9538855B2 (en) * | 2013-01-25 | 2017-01-10 | Serta, Inc. | Component with multiple layers |
-
2012
- 2012-09-17 EP EP12832003.3A patent/EP2741636A4/en not_active Withdrawn
- 2012-09-17 CN CN201280045009.3A patent/CN104135897A/en active Pending
- 2012-09-17 JP JP2014530923A patent/JP2014526346A/en active Pending
- 2012-09-17 WO PCT/US2012/055730 patent/WO2013040543A2/en active Application Filing
- 2012-09-17 US US14/344,071 patent/US20150040327A1/en not_active Abandoned
- 2012-09-17 CA CA2848770A patent/CA2848770A1/en not_active Abandoned
-
2015
- 2015-01-08 HK HK15100205.4A patent/HK1199802A1/en unknown
Also Published As
Publication number | Publication date |
---|---|
HK1199802A1 (en) | 2015-07-24 |
JP2014526346A (en) | 2014-10-06 |
CA2848770A1 (en) | 2013-03-21 |
EP2741636A4 (en) | 2015-03-11 |
WO2013040543A3 (en) | 2013-05-10 |
CN104135897A (en) | 2014-11-05 |
WO2013040543A2 (en) | 2013-03-21 |
US20150040327A1 (en) | 2015-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20150040327A1 (en) | Body support modified with viscous gel and method of manufacturing a body support using the same | |
US20110256380A1 (en) | Inter-layer gelatinous body support adhesive and method of manufacturing a body support using the same | |
US20110256369A1 (en) | Thin-layered alternating material body support and method of manufacturing same | |
US20210120970A1 (en) | Mattresses including spacer fabric and related methods | |
US10470583B2 (en) | Component with multiple layers | |
US20150351557A1 (en) | Multi-layer body support having phase change material | |
US11122910B2 (en) | Multi-layered convoluted foam layer | |
JP2009532178A (en) | Mattress or mattress pad with gel part | |
WO2015150920A2 (en) | Support cushions for providing ventilation | |
US20150305515A1 (en) | Enhanced mobility mattress | |
WO2010075293A1 (en) | Flippable mattress topper | |
WO2019021736A1 (en) | Mattress structure | |
US20220408945A1 (en) | Molded hybrid pillow | |
CN117545403A (en) | Double-sided hybrid mattress top pad | |
EP2373198B1 (en) | Body support with non-planar top surface | |
US20100024127A1 (en) | Body support mattress pad | |
WO2010075300A1 (en) | Body support including gelatinous material and method of manufacturing a body support having the same | |
JP2024522874A (en) | Hybrid pillow | |
US20130205510A1 (en) | Mattress having reduced motion transfer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140314 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20150211 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: A47C 27/08 20060101ALI20150205BHEP Ipc: A47C 27/15 20060101AFI20150205BHEP |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150910 |