EP2739923B1 - Method and device for drying a fluid film applied to a substrate - Google Patents

Method and device for drying a fluid film applied to a substrate Download PDF

Info

Publication number
EP2739923B1
EP2739923B1 EP12741294.8A EP12741294A EP2739923B1 EP 2739923 B1 EP2739923 B1 EP 2739923B1 EP 12741294 A EP12741294 A EP 12741294A EP 2739923 B1 EP2739923 B1 EP 2739923B1
Authority
EP
European Patent Office
Prior art keywords
temperature
heat source
transport
substrate
fluid film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12741294.8A
Other languages
German (de)
French (fr)
Other versions
EP2739923A1 (en
Inventor
Franz Durst
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMP Tech GmbH Fluid Measurements and Projects
Original Assignee
FMP Tech GmbH Fluid Measurements and Projects
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE201110080222 external-priority patent/DE102011080222A1/en
Application filed by FMP Tech GmbH Fluid Measurements and Projects filed Critical FMP Tech GmbH Fluid Measurements and Projects
Publication of EP2739923A1 publication Critical patent/EP2739923A1/en
Application granted granted Critical
Publication of EP2739923B1 publication Critical patent/EP2739923B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/10Arrangements for feeding, heating or supporting materials; Controlling movement, tension or position of materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B13/00Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement
    • F26B13/06Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement with movement in a sinuous or zig-zag path
    • F26B13/08Machines and apparatus for drying fabrics, fibres, yarns, or other materials in long lengths, with progressive movement with movement in a sinuous or zig-zag path using rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B3/00Drying solid materials or objects by processes involving the application of heat
    • F26B3/18Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact
    • F26B3/20Drying solid materials or objects by processes involving the application of heat by conduction, i.e. the heat is conveyed from the heat source, e.g. gas flame, to the materials or objects to be dried by direct contact the heat source being a heated surface, e.g. a moving belt or conveyor

Definitions

  • the invention relates to a method and a device for drying a fluid film applied to a substrate, which contains a vaporizable liquid, according to the preamble of patent claims 1 and 15.
  • the web-shaped goods may be, for example, paper, plastic films, textiles or metal strips.
  • a fluid film is applied which contains a vaporizable liquid and non-volatilizable components.
  • the fluid film is solidified by evaporation of the vaporizable liquid. This process is called drying of the fluid layer.
  • the object of the invention is to eliminate the disadvantages of the prior art.
  • a method and a device are to be specified with which a fluid film applied to a substrate can be dried while avoiding mottling phenomena and with improved efficiency, without having to move large amounts of air.
  • the heat from the heating surface to the fluid film be transferred substantially by direct heat conduction.
  • the liquid is substantially evaporated by means of a heat source provided opposite the substrate. This eliminates the effort to heat the drying gas. The further effort for cleaning or regeneration of the drying gas can be significantly reduced.
  • drying rates of up to 20 g / m 2 s can be achieved. This corresponds to about 10 times those drying rates, which are achieved by the methods known in the prior art.
  • the heat in the method according to the invention is supplied to the fluid film essentially by direct heat conduction , This advantageously ensures that the fluid film is heated from its surface facing the heating surface in the direction of the substrate surface. In contrast to the entry of heat by means of heat radiation, which is absorbed substantially at the substrate surface, thus a particularly effective evaporation or diffusion of the liquid can be achieved.
  • the vaporized liquid is removed in the direction of the heat source by the applied temperature gradient. Ie. the vaporized liquid flows substantially perpendicularly from the interface and then enters a channel formed by the interface and heating surface. It is largely avoided within the fluid film, the generation of a substantially parallel to the interface directed flow with high amounts of air. As a result, step no mottling phenomena in the fluid film in the method according to the invention.
  • a gas flow is generated in the channel formed between the heating surface and the interface for discharging the evaporated liquid opposite to the transport direction of the substrate.
  • the gas flow may be generated, for example, by a suction device which is provided at the upstream end of the channel.
  • the evaporated liquid is moved in the direction of each upstream upstream heat source.
  • a flow rate of the gas flow guided in the opposite direction to the transport direction of the substrate is expediently 2 cm / s to 30 m / s, preferably 10 cm / s to 10 m / s.
  • the flow rate of the gas depends on the length of the channel and the amount of liquid to be evaporated. If the liquid to be evaporated is flammable, choose an inert gas as the gas.
  • a first temperature T G of the heating surface is regulated as a function of an interface temperature T I of the fluid film.
  • the first temperature T G is adjusted so that the required removal of the released fluid vapor is ensured by the surface.
  • the heat is advantageously transferred from the heating surface to the fluid film essentially by direct heat conduction.
  • the first temperature T G is suitably controlled in the range of 50 ° C to 300 ° C, preferably in the range of 80 ° C and 200 ° C.
  • the transport surface is heated to a second temperature T H by means of a further heat source.
  • the second temperature T H is set so that it is greater than the interface temperature T I.
  • a particularly large mass flow of the evaporated liquid is advantageously achieved when the difference .DELTA.T between the interface temperature T I and the second temperature T H is in the range of 2 ° C to 30 ° C.
  • the evaporation of the liquid is carried out in a non-combustible gas atmosphere, preferably a nitrogen or carbon dioxide atmosphere. This can be safely and reliably avoided ignition of a vaporized within the drying device combustible liquid.
  • the heating surface facing the substrate is arranged at a distance of 0.2 mm to 5.0 mm, preferably 0.2 to 1.0 mm, opposite the substrate surface.
  • the proposed small distance between the heating surface and the substrate surface allows a particularly homogeneous heating of the fluid film and thus a uniform evaporation of the liquid.
  • a thickness of the fluid film is of course chosen so that it is smaller than the aforementioned distance.
  • the fluid film may, for example, have a thickness in the range of 5 ⁇ m to 200 ⁇ m, preferably 10 ⁇ m to 50 ⁇ m.
  • the second temperature T H is controlled so that it is always smaller than the first temperature T G.
  • a temperature difference between the first T G and the second temperature T H can in particular be regulated so that a predetermined temperature difference profile is established along the transport device.
  • the temperature gradient or the temperature difference between the first T G and the second temperature T H can change along the transport direction in a predetermined manner. This takes into account the fact that the amount of liquid to be evaporated decreases in the transport direction.
  • the change of the temperature gradient can be effected by a suitable regulation of the first T G and / or second temperature T H or also by a change of the distance of the heating surface from the boundary surface.
  • the evaporated liquid substantially are discharged vertically from the surface of the fluid film or the interface.
  • an electric heating source preferably a heat source equipped with heating elements
  • the resistance heating wires can be arranged, for example, like a grid.
  • Such a heat exchanger may be designed to be flowed through like a radiator for motor vehicles. It is also possible to provide a plurality of heat exchangers in succession in the transport direction, it being possible for a gap to be provided in each case between the heat exchangers. Through the gap, the vaporized liquid can be removed from the surface of the fluid film.
  • At least one rotatable roller is used as a transport device, whose lateral surface forms the transport surface.
  • a transport device can be made relatively compact. It may also be combined with a slot die tool for applying the fluid film.
  • the heat source is configured corresponding to the lateral surface of the roller, that is, a heating surface of the heat source is arranged at a predetermined small distance from the lateral surface.
  • the further heat source is arranged inside the roller.
  • the transport surface is heated by an underside of the transport device opposite the substrate, preferably by means of direct heat conduction.
  • the transport surface can be electrically heated by means of resistance heating elements. Such an electric heater allows a particularly simple control of the temperature of the transport surface.
  • an apparatus for drying a fluid film applied to a substrate surface of a substrate comprising a vaporizable liquid, wherein the heat from the heating surface is transferred to the fluid film substantially by direct heat conduction.
  • the proposed device enables efficient drying of a fluid film applied to a substrate.
  • the liquid is evaporated by a heat source provided opposite the substrate.
  • the heat source is arranged only at a distance of 0.1 to 15.0 mm, preferably 0.1 to 5.0 mm from the substrate surface.
  • the vaporized liquid is removed by generating a flow directed from the substrate in the direction of the heat source.
  • a device for discharging the evaporated liquid is provided.
  • a further heat source for heating the transport surface is provided.
  • the further heat source is expediently provided on a "underside" of the transport device opposite the substrate. It may be, for example, a resistance heater.
  • a first control device for controlling a first temperature T G generated by the heating surface as a function of an interface temperature T I of the fluid film.
  • the controlled variable namely the first temperature T G of the heating surface, is determined according to a predetermined algorithm depending on the interface temperature T I , which forms the reference variable set.
  • the first temperature T G can be regulated, for example, such that a predetermined temperature gradient is formed between the interface temperature T I and the first temperature T G.
  • a second control device is advantageously provided for controlling a second temperature T H of the transport surface as a function of the interface temperature T I.
  • the interface temperature T I is measured as a reference variable.
  • the second temperature T H is adjusted or tracked by means of the control device.
  • the setting or the tracking of the second temperature T H is expediently such that a predetermined interface temperature T I is kept substantially constant.
  • the first T G and the second temperature T H can be measured, for example, by means of conventional thermocouples.
  • the interface temperature T I can be detected without contact, for example by means of an infrared measuring device.
  • the first control device can also be omitted.
  • the first temperature T G is kept constant.
  • the first and the second control device can also be coupled.
  • a temperature gradient between the first T G and the second temperature T H can be regulated in accordance with a further predetermined algorithm so that along the transport direction a predetermined temperature difference profile is established between the transport surface and the heating surface.
  • T c 1 + c 2 exp m ⁇ C P ⁇ G y .
  • T T G
  • T T 1 .
  • T I T G - 1 - f * T H - T I * exp m ⁇ C P ⁇ G ⁇ G - 1 m ⁇ C P - ⁇ G ⁇ H LH 2 ⁇ G T I - 1 - H ⁇ S + H ⁇ L
  • the drying of the fluid film according to the invention is essentially determined by checking the second temperature T H on the transport surface and by the first temperature T G of the heat source.
  • the heat source is disposed at a distance ⁇ G from the side facing the gas phase boundary surface of the fluid film.
  • Fig. 2 shows the interface temperature T I over the first temperature T G of the heat source or gas phase.
  • Fig. 3 show the Interface temperature T 1 above the temperature T H of the transport surface.
  • the mass diffusion rate can be achieved by increasing the first temperature T G. It can also be seen that an increase in the second temperature T H causes a reduction in the mass diffusion rate.
  • a reduction of the drying time can be achieved if the second temperature T H small and the first temperature T G is selected high. Both temperatures T G and T H are adjustable so that T I can be controlled. T I can z. B. be kept at room temperature.
  • Fig. 8 shows a schematic sectional view of an embodiment of a diffusion dryer according to the invention.
  • a housing 1 In a housing 1 is a supply roller 2, on which the substrate 3 to be coated is received. The substrate 3 is guided over first tension rollers 4a, 4b on a transport roller 5.
  • a jacket or transport surface 6 of the transport roller 5 is partially surrounded by a drying device 7, preferably over an angle of 180-270 °.
  • a slot nozzle tool designated by the reference numeral 8 is provided for applying a fluid film F to the substrate 3.
  • Downstream of the drying device 7 is at least one further tension roller 9, via which the substrate 3 is wound onto a roller 10.
  • Reference numeral 11 denotes a roller cleaning device which is downstream the drying device 7 and upstream of the coating tool 8 is arranged.
  • the drying device 7 has a further housing 12.
  • the further housing 12 is provided with suction devices 14, with which a liquid vapor escaping from the fluid film F is extracted.
  • a recorded in the other housing 12 heat source 13 may be formed, for example, of resistance heating wires, which are arranged like a grid.
  • the heating wires form a heating surface G, which is arranged at a distance ⁇ G of, for example, 0.1 mm to 1.0 mm opposite the interface I of the fluid film F.
  • Absauginraumen not shown in detail 14 results in a substantially perpendicular to the transport surface 6 forming flow, which in Fig. 9 indicated by arrows.
  • the suction means 14 By the suction means 14, a negative pressure in the space between the interface I and the heating surface G is advantageously generated. This avoids the escape of any combustible liquid vapors into the environment.
  • the housing 1 can also be flushed with a protective gas atmosphere in order to avoid a risk of fire or explosion due to the escape of the combustible liquid vapors.
  • inventive device is particularly compact. Instead of a transport roller 5, a plurality of transport rollers 5 can be used. Thus, a drying section can be increased, which allows drying of relatively thick fluid films F.
  • the device according to the invention can also be used in combination with conventional convection dryers. To this Purpose of the device according to the invention is advantageously used upstream of a conventional convection dryer. By using the device according to the invention in combination with a conventional convection dryer, the energy used to operate the conventional convection dryer can be drastically reduced.
  • FIG. 10 shown schematic sectional view through a further embodiment of a diffusion dryer according to the invention or a further drying device 15 shown.
  • the substrate 3 is in turn received on a supply roll 2; it is transported by a driven roller 16.
  • the reference numeral 8 again denotes a slot nozzle tool for applying a fluid film to the substrate 3, which is arranged upstream of a further drying device 15.
  • the further drying device 15 comprises in the transport direction T heating elements 17, which may be arranged in the transport direction T successively arranged plate-shaped resistance heating.
  • the heating elements 17 form a substantially closed heating surface G, which is arranged at a distance ⁇ G of 2 to 10 mm from a substrate surface.
  • the further drying device 15 thus has a rectangular channel K with the height ⁇ G , through which the substrate 3 is guided in the transport direction T.
  • air L is sucked into the channel K at the upstream end of the further drying device 15 and moved counter to the transport direction T in the direction of the suction device 14 in countercurrent. It is a flow rate, for example, 30 cm / s to 3 m / s.
  • Another transport surface 18 of the further drying device 15 is formed here just. It can also be designed to be heatable (not shown here).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Textile Engineering (AREA)
  • Drying Of Solid Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Trocknung eines auf ein Substrat aufgetragenen Fluidfilms, der eine verdampfbare Flüssigkeit enthält, nach dem Oberbegriff der Patentansprüche 1 und 15.The invention relates to a method and a device for drying a fluid film applied to a substrate, which contains a vaporizable liquid, according to the preamble of patent claims 1 and 15.

