EP2734988B1 - Pulse-operated smoke detector with digital control unit - Google Patents

Pulse-operated smoke detector with digital control unit Download PDF

Info

Publication number
EP2734988B1
EP2734988B1 EP12751113.7A EP12751113A EP2734988B1 EP 2734988 B1 EP2734988 B1 EP 2734988B1 EP 12751113 A EP12751113 A EP 12751113A EP 2734988 B1 EP2734988 B1 EP 2734988B1
Authority
EP
European Patent Office
Prior art keywords
light
smoke detector
elements
smoke
light emitting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12751113.7A
Other languages
German (de)
French (fr)
Other versions
EP2734988A1 (en
Inventor
Vladimir Alexandrovich SHUSTROV
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2734988A1 publication Critical patent/EP2734988A1/en
Application granted granted Critical
Publication of EP2734988B1 publication Critical patent/EP2734988B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/103Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
    • G08B17/107Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/10Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
    • G08B17/11Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using an ionisation chamber for detecting smoke or gas
    • G08B17/113Constructional details

Definitions

  • the invention relates to an open type smoke detector (“smoke detector”) comprising at least one pulse operated light emitting element and at least one light sensing element in an open housing and a power supply unit connected to the light emitting element or elements.
  • smoke detector open type smoke detector
  • the technical field of smoke detectors is characterized by a high level of sophistication and includes various types of smoke detectors, most notably those of the closed type (having a substantially closed detection chamber) and those of the open type (having a space open housing).
  • a smoke detector which operates according to the scattered radiation principle and comprises at least one radiation transmitter and at least one radiation receiver whose radiation paths penetrate a scattering volume. Two pairs of radiation transmitters / receivers are used which form two separate scattering volumes at the same distance from the detector surface.
  • the fire detector also includes a pair of radiation transmitters / radiation receivers for dust compensation.
  • a smoke detector which has a shielding cover window to protect the radiation transmitter and radiation receiver.
  • the cover window which excludes waveguiding effects in the window and prevents light from passing directly to the radiation receiver, without being scattered in the controlled volume.
  • a smoke detector with detection chamber which operates according to the scattered and transmitted light radiation principles.
  • This detector is available as a variant for detection in a free space litter volume without a detection chamber.
  • the detector has automatic compensation for stable levels of smoke, dust on its surface.
  • a free-space scattered light type smoke detector having a plurality of detection volumes organized by a system of lenses and radiation emitter and radiation receiver arrays.
  • a smoke detector which uses two different wavelengths for smoke detection and detection between different types of smoke. Two different receivers are directed at different angles on the transmitter central axis.
  • a smoke detector comprising at least one pulse operated light emitting element, at least one light sensing element in an open housing, and a power supply unit connected to the light emitting element and the voltage stabilizing means, an energy harvesting device, and a digital operation monitoring and control unit for monitoring and controlling the operation of the power supply unit and thus of the light-emitting element, wherein the control unit is designed for real-time control of a switch-on and a pulse duration of the light-emitting element.
  • a smoke detector is described with a smoke chamber having two emitting diodes in different spectral ranges, preferably for IR (about 880 nm) and blue light (about 400 nm), and two receiving diodes.
  • the transmitting and receiving diodes are at different angles on a flat surface so that forwardly scattered radiation reaches a receiving diode and backscattered radiation reaches the other receiving diode.
  • the detector has good performance for both white and black smoke.
  • the invention has for its object to provide an improved smoke detector of the type described above, which operates precise and reliable under various conditions of use.
  • the invention includes the idea that the power supply unit comprises voltage stabilization means and an energy collection device and a digital operation monitoring and control unit for monitoring and controlling the operation of the power supply unit and thus of the light emitting element or elements. Furthermore, the invention includes the idea of forming the digital operation monitoring and control unit for real-time control of a turn-on time and a pulse duration of the light-emitting element or elements in response to a temperature signal.
  • the smoke detector has at least one built-in temperature sensor connected to a T-sensor input of the digital operation monitoring and control unit.
  • the power supply unit comprises current stabilizing means, which are arranged on an output side of the energy collecting device and connected to the operation monitoring and control unit via a control line to be controlled by the operation monitoring and control unit.
  • the power supply unit can furthermore be designed to supply the light-emitting element or the elements with sinusoidal pulses.
  • the operation monitoring and control unit comprises interference signal monitoring means for optically monitoring the detection area, and is adapted to supply the light emitting element or elements at intervals with supply pulses in which external optical noise is below a value above has a predetermined period of certain average value.
  • the Radioestungs- and control unit is adapted to store a over a predetermined monitoring period in the absence of a smoke detection signal detected optical signal, which in particular contains reflection signals from the structural environment of the smoke detector, as a background interference signal and in a compensation control of Operation of the light-emitting element or elements to use.
  • the operation monitoring and control unit for compensating control of the light-emitting element or of the elements operates with signals of the same pulse shape as are provided for their operation without compensation control.
  • the light emitting element or elements provide an emission signal in at least two different spectral regions, and the light sensing element or light sensing elements are adapted for signal detection in all emission spectral regions used.
  • this embodiment makes reliable smoke detection possible even if the smoke detector is under the direct influence of sunlight and / or a black or white smoke is to be detected and, if necessary, to be distinguished from one another.
  • the smoke detector has a built-in flame detector connected to a flame detector input of the operation monitoring and control unit, the operation monitoring and control unit configured to control a detector operation in response to a signal from the flame detector is.
  • the flame detector has a UV-type and / or IR-type detector.
  • the proposed smoke detector has three or more LEDs which are arranged in a common plane on a hyperbolic or spiral curve with respect to the light detection element or the light detection elements.
  • the smoke detector comprises a test light-emitting element which is provided and designed exclusively for operation for test purposes, and / or a calibration light-sensing element which is provided and configured exclusively for the purpose of operation, with which signals the light sensing element or the light sensing elements are calibrated.
  • the open housing has at least one light-reflecting surface which is designed to form a light path between the light-emitting element and the light-detecting element and the calibration light-detecting element in order to effect a dust correction of the detector signals.
  • light emitting elements are provided in the direct detection range of light detecting elements on the same optical axis.
  • a first pair of a first light-emitting element and a first light-sensing element is then enclosed in a hermetically sealed housing and a second pair of a second light-emitting element and a second light-sensing element arranged in the open housing.
  • an evaluation unit for receiving the signals of the first and second element pair and for processing the signals of the first pair for noise compensation of the signals of the second element pair is formed.
  • the smoke detector has at least one sensor input, in particular a multimodal optical fiber input, for connection the smoke detector with an external sensor element, in particular an external temperature sensor and / or external flame detector.
  • a power supply voltage Vin is applied to the voltage stabilizer STV1 and an energy storage circuit PAC.
  • the voltage stabilizer STV1 is necessary if we have a power supply from a network in which the voltage can change over time.
  • the STV 1 is connected to a digital unit DU.
  • a new feature of this technical solution is that the DU digital unit can monitor the power supply in the STV1 and the PAC via an analog-to-digital converter ADC and take over power supply management.
  • the switch-on switching elements KE1, KE2, KE3, KE4 automatically switch on, and the supply voltage reaches the voltage stabilizer STV and the digital unit DU.
  • the main switching element KE turns off, whereby the analog unit AU is disconnected.
  • a microprocessor MP in the DU now receives power and begins operation. The MP then waits until the storage capacitors C1 and C2 are fully charged, and turns off the switching elements KE1 and KE4.
  • the whole circuit receives only from the storage capacitor C1 a supply which is disconnected from the network.
  • the MP analyzes the voltage applied to C1 via the ADC, and when it reaches a certain minimum level, the MP turns off the switching elements KE2, KE2 and then the switching elements KE1, KE4. Now the whole circuit receives only from the storage capacitor C2 a supply.
  • Voltage divider VD 1 and voltage divider VD 2 use operational amplifiers to bring a split supply voltage into the operating range of the ADC.
  • the operational amplifiers achieve better energy savings in this case than sharing voltage with a pair of resistors, although one can go that way.
  • the resistors R2 and R4 are the same and they can be sufficiently different from R1 and R3. This makes it possible to minimize the power consumption from the line and to make the consumption more even without peaks in the supply line. For example, the power consumption of the DU is low when the MP is busy with simple tasks, and the MP can get power from the C1 for a fairly long time and seldom switches to the C2.
  • the MP has to perform a smoke density measurement and switches the supply to the freshly charged C2, then turns on the main switching element KE so that the analog unit AU can operate and then the measurement takes place.
  • the use of energy from the C2 is much stronger than from the C1 and has a sufficiently shorter duration. As a result, there is an even consumption from the external source, and this power consumption is constantly controlled.
  • the smoke detector can draw its power from a battery, and the battery voltage is constantly measured by the MP to alert a user when it reaches its limit.
  • the MP achieves a high power saving, and if long-life lithium batteries are used, 5 years of operation can be guaranteed without battery replacement. It is planned to use solar panels for even better power savings and operation without mains connection.
  • the digital unit DU can be disconnected from the analog unit AU so that any radio frequency from the microprocessor does not transition to the supply for the AU and also an abrupt switching of MP terminals does not cause jumps in the AU supply level leads.
  • the AU can also be powered by its own storage capacitors and its own voltage stabilizer, managed by the MP in the STV1.
  • the power supply for the DU and AU should come from one source, because this circuit performs well in a normal environment, but in heavy industrial applications this is an important decision.
  • the microprocessor MP performs power management on the power storage circuit PAC.
  • This circuit has storage capacitors and is intended for powering light-emitting elements. It is necessary for the emitting diodes to receive a high current from the power storage circuit PAC for a short time. Such a high current may make the voltage in a supply line low and may even exceed the battery resources when powering a device therefrom. That's why power storage and management is so necessary in this case.
  • the digital unit DU turns on, then the analog unit AU turns on and operates for a certain time to obtain stable results, then the MP searches for a timing suitable for measurements, and only after that the light emitting elements become simultaneously controlling the current level switched on.
  • the switching of light-emitting elements during a short series of pulses is known per se. What is new about the proposed device is that the pulse duration is used to achieve one and the same performance for the measurement circuit in a very broad temperature range.
  • the system When the smoke density on the gauge reaches a lower threshold (e.g., 0.05 db per 1 meter), the system is instructed to transmit that data to the detectors, and these then store that data along with their respective measured density value.
  • a lower threshold e.g., 0.05 db per 1 meter
  • all detectors set their current in the STC current regulator via the DAC2 in the digital unit (drawing 3) so that their reading is equal to the value received from the PC. Since the smoke density increases very slowly, you can get as many points as you like, creating a whole calibration table in the memory of the detectors.
  • the smoke density reaches its high level (e.g., 0.2 dB per 1 meter), calibration is terminated because it is assumed that the detectors will no longer analyze the situation beyond this point.
  • the level of current flowing through the LEDs can vary significantly with temperature.
  • light-emitting diodes have very good stability and a temperature-induced change in their light intensity can be disregarded.
  • analog components in the current control circuit can change their characteristics. For example, using a FED to open the flow of current through light emitting elements, its response to a particular level from the DAC2 may change sufficiently due to temperature, even if the DAC2 is at the same level of power (but its level is also high) Temperature will change). That is why data obtained under normal conditions should be checked and updated for the entire temperature range. This can be done in a temperature chamber using only 2 smoke densities (or even without smoke).
  • the detectors may be placed in a temperature chamber (without smoke) and the data on the current in the STC from the ADC compared to data transferred to the DAC2 to achieve that current in the STC.
  • thermometer unit TU is contained in the device. First and foremost it is for calibration and temperature compensation thought during their use. However, they can also be used as temperature detectors of the maximum / differential type for better fire detection.
  • Fig. 4 a group EE1 of light-emitting elements arranged on a hyperbola.
  • the light passes from it at angles of ⁇ 5 ° to the detection area, but each smoke particle in the area receives light only from one direction, the line connecting that particle and the emitting diode.
  • 3 diodes each particle receives light from 3 slightly different directions.
  • the proposed smoke detector combines light from several universal diodes only in a very narrow area, about 20 cm from the ceiling. Outside this zone, the light from the three diodes splits into three different beams, loses energy rapidly as distance increases, and is not dangerous to the eyes.
  • the light emitting diodes EE1 of group 1 in Fig. 4 are on a hyperbola. This is because the light from all diodes should be directed onto the optical axis of the sensor element SE1 at the same angle.
  • the standard recommended angle is 110 °.
  • the light emitting elements may be a composite (not just diodes), i. one can use diodes together with a lens or optical prism or other optics. In some applications, one uses an optical fiber, in other applications a special plastic prism that makes the surface of the emissive element flat and level with the surface of the detector. In simple applications, the emitting element is just a diode with its own lens inserted into a narrow channel in the housing (the same solutions apply to the sensor elements).
  • the sensor elements of group SE1 may also be arranged (as a group) on a curve. This can help to avoid obstacles such as flying insects or flies sitting on the diodes. However, the basic version has only one photodiode SE1.
  • a light-emitting element TEE has been included for test purposes (see Fig. 4 ).
  • the light emitting element for test purposes is necessary because if there is no smoke in the detection area, you get no response and no optical signal back. That's why the photodiode is being tested to see if it works properly and just can not be detected in the area.
  • This diode TEE is only used to prove that the photodiode is active in the sensor element SE1.
  • the light-emitting element for test purposes can be arranged not only on the surface of the detector but also in it, in which case light is transmitted to the rear part of the sensor element SE1. There is no need for the light emitting elements to test emitted light because one can measure the current flowing through these diodes, and where there is power there is also light.
  • the main sensor element is SE1, it receives light from the detection area and we make measurements based on signals from SE1.
  • the sensor element SE2 is directed away from the detection area, it does not receive signals from the light-emitting elements EE1. Its optical axis is in one and the same direction but at a certain distance from each other (see Fig. 6 ) substantially the same angle with the surface of the detector as the optical axis of SE1.
  • the task of the sensor element SE2 is to protect the device from sunlight and artificial light. When sunlight falls on the detector, both SE1 and SE2 receive this signal because sunlight is always a parallel beam of light.
  • each light detection element is connected to its own current / voltage converter (CVC1 and CVC2).
  • CVC1 keeps the voltage in SE1 close to zero, and SE2 generates a current signal in response to light. Then the CVC1 converts signal current into signal voltage. Because of this solution, the device can never be dazzled by a high intensity signal. Usually, a photodiode saturates when it receives high intensity light and can not work for a long period of time.
  • the operation of the summer S1 in Fig. 3 is managed by the microprocessor.
  • a signal from the summer S1 goes to the amplifier A1, then to the ACD and finally to the microprocessor MP in digital form.
  • This solution helps to balance dust and achieve absolute immunity to all types of artificial light sources, be it incandescent, Hg, halogen or new energy-saving bulbs or even power diode light solutions.
  • the microprocessor MP observes this situation, recognizes the waves of modulated light from artificial sources, because all the lamps get their power at the industrial frequency of 50 Hz or 60 Hz. With emitted light, this frequency is doubled to 100 Hz and 120 Hz, respectively, because the lamps emit light in both positive and negative half cycles.
  • the microprocessor MP finds the time interval in which the signal from the lamps reaches its minimum value, and in this minimum, real measurements of the smoke density are made. This method even eliminates such a dangerous source as a Hg 500W searchlight at a distance of 0.5 m. This particular lamp is very critical because it has a broad spectral characteristic and passes through all the optical filters.
  • the microprocessor MP When the signal from the amplifier A1 reaches its minimum, the microprocessor MP turns on a freshly charged storage capacitor C2 in the voltage stabilizer STV1 (and turns off the C1 of the AU, thereby connecting the C1 to the input voltage). In simpler modifications, the microprocessor MP simply monitors only the voltage on the STV1, so that the analog unit AU gets the necessary voltage, and if the stabilized voltage on the analog unit AU differs from a predetermined value, the microprocessor MP calculates this difference and decreases Corrections to received signals. When the microprocessor MP has determined the correct time for measurements, it sends data about the level of current to the DAC2 which should be established across the light-emitting elements with respect to the ambient temperature.
  • the digital / analog converter DAC2 sets its output according to this data, and this signal goes to the current stabilizer STC. Then, the microprocessor MP turns on the current stabilizer STC and sends measurement current to the light-emitting elements (group EE1 in FIG Fig. 4 ). Light from the light-emitting elements runs at the same angle to the optical axis of the main sensor element SE1 (FIG. Figure 5 ) through the detection area. Preferably, but not exclusively, the angle is 110 °.
  • the light emitting elements (Group 1) send a very short pulse of light (or series of pulses) of known duration and intensity characteristic under the control of the microprocessor MP.
  • the light signal reaches the detection area, but there is no smoke and so no light can be scattered by smoke particles.
  • obstacles may be in the area, such as nearby walls or rows of containers in warehouses and the like.
  • hands of cleaning staff near the detector and on this sitting insect.
  • a certain signal from the light-emitting elements can be reflected back from the detection area, and this light reaches the sensor element SE1.
  • the light signal from this reaches both sensor elements SE1 and SE2 and is effectively subtracted in the summer S1. Then only high frequency pulses (above 1 kHz) will pass through the SC3 isolating capacitor to protect the measuring part from industrial EMI radiation (at frequencies of about 50-60 Hz or 100-120 Hz). Short duration pulses from the light emitting elements reflected from obstacles in the area then pass through the separator capacitor SC3 and reach the summer S2.
  • the microprocessor MP sends a zero value to the DAC1 so that the signal from the SC3 goes to the output of the summer S2 unchanged.
  • the microprocessor MP sends a command to the ADC to take measurements and receives back data via signals at the output of the summer S2.
  • the microprocessor If there is a very strong reflection (for example, of nearby walls or if one protects a ventilation duct or a narrow channel for electric cables), then the microprocessor already receives a significant signal at this stage. Thus, the microprocessor MP sends a calculated value to the DAC1, and the DAC1 equalizes the noise measured from reflections in the detection area.
  • the microprocessor MP sets the level in the DAC1 in advance to the previously calculated value, so that the signal from the DAC1 is subtracted from the signal from the separating capacitor SC3. Since the signals are almost completely balanced, you now need a gain, to see a certain significant signal. This is the reason why the MP microprocessor MP also receives signals from the output of amplifiers A2, A3 and A4, each of which has a certain gain, preferably with steps of x10 (each signal being amplified by 10) at each amplifier , Thereafter, this microprocessor MP will correct data for the DAC1 and will continue to use that more accurate value.
  • the microprocessor MP uses the ADC to measure a signal from an integrator Int which integrates the signal from the A4 during pulses. The result provides an offset value for fine correction, and this data is stored in the MP along with correction data for the DAC1 (eg, in a ROM or flash memory). The microprocessor MP continues to perform measurements at certain intervals, for example, 1 time in 1 second.
  • the microprocessor MP determines the duration of short pulses of light (or bursts of pulses) in terms of temperature so that the pulses match the operating frequency of narrow band filters in the amplifiers A2, A3 and A4 (as described in the calibration procedure above). Usually, this duration will be on the order of 15 microseconds under normal conditions.
  • the microprocessor MP also determines the light intensity, sends data to the DAC2, and produces the known current in the current stabilizer STC (the data sent to the DAC2 depends on the temperature value, as described above).
  • the microprocessor MP controls the real current through the light-emitting elements by means of the ADC.
  • a light signal from the detection area is scattered by smoke particles, it reaches the sensor element SE1 and becomes there converted into an electrical current signal.
  • the current / voltage converter CVC1 converts it into a voltage signal. Only the AC voltage part of this signal passes through the isolating capacitor SC1. The same conversion is done by the SE2, the CVC2, SC2 only on the noise signal.
  • a light signal from backlight sources reaches both sensor elements SE1 and SE2 and is subtracted in summer S1.
  • Short-duration pulses from the light-emitting elements pass through the separating capacitor SC3 and reach the summing S2.
  • the microprocessor MP sends a previously calculated value for correcting a noise signal from reflections to the DAC1.
  • the signals are subtracted, and then only the true part of this signal, which corresponds to the real signal of smoke, goes to amplifiers A2, A3 A4 and integrator Int.
  • the microprocessor MP layers a measurement request to the ADC and receives all of these signals in digital form.
  • the microprocessor MP considers the measurement signal level, subtracts the offset value from the noise, compares the result to the coefficient table stored in its memory (according to factory calibration section 3), and calculates the real smoke density value. Then, the MP compares this value with predetermined thresholds, and if the measurement is greater than a first threshold, the MP generates a "attention" signal. If this value has risen to a second threshold during a predetermined time (as recommended by regulations), the MP will generate a "Alarm" signal.
  • a user may choose to only cross a threshold without time calculation. Or the user may determine that the smoke intensity is differentiated and an alarm is given in case of a sudden signal increase. Or the user may choose to ignore sudden jumps (because of the proximity of the person moving the detector), but in this case the detector can take a series of quick successive measurements, thereby taking into account reflections from moving objects eliminate.
  • a quick response even to low smoke levels is essential (for example, ventilation systems extract almost the entire volume of air and fill rooms with fresh air for 1 minute).
  • the microprocessor MP can transmit with the help of an output driver always accurate data on the smoke density to the higher level of the fire protection system. And this is also highly recommended because at the higher level, the receiving unit collects information about smoke density levels from many different detectors and performs statistical analysis, separating numbers that may give rise to suspicion (for example, if there is real smoke near a detector) small source such as a cigarette is detected, but at other detectors only a slow increase in the background noise level can be seen). This is accomplished in one of our many detector unit modifications. That's almost all about the main process.
  • the procedure for dust compensation in the detector includes special design solutions that are available in Fig. 7 are shown.
  • the inventors have found that when a groove is made on the circumference of the detector housing to pass through the light emitting elements and sensor elements, reflections of light passing through the reflective edges of the groove from the light emitting elements to the sensor elements are seen even if there is no direct passage of light. It does not matter how big or thin this groove is, it should only pass through the elements with the light emitting and sensing elements located on its inside. So there are several design solutions for dust compensation.
  • a first solution you milled a broad oval plane and leave a smooth edge on the circumference in the form of a helix, and in the middle of the housing in the form of a flat circle.
  • the second construction solution there are two separate grooves of oval shape, one containing light emitting elements and the main sensing element SE1, and the second, smaller oval groove containing light emitting Element and the second sensor element SE2.
  • a third design solution has only small reflective surfaces near the light-emitting elements and the second sensor element. The small reflective edges in this solution are actually just a continuation of channels in the detector housing into which light-emitting elements are inserted; this is sufficient to obtain a sufficient reflection to the sensor element SE1. All protruding parts are in Fig. 7 marked hatched.
  • the microprocessor MP first measures the signal from the main sensor element SE1. For this purpose, the microprocessor MP selects a possible time for measurement according to the method for combating artificial light, then measures the signal from the detection area after the main process, and then corrects it. A dust correction is only carried out if there is no risk of fire. Then, the MP transmits a signal to the summer S1 and turns off the channel from the sensor element SE2 to perform only measurements on SE1. The MP measures the signal from the SE1 and stores it in its memory, then sends a signal to the summer S1 and turns on the channel from the sensor element SE1 and from the sensor element SE2 to take measurements only on the SE2. Then the MP measures the signal from the SE2 and also stores it in its memory. The MP compares signals from an earlier calibration with newly measured signals and calculates a saturation of the signal due to dust on its surface.
  • Smoke detectors of the open design (variant 1, Fig. 4 ), Smoke detectors of the open design combined with temperature detector (maximum / differential design) (variant 2, Fig. 13 ), Smoke detectors of open design, combined with UV flame detector (variant 3, Fig. 14 ), Smoke detector of open design, combined with IR flame detector (sensitive in at least 2 spectral ranges) (variant 4, Fig. 14 ), Smoke detector of open design, combined with temperature detector and UV flame detector (variant 5, Fig. 15 ), Smoke detector of open design, combined with temperature detector and IR flame detector (variant 6, Fig. 15 ). Smoke detector of open design, combined with temperature detector, UV flame detector and IR flame detector (sensitive in at least two spectral ranges) (variant 7, Fig. 16 ).
  • Fig. 17 A modified solution is variant 11 in Fig. 18 shown.
  • Fig. 18 shows a main detector unit MU, which is connected to a plurality of remote sensor units RDU1 to RDU4. This is a good solution for the industry, where a large work hall or workshop can be protected as a zone for a fire extinguishing system. This gives users the opportunity to install only one or two detectors with many remote sensor units (up to 30 on a main unit) instead of dozens of separate detectors. This is an exceptionally economical solution.
  • the typically weak signal of the light sensing element generally requires high gain factors, but these are inevitably associated with corresponding power consumption and additional noise.
  • a primary signal consisting of a positive and subsequent negative half-wave, after filtering and amplification, is processed by inverting the negative half-wave and adding to the positive half-wave.
  • suitable switching elements are provided in front of the integrator, parts of the half-waves are masked out in order in particular to pass only the middle section with the greatest signal amplitude as the useful signal.
  • the open-type smoke detector can be combined with a temperature detector, flame, UV and IR detector (cf. Fig. 13 . 14 . 15 . 16 ).
  • the smoke detection system SYS comprises in the exemplary representation of a system control station SCS and three smoke detectors SD1, SD2 and SD3 with fundamentally different structure, which are arranged in different rooms of a building to be monitored.
  • the smoke detector SD1 is of the integrated type, with all components housed in a single housing; the smoke detector RD2 is of the two-part type, as in Fig.
  • a control unit MU2 and a remote detector unit RDU2 and the smoke detector RD3 can be referred to as a multi-part type, in which in addition to a control unit MU3 and a detector unit RDU3 containing the actual smoke message serving ( at least) a remote additional detector XDU is provided. Connections between the system components and subcomponents are made in the manner described in the general part of the description as a first, second, and third level bidirectional communication link, at least in part, on an optical fiber basis.
  • One method of operating such a network is as follows: There is a special program on a laptop or receiver unit with radio channel, and this program finds a detector from our company as soon as it is turned on. Then the detectors are switched on one at a time and attached to the ceiling according to the project documentation, and no wire connection is needed. The detectors register themselves in the PC, and they get access rights depending on their priority. So you first install “server” messages that forward information from other subordinate detectors to the PC, and the "server” messages must always be in direct view of each other. If a "server” detector is separated from others by a wall, it may be necessary to make a short wire connection through the wall to the nearest detector manufacture.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Fire-Detection Mechanisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