Ein solches Verfahren sowie eine solche Vorrichtung sind aus der US 2007/110894 A1 bekannt.Such a method and such a device are known from US 2007/110894 A1 known.

Nach dem Stand der Technik ist es weiter bekannt, die Oberflächen bahnförmiger Güter zu beschichten. Bei den bahnförmigen Gütern kann es sich beispielsweise um Papier, Kunststofffolien, Textilien oder Metallbänder handeln. Zur Beschichtung der Oberfläche wird ein Fluidfilm aufgetragen, der eine verdampfbare Flüssigkeit und nicht-verdampfbare Komponenten enthält. Der Fluidfilm wird durch Verdampfen der verdampfbaren Flüssigkeit verfestigt. Dieser Prozess wird als Trocknung der Fluidschicht bezeichnet.According to the prior art, it is also known to coat the surfaces of web-shaped goods. The web-shaped goods may be, for example, paper, plastic films, textiles or metal strips. To coat the surface, a fluid film is applied which contains a vaporizable liquid and non-volatilizable components. The fluid film is solidified by evaporation of the vaporizable liquid. This process is called drying of the fluid layer.

Zur Verfestigung bzw. Trocknung des Fluidfilms ist es beispielsweise aus der DE 39 27 627 A1 bekannt, sowohl eine Unterseite des Substrats als auch eine mit dem Fluidfilm versehene gegenüberliegende Oberseite mit einem erwärmten Trocknungsgas anzuströmen. Bei einem aus der DE 39 00 957 A1 bekannten Verfahren wird ein entlang der Oberfläche des Fluidfilms strömendes Trocknungsgas in Stromrichtung beschleunigt. - Die vorgenannten Trocknungsverfahren haben den Nachteil, dass es durch die Einwirkung des Trocknungsgases auf der Oberfläche des Fluidfilms zu unerwünschten Meliererscheinungen kommt.For solidification or drying of the fluid film, it is for example from the DE 39 27 627 A1 It is known to flow both a lower side of the substrate and an opposite upper side provided with the fluid film with a heated drying gas. At one of the DE 39 00 957 A1 known method, a drying gas flowing along the surface of the fluid film is accelerated in the flow direction. The abovementioned drying methods have the disadvantage that unwanted mottling phenomena occur on the surface of the fluid film due to the action of the drying gas.

Zur Überwindung dieses Nachteils ist es aus der WO 82/03450 bekannt, in einem Abstand oberhalb des Fluidfilms eine durchströmbare Filterschicht vorzusehen. Durch die Wirkung der Filterschicht wird die Strömung des Trocknungsgases im Bereich oberhalb der Fluidschicht verlangsamt und turbulente Strömungen werden so vermieden. Infolgedessen kann allerdings ein aus dem Fluidfilm entweichender Flüssigkeitsdampf nicht besonders schnell abgeführt werden. Dieses Trocknungsverfahren ist nicht besonders effizient.To overcome this disadvantage, it is from the WO 82/03450 It is known to provide a flow-through filter layer at a distance above the fluid film. Due to the effect of the filter layer, the flow of the drying gas in the area above the fluid layer is slowed down and turbulent flows are thus avoided. As a result, however, a liquid vapor escaping from the fluid film can not be dissipated particularly quickly. This drying process is not very efficient.

Bei den nach dem Stand der Technik bekannten Trocknungsverfahren werden große Volumina an Trocknungsgas benötigt, die anschließend aufwändig gereinigt und/oder regeneriert werden müssen.In the drying process known from the prior art, large volumes of drying gas are required, which subsequently have to be laboriously cleaned and / or regenerated.

Aufgabe der Erfindung ist es, die Nachteile nach dem Stand der Technik zu beseitigen. Es sollen insbesondere ein Verfahren und eine Vorrichtung angegeben werden, mit denen ein auf ein Substrat aufgetragener Fluidfilm unter Vermeidung von Meliererscheinungen und mit verbesserter Effizienz getrocknet werden kann, ohne dass große Luftmengen bewegt werden müssen.The object of the invention is to eliminate the disadvantages of the prior art. In particular, a method and a device are to be specified with which a fluid film applied to a substrate can be dried while avoiding mottling phenomena and with improved efficiency, without having to move large amounts of air.

Diese Aufgabe wird durch die Merkmale der Ansprüche 1 und 15 gelöst. Zweckmäßige Ausgestaltungen der Erfindung ergeben sich aus den Merkmalen der Ansprüche 2 bis 14 und 16 bis 25.This object is solved by the features of claims 1 and 15. Advantageous embodiments of the invention will become apparent from the features of claims 2 to 14 and 16 to 25.

Nach Maßgabe der Erfindung wird bei einem Verfahren zur Trocknung eines auf eine Substratoberfläche eines Substrats aufgetragenen, eine verdampfbare Flüssigkeit enthaltenden Fluidfilms mit folgenden Schritten vorgeschlagen, dass die Wärme von der Heizfläche auf den Fluidfilm im Wesentlichen mittels direkter Wärmeleitung übertragen wird.According to the invention, in a method for drying a fluid film containing a vaporizable liquid applied to a substrate surface of a substrate, it is proposed that the heat from the heating surface to the fluid film be transferred substantially by direct heat conduction.

Beim vorgeschlagenen Verfahren wird, in Abkehr vom Stand der Technik, die Flüssigkeit im Wesentlichen mittels einer gegenüberliegend des Substrats vorgesehenen Wärmequelle verdampft. Damit entfällt der Aufwand zum Aufheizen des Trocknungsgases. Der weitere Aufwand zur Reinigung oder Regenerierung des Trocknungsgases kann erheblich reduziert werden. Mit dem erfindungsgemäß vorgeschlagenen Verfahren können Trocknungsraten von bis zu 20 g/m2s erreicht werden. Das entspricht etwa dem 10-Fachen derjenigen Trocknungsraten, welche mit den nach dem Stand der Technik bekannten Verfahren erreicht werden.In the proposed method, the departure from the prior art, the liquid is substantially evaporated by means of a heat source provided opposite the substrate. This eliminates the effort to heat the drying gas. The further effort for cleaning or regeneration of the drying gas can be significantly reduced. With the method proposed according to the invention, drying rates of up to 20 g / m 2 s can be achieved. This corresponds to about 10 times those drying rates, which are achieved by the methods known in the prior art.

Indem die Heizfläche der Wärmequelle lediglich in einem Abstand von 0,1 mm bis 15,0 mm, vorzugsweise 0,2 bis 5,0 mm, gegenüberliegend der Substratoberfläche angeordnet ist, wird die Wärme beim erfindungsgemäßen Verfahren im Wesentlichen durch direkte Wärmeleitung dem Fluidfilm zugeführt. Damit wird in vorteilhafter Weise erreicht, dass der Fluidfilm von seiner der Heizfläche zugewandten Grenzfläche aus in Richtung der Substratoberfläche aufgeheizt wird. Im Gegensatz zum Eintrag von Wärme mittels Wärmestrahlung, welche im Wesentlichen an der Substratoberfläche absorbiert wird, kann damit eine besonders effektive Verdampfung bzw. Diffusion der Flüssigkeit erreicht werden.Since the heating surface of the heat source is arranged only at a distance of 0.1 mm to 15.0 mm, preferably 0.2 to 5.0 mm, opposite the substrate surface, the heat in the method according to the invention is supplied to the fluid film essentially by direct heat conduction , This advantageously ensures that the fluid film is heated from its surface facing the heating surface in the direction of the substrate surface. In contrast to the entry of heat by means of heat radiation, which is absorbed substantially at the substrate surface, thus a particularly effective evaporation or diffusion of the liquid can be achieved.

Des Weiteren wird die verdampfte Flüssigkeit in Richtung der Wärmequelle durch den angelegten Temperaturgradienten abgeführt. D. h. die verdampfte Flüssigkeit strömt im Wesentlichen senkrecht von der Grenzfläche ab und gelangt dann in einen durch die Grenzfläche und die Heizfläche gebildeten Kanal. Es wird innerhalb des Fluidfilms die Erzeugung einer im Wesentlichen parallel zur Grenzfläche gerichteten Strömung mit hohen Luftmengen weitgehend vermieden. Infolgedessen treten beim erfindungsgemäßen Verfahren keine Meliererscheinungen im Fluidfilm auf.Furthermore, the vaporized liquid is removed in the direction of the heat source by the applied temperature gradient. Ie. the vaporized liquid flows substantially perpendicularly from the interface and then enters a channel formed by the interface and heating surface. It is largely avoided within the fluid film, the generation of a substantially parallel to the interface directed flow with high amounts of air. As a result, step no mottling phenomena in the fluid film in the method according to the invention.

Nach einer weiteren besonders vorteilhaften Ausgestaltung der Erfindung wird zum Abführen der verdampften Flüssigkeit entgegensetzt zur Transportrichtung des Substrats eine Gasströmung in dem zwischen der Heizfläche und der Grenzfläche gebildeten Kanal erzeugt. Die Gasströmung kann beispielsweise durch eine Absaugeinrichtung erzeugt werden, welche am stromaufwärtigen Ende des Kanals vorgesehen ist. Damit wird die verdampfte Flüssigkeit in Richtung der jeweils stromaufwärts benachbarten Wärmequelle bewegt. Eine Strömungsgeschwindigkeit des in Gegenrichtung zur Transportrichtung des Substrats geführten Gasstroms beträgt zweckmäßigerweise 2 cm/s bis 30 m/s, vorzugsweise 10 cm/s bis 10 m/s. Die Strömungsgeschwindigkeit des Gases hängt .von der Länge des Kanals und der Menge der zu verdampfenden Flüssigkeit ab. Falls die zu verdampfende Flüssigkeit brennbar ist, ist als Gas ein Inertgas zu wählen.According to a further particularly advantageous embodiment of the invention, a gas flow is generated in the channel formed between the heating surface and the interface for discharging the evaporated liquid opposite to the transport direction of the substrate. The gas flow may be generated, for example, by a suction device which is provided at the upstream end of the channel. Thus, the evaporated liquid is moved in the direction of each upstream upstream heat source. A flow rate of the gas flow guided in the opposite direction to the transport direction of the substrate is expediently 2 cm / s to 30 m / s, preferably 10 cm / s to 10 m / s. The flow rate of the gas depends on the length of the channel and the amount of liquid to be evaporated. If the liquid to be evaporated is flammable, choose an inert gas as the gas.

Nach einer vorteilhaften Ausgestaltung wird eine erste Temperatur TG der Heizfläche in Abhängigkeit einer Grenzflächentemperatur TI des Fluidfilms geregelt. Die erste Temperatur TG wird dabei so eingestellt, dass der erforderliche Abtransport des frei werdenden Fluiddampfs von der Oberfläche gewährleistet wird. Die Wärme wird von der Heizfläche auf den Fluidfilm vorteilhafterweise im Wesentlichen mittels direkter Wärmeleitung übertragen.According to an advantageous embodiment, a first temperature T G of the heating surface is regulated as a function of an interface temperature T I of the fluid film. The first temperature T G is adjusted so that the required removal of the released fluid vapor is ensured by the surface. The heat is advantageously transferred from the heating surface to the fluid film essentially by direct heat conduction.

Die erste Temperatur TG wird zweckmäßigerweise im Bereich von 50°C bis 300°C, vorzugsweise im Bereich von 80°C und 200°C, geregelt.The first temperature T G is suitably controlled in the range of 50 ° C to 300 ° C, preferably in the range of 80 ° C and 200 ° C.

Nach einer weiteren vorteilhaften Ausgestaltung wird die Transportfläche mittels einer weiteren Wärmequelle beheizt. Eine durch die weitere Wärmequelle erzeugte zweite Temperatur TH der Transportfläche wird vorteilhafterweise in Abhängigkeit der Grenzflächentemperatur TI geregelt. Dabei kann die zweite Temperatur TH insbesondere so geregelt werden, dass folgende Beziehung erfüllt ist: T H = T I + ΔT ,

Figure imgb0001
wobei

  • TI im Bereich von 10°C bis 50°C und
  • ΔT im Bereich von 10°C bis 40°C, vorzugsweise 20°C bis 30°C, liegt.
According to a further advantageous embodiment, the transport surface is heated by means of a further heat source. A second temperature T H of the transport surface generated by the further heat source is advantageously regulated as a function of the interface temperature T I. In this case, the second temperature T H can be regulated in particular such that the following relationship is fulfilled: T H = T I + .DELTA.T .
Figure imgb0001
in which
  • T I in the range of 10 ° C to 50 ° C and
  • ΔT is in the range of 10 ° C to 40 ° C, preferably 20 ° C to 30 ° C.

Bedingt durch die Verdampfung der Flüssigkeit kommt es zu einer Abkühlung der Transportfläche. Zur Erhöhung des Massestroms der verdampften Flüssigkeit wird mittels einer weiteren Wärmequelle die Transportfläche auf eine zweite Temperatur TH aufgeheizt. Dabei wird die zweite Temperatur TH so eingestellt, dass sie größer als die Grenzflächentemperatur TI ist. Ein besonders großer Massestrom der verdampften Flüssigkeit wird vorteilhafterweise dann erreicht, wenn die Differenz ΔT zwischen der Grenzflächentemperatur TI und der zweiten Temperatur TH im Bereich von 2°C bis 30°C liegt.Due to the evaporation of the liquid there is a cooling of the transport surface. To increase the mass flow of the evaporated liquid, the transport surface is heated to a second temperature T H by means of a further heat source. In this case, the second temperature T H is set so that it is greater than the interface temperature T I. A particularly large mass flow of the evaporated liquid is advantageously achieved when the difference .DELTA.T between the interface temperature T I and the second temperature T H is in the range of 2 ° C to 30 ° C.