Die Erfindung betrifft einen Rauchdetektor ("Rauchmelder") vom offenen Typ, der mindestens ein pulsbetriebenes lichtemittierendes Element und mindestens ein Lichterfassungselement in einem offenen Gehäuse und eine Stromversorgungseinheit aufweist, die mit dem lichtemittierenden Element oder den Elementen verbunden ist.The invention relates to an open type smoke detector ("smoke detector") comprising at least one pulse operated light emitting element and at least one light sensing element in an open housing and a power supply unit connected to the light emitting element or elements.

Das technische Gebiet der Rauchdetektoren ist durch einen hohen Entwicklungsstand gekennzeichnet und umfasst verschiedenartige Typen von Rauchdetektoren, von denen vor allem solche vom geschlossenen Typ (mit einer im wesentlichen geschlossenen Detektionskammer) von solchen vom offenen Typ (mit einem raumoffenen Gehäuse) zu unterscheiden sind.The technical field of smoke detectors is characterized by a high level of sophistication and includes various types of smoke detectors, most notably those of the closed type (having a substantially closed detection chamber) and those of the open type (having a space open housing).

Aus Sicht der Anmelderin sind im umfangreichen Stand der Technik, soweit er einzelne Rauchdetektoren betrifft, vor allem folgende Druckschriften erwähnenswert: WO2005069242 , GB2410085 , DE10104861 , DE10118913 , DE19951403 , WO2008017698 , US2004/0066512 , US6218950 , US2008/0246623 , DE19809896 , US2002/0080040 , WO9916033 , US2006/0202847 , WO2004032083 , WO1995004338 , WO2006024960 , GB2319604 und EP1619640 .From the Applicant's point of view, in the extensive state of the art, insofar as it relates to individual smoke detectors, the following publications are worth mentioning in particular: WO2005069242 . GB2410085 . DE10104861 . DE10118913 . DE19951403 . WO2008017698 . US2004 / 0066512 . US6218950 . US2008 / 0246623 . DE19809896 . US2002 / 0080040 . WO9916033 . US2006 / 0202847 . WO2004032083 . WO1995004338 . WO2006024960 . GB2319604 and EP1619640 ,

Von der sich mit komplexeren Raucherfassungssystemen befassenden Patentliteratur erscheinen der Anmelderin folgende Druckschriften als erwähnenswert: US6075447 , EP1555642 , GB2357358 , WO1993015483 , DE19740922 , GB2293472 , US6195011 und US20050219045 .Of the patent literature dealing with more complex smoke detection systems, the following references appear to the applicant as worth mentioning: US6075447 . EP1555642 . GB2357358 . WO1993015483 . DE19740922 . GB2293472 . US6195011 and US20050219045 ,

In der WO 2005069242 ist ein Rauchmelder beschrieben, der nach dem Streustrahlungsprinzip arbeitet und mindestens einen Strahlungssender und mindestens einen Strahlungsempfänger umfasst, deren Strahlungswege ein Streuvolumen durchdringen. Es werden zwei Paare Strahlungssender/Strahlungsempfänger verwendet, die zwei separate Streuvolumina in ein und demselben Abstand von der Melderoberfläche bilden. Der Feuermelder umfasst auch ein Paar Strahlungssender/Strahlungsempfänger zum Staubausgleich.In the WO 2005069242 a smoke detector is described which operates according to the scattered radiation principle and comprises at least one radiation transmitter and at least one radiation receiver whose radiation paths penetrate a scattering volume. Two pairs of radiation transmitters / receivers are used which form two separate scattering volumes at the same distance from the detector surface. The fire detector also includes a pair of radiation transmitters / radiation receivers for dust compensation.

In der GB 2410085 ist ein Rauchmelder beschrieben, der ein abschirmendes Abdeckfenster hat, um den Strahlungssender und Strahlungsempfänger zu schützen. Es ist eine Spezialeinrichtung im Abdeckfenster beschrieben, die wellenleitende Effekte im Fenster ausschließt und verhindert, dass Licht direkt zum Strahlungsempfänger durchtritt, ohne im kontrollierten Volumen gestreut zu werden.In the GB 2410085 a smoke detector is described which has a shielding cover window to protect the radiation transmitter and radiation receiver. There is a special feature described in the cover window, which excludes waveguiding effects in the window and prevents light from passing directly to the radiation receiver, without being scattered in the controlled volume.

In der DE 10104861 ist ein Rauchmelder mit Erfassungskammer beschrieben, der nach den Streustrahlungs- und Übertragungslichtstrahlungsprinzipien funktioniert. Dieser Melder ist als Variante für eine Erfassung in einem Freiraumstreuvolumen auch ohne Erfassungskammer erhältlich. Der Melder hat einen automatischen Ausgleich für stabile Pegel von Rauch, von Staub auf seiner Oberfläche.In the DE 10104861 a smoke detector with detection chamber is described which operates according to the scattered and transmitted light radiation principles. This detector is available as a variant for detection in a free space litter volume without a detection chamber. The detector has automatic compensation for stable levels of smoke, dust on its surface.

In der DE 10118913 ist ein Rauchmelder der Freiraum-Streulichtbauart mit mehreren Erfassungsvolumina beschrieben, die durch ein System von Linsen und Strahlungssender- und Strahlungsempfängerarrays organisiert sind.In the DE 10118913 For example, there is described a free-space scattered light type smoke detector having a plurality of detection volumes organized by a system of lenses and radiation emitter and radiation receiver arrays.

In der WO 2008017698 ist ein Rauchmelder beschrieben, der zwei verschiedene Wellenlängen zur Raucherfassung und Erkennung zwischen verschiedenen Arten von Rauch verwendet. Zwei verschiedene Empfänger sind mit unterschiedlichen Winkeln auf die Sendermittelachse gerichtet.In the WO 2008017698 a smoke detector is described which uses two different wavelengths for smoke detection and detection between different types of smoke. Two different receivers are directed at different angles on the transmitter central axis.

Aus EP 0 618 555 ist ein Rauchdetektor bekannt, der mindestens ein pulsbetriebenes lichtemittierendes Element, mindestens ein Lichterfassungselement in einem offenen Gehäuse sowie eine Stromversorgungseinheit aufweist, die mit dem lichtemittierenden Element verbunden ist und die Spannungsstabilisierungsmittel, eine Energiesammeleinrichtung und eine digitale Betriebsüberwachungs- und -steuereinheit zur Überwachung und zum Steuern des Betriebs der Stromversorgungseinheit und somit des lichtemittierenden Elements aufweist, wobei die Steuereinheit zur Echtzeitsteuerung einer Einschaltzeit und einer Impulsdauer des lichtemittierenden Elements ausgebildet ist.Out EP 0 618 555 There is known a smoke detector comprising at least one pulse operated light emitting element, at least one light sensing element in an open housing, and a power supply unit connected to the light emitting element and the voltage stabilizing means, an energy harvesting device, and a digital operation monitoring and control unit for monitoring and controlling the operation of the power supply unit and thus of the light-emitting element, wherein the control unit is designed for real-time control of a switch-on and a pulse duration of the light-emitting element.