Zweckmäßigerweise wird die Verdampfung der Flüssigkeit in einer nicht-brennbaren Gasatmosphäre, vorzugsweise Stickstoff- oder Kohlendioxidatmosphäre, durchgeführt. Damit kann sicher und zuverlässig eine Entzündung einer innerhalb der Trocknungseinrichtung verdampften brennbaren Flüssigkeit vermieden werden.Expediently, the evaporation of the liquid is carried out in a non-combustible gas atmosphere, preferably a nitrogen or carbon dioxide atmosphere. This can be safely and reliably avoided ignition of a vaporized within the drying device combustible liquid.

Nach einer weiteren besonders vorteilhaften Ausgestaltung ist die dem Substrat zugewandte Heizfläche in einem Abstand von 0,2 mm bis 5,0 mm, vorzugsweise 0,2 bis 1,0 mm, gegenüberliegend der Substratoberfläche angeordnet. Der vorgeschlagene geringe Abstand zwischen der Heizfläche und der Substratoberfläche ermöglicht eine besonders homogene Erwärmung des Fluidfilms und damit eine gleichmäßige Verdampfung der Flüssigkeit. Eine Dicke des Fluidfilms ist dabei selbstverständlich so gewählt, dass sie kleiner als der vorgenannte Abstand ist. Der Fluidfilm kann beispielsweise eine Dicke im Bereich von 5 µm bis 200 µm, vorzugsweise 10 µm bis 50 µm haben.According to a further particularly advantageous embodiment, the heating surface facing the substrate is arranged at a distance of 0.2 mm to 5.0 mm, preferably 0.2 to 1.0 mm, opposite the substrate surface. The proposed small distance between the heating surface and the substrate surface allows a particularly homogeneous heating of the fluid film and thus a uniform evaporation of the liquid. A thickness of the fluid film is of course chosen so that it is smaller than the aforementioned distance. The fluid film may, for example, have a thickness in the range of 5 μm to 200 μm, preferably 10 μm to 50 μm.

Nach einer weiteren vorteilhaften Ausgestaltung wird die zweite Temperatur TH so geregelt, dass sie stets kleiner als die erste Temperatur TG ist. Eine Temperaturdifferenz zwischen der ersten TG und der zweiten Temperatur TH kann insbesondere so geregelt werden, dass sich entlang der Transportvorrichtung ein vorgegebenes Temperaturdifferenzprofil einstellt. Der Temperaturgradient bzw. die Temperaturdifferenz zwischen erster TG und zweiter Temperatur TH kann sich entlang der Transportrichtung in vorgegebener Weise ändern. Damit wird dem Umstand Rechnung getragen, dass die Menge der zu verdampfenden Flüssigkeit in Transportrichtung abnimmt. Die Änderung des Temperaturgradienten kann durch eine geeignete Regelung der ersten TG und/oder zweiten Temperatur TH oder auch durch eine Änderung des Abstands der Heizfläche von der Grenzfläche bewirkt werden.According to a further advantageous embodiment, the second temperature T H is controlled so that it is always smaller than the first temperature T G. A temperature difference between the first T G and the second temperature T H can in particular be regulated so that a predetermined temperature difference profile is established along the transport device. The temperature gradient or the temperature difference between the first T G and the second temperature T H can change along the transport direction in a predetermined manner. This takes into account the fact that the amount of liquid to be evaporated decreases in the transport direction. The change of the temperature gradient can be effected by a suitable regulation of the first T G and / or second temperature T H or also by a change of the distance of the heating surface from the boundary surface.

Als besonders vorteilhaft hat es sich erwiesen, dass als Wärmequelle eine durchströmbare Wärmequelle verwendet wird und die verdampfte Flüssigkeit durch die Wärmequelle hindurch abgeführt wird. Damit kann die verdampfte Flüssigkeit im Wesentlichen senkrecht von der Oberfläche des Fluidfilms bzw. der Grenzfläche abgeführt werden.To be particularly advantageous, it has been found that a heat source through which a streamable heat source is used and the evaporated liquid is discharged through the heat source. Thus, the evaporated liquid substantially are discharged vertically from the surface of the fluid film or the interface.

Als Wärmequelle wird zweckmäßigerweise eine elektrische Heizquelle, vorzugsweise eine mit Widerstandsheizdrähten bestückte Heizquelle, verwendet. Dabei können die Widerstandsheizdrähte beispielsweise gitterartig angeordnet sein. Ferner ist es möglich, als Wärmequelle zumindest einen Wärmetauscher zu verwenden. Ein solcher Wärmetauscher kann ähnlich einem Kühler für Kraftfahrzeuge durchströmbar ausgestaltet sein. Es können auch mehrere Wärmetauscher in Transportrichtung hintereinander vorgesehen sein, wobei zwischen den Wärmetauschern jeweils eine Lücke vorgesehen sein kann. Durch die Lücke kann die verdampfte Flüssigkeit von der Oberfläche des Fluidfilms abgeführt werden.As the heat source, an electric heating source, preferably a heat source equipped with heating elements, is suitably used. In this case, the resistance heating wires can be arranged, for example, like a grid. Furthermore, it is possible to use at least one heat exchanger as the heat source. Such a heat exchanger may be designed to be flowed through like a radiator for motor vehicles. It is also possible to provide a plurality of heat exchangers in succession in the transport direction, it being possible for a gap to be provided in each case between the heat exchangers. Through the gap, the vaporized liquid can be removed from the surface of the fluid film.

Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung wird als Transportvorrichtung zumindest eine rotierbare Walze verwendet, deren Mantelfläche die Transportfläche bildet. Eine solche Transportvorrichtung kann relativ kompakt ausgestaltet werden. Sie kann ferner mit einem Schlitzdüsenwerkzeug zum Auftragen des Fluidfilms kombiniert werden. Im Falle der Verwendung einer rotierbaren Walze als Transportvorrichtung ist die Wärmequelle korrespondierend zur Mantelfläche der Walze ausgestaltet, d. h. eine Heizfläche der Wärmequelle ist in einem vorgegebenen geringen Abstand von der Mantelfläche angeordnet. Die weitere Wärmequelle ist innerhalb der Walze angeordnet. - Mittels der weiteren Wärmequelle wird die Transportfläche von einer dem Substrat gegenüberliegenden Unterseite der Transportvorrichtung her, vorzugsweise mittels direkter Wärmeleitung, aufgeheizt. Beispielsweise kann die Transportfläche mittels Widerstandsheizelementen elektrisch beheizt werden. Eine solche elektrische Heizung ermöglicht eine besonders einfache Regelung der Temperatur der Transportfläche.According to a further advantageous embodiment of the invention, at least one rotatable roller is used as a transport device, whose lateral surface forms the transport surface. Such a transport device can be made relatively compact. It may also be combined with a slot die tool for applying the fluid film. In the case of using a rotatable roller as a transport device, the heat source is configured corresponding to the lateral surface of the roller, that is, a heating surface of the heat source is arranged at a predetermined small distance from the lateral surface. The further heat source is arranged inside the roller. By means of the further heat source, the transport surface is heated by an underside of the transport device opposite the substrate, preferably by means of direct heat conduction. For example, the transport surface can be electrically heated by means of resistance heating elements. Such an electric heater allows a particularly simple control of the temperature of the transport surface.

Nach weiterer Maßgabe der Erfindung wird eine Vorrichtung zur Trocknung eines auf eine Substratoberfläche eines Substrats aufgetragenen, eine verdampfbare Flüssigkeit enthaltenden Fluidfilms vorgeschlagen, wobei die Wärme von der Heizfläche auf den Fluidfilm im Wesentlichen mittels direkter Wärmeleitung übertragen wird.According to another aspect of the invention, there is provided an apparatus for drying a fluid film applied to a substrate surface of a substrate comprising a vaporizable liquid, wherein the heat from the heating surface is transferred to the fluid film substantially by direct heat conduction.

Die vorgeschlagene Vorrichtung ermöglicht eine effiziente Trocknung eines auf einem Substrat aufgetragenen Fluidfilms. Dabei wird die Flüssigkeit durch eine gegenüberliegend des Substrats vorgesehene Wärmequelle verdampft. Die Wärmequelle ist lediglich in einem Abstand von 0,1 bis 15,0 mm, vorzugsweise 0,1 bis 5,0 mm, von der Substratoberfläche angeordnet. Die verdampfte Flüssigkeit wird durch Erzeugen einer vom Substrat in Richtung der Wärmequelle gerichteten Strömung abgeführt. Zu diesem Zweck ist eine Einrichtung zum Abführen der verdampften Flüssigkeit vorgesehen.The proposed device enables efficient drying of a fluid film applied to a substrate. In this case, the liquid is evaporated by a heat source provided opposite the substrate. The heat source is arranged only at a distance of 0.1 to 15.0 mm, preferably 0.1 to 5.0 mm from the substrate surface. The vaporized liquid is removed by generating a flow directed from the substrate in the direction of the heat source. For this purpose, a device for discharging the evaporated liquid is provided.

Nach einer vorteilhaften Ausgestaltung ist eine weitere Wärmequelle zum Beheizen der Transportfläche vorgesehen. Die weitere Wärmequelle ist zweckmäßigerweise an einer dem Substrat gegenüberliegenden "Unterseite" der Transportvorrichtung vorgesehen. Es kann sich dabei beispielsweise um eine Widerstandsheizung handeln.According to an advantageous embodiment, a further heat source for heating the transport surface is provided. The further heat source is expediently provided on a "underside" of the transport device opposite the substrate. It may be, for example, a resistance heater.