Aus DE 2632876 A1 ist ein Rauchmelder der offenen Bauart bekannt.Out DE 2632876 A1 is a smoke detector of the open type known.

In der US 20040066512 ist ein Rauchmelder mit einer Rauchkammer beschrieben, der zwei in unterschiedlichen Spektralbereichen emittierende Dioden, vorzugsweise für IR (ca. 880 nm) und Blaulicht (ca. 400 nm), und zwei Empfangsdioden aufweist. Die Sende- und Empfangsdioden befinden sich mit unterschiedlichen Winkeln auf einer flachen Fläche, so dass nach vorn gestreute Strahlung eine Empfangsdiode erreicht, und nach hinten gestreute Strahlung die andere Empfangsdiode erreicht. Der Melder verfügt sowohl für weißen als auch schwarzen Rauch über ein gutes Leistungsverhalten.In the US 20040066512 a smoke detector is described with a smoke chamber having two emitting diodes in different spectral ranges, preferably for IR (about 880 nm) and blue light (about 400 nm), and two receiving diodes. The transmitting and receiving diodes are at different angles on a flat surface so that forwardly scattered radiation reaches a receiving diode and backscattered radiation reaches the other receiving diode. The detector has good performance for both white and black smoke.

In der US 20080246623 ist ein Rauchmelder der offenen Bauart beschrieben, bei dem zwei Emissionselemente mit verschiedenen Winkeln angeordnet sind und Polarisierungsebenen verwendet werden, um zwischen unterschiedlichen Arten von Streustrahlung aus dem kontrollierten Bereich zu unterscheiden.In the US 20080246623 In the US Pat. No. 4,843,809, an open type smoke detector is described in which two emission elements are arranged at different angles and polarization planes are used to distinguish between different types of scattered radiation from the controlled region.

In der EP 1619640 ist ein Rauchmelder der offenen Bauart mit einer sehr einfachen Schaltungsanordnung beschrieben, bei dem zwei Signale aus zwei Emissionsdioden mit unterschiedlichen Winkeln gemessen werden. Die Hauptverfahrensschritte werden durch einen Mikroprozessor durchgeführt. Es ist auch ein Temperatursensor vorgesehen.In the EP 1619640 a smoke detector of the open type is described with a very simple circuit arrangement in which two signals from two Emission diodes are measured at different angles. The main process steps are performed by a microprocessor. There is also a temperature sensor provided.

Aus EP 0 094 534 A1 oder EP 0 571 843 A1 sind jeweils Rauchdetektoren bekannt, bei denen Energiesammeleinrichtungen in der Treiberschaltung des lichtemittierenden Elements angeordnet sind.Out EP 0 094 534 A1 or EP 0 571 843 A1 In each case, smoke detectors are known in which energy collection devices are arranged in the driver circuit of the light-emitting element.

Der Erfindung liegt die Aufgabe zugrunde, einen verbesserten Rauchmelder des oben bezeichneten Typs bereitzustellen, der unter verschiedensten Einsatzbedingungen präzise und zuverlässig arbeitet.The invention has for its object to provide an improved smoke detector of the type described above, which operates precise and reliable under various conditions of use.

Diese Aufgabe wird durch einen Rauchdetektor mit den Merkmalen des Anspruchs 1 gelöst. Zweckmäßige Fortbildungen des Erfindungsgedankens sind Gegenstand der abhängigen Ansprüche.This object is achieved by a smoke detector with the features of claim 1. Advantageous developments of the inventive concept are the subject of the dependent claims.

Zur Erfindung gehört der Gedanke, dass die Stromversorgungseinheit Spannungsstabilisierungsmittel und eine Energiesammeleinrichtung und eine digitale Betriebsüberwachungs- und -steuereinheit zur Überwachung und zum Steuern des Betriebs der Stromversorgungseinheit und somit des lichtemittierenden Elements oder der Elemente aufweist. Des Weiteren schließt die Erfindung den Gedanken ein, die digitale Betriebsüberwachungs- und -steuereinheit zur Echtzeitsteuerung einer Einschaltzeit und einer Impulsdauer des lichtemittierenden Elements oder der Elemente in Abhängigkeit von einem Temperatursignal auszubilden.The invention includes the idea that the power supply unit comprises voltage stabilization means and an energy collection device and a digital operation monitoring and control unit for monitoring and controlling the operation of the power supply unit and thus of the light emitting element or elements. Furthermore, the invention includes the idea of forming the digital operation monitoring and control unit for real-time control of a turn-on time and a pulse duration of the light-emitting element or elements in response to a temperature signal.

In einer Ausführungsform hat der Rauchdetektor mindestens einen eingebauten Temperatursensor, der mit einem T-Sensoreingang der digitalen Betriebsüberwachungs- und -steuereinheit verbunden ist. In einer weiteren Ausführung der Erfindung ist vorgesehen, dass die Stromversorgungseinheit Stromstabilisierungsmittel aufweist, die an einer Ausgangsseite der Energiesammeleinrichtung angeordnet und mit der Betriebsüberwachungs- und -steuereinheit über eine Steuerleitung verbunden sind, um durch die Betriebsüberwachungs- und-steuereinheit gesteuert zu werden.In one embodiment, the smoke detector has at least one built-in temperature sensor connected to a T-sensor input of the digital operation monitoring and control unit. In a further embodiment of the invention it is provided that the power supply unit comprises current stabilizing means, which are arranged on an output side of the energy collecting device and connected to the operation monitoring and control unit via a control line to be controlled by the operation monitoring and control unit.

In vorteilhafter Weise kann des Weiteren die Stromversorgungseinheit zur Versorgung des lichtemittierenden Elements oder der Elemente mit Sinusimpulsen ausgebildet sein.In an advantageous manner, the power supply unit can furthermore be designed to supply the light-emitting element or the elements with sinusoidal pulses.

Dies ermöglicht in vorteilhafter Weise die Nutzung schmalbandiger Filter, in denen sinusförmige Signale keine oder nur geringe parasitäre Signale erzeugen. Die Signalform wird insbesondere auf digitalem Wege, unter Nutzung eines Digital-Analog-Wandlers realisiert.This advantageously makes it possible to use narrow-band filters in which sinusoidal signals produce no or only small parasitic signals. The signal shape is realized in particular by digital means, using a digital-to-analog converter.

In einer weiteren Ausführung weist die Betriebsüberwachungs- und - steuereinheit Störsignal-Überwachungsmittel zur optischen Überwachung des Detektionsbereiches auf, und sie ist dazu ausgebildet, das lichtemittierende Element oder die Elemente in Zeiträumen mit Versorgungsimpulsen zu beaufschlagen, in denen externes optisches Rauschen einen Wert unterhalb eines über einen vorbestimmten Zeitraum bestimmten Mittelwertes aufweist. In einer Ausgestaltung ist die Betriebsüberwachungs- und -steuereinheit dazu ausgebildet, ein über einen vorbestimmten Überwachungszeitraum in Abwesenheit eines Rauch-Detektionssignals erfasstes optisches Signal, welches insbesondere Reflexionssignale aus der baulichen Umgebung des Rauchdetektors enthält, als Hintergrund-Störsignal zu speichern und bei einer Kompensations-Steuerung des Betriebs des lichtemittierenden Elements oder der Elemente zu nutzen. In einer weiteren Ausgestaltung ist vorgesehen, dass die Betriebsüberwachungs- und -steuereinheit zur Kompensations-Steuerung des lichtemittierenden Elements oder der Elemente mit Signalen der gleichen Impulsform arbeitet, wie sie zu deren Betrieb ohne Kompensations-Steuerung bereitgestellt werden.In a further embodiment, the operation monitoring and control unit comprises interference signal monitoring means for optically monitoring the detection area, and is adapted to supply the light emitting element or elements at intervals with supply pulses in which external optical noise is below a value above has a predetermined period of certain average value. In a Embodiment, the Betriebsüberwachungs- and control unit is adapted to store a over a predetermined monitoring period in the absence of a smoke detection signal detected optical signal, which in particular contains reflection signals from the structural environment of the smoke detector, as a background interference signal and in a compensation control of Operation of the light-emitting element or elements to use. In a further embodiment, it is provided that the operation monitoring and control unit for compensating control of the light-emitting element or of the elements operates with signals of the same pulse shape as are provided for their operation without compensation control.

Mit den vorgenannten Ausgestaltungen wird eine verlässliche, insbesondere auch dynamische, Rauchdichteerfassung unter widrigen Einsatzbedingungen, etwa in Umgebungen mit starken Reflexionseffekten oder in Einsatzsituationen, wo Waldbrände eine massive Rauchbelastung über längere Zeiträume mit sich bringen, bezweckt. Mit der letztgenannten Ausgestaltung wird speziell eine einfache und schnelle Signalerfassung unter Verzicht auf etwas zeitaufwändigere digitale Kombinationsverfahren ermöglicht.With the aforementioned embodiments, a reliable, especially dynamic, smoke density detection under adverse conditions, such as in environments with strong reflection effects or in emergency situations where forest fires bring a massive exposure to smoke over long periods, aims. With the last-mentioned embodiment, a simple and fast signal acquisition is made possible, dispensing with somewhat more time-consuming digital combination methods.

In einer weiteren zweckmäßigen Ausführung der Erfindung liefert bzw. liefern das lichtemittierende Element oder die Elemente ein Emissionssignal in mindestens zwei unterschiedlichen Spektralbereichen, und das Lichterfassungselement oder die Lichterfassungselemente sind zu einer Signalerfassung in allen verwendeten Emissions-Spektralbereichen angepasst. Diese Ausgestaltung ermöglicht insbesondere die verlässliche Rauchdetektion auch, wenn der Rauchmelder unter direktem Sonnenlichteinfluss steht und/oder ein schwarzer oder weißer Rauch zu erfassen und ggfs. voneinander zu unterscheiden sind.In another expedient embodiment of the invention, the light emitting element or elements provide an emission signal in at least two different spectral regions, and the light sensing element or light sensing elements are adapted for signal detection in all emission spectral regions used. In particular, this embodiment makes reliable smoke detection possible even if the smoke detector is under the direct influence of sunlight and / or a black or white smoke is to be detected and, if necessary, to be distinguished from one another.

In einer weiteren bevorzugten, besonders praxistauglichen Ausführung hat der Rauchdetektor einen eingebauten Flammendetektor, der mit einem Flammendetektoreingang der Betriebsüberwachungs- und -steuereinheit verbunden ist, wobei die Betriebsüberwachungs- und -steuereinheit zur Steuerung eines Detektorbetriebs im Ansprechen auf ein Signal vom Flammendetektor ausgebildet ist. Speziell weist der Flammendetektor einen Detektor vom UV-Typ und/oder vom IR-Typ auf.In another preferred embodiment, the smoke detector has a built-in flame detector connected to a flame detector input of the operation monitoring and control unit, the operation monitoring and control unit configured to control a detector operation in response to a signal from the flame detector is. Specifically, the flame detector has a UV-type and / or IR-type detector.

In einer weiteren zweckmäßigen Ausführung weist der vorgeschlagene Rauchdetektor drei oder mehr LEDs auf, die in einer gemeinsamen Ebene auf einer hyperbolischen oder Spiralkurve gegenüber dem Lichterfassungselement oder den Lichterfassungselementen angeordnet sind.In a further expedient embodiment, the proposed smoke detector has three or more LEDs which are arranged in a common plane on a hyperbolic or spiral curve with respect to the light detection element or the light detection elements.

In weiteren Ausführungen der Erfindung weist der Rauchdetektor ein Test-Lichtemissionselement, welches ausschließlich zu einem Betrieb zu Testzwecken vorgesehen und ausgebildet ist, und/oder ein Kalibrierungs-Lichterfassungselement auf, welches ausschließlich zu dem Zweck zu einem Betrieb vorgesehen und ausgebildet ist, mit dem Signale des Lichterfassungselements oder der Lichterfassungselemente kalibriert werden. In einer Ausgestaltung dieser letzteren Ausführung ist vorgesehen, dass das offene Gehäuse mindestens eine lichtreflektierende Fläche aufweist, welche zur Formung eines Lichtweges zwischen dem lichtemittierenden Element und dem Lichterfassungselement sowie dem Kalibrierungs-Lichterfassungselement ausgebildet ist, um eine Staubkorrektur der Detektorsignale zu bewirken.In further embodiments of the invention, the smoke detector comprises a test light-emitting element which is provided and designed exclusively for operation for test purposes, and / or a calibration light-sensing element which is provided and configured exclusively for the purpose of operation, with which signals the light sensing element or the light sensing elements are calibrated. In an embodiment of this latter embodiment, it is provided that the open housing has at least one light-reflecting surface which is designed to form a light path between the light-emitting element and the light-detecting element and the calibration light-detecting element in order to effect a dust correction of the detector signals.

Gemäß einem weiteren Konstruktions-Aspekt des vorgeschlagenen Rauchdetektors sind lichtemittierende Elemente im direkten Erfassungsbereich von Lichterfassungselementen auf der gleichen optischen Achse vorgesehen. Hierbei ist dann ein erstes Paar aus einem ersten lichtemittierenden Element und einem ersten Lichterfassungselement in einem hermetisch dichten Gehäuse eingeschlossen und ein zweites Paar aus einem zweiten lichtemittierenden Element und einem zweiten Lichterfassungselement im offenen Gehäuse angeordnet. Des Weiteren ist eine Auswertungseinheit zum Empfang der Signale des ersten und zweiten Element-Paares und zur Verarbeitung der Signale des ersten Paares zur Störkompensation der Signale des zweiten Element-Paares ausgebildet.According to another construction aspect of the proposed smoke detector, light emitting elements are provided in the direct detection range of light detecting elements on the same optical axis. Here, a first pair of a first light-emitting element and a first light-sensing element is then enclosed in a hermetically sealed housing and a second pair of a second light-emitting element and a second light-sensing element arranged in the open housing. Furthermore, an evaluation unit for receiving the signals of the first and second element pair and for processing the signals of the first pair for noise compensation of the signals of the second element pair is formed.

In weiteren Ausführungen hat der Rauchdetektor mindestens einen Sensoreingang, insbesondere einen multimodalen optischen Fasereingang, zur Verbindung des Rauchdetektors mit einem externen Sensorelement, insbesondere einem externen Temperatursensor und/oder externen Flammendetektor.In further embodiments, the smoke detector has at least one sensor input, in particular a multimodal optical fiber input, for connection the smoke detector with an external sensor element, in particular an external temperature sensor and / or external flame detector.

Mit der Erfindung lassen sich, jedenfalls in bestimmten vorteilhaften Ausführungen, eine oder mehrere der nachstehenden vorteilhaften Wirkungen erzielen:

  • Senkung der Möglichkeit falscher Alarme.
  • Anheben der Empfindlichkeit des Melders für echten Rauch.
  • Bereitstellen einer schnelleren Erfassung in frühen Brandstadien.
  • Garantieren einer Immunität gegen optische Signale und Funkrauschsignale
  • Erhöhen der Raucherfassungsstabilität unter schwierigen Bedingungen, einschließlich Lichtstrahlung mit hohem Pegel und Hindernissen im Erfassungsbereich.
  • Bereitstellen präziser Daten an den Benutzer, z.B. Rauchdichtedaten für technologische Messung und Steuersysteme.
  • Ausschließen von Störungen, die z.B. durch zufälligen Zigarettenrauch oder beständigen Rauch aus Waldbränden verursacht werden.
  • Überwachung der Rauchdichteverteilung im Inneren des gesamten Gebäudes für eine sichere Evakuierung von Menschen.
  • Einführen einer ultra-schnellen Branderfassung auf Grundlage einer Bestätigung verschiedener Arten von Meldern (Rauch, UV-Flammen, IR-Flammen, Temperatur)
  • Bereitstellen eines besseren Staubausgleichs.
  • Erweiterung des Betriebstemperaturbereichs des Melders.
  • Sicherstellen der Sicherheit menschlicher Augen in allen Betriebsarten. Energieeinsparung.
With the invention, at least in certain advantageous embodiments, one or more of the following advantageous effects can be achieved:
  • Reduction of the possibility of false alarms.
  • Increasing the sensitivity of the detector for real smoke.
  • Providing a faster detection in early fire stages.
  • Guaranteeing immunity to optical signals and radio noise signals
  • Increase the smoke detection stability in difficult conditions, including high-level light radiation and obstacles in the detection area.
  • Provide accurate data to the user, eg smoke density data for technological measurement and control systems.
  • Excluding disorders caused, for example, by accidental cigarette smoke or constant smoke from forest fires.
  • Monitoring the smoke density distribution inside the entire building for safe evacuation of people.
  • Introduce ultra-fast fire detection based on confirmation of various types of detectors (smoke, UV flames, IR flames, temperature)
  • Provide a better dust balance.
  • Extension of the operating temperature range of the detector.
  • Ensure the safety of human eyes in all modes. Energy saving.