Nach einer weiteren vorteilhaften Ausgestaltung ist eine erste Regeleinrichtung zur Regelung einer von der Heizfläche erzeugten ersten Temperatur TG in Abhängigkeit einer Grenzflächentemperatur TI des Fluidfilms vorgesehen. Die Regelgröße, nämlich die erste Temperatur TG der Heizfläche, wird gemäß einem vorgegebenen Algorithmus in Abhängigkeit der Grenzflächentemperatur TI, welche die Führungsgröße bildet, eingestellt. Dabei kann die erste Temperatur TG beispielsweise so geregelt werden, dass sich zwischen der Grenzflächentemperatur TI und der ersten Temperatur TG ein vorgegebener Temperaturgradient ausbildet.According to a further advantageous embodiment, a first control device is provided for controlling a first temperature T G generated by the heating surface as a function of an interface temperature T I of the fluid film. The controlled variable, namely the first temperature T G of the heating surface, is determined according to a predetermined algorithm depending on the interface temperature T I , which forms the reference variable set. In this case, the first temperature T G can be regulated, for example, such that a predetermined temperature gradient is formed between the interface temperature T I and the first temperature T G.

Ferner ist vorteilhafterweise eine zweite Regeleinrichtung zur Regelung einer zweiten Temperatur TH der Transportfläche in Abhängigkeit der Grenzflächentemperatur TI vorgesehen. In diesem Fall wird die Grenzflächentemperatur TI als Führungsgröße gemessen. In Abhängigkeit der gemessenen Grenzflächentemperatur TI wird mittels der Regeleinrichtung die zweite Temperatur TH eingestellt bzw. nachgeführt. Dabei erfolgt die Einstellung bzw. das Nachführen der zweiten Temperatur TH zweckmäßigerweise derart, dass eine vorgegebene Grenzflächentemperatur TI im Wesentlichen konstant gehalten wird.Furthermore, a second control device is advantageously provided for controlling a second temperature T H of the transport surface as a function of the interface temperature T I. In this case, the interface temperature T I is measured as a reference variable. Depending on the measured interface temperature T I , the second temperature T H is adjusted or tracked by means of the control device. The setting or the tracking of the second temperature T H is expediently such that a predetermined interface temperature T I is kept substantially constant.

Die erste TG und die zweite Temperatur TH können beispielsweise mittels herkömmlicher Thermoelemente gemessen werden. Die Grenzflächentemperatur TI kann berührungslos beispielsweise mittels eines Infrarot-Messgerätes erfasst werden.The first T G and the second temperature T H can be measured, for example, by means of conventional thermocouples. The interface temperature T I can be detected without contact, for example by means of an infrared measuring device.

Die erste Regeleinrichtung kann auch weggelassen werden. In diesem Fall wird die erste Temperatur TG konstant gehalten. - Die erste und die zweite Regeleinrichtung können auch gekoppelt sein. Ein Temperaturgradient zwischen der ersten TG und der zweiten Temperatur TH kann gemäß einem weiteren vorgegebenen Algorithmus so geregelt werden, dass sich entlang der Transportrichtung ein vorgegebenes Temperaturdifferenzprofil zwischen der Transportfläche und der Heizfläche einstellt.The first control device can also be omitted. In this case, the first temperature T G is kept constant. The first and the second control device can also be coupled. A temperature gradient between the first T G and the second temperature T H can be regulated in accordance with a further predetermined algorithm so that along the transport direction a predetermined temperature difference profile is established between the transport surface and the heating surface.

Wegen der vorteilhaften Ausgestaltung der Vorrichtung wird auf die Beschreibung der Ausgestaltungen zum Verfahren verwiesen. Die verfahrensmäßig beschriebenen Ausgestaltungsmerkmale bilden sinngemäß auch Ausgestaltungen der Vorrichtung.Because of the advantageous embodiment of the device, reference is made to the description of the embodiments of the method. The design features described procedurally form mutatis mutandis embodiments of the device.

Nachfolgend wird die Erfindung anhand der Zeichnungen näher erläutert. Es zeigen:

Fig. 1
eine schematische Darstellung zur Erläuterung der in den Formel verwendeten Größen,
Fig. 2
die Grenzflächentemperatur über der Gastemperatur bei vorgegebener Transportflächentemperatur,
Fig. 3
die Grenzflächentemperatur über der Transportflächentemperatur bei vorgegebener Gastemperatur,
Fig. 4
die Massendiffusionsrate über der Gastemperatur bei vorgegebener Transportflächentemperatur,
Fig. 5
die Massendiffusionsrate über der Transportflächentemperatur bei vorgegebener Gastemperatur,
Fig. 6
die Trocknungsdauer über der Gastemperatur bei vorgegebener Transportflächentemperatur,
Fig. 7
die Trocknungsdauer über der Transportflächentemperatur bei vorgegebener Gastemperatur,
Fig. 8
eine schematische Schnittansicht durch ein Ausführungsbeispiel eines erfindungsgemäßen Diffusionstrockners,
Fig. 9
eine schematische Detailansicht gemäß Fig. 8 und
Fig. 10
eine schematische Schnittansicht durch ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Diffusionstrockners.
The invention will be explained in more detail with reference to the drawings. Show it:
Fig. 1
a schematic representation for explaining the sizes used in the formula,
Fig. 2
the interface temperature above the gas temperature at a given transport surface temperature,
Fig. 3
the interface temperature above the transport surface temperature at a given gas temperature,
Fig. 4
the mass diffusion rate above the gas temperature at a given transport surface temperature,
Fig. 5
the mass diffusion rate over the transport surface temperature at a given gas temperature,
Fig. 6
the drying time above the gas temperature at a given transport surface temperature,
Fig. 7
the drying time over the transport surface temperature at a given gas temperature,
Fig. 8
a schematic sectional view through an embodiment of a diffusion dryer according to the invention,
Fig. 9
a schematic detail view according to Fig. 8 and
Fig. 10
a schematic sectional view through a further embodiment of a diffusion dryer according to the invention.

Nachfolgend werden die theoretischen Grundlagen des erfindungsgemäßen Verfahrens anhand eindimensionaler Gleichungen für den diffusiven Massentransport in Abhängigkeit der Temperatur kurz erläutert.The theoretical principles of the method according to the invention are briefly explained below with reference to one-dimensional equations for the diffusive mass transport as a function of the temperature.

Aus Fig. 1 sind die in den nachfolgenden Gleichungen verwendeten Größen im Wesentlichen ersichtlich.Out Fig. 1 For example, the quantities used in the following equations are essentially apparent.

Der Temperaturgradient im Luftspalt oberhalb der Grenzfläche des Fluidfilms erfüllt die Energiegleichung, die für die Gasphase wie folgt angegeben werden kann: d 2 T dy 2 m ˙ C P λ G dT dy = 0

Figure imgb0002
The temperature gradient in the air gap above the interface of the fluid film fulfills the energy equation, which can be stated for the gas phase as follows: d 2 T dy 2 - m ˙ C P λ G dT dy = 0
Figure imgb0002

Löst man diese Diffusionsgleichung, so erhält man folgende, allgemeine Lösung: T = c 1 + c 2 exp m ˙ C P λ G y ,

Figure imgb0003
wobei c 1 und c 2 zwei noch zu definierende Integrationskonstanten darstellen. Diese können über geeignete Randbedingungen bestimmt werden. Diese Randbedingungen sind wie folgt: y = 0 dT dy | I / G = 1 f * T H T I μ G Δ h LH 2 T I λ G * H λ S + h λ L
Figure imgb0004
y = δ G , T = T G
Figure imgb0005
Solving this diffusion equation gives the following general solution: T = c 1 + c 2 exp m ˙ C P λ G y .
Figure imgb0003
where c 1 and c 2 represent two integration constants yet to be defined. These can be determined by suitable boundary conditions. These boundary conditions are as follows: y = 0 dT dy | I / G = 1 - f * T H - T I μ G Δ H LH 2 T I - λ G * H λ S + H λ L
Figure imgb0004
y = δ G . T = T G
Figure imgb0005

Löst man die obigen Gleichungen durch Einsetzen der Randbedingungen nach c 1 und c 2 auf, so erhält man für diese Größen Werte, die das Temperaturprofil in der Gasphase wie folgt angeben lassen: T = T G = 1 f * T H T I * exp m ˙ C P λ G δ G exp m ˙ C P λ G y m ˙ C P * μ G Δ h LH 2 λ G T I 1 * H λ S + h λ L

Figure imgb0006
Solving the above equations by substituting the boundary conditions for c 1 and c 2 , one obtains values for these quantities which indicate the temperature profile in the gas phase as follows: T = T G = 1 - f * T H - T I * exp m ˙ C P λ G δ G - exp m ˙ C P λ G y m ˙ C P * μ G Δ H LH 2 λ G T I - 1 * H λ S + H λ L
Figure imgb0006

Für y = 0 erhält man T = T1. Damit lässt sich die Grenzflächentemperatur T1 , d. h. die Temperatur an der freien Oberfläche des Fluidfilms, wie folgt errechnet: T I = T G 1 f * T H T I * exp m ˙ C P λ G δ G 1 m ˙ C P μ G Δ h LH 2 λ G T I 1 H λ S + h λ L