Vorteile und Zweckmäßigkeiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen anhand der Figuren. Von diesen zeigen:

  • Fig. 1 ein Funktionsdiagram eines Ausführungsbeispiels des Rauchdetektors,
  • Fig. 2 eine Realisierungs-Variante der Spannungsstabilisierungsmittel beim Rauchdetektor nach Fig. 1,
  • Fig. 3 eine detaillierte Darstellung von analogen und digitalen Baugruppen des Rauchdetektors nach Fig. 1,
  • Fig. 4 eine Prinzipskizze zur Erläuterung einer beispielhaften geometrischen Konfiguration wesentlicher Elemente des Rauchdetektors,
  • Fig. 5 eine weitere Darstellung, in Art einer perspektivischen Darstellung, zur Erläuterung der geometrischen Konfiguration,
  • Fig. 6 eine kombinierte Darstellung zur weiteren Erläuterung der geometrischen Konfiguration,
  • Fig. 7A bis 7C weitere Darstellungen zur Erläuterung des mechanischen Aufbaus einer Ausführungsform des erfindungsgemäßen Rauchdetektors,
  • Fig. 8 eine Prinzipskizze der geometrischen Konfiguration einer weiteren Ausführungsform,
  • Fig. 9 eine weitere Darstellung, in Art einer perspektivischen Darstellung, zur Erläuterung dieser geometrischen Konfiguration,
  • Fig. 10 eine kombinierte Darstellung zur weiteren Erläuterung der geometrischen Konfiguration gemäß Fig. 9,
  • Fig. 11 eine kombinierte Darstellung einer gegenüber Fig. 10 modifizierten Ausführungsform,
  • Fig. 12 eine Prinzipskizze der geometrischen Konfiguration einer weiteren Ausführungsform,
  • Fig. 13 eine Prinzipskizze der geometrischen Konfiguration einer weiteren Ausführungsform,
  • Fig. 14 eine Prinzipskizze der geometrischen Konfiguration einer weiteren Ausführungsform,
  • Fig. 15 eine Prinzipskizze der geometrischen Konfiguration einer weiteren Ausführungsform,
  • Fig. 16 eine Prinzipskizze der geometrischen Konfiguration einer weiteren Ausführungsform,
  • Fig. 17 eine Prinzipdarstellung eines mehrteilig aufgebauten Rauchdetektors als Teil eines Rauchdetektionssystems,
  • Fig. 18 eine weitere Prinzipdarstellung eines mehrteilig aufgebauten Rauchdetektors als Teil eines Rauchdetektionssystems und
  • Fig. 19 eine Prinzipskizze einer Ausführungsform eines neuartigen Rauchdetektionssystems.
  • Fig. 1 zeigt den grundsätzlichen Aufbau eines erfindungsgemäßen Rauchdetektors SD1.
Advantages and advantages of the invention will become apparent from the following description of exemplary embodiments with reference to FIGS. From these show:
  • Fig. 1 a functional diagram of an embodiment of the smoke detector,
  • Fig. 2 a realization variant of the voltage stabilizing means in the smoke detector according to Fig. 1 .
  • Fig. 3 a detailed representation of analog and digital assemblies of the smoke detector according to Fig. 1 .
  • Fig. 4 a schematic diagram for explaining an exemplary geometric configuration of essential elements of the smoke detector,
  • Fig. 5 a further representation, in the manner of a perspective representation, for explaining the geometric configuration,
  • Fig. 6 a combined representation to further explain the geometric configuration,
  • Figs. 7A to 7C further illustrations for explaining the mechanical structure of an embodiment of the smoke detector according to the invention,
  • Fig. 8 a schematic diagram of the geometric configuration of another embodiment,
  • Fig. 9 a further representation, in the manner of a perspective representation, for explaining this geometric configuration,
  • Fig. 10 a combined representation for further explanation of the geometric configuration according to Fig. 9 .
  • Fig. 11 a combined representation of one opposite Fig. 10 modified embodiment,
  • Fig. 12 a schematic diagram of the geometric configuration of another embodiment,
  • Fig. 13 a schematic diagram of the geometric configuration of another embodiment,
  • Fig. 14 a schematic diagram of the geometric configuration of another embodiment,
  • Fig. 15 a schematic diagram of the geometric configuration of another embodiment,
  • Fig. 16 a schematic diagram of the geometric configuration of another embodiment,
  • Fig. 17 a schematic representation of a multi-part smoke detector as part of a smoke detection system,
  • Fig. 18 a further schematic representation of a multi-part constructed smoke detector as part of a smoke detection system and
  • Fig. 19 a schematic diagram of an embodiment of a novel smoke detection system.
  • Fig. 1 shows the basic structure of a smoke detector according to the invention SD1.

Eine Stromversorgungsspannung Vin liegt am Spannungskonstanthalter STV1 und einer Energiespeicherschaltung PAC an. Der Spannungskonstanthalter STV1 ist notwendig, wenn wir eine Stromversorgung aus einem Netz haben, in dem sich die Spannung mit der Zeit verändern kann. Der STV 1 steht mit einer digitalen Einheit DU in Verbindung. Neu an dieser technischen Lösung ist, dass die digitale Einheit DU die Stromversorgung im STV1 und der PAC über einen Analog-DigitalWandler ADC überwachen und eine Stromversorgungsverwaltung übernehmen kann.A power supply voltage Vin is applied to the voltage stabilizer STV1 and an energy storage circuit PAC. The voltage stabilizer STV1 is necessary if we have a power supply from a network in which the voltage can change over time. The STV 1 is connected to a digital unit DU. A new feature of this technical solution is that the DU digital unit can monitor the power supply in the STV1 and the PAC via an analog-to-digital converter ADC and take over power supply management.

Eine wichtige Anwendung ist z.B. in Fig. 2 gezeigt. Die Einschalt-Schaltelemente KE1, KE2, KE3, KE4 schalten automatisch ein, und die Versorgungsspannung gelangt zum Spannungskonstanthalter STV und zur digitalen Einheit DU. Das Hauptschaltelement KE schaltet aus, wodurch die analoge Einheit AU abgetrennt wird. Ein Mikroprozessor MP in der DU erhält nun die Stromversorgung und beginnt mit dem Betrieb. Der MP wartet dann, bis die Speicherkondensatoren C1 und C2 voll geladen sind, und schaltet die Schaltelemente KE1 und KE4 aus. So erhält die ganze Schaltung nur vom Speicherkondensator C1 eine Versorgung, der vom Netz abgetrennt ist. Der MP analysiert über den ADC die am C1 anliegende Spannung, und wenn sie einen gewissen Mindestpegel erreicht, schaltet der MP die Schaltelemente KE2, KE2 aus und dann die Schaltelemente KE1, KE4 ein. Nun erhält die ganze Schaltung nur vom Speicherkondensator C2 eine Versorgung.An important application is eg in Fig. 2 shown. The switch-on switching elements KE1, KE2, KE3, KE4 automatically switch on, and the supply voltage reaches the voltage stabilizer STV and the digital unit DU. The main switching element KE turns off, whereby the analog unit AU is disconnected. A microprocessor MP in the DU now receives power and begins operation. The MP then waits until the storage capacitors C1 and C2 are fully charged, and turns off the switching elements KE1 and KE4. Thus, the whole circuit receives only from the storage capacitor C1 a supply which is disconnected from the network. The MP analyzes the voltage applied to C1 via the ADC, and when it reaches a certain minimum level, the MP turns off the switching elements KE2, KE2 and then the switching elements KE1, KE4. Now the whole circuit receives only from the storage capacitor C2 a supply.

Spannungsteiler VD 1 und Spannungsteiler VD 2 verwenden Operationsverstärker, um eine geteilte Versorgungsspannung in den Betriebsbereich des ADC zu bringen. Die Operationsverstärker erzielen in diesem Fall eine bessere Energieeinsparung als wenn Spannung mit einem Paar von Widerständen geteilt wird, obwohl man diesen Weg auch gehen kann. Die Widerstände R2 und R4 sind gleich und sie können sich ausreichend vom R1 und R3 unterscheiden. Die ermöglicht es, den Stromverbrauch aus der Leitung zu minimieren und den Verbrauch ohne Spitzen in der Versorgungsleitung gleichmäßiger zu machen. Zum Beispiel ist der Stromverbrauch der DU gering, wenn der MP mit einfachen Aufgaben beschäftigt ist, und der MP kann für eine ziemlich lange Zeit Strom vom C1 bekommen und schaltet nur selten zum C2. Aber dann muss der MP eine Rauchdichtemessung durchführen und schaltet die Versorgung zum frisch geladenen C2, schaltet dann das Hauptschaltelement KE ein, so dass die analoge Einheit AU arbeiten kann, und dann erfolgt die Messung. So ist in diesem Fall die Verwendung von Energie aus dem C2 viel stärker als aus dem C1 und hat eine ausreichend geringere Dauer. Im Ergebnis hat man einen gleichmäßigen Verbrauch aus der externen Quelle, und dieser Stromverbrauch wird konstant kontrolliert.Voltage divider VD 1 and voltage divider VD 2 use operational amplifiers to bring a split supply voltage into the operating range of the ADC. The operational amplifiers achieve better energy savings in this case than sharing voltage with a pair of resistors, although one can go that way. The resistors R2 and R4 are the same and they can be sufficiently different from R1 and R3. This makes it possible to minimize the power consumption from the line and to make the consumption more even without peaks in the supply line. For example, the power consumption of the DU is low when the MP is busy with simple tasks, and the MP can get power from the C1 for a fairly long time and seldom switches to the C2. But then the MP has to perform a smoke density measurement and switches the supply to the freshly charged C2, then turns on the main switching element KE so that the analog unit AU can operate and then the measurement takes place. In this case, the use of energy from the C2 is much stronger than from the C1 and has a sufficiently shorter duration. As a result, there is an even consumption from the external source, and this power consumption is constantly controlled.

Der Rauchdetektor kann seinen Strom aus einer Batterie beziehen, und die Batteriespannung wird vom MP konstant gemessen, um einen Benutzer zu warnen, wenn sie ihre Grenze erreicht. Indem die analoge Einheit mittels des Hauptschaltelements KE ausgeschaltet wird, erzielt der MP eine hohe Stromeinsparung, und wenn Langzeit-Lithiumbatterien verwendet werden, können 5 Jahre Betriebsdauer ohne Batteriewechsel garantiert werden. Es ist geplant, Solarelemente für eine noch bessere Stromeinsparung und einen Betrieb ohne Netzanschluss einzusetzen.The smoke detector can draw its power from a battery, and the battery voltage is constantly measured by the MP to alert a user when it reaches its limit. By the analog unit by means of the main switching element KE is turned off, the MP achieves a high power saving, and if long-life lithium batteries are used, 5 years of operation can be guaranteed without battery replacement. It is planned to use solar panels for even better power savings and operation without mains connection.

Ein wichtiger Aspekt ist, dass die digitale Einheit DU von der analogen Einheit AU getrennt werden kann, so dass jegliche Hochfrequenz aus dem Mikroprozessor nicht auf die Versorgung für die AU übergeht und auch ein abruptes Schalten von MP-Anschlüssen nicht zu Sprüngen im AU-Versorgungspegel führt. Dies ist in Fig. 2 nicht gezeigt, aber die AU kann auch, verwaltet durch den MP im STV1, von ihren eigenen Speicherkondensatoren und ihrem eigenen Spannungskonstanthalter mit Strom versorgt werden. Manchmal ist es nützlich und sogar notwendig, die digitale Stromversorgung von der analogen Stromversorgung zu trennen, um bessere Messergebnisse zu erhalten. Es ist zu sagen, dass in der Grundmodifizierung die Stromversorgung für die DU und AU aus einer Quelle kommen sollte, weil diese Schaltung in einem normalen Umfeld ein gutes Leistungsverhalten hat, in schwerindustriellen Anwendungen dies jedoch eine wichtige Entscheidung ist. Es trägt auch dazu bei, die Vorrichtung vor Stromsprüngen zu schützen, zum Beispiel, wenn jemand ein Mobiltelefon nahe der Versorgungsleitung verwendet oder an einem industriellen Standort EMI- und RFI-Strahlungen vorhanden sind. Selbst wenn ein Blitz in die Versorgungsleitung einschlägt, ist die Vorrichtung sicher und kann mühelos repariert werden.An important aspect is that the digital unit DU can be disconnected from the analog unit AU so that any radio frequency from the microprocessor does not transition to the supply for the AU and also an abrupt switching of MP terminals does not cause jumps in the AU supply level leads. This is in Fig. 2 not shown, but the AU can also be powered by its own storage capacitors and its own voltage stabilizer, managed by the MP in the STV1. Sometimes it is useful and even necessary to disconnect the digital power supply from the analogue power supply for better results. It should be noted that in the basic modification, the power supply for the DU and AU should come from one source, because this circuit performs well in a normal environment, but in heavy industrial applications this is an important decision. It also helps to protect the device from leaps of current, for example, when someone uses a mobile phone near the utility line or when there are EMI and RFI radiations in an industrial location. Even if a lightning strikes the power line, the device is safe and can be easily repaired.

Des Weiteren führt der Mikroprozessor MP eine Stromverwaltung an der Stromspeicherschaltung PAC durch. Diese Schaltung besitzt Speicherkondensatoren und ist zur Stromversorgung von lichtemittierenden Elementen gedacht. Es ist notwendig, dass emittierende Dioden für eine kurze Zeit einen hohen Strom aus der Stromspeicherschaltung PAC bekommen. Ein solcher hoher Strom kann die Spannung in einer Versorgungsleitung niedrig werden lassen und kann sogar die Batterieressourcen überschreiten, wenn eine Vorrichtung davon gespeist wird. Das ist der Grund, warum eine Stromspeicherung und -verwaltung in diesem Fall so notwendig ist.Furthermore, the microprocessor MP performs power management on the power storage circuit PAC. This circuit has storage capacitors and is intended for powering light-emitting elements. It is necessary for the emitting diodes to receive a high current from the power storage circuit PAC for a short time. Such a high current may make the voltage in a supply line low and may even exceed the battery resources when powering a device therefrom. That's why power storage and management is so necessary in this case.

Die digitale Einheit DU schaltet ein, dann schaltet die analoge Einheit AU ein und arbeitet eine gewisse Zeit lang, um stabile Ergebnisse zu erhalten, dann sucht der MP nach einem für Messungen geeigneten Zeitpunkt, und erst danach werden die lichtemittierenden Elemente bei gleichzeitiger Regelung des Strompegels eingeschaltet. Das Schalten von lichtemittierenden Elementen während einer kurzen Reihe von Impulsen ist an sich bekannt. Neu bei der vorgeschlagenen Vorrichtung ist, dass die Impulsdauer genutzt wird, um ein und dasselbe Leistungsverhalten für die Messschaltung in einem sehr breiten Temperaturbereich zu bekommen.The digital unit DU turns on, then the analog unit AU turns on and operates for a certain time to obtain stable results, then the MP searches for a timing suitable for measurements, and only after that the light emitting elements become simultaneously controlling the current level switched on. The switching of light-emitting elements during a short series of pulses is known per se. What is new about the proposed device is that the pulse duration is used to achieve one and the same performance for the measurement circuit in a very broad temperature range.