Figure imgb0007
For y = 0 one obtains T = T 1 . Thus, the interface temperature T 1 , ie the temperature at the free surface of the fluid film, can be calculated as follows: T I = T G - 1 - f * T H - T I * exp m ˙ C P λ G δ G - 1 m ˙ C P - μ G Δ H LH 2 λ G T I - 1 - H λ S + H λ L
Figure imgb0007

Die Massendiffusionsrate pro Flächeneinheit auf Grund des vorliegenden Temperaturgradienten an der freien Oberfläche lässt sich wie folgt errechnen: m ˙ = 1 f * μ G * T H T I μ G Δ h LH 2 λ G T I * H λ S + h λ L

Figure imgb0008
The mass diffusion rate per unit area based on the temperature gradient at the free surface can be calculated as follows: m ˙ = 1 - f * μ G * T H - T I μ G Δ H LH - 2 λ G T I * H λ S + H λ L
Figure imgb0008

Die Trocknungszeit für das zu beschichtende Material kann wie folgt berechnet werden: t d = M m ˙ = ρ L * h * μ G Δ h LH 2 λ G T I * H λ S + h λ L 1 f * μ G * T H T I

Figure imgb0009
The drying time for the material to be coated can be calculated as follows: t d = M m ˙ = ρ L * H * μ G Δ H LH - 2 λ G T I * H λ S + H λ L 1 - f * μ G * T H - T I
Figure imgb0009

Durch den obigen Satz von Gleichungen kann das eindimensionale Diffusions-Wärmeübertragungsproblem und das Problem der zugehörigen Massenfreisetzung und des Massentransports analytisch gelöst werden.Through the above set of equations, the one-dimensional diffusion heat transfer problem and the problem of associated mass release and mass transport can be solved analytically.

Unter Verwendung der nachfolgend beschriebenen Randbedingungen wurden u. a. die Massendiffusionsrate der verdampften Flüssigkeit und die Trocknungszeit berechnet. Die Berechnung ist unter folgenden Annahmen erfolgt: H = 300 μm , h = 10 μm , δ G = 300 μm

Figure imgb0010
f = 0.2 , T G = 350 K , T H = 295 K
Figure imgb0011
Using the boundary conditions described below, among other things, the mass diffusion rate of the evaporated liquid and the drying time were calculated. The calculation was made under the following assumptions: H = 300 microns . H = 10 microns . δ G = 300 microns
Figure imgb0010
f = 0.2 . T G = 350 K . T H = 295 K
Figure imgb0011

Die folgenden Materialeigenschaften wurden, trotz der Temperaturänderungen, als konstant angenommen: μ G = 1.8 × 10 5 kg / ms , λ G = 0.024 W / mK , C P = 1.012 KJ / KgK

Figure imgb0012
λ L = 0.6 W mK , ρ L = 1000 kg / m 3 , Δ h LH = 2260 KJ / Kg λ S = 0.12 W / mK
Figure imgb0013
The following material properties were assumed to be constant, despite the temperature changes: μ G = 1.8 × 10 - 5 kg / ms . λ G = 0024 W / mK . C P = 1012 KJ / KgK
Figure imgb0012
λ L = 0.6 W mK . ρ L = 1000 kg / m 3 . Δ H LH = 2260 KJ / kg λ S = 12:12 W / mK
Figure imgb0013

Die erfindungsgemäße Trocknung des Fluidfilms wird im Wesentlichen durch eine Kontrolle der zweiten Temperatur TH auf der Transportfläche und durch die erste Temperatur TG der Wärmequelle bestimmt. Die Wärmequelle ist in einem Abstand δ G von der der Gasphase zugewandten Grenzfläche des Fluidfilms angebracht.The drying of the fluid film according to the invention is essentially determined by checking the second temperature T H on the transport surface and by the first temperature T G of the heat source. The heat source is disposed at a distance δ G from the side facing the gas phase boundary surface of the fluid film.

Fig. 2 zeigt die Grenzflächentemperatur TI über der ersten Temperatur TG der Wärmequelle bzw. Gasphase. Fig. 3 zeigt die Grenzflächentemperatur T1 über der Temperatur TH der Transportfläche. Fig. 2 shows the interface temperature T I over the first temperature T G of the heat source or gas phase. Fig. 3 show the Interface temperature T 1 above the temperature T H of the transport surface.

Wie insbesondere aus den Fig. 3 bis 5 ersichtlich ist, kann die Massendiffusionsrate durch eine Erhöhung der ersten Temperatur TG erreicht werden. Ferner ist ersichtlich, dass eine Erhöhung der zweiten Temperatur TH eine Reduktion der Massendiffusionsrate bewirkt.As in particular from the Fig. 3 to 5 can be seen, the mass diffusion rate can be achieved by increasing the first temperature T G. It can also be seen that an increase in the second temperature T H causes a reduction in the mass diffusion rate.

Wie insbesondere aus den Fig. 6 und 7 ersichtlich ist, kann eine Reduktion der Trocknungszeit dann erreicht werden, wenn die zweite Temperatur TH klein und die erste Temperatur TG hoch gewählt wird. Dabei sind beide Temperaturen TG und TH so einstellbar, dass TI kontrolliert werden kann. TI kann z. B. auf Raumtemperatur gehalten werden.As in particular from the 6 and 7 can be seen, a reduction of the drying time can be achieved if the second temperature T H small and the first temperature T G is selected high. Both temperatures T G and T H are adjustable so that T I can be controlled. T I can z. B. be kept at room temperature.

Fig. 8 zeigt eine schematische Schnittansicht eines Ausführungsbeispiels eines erfindungsgemäßen Diffusionstrockners. In einem Gehäuse 1 befindet sich eine Vorratswalze 2, auf der das zu beschichtende Substrat 3 aufgenommen ist. Das Substrat 3 wird über erste Spannrollen 4a, 4b auf eine Transportwalze 5 geführt. Eine Mantel- bzw. Transportfläche 6 der Transportwalze 5 ist abschnittsweise, vorzugsweise über einen Winkel von 180-270°, von einer Trocknungseinrichtung 7 umgeben. Stromaufwärts der Trocknungseinrichtung 7 ist ein mit dem Bezugszeichen 8 bezeichnetes Schlitzdüsenwerkzeug zum Auftragen eines Fluidfilms F auf das Substrat 3 vorgesehen. Stromabwärts der Trocknungseinrichtung 7 befindet sich zumindest eine weitere Spannrolle 9, über welche das Substrat 3 auf eine Walze 10 aufgewickelt wird. Mit dem Bezugszeichen 11 ist eine Walzenreinigungsvorrichtung bezeichnet, welche stromabwärts der Trocknungseinrichtung 7 und stromaufwärts des Beschichtungswerkzeugs 8 angeordnet ist. Fig. 8 shows a schematic sectional view of an embodiment of a diffusion dryer according to the invention. In a housing 1 is a supply roller 2, on which the substrate 3 to be coated is received. The substrate 3 is guided over first tension rollers 4a, 4b on a transport roller 5. A jacket or transport surface 6 of the transport roller 5 is partially surrounded by a drying device 7, preferably over an angle of 180-270 °. Upstream of the drying device 7, a slot nozzle tool designated by the reference numeral 8 is provided for applying a fluid film F to the substrate 3. Downstream of the drying device 7 is at least one further tension roller 9, via which the substrate 3 is wound onto a roller 10. Reference numeral 11 denotes a roller cleaning device which is downstream the drying device 7 and upstream of the coating tool 8 is arranged.

Die Trocknungseinrichtung 7 weist ein weiteres Gehäuse 12 auf. Das weitere Gehäuse 12 ist mit Absaugeinrichtungen 14 versehen, mit denen ein aus dem Fluidfilm F entweichender Flüssigkeitsdampf abgesaugt wird.The drying device 7 has a further housing 12. The further housing 12 is provided with suction devices 14, with which a liquid vapor escaping from the fluid film F is extracted.

Wie insbesondere in Zusammensicht mit Fig. 9 ersichtlich ist, kann eine im weiteren Gehäuse 12 aufgenommene Wärmequelle 13 beispielsweise aus Widerstandsheizdrähten gebildet sein, welche gitterartig angeordnet sind. Die Heizdrähte bilden eine Heizfläche G, welche in einem Abstand δG von beispielsweise 0,1 mm bis 1,0 mm gegenüberliegend der Grenzfläche I des Fluidfilms F angeordnet ist. Durch die in Fig. 9 nicht näher gezeigte Absaugeinrichtungen 14 entsteht eine im Wesentlichen senkrecht zur Transportfläche 6 sich ausbildende Strömung, welche in Fig. 9 durch Pfeile kenntlich gemacht ist. Durch die Absaugeinrichtungen 14 wird vorteilhafterweise ein Unterdruck im Zwischenraum zwischen der Grenzfläche I und der Heizfläche G erzeugt. Damit wird ein Entweichen eventuell brennbarer Flüssigkeitsdämpfe in die Umgebung vermieden. Das Gehäuse 1 kann außerdem mit einer Schutzgasatmosphäre gespült werden, um eine Brand- oder Explosionsgefahr durch Entweichen der brennbaren Flüssigkeitsdämpfe zu vermeiden.As in particular in conjunction with Fig. 9 can be seen, a recorded in the other housing 12 heat source 13 may be formed, for example, of resistance heating wires, which are arranged like a grid. The heating wires form a heating surface G, which is arranged at a distance δ G of, for example, 0.1 mm to 1.0 mm opposite the interface I of the fluid film F. By the in Fig. 9 Absauginrichtungen not shown in detail 14 results in a substantially perpendicular to the transport surface 6 forming flow, which in Fig. 9 indicated by arrows. By the suction means 14, a negative pressure in the space between the interface I and the heating surface G is advantageously generated. This avoids the escape of any combustible liquid vapors into the environment. The housing 1 can also be flushed with a protective gas atmosphere in order to avoid a risk of fire or explosion due to the escape of the combustible liquid vapors.