Um eine hohe Genauigkeit in den Messungen zu erhalten, sollte man das Signal verstärken, und es ist viel besser, Schmalbandfilter in allen Verstärkern einzusetzen, so dass nur Impulse mit einer speziell angesetzten Dauer aus den lichtemittierenden Elementen durchgehen könnten. Dies schützt die Vorrichtung vor EMI-Rauschen. Dass die Filter auf eine spezifische Frequenz abgestimmt sind, macht es möglich, dass deren Leistungsmerkmale mit dem Temperaturanstieg gleitend sind. Tatsächlich passiert es immer, dass Filter, die bei +25°C für eine bestimmte Frequenz abgestimmt werden, bei dieser Frequenz bei +100°C (und auch bei - 50°C) nicht arbeiten. Das ist der Grund, warum hier vorgeschlagen wird (s. weiter unten), die Dauer von Impulsen mit der Temperatur zu kalibrieren und die spezifische Frequenz von Lichtimpulsen so zu verändern, dass sie im gesamten Temperaturbereich immer durch die Filter und Verstärker hindurchgehen. Der MP verrichtet diese Arbeit, indem er Daten zur Stromspeicherschaltung PAC und zum Stromkonstanthalter STC überträgt.In order to get a high accuracy in the measurements, one should amplify the signal, and it is much better to use narrow band filters in all amplifiers, so that only pulses with a specifically set duration could pass out of the light emitting elements. This protects the device from EMI noise. The fact that the filters are tuned to a specific frequency makes it possible for their performance to be more responsive to the increase in temperature. In fact, it always happens that filters tuned at + 25 ° C for a certain frequency will not work at that frequency at + 100 ° C (and also at -50 ° C). This is the reason why it is suggested (see below) to calibrate the duration of pulses with temperature and to change the specific frequency of light pulses so that they always pass through the filters and amplifiers throughout the temperature range. The MP does this work by transferring data to the power storage circuit PAC and to the power stabilizer STC.

Es wird vorgeschlagen eine Stromregelung im Stromkonstanthalter STC vorzunehmen, um die Empfindlichkeit der Detektoren mit hoher Präzision fast wie ein Feininstrument für optische Dichtmessungen zu kalibrieren. Das Verfahren und die Vorgehensweise zur Kalibrierung sind wie folgt:

  • Man stellt viele Detektoren (15 bis 30 auf einmal) zur Kalibrierung in einen ziemlich großen Raum (nicht wie gewöhnlich in ein Rauchrohr). Es ist wichtig, dass Rauchmelder der offenen Bauart genügend Platz haben, so dass es keine Reflexionen von Licht gibt, das von Wänden abgestrahlt wird (wie in einem Rohr). Dann werden die Detektoren an einen Kommunikationsbus angeschlossen (z.B. eine CAN-Schnittstelle; jede Vorrichtung kann aber auch über einen USB-Bus direkt an einen PC angeschlossen werden, und als Option ist auch eine Ethernet- oder Funkkanalverbindung möglich). Man bringt ein Messinstrument für optische Dichtemessungen in diesen Raum und greift auf seine Daten zu, die auf demselben Computer angezeigt werden. Es wird eine Rauchquelle mit wirklich langsam abbrennendem Material bereitgestellt und der Raum geschlossen. Man erhält konstant Daten über die Rauchdichte von den Detektoren und vom Messinstrument.
It is proposed to perform current regulation in the current stabilizer STC in order to calibrate the sensitivity of the detectors with high precision almost like a fine instrument for optical density measurements. The procedure and procedure for calibration are as follows:
  • Place many detectors (15 to 30 at a time) in a fairly large space for calibration (not a smoke tube as usual). It is important that open-type smoke detectors have enough space so that there are no reflections of light emitted from walls (such as in a pipe). Then the detectors are connected to a communication bus (eg a CAN interface, but any device can also be connected directly to a PC via a USB bus, and an Ethernet or radio channel connection is also possible as an option). You bring an optical density meter into this room and access its data displayed on the same computer. It provides a source of smoke with really slow burning material and closes the room. Constant data on the smoke density is obtained from the detectors and the measuring instrument.

Wenn die Rauchdichte auf dem Messinstrument eine untere Schwelle (z.B. 0,05 db pro 1 Meter) erreicht, weist man das System an, diese Daten an die Detektoren zu übertragen, und diese speichern dann diese Daten zusammen mit dem jeweiligen gemessenen Dichtewert. Auf einen Befehl hin stellen alle Detektoren ihren Strom im Stromkonstanthalter STC über den DAC2 in der digitalen Einheit (Zeichnung 3) so ein, dass ihr Messwert gleich dem vom PC her empfangenen Wert ist. Da die Rauchdichte sehr langsam ansteigt, kann man so viele Punkte bekommen, wie man will, wodurch eine ganze Kalibrierungstabelle im Speicher der Detektoren entsteht. Wenn die Rauchdichte ihren Hochpegel (z.B. 0,2 dB pro 1 Meter) erreicht, beendet man die Kalibrierung, weil davon ausgegangen wird, dass die Detektoren über diesen Punkt hinaus die Situation nicht mehr analysieren. So erhält man zuerst einen groben Offset-Wert für alle Ströme in den lichtemittierenden Elementen und eine ganze Tabelle von Korrekturkoeffizienten für viele Punkte. Wichtig ist, dass man zuerst eine Grobkorrektur vornimmt und dann Punkte zur Feineinstellung herausfindet; dies ermöglicht gute Kalibrierungsergebnisse.When the smoke density on the gauge reaches a lower threshold (e.g., 0.05 db per 1 meter), the system is instructed to transmit that data to the detectors, and these then store that data along with their respective measured density value. At one command, all detectors set their current in the STC current regulator via the DAC2 in the digital unit (drawing 3) so that their reading is equal to the value received from the PC. Since the smoke density increases very slowly, you can get as many points as you like, creating a whole calibration table in the memory of the detectors. When the smoke density reaches its high level (e.g., 0.2 dB per 1 meter), calibration is terminated because it is assumed that the detectors will no longer analyze the situation beyond this point. Thus one first obtains a coarse offset value for all the currents in the light-emitting elements and an entire table of correction coefficients for many points. It is important that you first make a rough correction and then find out about fine-tuning points; This allows for good calibration results.

Wenn die Rauchquelle zu brennen aufhört, öffnet man den Entlüftungskanal und schaltet einen Ventilator ein. Die Erfahrung lehrt, dass die Rauchdichte in diesem Fall mit noch besserer Gleichmäßigkeit, gradueller und gleichförmig mit gleicher Verteilung über den gesamten Rauminhalt niedriger wird. Man zeichnet abermals Daten aus dem Messinstrument auf, vergleicht sie mit den Daten bereits kalibrierter Detektoren und nimmt nötigenfalls kleine Einstellungen vor.When the source of smoke ceases to burn, open the venting channel and turn on a fan. Experience teaches that the smoke density in this case becomes even more uniform, more gradual, and uniform with equal distribution over the entire volume. One again records data from the measuring instrument, compares it with the data of already calibrated detectors and, if necessary, makes small adjustments.

Ein anderer wichtiger Punkt ist, dass der Pegel des durch die LEDs fließenden Stroms mit der Temperatur signifikant variieren kann. Eigentlich haben lichtemittierende Dioden eine sehr gute Stabilität und eine temperaturbedingte Veränderung ihrer Lichtstärke kann außer Acht gelassen werden. Aber analoge Bauteile in der Stromregelschaltung können ihre Kennlinien verändern. Wenn man zum Beispiel einen FED verwendet, um den Stromfluss durch lichtemittierende Elemente zu eröffnen, kann sich sein Ansprechen auf einen bestimmten Pegel aus dem DAC2 temperaturbedingt ausreichend ändern, selbst wenn der DAC2 denselben Pegel in seiner Leistung bringt (aber sich sein Pegel auch bei hoher Temperatur ändern wird). Das ist der Grund, warum Daten, die man unter Normalbedingungen erhält, für den gesamten Temperaturbereich überprüft und aktualisiert werden sollten. Dies kann in einer Temperaturkammer unter Verwendung von nur 2 Rauchdichten (oder sogar ohne Rauch) erfolgen. In der Praxis kann man die Detektoren in eine Temperaturkammer (ohne Rauch) legen und die Daten über den Strom im STC aus dem ADC mit Daten vergleichen, die an den DAC2 übertragen wurden, um diesen Strom im STC zu erzielen. Man nimmt Korrekturen an den DAC2-Daten vor, so dass es sich um ein und denselben Strom handelt, der durch den ADC über einen weiten Temperaturbereich (von -50°C bis +55°C) gemessen wird; Punkte für höhere Temperaturen werden durch Näherungsrechnung berechnet. Ergebnisse für manche reale Rauchdichten können für diesen Temperaturbereich auch nachgewiesen werden, sie sind aber ziemlich gleich, wenn die Korrektur unter Bedingungen ohne Rauch berücksichtigt wird.Another important point is that the level of current flowing through the LEDs can vary significantly with temperature. Actually, light-emitting diodes have very good stability and a temperature-induced change in their light intensity can be disregarded. But analog components in the current control circuit can change their characteristics. For example, using a FED to open the flow of current through light emitting elements, its response to a particular level from the DAC2 may change sufficiently due to temperature, even if the DAC2 is at the same level of power (but its level is also high) Temperature will change). That is why data obtained under normal conditions should be checked and updated for the entire temperature range. This can be done in a temperature chamber using only 2 smoke densities (or even without smoke). In practice, the detectors may be placed in a temperature chamber (without smoke) and the data on the current in the STC from the ADC compared to data transferred to the DAC2 to achieve that current in the STC. Make corrections to the DAC2 data so that it is the same current measured by the ADC over a wide temperature range (from -50 ° C to + 55 ° C); Points for higher temperatures are calculated by approximation. Results for some real smoke densities can also be demonstrated for this temperature range, but they are quite similar if correction is taken into account in smoke-free conditions.

Mit dieser Vorgehensweise bekommt man einen sehr gründlich kalibrierten Rauchdetektor mit Temperaturkompensation, der eine Rauchdichte genau wie eine sehr teure instrumentelle Einrichtung exakt misst. Was gut und neu ist, ist, dass kein anderer Rauchmelder der offenen Bauart auf dem Markt die Rauchdichte in konkreten Zahlen messen kann, sie geben alle nur Alarmpegel an. Die meisten Melder der offenen Bauart erlangen nur eine ungefähre Kenntnis über die Rauchdichte in einem ungewissen Volumen.With this approach, you get a very thoroughly calibrated smoke detector with temperature compensation that accurately measures a smoke density just like a very expensive instrumental device. What is good and new is that no other smoke detectors of the open type on the market can measure the smoke density in concrete numbers, they all give only alarm levels. Most open-type detectors only gain an approximate knowledge of the smoke density in an uncertain volume.

In Fig. 1 erkennt man, dass eine digitale Thermometereinheit TU in der Vorrichtung enthalten ist. In erster Linie ist sie zur Kalibrierung und Temperaturkompensation während ihres Einsatzes gedacht. Jedoch kann man sie auch als Temperaturmelder der Maximal-/Differentialbauart zur besseren Branderfassung verwenden.In Fig. 1 it can be seen that a digital thermometer unit TU is contained in the device. First and foremost it is for calibration and temperature compensation thought during their use. However, they can also be used as temperature detectors of the maximum / differential type for better fire detection.

Es wird zunächst nun ein Blick auf das detaillierte Funktionsschema in Fig. 3 geworfen. Es sollte zusammen mit Fig. 4 betrachtet werden.First, let's take a look at the detailed functional scheme in Fig. 3 thrown. It should be together with Fig. 4 to be viewed as.

Zunächst zeigt Fig. 4 eine Gruppe EE1 von lichtemittierenden Elementen, die auf einer Hyperbel angeordnet sind. Es werden absichtlich mindestens 3 lichtemittierende Dioden verwendet, die sich in einigem Abstand voneinander befinden. Dies ergibt eine bessere räumliche Verteilung des im Raum emittierten Lichts im Erfassungsbereich aus leicht unterschiedlichen Winkeln. Wenn Licht ein Rauchpartikel erreicht, hat man eine höhere Wahrscheinlichkeit, dass das Licht auf eine flache reflektierende Fläche eines Rauchpartikels fallen wird. Wenn man nur eine lichtemittierende Diode verwendet, verläuft das Licht aus dieser in Winkeln von ±5° zum Erfassungsbereich, aber jedes Rauchpartikel in dem Bereich empfängt Licht nur aus einer Richtung, der Linie, die dieses Partikel und die emittierende Diode verbindet. Wenn man 3 Dioden verwendet, empfängt jedes Partikel Licht aus 3 etwas unterschiedlichen Richtungen. Dies ergibt eine höhere Wahrscheinlichkeit, dass Licht auf einen reflektierenden Rand des Rauchpartikels trifft. Natürlich können es auch mehr als 3 lichtemittierende Dioden sein, und die Empfindlichkeit unserer Vorrichtung wird proportional zur Anzahl von lichtemittierenden Elementen ansteigen. In hochempfindlichen Anwendungen ist es zum Beispiel sehr hilfreich, wenn man ein Lichtwellenleiterkabel verwendet, um Licht in eine Hochtemperaturzone zu übertragen, und auch mit Einsatz des Lichtwellenleiters Signale zu empfangen.First shows Fig. 4 a group EE1 of light-emitting elements arranged on a hyperbola. There are deliberately used at least 3 light-emitting diodes, which are located at some distance from each other. This results in a better spatial distribution of the light emitted in space in the detection area from slightly different angles. When light reaches a smoke particle, it is more likely that the light will fall on a flat reflective surface of a smoke particle. Using only one light-emitting diode, the light passes from it at angles of ± 5 ° to the detection area, but each smoke particle in the area receives light only from one direction, the line connecting that particle and the emitting diode. Using 3 diodes, each particle receives light from 3 slightly different directions. This gives a higher probability that light will strike a reflective edge of the smoke particle. Of course, there may also be more than 3 light emitting diodes, and the sensitivity of our device will increase in proportion to the number of light emitting elements. For example, in highly sensitive applications, using a fiber optic cable to transmit light to a high temperature zone and receive signals using the fiber optic cable is very helpful.

Es ist wichtig, dass man in Anwendungen des allgemeinen Gebrauchs herkömmliche LED und keine Laserdioden verwendet, um den Schutz der Augen zugewährleisten. Da Licht in den offenen Raum abgestrahlt wird, kann es die Augen einer Person erreichen, und das ist bei Laserdioden besonders gefährlich, z.B. wenn ein Kind auf den in Betrieb befindlichen Melder starrt. Aus diesem Grund bündelt man beim vorgeschlagenen Rauchdetektor Licht aus mehreren Universaldioden nur in einem sehr engen Bereich, ca. 20 cm von der Decke. Außerhalb dieser Zone teilt sich das Licht aus den drei Dioden in drei unterschiedliche Strahlen auf, verliert mit zunehmendem Abstand schnell an Energie und ist für die Augen nicht gefährlich.It is important to use conventional LEDs rather than laser diodes in general-purpose applications to ensure eye protection. Since light is emitted into the open space, it can reach a person's eyes, and this is particularly dangerous with laser diodes, eg when a child is staring at the detector in operation. For this reason, the proposed smoke detector combines light from several universal diodes only in a very narrow area, about 20 cm from the ceiling. Outside this zone, the light from the three diodes splits into three different beams, loses energy rapidly as distance increases, and is not dangerous to the eyes.

Die lichtemittierenden Dioden EE1 der Gruppe 1 in Fig. 4 befinden sich auf einer Hyperbel. Und zwar, weil man das Licht aus allen Dioden mit ein und demselben Winkel auf die optische Achse des Sensorelements SE1 lenken sollte. Der normmäßig empfohlene Winkel ist 110°. Wenn man also in den Erfassungsbereich eine Spitze eines imaginären Konus (mit einem Winkel von 110° von der Achse zur Seite) einsetzt und mit seiner Achse auf SE1 zielt, wird man sehen, dass die Schnittpunkte dieses Konus mit der planen Oberfläche des Melders eine Hyperbel ergeben (Fig. 5). Wenn man in einer anderen Teilmodifizierung der Vorrichtung (siehe Fig. 8) einen ausreichend kleineren Winkel, z.B. 70°, wählt, dann werden die Schnittpunkte eine Schraubenlinie ergeben.The light emitting diodes EE1 of group 1 in Fig. 4 are on a hyperbola. This is because the light from all diodes should be directed onto the optical axis of the sensor element SE1 at the same angle. The standard recommended angle is 110 °. Thus, if one inserts a tip of an imaginary cone (at an angle of 110 ° from the axis to the side) into the detection range and points to SE1 with its axis, one will see that the points of intersection of this cone with the planar surface of the detector are hyperbola result ( Fig. 5 ). If, in another partial modification of the device (see Fig. 8 ) chooses a sufficiently smaller angle, eg 70 °, then the intersections will give a helical line.

Es wäre anzumerken, dass es sich bei den lichtemittierenden Elementen um einen Verbund (nicht einfach nur Dioden) handeln kann, d.h. man kann Dioden zusammen mit einer Linse oder einem optischen Prisma oder einer anderen Optik verwenden. In einigen Anwendungen verwendet man einen Lichtwellenleiter, in anderen Anwendungen ein spezielles plastisches Prisma, das die Oberfläche des emittierenden Elements flach und in einer Ebene liegend mit der Oberfläche des Melders macht. In einfachen Anwendungen ist das emittierende Element nur eine Diode mit ihrer eigenen Linse, die in einen schmalen Kanal im Gehäuse eingesetzt ist (dieselben Lösungen gelten für die Sensorelemente). Die Sensorelemente der Gruppe SE1 können auch (als eine Gruppe) auf einer Kurve angeordnet sein. Das kann dabei helfen, Hindernisse zu vermeiden wie etwa fliegende Insekten oder auf einer der Dioden sitzende Fliegen. Die Grundversion verfügt jedoch über nur eine Fotodiode SE1.It should be noted that the light emitting elements may be a composite (not just diodes), i. one can use diodes together with a lens or optical prism or other optics. In some applications, one uses an optical fiber, in other applications a special plastic prism that makes the surface of the emissive element flat and level with the surface of the detector. In simple applications, the emitting element is just a diode with its own lens inserted into a narrow channel in the housing (the same solutions apply to the sensor elements). The sensor elements of group SE1 may also be arranged (as a group) on a curve. This can help to avoid obstacles such as flying insects or flies sitting on the diodes. However, the basic version has only one photodiode SE1.

In den Block der lichtemittierenden Elemente im Funktionsschema in Fig. 3 hat man ein lichtemittierendes Element TEE zu Testzwecken mit aufgenommen (siehe Fig. 4). Das lichtemittierende Element zu Testzwecken ist notwendig, weil, wenn es keinen Rauch im Erfassungsbereich gibt, man auch keine Antwort und kein optisches Signal zurückbekommt. Das ist der Grund, warum die Fotodiode getestet wird, um herauszufinden, ob sie richtig arbeitet und einfach nicht in dem Bereich zu erfassen ist. Diese Diode TEE wird nur zum Nachweis verwendet, dass die Fotodiode im Sensorelement SE1 aktiv ist. Das lichtemittierende Element zu Testzwecken kann nicht nur auf der Oberfläche des Melders angeordnet werden, sondern auch in ihm, wobei dann Licht in den hinteren Teil des Sensorelements SE1 übertragen wird. Für die lichtemittierenden Elemente besteht kein Bedarf, emittiertes Licht zu testen, weil man den durch diese Dioden fließenden Strom messen kann, und wo es Strom gibt, gibt es auch Licht.In the block of light-emitting elements in the functional diagram in Fig. 3 if a light-emitting element TEE has been included for test purposes (see Fig. 4 ). The light emitting element for test purposes is necessary because if there is no smoke in the detection area, you get no response and no optical signal back. That's why the photodiode is being tested to see if it works properly and just can not be detected in the area. This diode TEE is only used to prove that the photodiode is active in the sensor element SE1. The light-emitting element for test purposes can be arranged not only on the surface of the detector but also in it, in which case light is transmitted to the rear part of the sensor element SE1. There is no need for the light emitting elements to test emitted light because one can measure the current flowing through these diodes, and where there is power there is also light.

Weiterhin erkennt man in Fig. 4 Sensorelemente SE1 und SE2. Das Hauptsensorelement ist SE1, es empfängt Licht aus dem Erfassungsbereich und wir machen Messungen auf Grundlage von Signalen vom SE1. Das Sensorelement SE2 ist vom Erfassungsbereich weg gerichtet, es empfängt keine Signale von den lichtemittierenden Elementen EE1. Seine optische Achse bildet in ein und derselben Richtung aber in einem gewissen Abstand voneinander (siehe Fig. 6) im Wesentlichen denselben Winkel mit der Oberfläche des Melders wie die optische Achse des SE1. Die Aufgabe des Sensorelements SE2 ist es, die Vorrichtung vor Sonnenlicht und künstlichem Licht zu schützen. Wenn Sonnenlicht auf den Melder fällt, empfangen sowohl das SE1 als auch SE2 dieses Signal, weil Sonnenlicht immer ein paralleler Lichtstrahl ist.Furthermore one recognizes in Fig. 4 Sensor elements SE1 and SE2. The main sensor element is SE1, it receives light from the detection area and we make measurements based on signals from SE1. The sensor element SE2 is directed away from the detection area, it does not receive signals from the light-emitting elements EE1. Its optical axis is in one and the same direction but at a certain distance from each other (see Fig. 6 ) substantially the same angle with the surface of the detector as the optical axis of SE1. The task of the sensor element SE2 is to protect the device from sunlight and artificial light. When sunlight falls on the detector, both SE1 and SE2 receive this signal because sunlight is always a parallel beam of light.

Im Funktionsschema (Fig. 3) sieht man, dass Signale aus den Lichterfassungselementen SE1 und SE2 durch Trennkondensatoren SC1 und SC2 hindurchgehen und dann zu einem Summierglied S1 gehen. Die Trennkondensatoren sind dazu gedacht, einen konstanten Versatz von Wandlern CVC1 und CVC2 auszuschließen, und auch konstantes Hintergrundlicht auszuschließen. Hier wird schon ein großer Teil der Sonnenlichtenergie ausgeschlossen. Dann werden im Summierglied S1 Signale vom SE1 und SE2 subtrahiert, weil das SE2 am Eingang des Summierglieds S1 invertiert wird. Diese Lösung hilft dabei, den Rest an Sonnenlicht auszuschließen und einen perfekten Ausgleich gegen natürliche und künstliche Lichtquellen zu erreichen. Dies ist wichtig, weil Sonnenlicht in der Praxis eine Modulation aus der Atmosphäre erfährt und ein einfaches Abtrennen eines konstanten Pegels durch einen Trennkondensator nicht immer Abhilfe schafft. Auch wenn es eine in der Nähe befindliche Lampe gibt, gibt es von Schwingungen herrührende Lichtmodulationen. Mit der vorgeschlagenen Lösung wird dies vollständig ausgeschlossen.In the functional schema ( Fig. 3 ), it is seen that signals from the light detecting elements SE1 and SE2 pass through separating capacitors SC1 and SC2 and then go to a summer S1. The isolation capacitors are designed to eliminate a constant offset of CVC1 and CVC2 converters, as well as to eliminate constant background light. Here, a large part of the sun's energy is already excluded. Then in the summer S1 signals from SE1 and SE2 subtracted because the SE2 is inverted at the input of the summer S1. This solution helps keep the rest Exclude from sunlight and achieve a perfect balance against natural and artificial light sources. This is important because sunlight in practice undergoes modulation from the atmosphere, and simply disconnecting a constant level with a cut-off capacitor does not always provide relief. Even though there is a nearby lamp, there are vibration-modulating light modulations. With the proposed solution this is completely excluded.

In Fig. 3 erkennt man weiter, dass jedes Lichterfassungslement an seinen eigenen Strom-/Spannungswandler (CVC1 und CVC2) angeschlossen ist. Dies ist neu, weil Fotodioden im Kurzschlussmodus verwendet werden, CVC1 die Spannung im SE1 nahe an Null hält, und SE2 ein Stromsignal im Ansprechen auf Licht erzeugt. Dann wandelt der CVC1 Signalstrom in Signalspannung um. Aufgrund dieser Lösung kann die Vorrichtung nie durch ein Signal hoher Intensität geblendet werden. Für gewöhnlich gerät eine Fotodiode, wenn sie Licht hoher Intensität empfängt, in Sättigung und kann für einen längeren Zeitraum nicht arbeiten.In Fig. 3 It can be seen that each light detection element is connected to its own current / voltage converter (CVC1 and CVC2). This is new because photodiodes are used in the short circuit mode, CVC1 keeps the voltage in SE1 close to zero, and SE2 generates a current signal in response to light. Then the CVC1 converts signal current into signal voltage. Because of this solution, the device can never be dazzled by a high intensity signal. Usually, a photodiode saturates when it receives high intensity light and can not work for a long period of time.

Der Betrieb des Summierglieds S1 in Fig. 3 wird vom Mikroprozessor verwaltet. Ein Signal vom Summierglied S1 geht zum Verstärker A1, dann zum ACD und schließlich in digitaler Form zum Mikroprozessor MP. Diese Lösung hilft dabei, einen Staubausgleich zu machen und absolute Immunität gegen alle Arten von künstlichen Lichtquellen zu erreichen, sei es eine Glühlampe, eine Hg-Lampe, Halogenlampen oder neue Energiesparlampen oder sogar Leistungsdiodenlichtlösungen.The operation of the summer S1 in Fig. 3 is managed by the microprocessor. A signal from the summer S1 goes to the amplifier A1, then to the ACD and finally to the microprocessor MP in digital form. This solution helps to balance dust and achieve absolute immunity to all types of artificial light sources, be it incandescent, Hg, halogen or new energy-saving bulbs or even power diode light solutions.

Das Verfahren zur Unterdrückung von Störungen durch künstliche Lichtquellen umfasst Folgendes:

  • Der Mikroprozessor MP schaltet im Summierglied S1 beide Kanäle (vom SE1 und SE2) ein und erhält dann verstärkte und digitalisierte Signale, die für den Unterschied zwischen SE1 und SE2 stehen. Handelt es sich um eine schwache Quelle künstlichen Lichts oder befindet sich diese Quelle in einem erheblichen Abstand, werden die Signale vom SE1 und SE2 gleich sein und der MP erhält ein Signal nahe Null. Dann ist es sicher, Messungen durchzuführen.
The method of suppressing interference from artificial light sources includes:
  • The microprocessor MP turns on both channels (from SE1 and SE2) in summer S1 and then receives amplified and digitized signals representing the difference between SE1 and SE2. Is it a weak one? Source of artificial light, or if this source is at a significant distance, the signals from SE1 and SE2 will be equal and the MP will receive a signal near zero. Then it is safe to take measurements.

Ist die Quelle künstlichen Lichts aber stark oder so ungünstig angeordnet, dass direktes Licht auf das SE1 aber fast kein Licht auf das SE2 fällt (zum Beispiel aufgrund eines Lampenschirms oder eines Sonnendachrands oder irgendeines anderen Rands von Geräten), werden ausreichend Signale am Ausgang des Verstärkers A1 anliegen. Der Mikroprozessor MP beobachtet diese Situation, erkennt die Wellen modulierten Lichts aus künstlichen Quellen, weil alle Lampen ihren Strom mit der Industriefrequenz von 50 Hz oder 60 Hz bekommen. Beim emittierten Licht ist diese Frequenz auf 100 Hz bzw. 120 Hz verdoppelt, weil die Lampen Licht sowohl in positiven als auch negativen Halbperioden abgeben. Der Mikroprozessor MP findet das Zeitintervall, in dem das Signal von den Lampen seinen Mindestwert erreicht, und in diesem Minimum werden reale Messungen der Rauchdichte durchgeführt. Dieses Verfahren schließt sogar eine so gefährliche Quelle wie eine Hg 500 W -Suchscheinwerferlampe in einem Abstand von 0,5 m aus. Gerade diese Lampe ist sehr kritisch, weil sie eine breite Spektralkennlinie hat und durch alle optischen Filter hindurchgeht.However, if the source of artificial light is strong or so inconvenient that direct light on the SE1 but almost no light falls on the SE2 (for example due to a lampshade or sunroof or any other edge of equipment), sufficient signals will be output at the amplifier A1 abut. The microprocessor MP observes this situation, recognizes the waves of modulated light from artificial sources, because all the lamps get their power at the industrial frequency of 50 Hz or 60 Hz. With emitted light, this frequency is doubled to 100 Hz and 120 Hz, respectively, because the lamps emit light in both positive and negative half cycles. The microprocessor MP finds the time interval in which the signal from the lamps reaches its minimum value, and in this minimum, real measurements of the smoke density are made. This method even eliminates such a dangerous source as a Hg 500W searchlight at a distance of 0.5 m. This particular lamp is very critical because it has a broad spectral characteristic and passes through all the optical filters.

Das Hauptverfahren zum Messen von Rauchdichte umfasst die folgenden Schritte:

  • Der Mikroprozessor MP erhält eine Betriebsspannung aus dem Spannungskonstanthalter STV1 und beginnt mit der Arbeit. Der Mikroprozessor MP schickt eine Messungsanforderung an den ADC und erhält Daten über die Spannungspegel der Speicherkondensatoren im STV1 und der Stromspeicherschaltung PAC zurück. Wenn alle Kondensatoren voll geladen sind, ist der Betrieb der analogen Einheit AU möglich. Danach erfüllt der Mikroprozessor MP konstant die Stromversorgungsverwaltung, wie zuvor beschrieben wurde. Gleichzeitig misst der Mikroprozessor MP konstant die Umgebungstemperatur mit Hilfe der digitalen Thermometereinheit TU. Der Mikroprozessor MP schaltet das Schaltelement KE ein und wartet einen vorbestimmten Zeitraum lang, bis die analoge Einheit AU in einen stabilen Betrieb gelangt. Der Mikroprozessor MP schaltet beide Kanäle im Summierglied S1 ein und empfängt über den ADC ein Signal vom Verstärker A1, um den Zeitpunkt zur richtigen Messung mit minimalem optischen Rauschen zu bestimmen, wie oben im Verfahren zur Bekämpfung künstlicher Lichtquellen beschrieben wurde.
The main method of measuring smoke density involves the following steps:
  • The microprocessor MP receives an operating voltage from the voltage stabilizer STV1 and starts work. The microprocessor MP sends a measurement request to the ADC and retrieves data about the voltage levels of the storage capacitors in the STV1 and the current storage circuit PAC. When all capacitors are fully charged, the operation of the AU analog unit is possible. Thereafter, the microprocessor MP constantly performs the power management as described above. At the same time, the microprocessor MP constantly measures the ambient temperature with the aid of the digital thermometer unit TU. The microprocessor MP turns on the switching element KE and waits for a predetermined period of time until the analog Unit AU comes into stable operation. Microprocessor MP turns on both channels in summer S1 and receives a signal from amplifier A1 via the ADC to determine the timing for proper measurement with minimal optical noise, as described above in the Artificial Light Source Control method.

Wenn das Signal vom Verstärker A1 sein Minimum erreicht, schaltet der Mikroprozessor MP einen frisch geladenen Speicherkondensator C2 im Spannungskonstanthalter STV1 ein (und schaltet den C1 der AU aus, wodurch der C1 an Eingangsspannung angeschlossen wird). In einfacheren Modifizierungen überwacht der Mikroprozessor MP einfach nur die Spannung am STV1, so dass die analoge Einheit AU die notwendige Spannung bekommt, und falls sich die stabilisierte Spannung an der analogen Einheit AU von einem vorbestimmten Wert unterscheidet, berechnet der Mikroprozessor MP diesen Unterschied und nimmt Korrekturen an Empfangssignalen vor. Wenn der Mikroprozessor MP den richtigen Zeitpunkt für Messungen bestimmt hat, schickt er Daten über den Strompegel an den DAC2, der über die lichtemittierenden Elemente im Hinblick auf die Umgebungstemperatur hergestellt werden sollte. Der Digital-/Analogwandler DAC2 stellt seinen Ausgang entsprechend diesen Daten ein, und dieses Signal geht zum Stromkonstanthalter STC. Dann schaltet der Mikroprozessor MP den Stromkonstanthalter STC ein und dieser schickt Messstrom zu den lichtemittierenden Elementen (Gruppe EE1 in Fig. 4). Licht aus den lichtemittierenden Elementen verläuft mit ein und demselben Winkel zur optischen Achse des Hauptsensorelements SE1 (Fig.5) durch den Erfassungsbereich. Vorzugsweise, aber nicht ausschließlich, beträgt der Winkel 110°.When the signal from the amplifier A1 reaches its minimum, the microprocessor MP turns on a freshly charged storage capacitor C2 in the voltage stabilizer STV1 (and turns off the C1 of the AU, thereby connecting the C1 to the input voltage). In simpler modifications, the microprocessor MP simply monitors only the voltage on the STV1, so that the analog unit AU gets the necessary voltage, and if the stabilized voltage on the analog unit AU differs from a predetermined value, the microprocessor MP calculates this difference and decreases Corrections to received signals. When the microprocessor MP has determined the correct time for measurements, it sends data about the level of current to the DAC2 which should be established across the light-emitting elements with respect to the ambient temperature. The digital / analog converter DAC2 sets its output according to this data, and this signal goes to the current stabilizer STC. Then, the microprocessor MP turns on the current stabilizer STC and sends measurement current to the light-emitting elements (group EE1 in FIG Fig. 4 ). Light from the light-emitting elements runs at the same angle to the optical axis of the main sensor element SE1 (FIG. Figure 5 ) through the detection area. Preferably, but not exclusively, the angle is 110 °.