Die in Fig. 8 gezeigte erfindungsgemäße Vorrichtung ist besonders kompakt aufgebaut. Anstelle einer Transportwalze 5 können auch mehrere Transportwalzen 5 verwendet werden. Damit kann eine Trocknungsstrecke vergrößert werden, was eine Trocknung auch relativ dicker Fluidfilme F ermöglicht. Ferner kann die erfindungsgemäße Vorrichtung auch in Kombination mit herkömmlichen Konvektionstrocknern verwendet werden. Zu diesem Zweck wird die erfindungsgemäße Vorrichtung zweckmäßigerweise stromaufwärts eines herkömmlichen Konvektionstrockners eingesetzt. Durch einen Einsatz der erfindungsgemäßen Vorrichtung in Kombination mit einem herkömmlichen Konvektionstrockner kann die zum Betrieb des herkömmlichen Konvektionstrockners verwendete Energie drastisch reduziert werden.In the Fig. 8 shown inventive device is particularly compact. Instead of a transport roller 5, a plurality of transport rollers 5 can be used. Thus, a drying section can be increased, which allows drying of relatively thick fluid films F. Furthermore, the device according to the invention can also be used in combination with conventional convection dryers. To this Purpose of the device according to the invention is advantageously used upstream of a conventional convection dryer. By using the device according to the invention in combination with a conventional convection dryer, the energy used to operate the conventional convection dryer can be drastically reduced.

Bei der in Fig. 10 gezeigten schematischen Schnittansicht durch ein weiteres Ausführungsbeispiel eines erfindungsgemäßen Diffusionstrockners bzw. einer weiteren Trocknungseinrichtung 15 gezeigt. Dabei ist das Substrat 3 wiederum auf einer Vorratswalze 2 aufgenommen; es wird mit einer angetriebenen Walze 16 transportiert. Mit dem Bezugszeichen 8 ist wiederum ein Schlitzdüsenwerkzeug zum Auftragen eines Fluidfilms auf das Substrat 3 bezeichnet, welches stromaufwärts einer weiteren Trocknungseinrichtung 15 angeordnet ist.At the in Fig. 10 shown schematic sectional view through a further embodiment of a diffusion dryer according to the invention or a further drying device 15 shown. In this case, the substrate 3 is in turn received on a supply roll 2; it is transported by a driven roller 16. The reference numeral 8 again denotes a slot nozzle tool for applying a fluid film to the substrate 3, which is arranged upstream of a further drying device 15.

Die weitere Trocknungseinrichtung 15 umfasst in Transportrichtung T Heizelemente 17, bei denen es sich um in Transportrichtung T hintereinander angeordnete plattenförmige Widerstandsheizelemente handeln kann. Die Heizelemente 17 bilden bei dieser Ausgestaltung eine im Wesentlichen geschlossene Heizfläche G, welche in einem Abstand δG von 2 bis 10 mm von einer Substratoberfläche angeordnet sind. Die weitere Trocknungseinrichtung 15 weist also einen rechteckigen Kanal K mit der Höhe δG auf, durch welchen das Substrat 3 in Transportrichtung T geführt wird.The further drying device 15 comprises in the transport direction T heating elements 17, which may be arranged in the transport direction T successively arranged plate-shaped resistance heating. In this embodiment, the heating elements 17 form a substantially closed heating surface G, which is arranged at a distance δ G of 2 to 10 mm from a substrate surface. The further drying device 15 thus has a rectangular channel K with the height δ G , through which the substrate 3 is guided in the transport direction T.

Mittels der Absaugeinrichtung 14 wird am stromaufwärtigen Ende der weiteren Trocknungseinrichtung 15 Luft L in den Kanal K eingesaugt und entgegen der Transportrichtung T in Richtung der Absaugeinrichtung 14 im Gegenstrom bewegt. Dabei beträgt eine Strömungsgeschwindigkeit beispielsweise 30 cm/s bis 3 m/s.By means of the suction device 14, air L is sucked into the channel K at the upstream end of the further drying device 15 and moved counter to the transport direction T in the direction of the suction device 14 in countercurrent. It is a flow rate, for example, 30 cm / s to 3 m / s.

Eine weitere Transportfläche 18 der weiteren Trocknungseinrichtung 15 ist hier eben ausgebildet. Sie kann ebenfalls beheizbar ausgestaltet sein (hier nicht gezeigt).Another transport surface 18 of the further drying device 15 is formed here just. It can also be designed to be heatable (not shown here).

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Gehäusecasing
22
Vorratswalzesupply roll
33
Substratsubstratum
4a, 4b4a, 4b
Spannrolleidler
55
Transportwalzetransport roller
66
Transportflächetransport surface
77
Trocknungseinrichtungdrying device
88th
SchlitzdüsenwerkzeugSlot nozzle tool
99
weitere Spannrollefurther tensioning roller
1010
Walzeroller
1111
WalzenreinigungsvorrichtungRoller cleaning device
1212
weiteres Gehäusefurther housing
1313
Wärmequelleheat source
1414
Absaugeinrichtungsuction
1515
weitere Trocknungseinrichtungfurther drying device
1616
angetriebene Walzedriven roller
1717
Heizelementheating element
1818
weitere Transportflächeadditional transport area
δG δ G
Abstanddistance
FF
Fluidfilmfluid film
GG
Heizflächeheating surface
II
Grenzflächeinterface
LL
Luftair
TT
Transportrichtungtransport direction

Claims (25)

  1. A method for drying a fluid film (F), which is applied to a surface of a substrate (3) and includes a vaporizable liquid, comprising the following steps:
    transporting the substrate (3) on a transport surface (6) of a transport device (5) along a transport direction (T) through a drying device (7);
    vaporizing the liquid by way of a heat source (13) having a heating surface (G), wherein the heating surface (G) is disposed at a distance (δG) of 0.1 mm to 15.0 mm opposite the substrate surface; and
    removing the vaporized liquid in the direction of the heat source (13)
    characterized in that
    the heat is essentially transmitted from the heating surface (G) to the fluid film (F) by way of direct heat conduction.
  2. The method according to claim 1, wherein a first temperature TG of the heating surface (G) is controlled as a function of an interface temperature TI of the fluid film (F) .
  3. A method according to any one of the preceding claims, wherein the first temperature TG is controlled in the range of 50ºC to 3005ºC, and preferably in the range of 80ºC to 200ºC.
  4. A method according to any one of the preceding claims, wherein the transport surface (6) is heated by way of an additional heat source.
  5. A method according to claim 4, wherein a second temperature TH of the transport surface (6) generated by the additional heat source is controlled as a function of the interface temperature TI.
  6. A method according to claim 5, wherein the second temperature TH is controlled so that the following relationship is met: T H = T I + ΔT ,
    Figure imgb0015
    where
    TI ranges from 5°C to 40°C and
    ΔT ranges from 2 to 30°C, and preferably from 5 to 10°C.
  7. A method according to any one of the preceding claims, wherein the vaporization of the liquid is carried out in a non-flammable gas atmosphere, and preferably a nitrogen or carbon dioxide atmosphere.
  8. A method according to any one of the preceding claims, wherein the heating surface (G) facing the substrate (3) is disposed at a distance (δG) of 0.2 mm to 5.0 mm opposite the substrate surface.
  9. A method according to claim 5 or 6, if depending on claim 2, or according to claim 7 or 8, if depending on claims 2 and 5, wherein the second temperature TH is controlled so as to always be lower than the first temperature TG.
  10. A method according to claim 5 or 6, if depending on claim 2, or according to claim 7 or 8, if depending on claims 2 and 5, or according to claim 9, wherein a temperature difference between the first temperature TG and the second temperature TH is controlled so that a predetermined temperature difference profile develops along the transport device (5).
  11. A method according to any one of the preceding claims, wherein a heat source through which a flow is possible is used as the heat source (13) and the vaporized liquid is removed through the heat source (13).
  12. A method according to any one of the preceding claims, wherein the heat source (13) used is an electrical heating source.
  13. A method according to any one of the preceding claims, wherein the heat source (13) used is a heat exchanger.
  14. A method according to any one of the preceding claims, wherein the transport device used is at least one rotatable roller (5), the lateral face of which forms the transport surface (6).
  15. A device for drying a fluid film (F), which is applied to a surface of a substrate (3) and includes a vaporizable liquid, comprising:
    a transport device (5) for transporting the substrate (3) on a transport surface (6) along a transport direction (T);
    a heat source (13) that is provided opposite the substrate (3) and has a heating surface (G), which is disposed at a distance (ΔG) of 0.1 to 15.0 mm opposite the substrate surface; and
    a device (14) for removing the vaporized liquid (F) in the direction of the heat source (13),
    characterized in that
    the heat is essentially transmitted from the heating surface (G) to the fluid film (F) by way of direct heat conduction.
  16. The device according to claim 15, wherein an additional heat source is provided for heating the transport surface (6) .
  17. The device according to either claim 15 or 16, wherein a first controlling device is provided for controlling a first temperature TG generated by the heating surface (G) as a function of an interface temperature TI of the fluid film (F).
  18. A device according to any one of claims 15 to 17,
    wherein a second controlling device for controlling a second temperature TH of the transport surface (6) is provided as a function of the interface temperature TI.
  19. A device according to any one of claims 17 to 18,
    wherein a temperature difference between the first temperature TG and the second temperature TH is controlled by way of the first and/or second controlling devices so that a predetermined temperature difference profile develops along the transport direction (T).
  20. A device according to any one of claims 15 to 19,
    wherein a device for rinsing a housing (1) surrounding the transport device (5) with a non-flammable gas, preferably a nitrogen or carbon dioxide atmosphere, is provided.
  21. A device according to any one of claims 15 to 20,
    wherein the heating surface (G) facing the substrate (3) is disposed at a distance (δG) of 0.2 mm to 5.0 mm opposite the substrate surface.
  22. A device according to any one of claims 15 to 21,
    wherein a heat source through which a flow is possible is used as the heat source (13) so that the vaporized liquid can be removed through the heat source (13).
  23. A device according to any one of claims 15 to 22,
    wherein the heat source (13) is an electrical heating source.
  24. A device according to any one of claims 15 to 23, wherein the heat source (13) is a heat exchanger.
  25. A device according to any one of claims 15 to 24,
    wherein the transport device comprises a rotatable roller (5), the lateral face of which forms the transport surface (6) .
EP12741294.8A 2011-08-01 2012-07-20 Method and device for drying a fluid film applied to a substrate Active EP2739923B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE201110080222 DE102011080222A1 (en) 2011-08-01 2011-08-01 Method for drying vaporizable liquid film formed on surface of substrate, involves arranging heating surface of heat source at predetermined spacing away from substrate surface, for removing vaporized liquid towards heat source
DE102012210431 2012-06-20
PCT/EP2012/064305 WO2013017441A1 (en) 2011-08-01 2012-07-20 Method and device for drying a fluid film applied to a substrate