Es wird zunächst eine Situation betrachtet, in der kein Rauch in dem Bereich vorhanden ist. Je nach dem vom STC erzeugten Signal, senden die lichtemittierenden Elemente (Gruppe 1) einen sehr kurzen Lichtimpuls (oder eine Reihe von Impulsen) mit bekannter Dauer und Intensitätskennlinie gesteuert durch den Mikroprozessor MP. Das Lichtsignal erreicht den Erfassungsbereich, dort ist aber kein Rauch und so kann kein Licht durch Rauchpartikel gestreut werden. Jedoch können sich Hindernisse in dem Bereich befinden, wie etwa nahebei befindliche Wände oder Reihen von Containern in Lagerhallen u. dgl., oder auch Hände von Reinigungspersonal nahe dem Melder und auf diesem sitzende Insekten. So kann selbst ohne Rauch ein gewisses Signal aus den lichtemittierenden Elementen vom Erfassungsbereich rückreflektiert werden, und dieses Licht erreicht das Sensorelement SE1. Dann wird dieses Licht durch das SE1 in ein elektrisches Stromsignal umgesetzt, das der Strom-/Spannungswandler CVC1 dann in ein Spannungssignal umwandelt. Dann durchläuft nur der Wechselstromteil dieses Signals den Trennkondensator SC1. Dieselbe Umsetzung/Umwandlung erfolgt durch das SE2, den CVC2 und den SC2. Beide Kanäle treffen im Summierglied S1 aufeinander.First, consider a situation where there is no smoke in the area. Depending on the signal generated by the STC, the light emitting elements (Group 1) send a very short pulse of light (or series of pulses) of known duration and intensity characteristic under the control of the microprocessor MP. The light signal reaches the detection area, but there is no smoke and so no light can be scattered by smoke particles. However, obstacles may be in the area, such as nearby walls or rows of containers in warehouses and the like. Like., Or also hands of cleaning staff near the detector and on this sitting insect. Thus, even without smoke, a certain signal from the light-emitting elements can be reflected back from the detection area, and this light reaches the sensor element SE1. Then this light is converted by the SE1 into an electrical current signal, which then converts the current / voltage converter CVC1 into a voltage signal. Then only the AC part of this signal passes through the isolating capacitor SC1. The same conversion is done by the SE2, the CVC2 and the SC2. Both channels meet in Summierglied S1 each other.

Falls Hintergrundbeleuchtungsquellen vorhanden sind, erreicht das Lichtsignal von diesem beide Sensorelemente SE1 und SE2 und wird im Summierglied S1 effektiv subtrahiert. Dann durchlaufen nur Impulse hoher Frequenz (über 1 kHz) den Trennkondensator SC3, um den Messteil vor industriellen EMI-Stahlungen (mit Frequenzen von ca. 50 - 60 Hz oder 100 - 120 Hz) zu schützen. Kurz dauernde Impulse aus den lichtemittierenden Elementen, die von Hindernissen in dem Bereich reflektiert werden, durchlaufen dann den Trennkondensator SC3 und erreichen das Summierglied S2. Der Mikroprozessor MP schickt einen Nullwert an den DAC1, so dass das Signal vom SC3 unverändert an den Ausgang des Summierglieds S2 geht. Der Mikroprozessor MP schickt einen Befehl an den ADC, Messungen durchzuführen, und erhält Daten über Signale am Ausgang des Summierglieds S2 zurück. Falls eine sehr starke Reflexion (zum Beispiel von nahen Wänden oder wenn man einen Lüftungskanal oder einen engen Kanal für Elektrokabel schützt) besteht, dann erhält der Mikroprozessor bereits in diesem Stadium ein signifikantes Signal. So schickt der Mikroprozessor MP einen berechneten Wert an den DAC1, und der DAC1 gleicht das aus Reflexionen im Erfassungsbereich gemessene Rauschen aus.If backlight sources are present, the light signal from this reaches both sensor elements SE1 and SE2 and is effectively subtracted in the summer S1. Then only high frequency pulses (above 1 kHz) will pass through the SC3 isolating capacitor to protect the measuring part from industrial EMI radiation (at frequencies of about 50-60 Hz or 100-120 Hz). Short duration pulses from the light emitting elements reflected from obstacles in the area then pass through the separator capacitor SC3 and reach the summer S2. The microprocessor MP sends a zero value to the DAC1 so that the signal from the SC3 goes to the output of the summer S2 unchanged. The microprocessor MP sends a command to the ADC to take measurements and receives back data via signals at the output of the summer S2. If there is a very strong reflection (for example, of nearby walls or if one protects a ventilation duct or a narrow channel for electric cables), then the microprocessor already receives a significant signal at this stage. Thus, the microprocessor MP sends a calculated value to the DAC1, and the DAC1 equalizes the noise measured from reflections in the detection area.

Dann erfolgt eine neue Messung, diesmal stellt der Mikroprozessor MP den Pegel im DAC1 vorab auf den zuvor berechneten Wert ein, so dass das Signal vom DAC1 vom Signal aus dem Trennkondensator SC3 subtrahiert wird. Da die Signale fast vollständig ausgeglichen sind, braucht man nun eine Verstärkung, um ein gewisses signifikantes Signal zu sehen. Das ist der Grund, warum der Mikroprozessor MP aus dem ADC auch Signale vom Ausgang von Verstärkern A2, A3 und A4 empfängt, wobei jedes von diesen einen gewissen Verstärkungsgrad, vorzugsweise mit Stufen von x10 (jedes Signal wird mit 10 verstärkt) bei jedem Verstärker aufweist. Danach korrigiert dieser Mikroprozessor MP Daten für den DAC1 und wird diesen genaueren Wert weiter verwenden. Die genaueste Messung eines Rauschsignals aus Reflexion erfolgt, wenn der DAC1 keine kleineren Zahlen zur Durchführung einer Feinkorrektur hat und fast das gesamte Störsignal ausgeglichen ist. Dann misst der Mikroprozessor MP mit Hilfe des ADC ein Signal von einem Integrierglied Int, das das Signal aus dem A4 während Impulsen integriert. Das Ergebnis liefert einen Offset-Wert zur Feinstkorrektur, und diese Daten werden zusammen mit Korrekturdaten für den DAC1 im MP (z.B. in einem ROM oder Flash-Speicher) gespeichert. Der Mikroprozessor MP führt weiter Messungen in gewissen Zeitabständen, z.B. 1 mal in 1 Sekunde durch.Then a new measurement takes place, this time the microprocessor MP sets the level in the DAC1 in advance to the previously calculated value, so that the signal from the DAC1 is subtracted from the signal from the separating capacitor SC3. Since the signals are almost completely balanced, you now need a gain, to see a certain significant signal. This is the reason why the MP microprocessor MP also receives signals from the output of amplifiers A2, A3 and A4, each of which has a certain gain, preferably with steps of x10 (each signal being amplified by 10) at each amplifier , Thereafter, this microprocessor MP will correct data for the DAC1 and will continue to use that more accurate value. The most accurate measurement of a noise signal from reflection occurs when the DAC1 has no smaller numbers to perform a fine correction and almost all of the noise is balanced. Then the microprocessor MP uses the ADC to measure a signal from an integrator Int which integrates the signal from the A4 during pulses. The result provides an offset value for fine correction, and this data is stored in the MP along with correction data for the DAC1 (eg, in a ROM or flash memory). The microprocessor MP continues to perform measurements at certain intervals, for example, 1 time in 1 second.

Wenn Rauch im Erfassungsbereich auftritt, trifft Licht aus den-lichtemittierenden Elementen im Erfassungsbereich auf Rauchpartikel, etwas Licht wird zum Sensorelement DE1 reflektiert, und kein Licht wird von Rauchpartikeln zum Sensorelement SE2 reflektiert (Fig. 6). Der Mikroprozessor MP bestimmt die Dauer kurzer Lichtimpulse (oder Reihen von Impulsen) im Hinblick auf Temperatur, so dass die Impulse zur Betriebsfrequenz von Schmalbandfiltern in den Verstärkern A2, A3 und A4 passen (wie im Verfahren zur Kalibrierung weiter oben beschrieben). Für gewöhnlich hat diese Dauer unter normalen Bedingungen eine Größenordnung von 15 Mikrosekunden. Der Mikroprozessor MP bestimmt auch die Lichtintensität, schickt Daten an den DAC2 und stellt den bekannten Strom im Stromkonstanthalter STC her (die an den DAC2 geschickten Daten hängen vom Temperaturwert ab, wie weiter oben beschrieben wurde).When smoke appears in the detection area, light from the light-emitting elements in the detection area strikes smoke particles, some light is reflected to the sensor element DE1, and no light is reflected by smoke particles to the sensor element SE2 ( Fig. 6 ). The microprocessor MP determines the duration of short pulses of light (or bursts of pulses) in terms of temperature so that the pulses match the operating frequency of narrow band filters in the amplifiers A2, A3 and A4 (as described in the calibration procedure above). Usually, this duration will be on the order of 15 microseconds under normal conditions. The microprocessor MP also determines the light intensity, sends data to the DAC2, and produces the known current in the current stabilizer STC (the data sent to the DAC2 depends on the temperature value, as described above).

Der Mikroprozessor MP regelt den realen Strom durch die lichtemittierenden Elemente mit Hilfe des ADC. Wenn ein Lichtsignal aus dem Erfassungsbereich durch Rauchpartikel gestreut wird, erreicht es das Sensorelement SE1 und wird dort in ein elektrisches Stromsignal umgewandelt. Dann wandelt es der Strom-/Spannungswandler CVC1 in ein Spannungssignal um. Nur der Wechselspannungsteil dieses Signals durchläuft den Trennkondensator SC1. Dieselbe Umwandlung erfolgt durch das SE2, den CVC2, SC2 nur am Rauschlichtsignal.The microprocessor MP controls the real current through the light-emitting elements by means of the ADC. When a light signal from the detection area is scattered by smoke particles, it reaches the sensor element SE1 and becomes there converted into an electrical current signal. Then the current / voltage converter CVC1 converts it into a voltage signal. Only the AC voltage part of this signal passes through the isolating capacitor SC1. The same conversion is done by the SE2, the CVC2, SC2 only on the noise signal.

Ein Lichtsignal von Hintergrundbeleuchtungsquellen erreicht beide Sensorelemente SE1 und SE2 und wird im Summierglied S1 subtrahiert. Kurzdauerimpulse aus den lichtemittierenden Elementen durchlaufen den Trennkondensator SC3 und erreichen das Summierglied S2. Der Mikroprozessor MP schickt einen zuvor berechneten Wert zur Korrektur eines Rauschsignals von Reflexionen an den DAC1. Im Summierglied S2 werden die Signale subtrahiert, und dann geht nur der echte Teil dieses Signals, der dem realen Signal von Rauch entspricht, an die Verstärker A2, A3 A4 und das Integrierglied Int durch. Der Mikroprozessor MP schicht eine Messanforderung an den ADC und erhält alle diese Signale in digitaler Form. Dann berücksichtigt der Mikroprozessor MP den Messsignalpegel, subtrahiert den Offset-Wert vom Rauschen, vergleicht das Ergebnis mit der in seinem Speicher gespeicherten Koeffiziententabelle (gemäß Werkskalibrierung Abschnitt 3), und berechnet den realen Rauchdichtewert. Dann vergleicht der MP diesen Wert mit vorbestimmten Schwellenwerten, und wenn der Messwert größer ist als ein erster Schwellenwert, erzeugt der MP ein Signal "Achtung". Wenn dieser Wert während einer vorbestimmten Zeit (durch Vorschriften empfohlen) auf einen zweiten Schwellenwert angestiegen ist, erzeugt der MP ein Signal "Alarm".A light signal from backlight sources reaches both sensor elements SE1 and SE2 and is subtracted in summer S1. Short-duration pulses from the light-emitting elements pass through the separating capacitor SC3 and reach the summing S2. The microprocessor MP sends a previously calculated value for correcting a noise signal from reflections to the DAC1. In summer S2, the signals are subtracted, and then only the true part of this signal, which corresponds to the real signal of smoke, goes to amplifiers A2, A3 A4 and integrator Int. The microprocessor MP layers a measurement request to the ADC and receives all of these signals in digital form. Then the microprocessor MP considers the measurement signal level, subtracts the offset value from the noise, compares the result to the coefficient table stored in its memory (according to factory calibration section 3), and calculates the real smoke density value. Then, the MP compares this value with predetermined thresholds, and if the measurement is greater than a first threshold, the MP generates a "attention" signal. If this value has risen to a second threshold during a predetermined time (as recommended by regulations), the MP will generate a "Alarm" signal.

Es kann auch andere Taktiken zum Schutz gegen Feuer geben, zum Beispiel kann ein Benutzer bestimmen, nur einen Schwellenwert ohne Zeitberechnung zu überschreiten. Oder der Benutzer kann bestimmen, dass die Rauchstärke differenziert und ein Alarm bei einem plötzlichen Signalanstieg gegeben wird. Oder der Benutzer kann bestimmten, dass plötzliche Sprünge (aufgrund sich nahe des Melders bewegender Menschen) ignoriert werden, in diesem Fall kann der Melder aber eine Reihe schnell aufeinanderfolgender Messungen durchführen und dabei Reflexionen von sich bewegenden Objekten wirksam eliminieren. Für andere Anwendungen ist eine schnelle Reaktion selbst auf geringe Rauchpegel unerlässlich (zum Beispiel, wenn Lüftungssysteme fast das gesamte Luftvolumen abziehen und 1 Minute lang Räume mit Frischluft füllen).There may also be other fire protection policies, for example, a user may choose to only cross a threshold without time calculation. Or the user may determine that the smoke intensity is differentiated and an alarm is given in case of a sudden signal increase. Or the user may choose to ignore sudden jumps (because of the proximity of the person moving the detector), but in this case the detector can take a series of quick successive measurements, thereby taking into account reflections from moving objects eliminate. For other applications, a quick response even to low smoke levels is essential (for example, ventilation systems extract almost the entire volume of air and fill rooms with fresh air for 1 minute).

Der Mikroprozessor MP kann mit Hilfe eines Ausgangstreibers immer genaue Daten über die Rauchdichte an die höhere Ebene des Brandschutzsystems übertragen. Und dies wird auch stark empfohlen, weil auf der höheren Ebene die Empfangseinheit Informationen über Rauchdichtepegel aus vielen verschiedenen Meldern sammelt und eine statistische Analyse durchführt, Zahlen abtrennt, die einen Verdacht aufkommen lassen können (zum Beispiel, wenn nahe einem Melder wirklicher Rauch aus einer sehr kleinen Quelle wie etwa einer Zigarette erfasst wird, aber an anderen Meldern nur ein langsamer Anstieg im Hintergrundstörpegel zu erkennen ist). Dies wird in einer unserer Modifizierungen mit vielen Meldereinheiten bewerkstelligt. Das ist fast alles über das Hauptverfahren.The microprocessor MP can transmit with the help of an output driver always accurate data on the smoke density to the higher level of the fire protection system. And this is also highly recommended because at the higher level, the receiving unit collects information about smoke density levels from many different detectors and performs statistical analysis, separating numbers that may give rise to suspicion (for example, if there is real smoke near a detector) small source such as a cigarette is detected, but at other detectors only a slow increase in the background noise level can be seen). This is accomplished in one of our many detector unit modifications. That's almost all about the main process.