Publications (2)

Publication Number Publication Date
EP2739923A1 EP2739923A1 (en) 2014-06-11
EP2739923B1 true EP2739923B1 (en) 2016-06-29

Family

ID=46601782

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12741294.8A Active EP2739923B1 (en) 2011-08-01 2012-07-20 Method and device for drying a fluid film applied to a substrate

Country Status (10)

Country Link
US (1) US9851144B2 (en)
EP (1) EP2739923B1 (en)
JP (1) JP2014527148A (en)
KR (1) KR20140068039A (en)
CN (1) CN103814266B (en)
BR (1) BR112014002515A2 (en)
CA (1) CA2843492A1 (en)
PL (1) PL2739923T3 (en)
RU (1) RU2647192C2 (en)
WO (1) WO2013017441A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201411483D0 (en) * 2014-06-27 2014-08-13 Batmark Ltd Vaporizer Assembly
DE102017128397A1 (en) 2017-11-30 2019-06-06 Mitsubishi Hitec Paper Europe Gmbh Method and device for producing a coated substrate and coated substrate
DE102018130440A1 (en) 2017-11-30 2019-06-06 Mitsubishi Hitec Paper Europe Gmbh Apparatus for drying a fluid film applied to a substrate, and methods and dried substrate
CN109028872A (en) * 2018-07-02 2018-12-18 陈敏珍 A kind of cloth processing platform transport drying device

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2272776A (en) 1936-07-24 1942-02-10 Armstrong Cork Co Apparatus for presetting wear films
NL7609250A (en) * 1976-08-20 1978-02-22 Oce Van Der Grinten Nv DRYER.
US4365423A (en) 1981-03-27 1982-12-28 Eastman Kodak Company Method and apparatus for drying coated sheet material
DE3900957A1 (en) 1989-01-14 1990-07-19 Hoechst Ag Method and apparatus for drying a liquid layer applied to a carrier material moving through a drying zone
DE3927627A1 (en) 1989-08-22 1991-02-28 Hoechst Ag METHOD AND DEVICE FOR DRYING A LIQUID LAYER APPLIED ON A MOVING CARRIER MATERIAL
US5290341A (en) * 1992-08-26 1994-03-01 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Fast response membrane generator using heat accumulation
US5423260A (en) * 1993-09-22 1995-06-13 Rockwell International Corporation Device for heating a printed web for a printing press
DE19503775C1 (en) 1995-02-04 1996-03-14 Burkamp En Und Anlagentechnik Method of drying varnished objects i.e. vehicles by infra red radiators
JP2000329463A (en) * 1999-05-14 2000-11-30 Konica Corp Method and equipment for drying coat
JP3658355B2 (en) * 2001-10-03 2005-06-08 Hoya株式会社 Coating film drying method, coating film forming method, and coating film forming apparatus
JP4201259B2 (en) * 2002-08-22 2008-12-24 日東電工株式会社 Method for producing coated sheet
KR100739389B1 (en) * 2003-03-07 2007-07-13 닛토덴코 가부시키가이샤 Method for drying coating film and optical film
JP4616581B2 (en) * 2004-06-02 2011-01-19 富士機械工業株式会社 Drying equipment
US20060192317A1 (en) 2005-02-25 2006-08-31 Paulson Jack E Method and apparatus for drying coated sheet material
KR100629655B1 (en) * 2005-05-10 2006-10-04 (주) 경일테크 Non-pressurized drying device for double-sided transfer
JP4901395B2 (en) * 2006-09-26 2012-03-21 富士フイルム株式会社 Drying method of coating film
JP4805862B2 (en) * 2007-02-21 2011-11-02 富士通セミコンダクター株式会社 Substrate processing apparatus, substrate processing method, and semiconductor device manufacturing method
CN101855026A (en) * 2007-11-14 2010-10-06 富士胶片株式会社 Method of drying coating film and process for producing lithographic printing plate precursor
JP5422230B2 (en) * 2008-03-17 2014-02-19 富士フイルム株式会社 Method and apparatus for producing porous film
CN201569264U (en) * 2009-08-21 2010-09-01 上海友浦塑胶有限公司 Dryer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2014107511A (en) 2015-09-10
BR112014002515A2 (en) 2017-03-14
WO2013017441A1 (en) 2013-02-07
KR20140068039A (en) 2014-06-05
EP2739923A1 (en) 2014-06-11
JP2014527148A (en) 2014-10-09
CA2843492A1 (en) 2013-02-07
US9851144B2 (en) 2017-12-26
RU2647192C2 (en) 2018-03-14
US20140215844A1 (en) 2014-08-07
PL2739923T3 (en) 2016-12-30
CN103814266A (en) 2014-05-21
CN103814266B (en) 2016-01-06

Similar Documents

Publication Publication Date Title
EP2739923B1 (en) Method and device for drying a fluid film applied to a substrate
DE69730861T2 (en) FLASH EVAPORATOR
DE69910013T2 (en) DRYING IN A GAP WITH AN INSULATION LAYER BETWEEN SUBSTRATE AND HEATING PLATE
DE1515672A1 (en) Process for applying flux and soldering printed circuit boards and device for carrying out the process
DE2040825A1 (en) Method and device for soldering heat exchanger blocks made of aluminum
EP3281775A1 (en) Production device
EP1743050A2 (en) Thermal vacuum deposition method and device
DE112015002237T5 (en) Furnace for continuously graphitizing carbon fiber
DE2126239C3 (en) Electrophotographic copier
EP2864725A1 (en) Method and device for drying a fluid film applied to a substrate
DE1652395C3 (en) Process and device for the continuous enamel coating of wire
DE3723865A1 (en) REACTOR FOR A PLASMA TREATMENT
AT518304A1 (en) Device for tempering a test sample
EP2818576A1 (en) Method for cooling a strip-shaped substrate
DE102018114922A1 (en) film depositing apparatus
DE2618168C3 (en) Method and apparatus for making heat reflective glass
EP1662017A1 (en) Apparatus for evaporation of materials
EP1760195B1 (en) Apparatus and process for coating a fibrous web
DE102011080222A1 (en) Method for drying vaporizable liquid film formed on surface of substrate, involves arranging heating surface of heat source at predetermined spacing away from substrate surface, for removing vaporized liquid towards heat source
WO1988002034A1 (en) Process and device for metallizing foil surfaces
DE102013108411B4 (en) Pass substrate treatment plant
EP1493836A1 (en) Process and apparatus for the localized deposition of release agents
AT520316B1 (en) Method and device for foaming an expandable particle foam material
WO2023110188A1 (en) Device for coating a strip-shaped substrate with a parylene layer
DD159995B1 (en) DEVICE FOR PREVENTING THE BACK SIDE TAMPERING OF BANDFOOHIGEN SUBSTRATES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150309

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160216

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

INTG Intention to grant announced

Effective date: 20160506

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 809440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007528

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161029

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007528

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160720

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20180628

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160629

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180720

Year of fee payment: 7

Ref country code: FR

Payment date: 20180723

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20180719

Year of fee payment: 7

Ref country code: CZ

Payment date: 20180709

Year of fee payment: 7

Ref country code: CH

Payment date: 20180725

Year of fee payment: 7

Ref country code: GB

Payment date: 20180725

Year of fee payment: 7

Ref country code: FI

Payment date: 20180719

Year of fee payment: 7

REG Reference to a national code

Ref country code: FI

Ref legal event code: MAE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 809440

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190720

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190720

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190720

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190720

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 12