Das Verfahren zum Staubausgleich im Melder umfasst spezielle Konstruktionslösungen, die in Fig. 7 gezeigt sind. Die Erfinder fanden heraus, dass, wenn eine Rille am Umfang des Meldergehäuses so hergestellt wird, dass diese durch die lichtemittierenden Elemente und Sensorelemente verläuft, Reflexionen von Licht zu sehen sind, das durch die reflektierenden Ränder der Rille von den lichtemittierenden Elementen zu den Sensorelementen übertragen wird, auch wenn gar kein direkter Lichtdurchgang besteht. Es ist unerheblich, wie groß oder dünn diese Rille ist, sie sollte nur durch die Elemente verlaufen, wobei die lichtemittierenden und Sensorelemente auf ihrer Innenseite angeordnet sind. So gibt es mehrere Konstruktionslösungen zum Staubausgleich.The procedure for dust compensation in the detector includes special design solutions that are available in Fig. 7 are shown. The inventors have found that when a groove is made on the circumference of the detector housing to pass through the light emitting elements and sensor elements, reflections of light passing through the reflective edges of the groove from the light emitting elements to the sensor elements are seen even if there is no direct passage of light. It does not matter how big or thin this groove is, it should only pass through the elements with the light emitting and sensing elements located on its inside. So there are several design solutions for dust compensation.

In einer ersten Lösung fräst man eine breite ovale Ebene aus und belässt eine glatte Flanke am Umfang in Form einer Helix, und in der Mitte des Gehäuses in Form eines flachen Kreises. In der zweiten Konstruktionslösung hat man zwei separate Rillen ovaler Form, eine enthält lichtemittierende Elemente und das Hauptsensorelement SE1, und die zweite, kleinere ovale Rille enthält lichtemittierende Element und das zweite Sensorelement SE2. Eine dritte Konstruktionslösung verfügt nur über kleine reflektierende Flächen nahe den lichtemittierenden Elementen und dem zweiten Sensorelement. Die kleinen reflektierenden Kanten in dieser Lösung sind eigentlich nur eine Fortsetzung von Kanälen im Meldergehäuse, in die lichtemittierende Elemente eingesetzt sind; dies genügt, um eine ausreichende Reflexion zum Sensorelement SE1 zu erhalten. Alle vorstehende Teile sind in Fig. 7 schraffiert markiert.In a first solution, you milled a broad oval plane and leave a smooth edge on the circumference in the form of a helix, and in the middle of the housing in the form of a flat circle. In the second construction solution, there are two separate grooves of oval shape, one containing light emitting elements and the main sensing element SE1, and the second, smaller oval groove containing light emitting Element and the second sensor element SE2. A third design solution has only small reflective surfaces near the light-emitting elements and the second sensor element. The small reflective edges in this solution are actually just a continuation of channels in the detector housing into which light-emitting elements are inserted; this is sufficient to obtain a sufficient reflection to the sensor element SE1. All protruding parts are in Fig. 7 marked hatched.

Im vorgeschlagenen Verfahren zum Staubausgleich misst der Mikroprozessor MP zuerst das Signal vom Hauptsensorelement SE1. Dazu wählt der Mikroprozessor MP einen möglichen Zeitpunkt zur Messung nach dem Verfahren zur Bekämpfung künstlichen Lichts, misst dann das Signal aus dem Erfassungsbereich nach dem Hauptverfahren, und korrigiert dieses dann. Eine Staubkorrektur wird nur durchgeführt, wenn keine Brandgefahr besteht. Dann überträgt der MP ein Signal an das Summierglied S1 und schaltet den Kanal vom Sensorelement SE2 aus, um nur Messungen am SE1 durchzuführen. Der MP misst das Signal vom SE1 und speichert es in seinem Speicher, dann schickt er ein Signal an das Summierglied S1 und schaltet den Kanal vom Sensorelement SE1 aus und den vom Sensorelement SE2 ein, um nur am SE2 Messungen durchzuführen. Dann misst der MP das Signal vom SE2 und speichert es auch in seinem Speicher. Der MP vergleicht Signale aus einer früheren Kalibrierung mit neu gemessenen Signalen und berechnet eine Sättigung des Signals aufgrund von Staub auf seiner Oberfläche.In the proposed method of dust compensation, the microprocessor MP first measures the signal from the main sensor element SE1. For this purpose, the microprocessor MP selects a possible time for measurement according to the method for combating artificial light, then measures the signal from the detection area after the main process, and then corrects it. A dust correction is only carried out if there is no risk of fire. Then, the MP transmits a signal to the summer S1 and turns off the channel from the sensor element SE2 to perform only measurements on SE1. The MP measures the signal from the SE1 and stores it in its memory, then sends a signal to the summer S1 and turns on the channel from the sensor element SE1 and from the sensor element SE2 to take measurements only on the SE2. Then the MP measures the signal from the SE2 and also stores it in its memory. The MP compares signals from an earlier calibration with newly measured signals and calculates a saturation of the signal due to dust on its surface.

Dank dieses Verfahrens weiß man genau, welche Zahlen der Melder maß als er erstinstalliert war, und welche Zahlen er nach Jahren des Betriebs hat. Man misst auch Signale genau an den Arbeitsdioden SE1 und SE2 mit realen lichtemittierenden Elementen, die für Messungen im Hauptverfahren verwendet wurden. Dies verhindert Fehler aufgrund von unterschiedlicher Staubdicke oder Hindernissen an Dioden. Es ist auch wichtig, festzuhalten, dass in diesem Fall kein Testlicht emittierendes Element vonnöten ist, weil man immer ein Signal von der reflektierenden Rille hat, um die Vorrichtung zu testen.Thanks to this process, you know exactly what numbers the detector was measuring when it was first installed and what numbers it has after years of operation. Also, signals are accurately measured at the working diodes SE1 and SE2 with real light emitting elements used for measurements in the main process. This prevents errors due to different dust thicknesses or obstacles on diodes. It is also important to note that in this case no test light emitting element is needed because one always has a signal from the reflective groove to test the device.

In verschiedenen Figuren finden sich diverse Konstruktionsvarianten: Rauchmelder der offenen Bauart (Variante 1, Fig. 4), Rauchmelder der offenen Bauart kombiniert mit Temperaturmelder (Maximal-/Differentialbauart) (Variante 2, Fig. 13), Rauchmelder der offenen Bauart, kombiniert mit UV-Flammenmelder (Variante 3, Fig. 14), Rauchmelder der offenen Bauart, kombiniert mit IR-Flammenmelder (empfindlich in mindestens 2 Spektralbereichen) (Variante 4, Fig. 14), Rauchmelder der offenen Bauart, kombiniert mit Temperaturmelder und UV-Flammenmelder (Variante 5, Fig. 15), Rauchmelder der offenen Bauart, kombiniert mit Temperaturmelder und IR-Flammenmelder (Variante 6, Fig. 15). Rauchmelder der offenen Bauart, kombiniert mit Temperaturmelder, UV-Flammenmelder und IR-Flammenmelder (empfindlich in mindestens zwei Spektralbereichen) (Variante 7, Fig. 16).In various figures, there are various design variants: Smoke detectors of the open design (variant 1, Fig. 4 ), Smoke detectors of the open design combined with temperature detector (maximum / differential design) (variant 2, Fig. 13 ), Smoke detectors of open design, combined with UV flame detector (variant 3, Fig. 14 ), Smoke detector of open design, combined with IR flame detector (sensitive in at least 2 spectral ranges) (variant 4, Fig. 14 ), Smoke detector of open design, combined with temperature detector and UV flame detector (variant 5, Fig. 15 ), Smoke detector of open design, combined with temperature detector and IR flame detector (variant 6, Fig. 15 ). Smoke detector of open design, combined with temperature detector, UV flame detector and IR flame detector (sensitive in at least two spectral ranges) (variant 7, Fig. 16 ).

Es kann auch Teilmodifizierungen kombiniert mit Temperaturmeldern und Flammenmeldern der UV- und/oder IR-Bauart geben. Alle diese Varianten können mit Lichtwellenleitern oder Kabeln ausgestattet sein, um eine Kommunikation zwischen Steuereinheit MU (wo sich die gesamte Elektronik befindet) und einer abgesetzten Detektoreinheit RDU herzustellen (wo man nur Optik für Hochtemperaturanwendungen anordnet oder zuverlässige einfache Elektronik wie Dioden einsetzt) (Variante 10, Fig. 17). Eine modifizierte Lösung ist als Variante 11 in Fig. 18 gezeigt. Fig. 18 zeigt eine Hauptmeldereinheit MU, die mit mehreren abgesetzten Sensoreinheiten RDU1 bis RDU4 verbunden ist. Dies ist eine gute Lösung für die Industrie, wo eine große Arbeitshalle oder Werkstatt als eine Zone für ein Feuerlöschsystem geschützt werden kann. Dies gibt Anwendern die Gelegenheit, nur einen oder zwei Melder mit vielen abgesetzten Sensoreinheiten (bis zu 30 bei einer Haupteinheit) anstelle von Dutzenden von separaten Meldern anzubringen. Das ist eine ausnehmend ökonomische Lösung.There may also be partial modifications combined with temperature detectors and flame detectors of the UV and / or IR type. All of these variants may be equipped with optical fibers or cables to establish communication between the MU control unit (where all the electronics are located) and a remote RDU detector unit (where only optics are to be used for high temperature applications or reliable, simple electronics such as diodes) (variant 10) . Fig. 17 ). A modified solution is variant 11 in Fig. 18 shown. Fig. 18 shows a main detector unit MU, which is connected to a plurality of remote sensor units RDU1 to RDU4. This is a good solution for the industry, where a large work hall or workshop can be protected as a zone for a fire extinguishing system. This gives users the opportunity to install only one or two detectors with many remote sensor units (up to 30 on a main unit) instead of dozens of separate detectors. This is an exceptionally economical solution.

Nachfolgend werden einige weiterhin erwähnenswerte Aspekte vorteilhafter Ausführungen des vorgeschlagenen Rauchdetektors bzw. seines Betriebs und seiner Anwendung erwähnt:

  • Aus Fig. 3 ist ersichtlich, dass der Mikroprozessor MP Feineinstellungen in den Verstärkern A2, A3 und A4 durchführen kann; dies wird zur automatischen Kalibrierung der Vorrichtung im Werk benötigt. Die Verbindung zwischen dem MP und dem Integrierglied ist dazu gedacht, das Integrierglied nur in bekannten Zeiträumen mit Speicherung des Pegels des integrierten Signals und seiner Rücksetzung durch den MP arbeiten zu lassen. Es wird gegenwärtig ein Hochgeschwindigkeits-ADC verwendet, in preisgünstigeren Modifizierungen kann man aber einen langsameren ADC in Kombination mit einem durch den Mikroprozessor MP gesteuerten Spitzendetektor verwenden. Der ADC kann ein Teil des Mikroprozessors sein.
In the following some mentionable aspects of advantageous embodiments of the proposed smoke detector or its operation and its application are mentioned:
  • Out Fig. 3 it can be seen that the microprocessor MP can perform fine adjustments in the amplifiers A2, A3 and A4; this is needed to automatically calibrate the device in the factory. The connection between the MP and the integrator is intended to allow the integrator to operate only during known periods of storage of the level of the integrated signal and its reset by the MP. A high speed ADC is currently used, but in more cost effective modifications one can use a slower ADC in combination with a peak detector controlled by the microprocessor MP. The ADC can be part of the microprocessor.

Das typischerweise schwache Signal des Lichterfassungselements erfordert grundsätzlich hohe Verstärkungsfaktoren, diese sind aber unvermeidlich mit entsprechendem Stromverbrauch und zusätzlichem Rauschen verbunden. In einer Ausführung der Auswertungsschaltung wird daher ein aus einer positiven und nachfolgenden negativen Halbwelle bestehendes Primärsignal, nach Filterung und Verstärkung, durch Invertierung der negativen Halbwelle und Addition zur positiven Halbwelle verarbeitet. In einer Ausgestaltung, bei der vor dem Integrator geeignete Schaltelemente vorgesehen sind, werden Teile der Halbwellen ausgeblendet, um insbesondere nur den mittleren Abschnitt mit größter Signalamplitude als Nutzsignal durchzulassen.The typically weak signal of the light sensing element generally requires high gain factors, but these are inevitably associated with corresponding power consumption and additional noise. In an embodiment of the evaluation circuit, therefore, a primary signal consisting of a positive and subsequent negative half-wave, after filtering and amplification, is processed by inverting the negative half-wave and adding to the positive half-wave. In an embodiment in which suitable switching elements are provided in front of the integrator, parts of the half-waves are masked out in order in particular to pass only the middle section with the greatest signal amplitude as the useful signal.

Zweckmäßige Ausführungen haben ein Metallgehäuse, sind stoßsicher und vandalensicher, haben einen Sockel mit Schrauben, keine bündige Lösung, aber eine solide Befestigung von Drähten an Kontakten an der Seitenfläche des Sockels mit Schrauben. Diese Lösung ist gegen alle Arten von Vibrationen resistent und kann sogar in Eisenbahnwaggons sicher eingesetzt werden.Practical designs have a metal body, are shockproof and vandal resistant, have a socket with screws, no flush solution, but a solid attachment of wires to contacts on the side surface of the socket with screws. This solution is resistant to all types of vibration and can be safely used even in railway wagons.

Es können mehrere Gruppen von lichtemittierenden Elementen vorhanden sein, das gibt ein besseres Leistungsverhalten bei schwarzem Rauch (vgl. Fig. 8, 9, 10). Es können zwei verschiedene Zonen zur früheren Erfassung eingerichtet werden, und für Rauch, der sich in Schichten oder Horizonten ausbreitet (vgl. Fig. 11). Es können Gruppen von lichtemittierenden Elementen mit unterschiedlicher spektraler Empfindlichkeit vorhanden sein, dies ermöglicht uns, schwarzen Rauch sowie Aerosole aus brennenden Metallen (wie etwa Na, Al, Fe) zu unterscheiden (vgl. Fig. 12). Der Rauchmelder der offenen Bauart kann mit einem Temperaturmelder, Flammen-, UV- und IR-Melder kombiniert werden (vgl. Fig. 13, 14, 15, 16).There may be several groups of light-emitting elements, which gives a better performance in black smoke (see. Fig. 8 . 9 . 10 ). Two different zones can be set up for earlier detection, and for smoke spreading in layers or horizons (cf. Fig. 11 ). There may be groups of light emitting elements with different spectral sensitivity, this allows us to distinguish black smoke and aerosols from burning metals (such as Na, Al, Fe) (see. Fig. 12 ). The open-type smoke detector can be combined with a temperature detector, flame, UV and IR detector (cf. Fig. 13 . 14 . 15 . 16 ).

Ein Aspekt der vorliegenden Erfindung besteht auch in der Opition des Aufbaus eines neuartigen Rauchdetektionssystems, wie es in Fig. 19 skizzenartig dargestellt ist. Das Rauchdetektionssystem SYS umfasst in der beispielhaften Darstellung eine Systemsteuerstation SCS und drei Rauchdetektoren SD1, SD2 und SD3 mit grundsätzlich unterschiedlichem Aufbau, die in verschiedenen Räumen eines zu überwachenden Gebäudes angeordnet sind. Der Rauchdetektor SD1 ist vom integrierten Typ, bei dem allen Komponenten in einem einzigen Gehäuse untergebracht ist; der Rauchdetektor RD2 ist vom zweiteiligen Typ, wie er in Fig. 17 und 19 gezeigt und weiter oben beschrieben ist, und umfasst eine Steuereinheit MU2 und eine abgesetzte Detektoreinheit RDU2 und der Rauchdetektor RD3 kann als mehrteiliger Typ bezeichnet werden, bei dem neben einer Steuereinheit MU3 und einer die der eigentlichen Rauchmeldung dienenden Sende- und Erfassungselemente enthaltenden Detektoreinheit RDU3 noch (mindestens) ein abgesetzter Zusatzdetektor XDU vorgesehen ist. Verbindungen zwischen den Systemkomponenten und Sub-Komponenten sind auf die im allgemeinen Beschreibungsteil erwähnte Weise als bidirektionale Kommunikationsverbindung einer ersten, zweiten und dritten Ebene, mindestens teilweise auf Lichtleitfaser- bzw. Funkbasis, hergestellt.One aspect of the present invention is also in the oppose of constructing a novel smoke detection system as disclosed in US Pat Fig. 19 is shown sketchy. The smoke detection system SYS comprises in the exemplary representation of a system control station SCS and three smoke detectors SD1, SD2 and SD3 with fundamentally different structure, which are arranged in different rooms of a building to be monitored. The smoke detector SD1 is of the integrated type, with all components housed in a single housing; the smoke detector RD2 is of the two-part type, as in Fig. 17 and 19 and comprises a control unit MU2 and a remote detector unit RDU2 and the smoke detector RD3 can be referred to as a multi-part type, in which in addition to a control unit MU3 and a detector unit RDU3 containing the actual smoke message serving ( at least) a remote additional detector XDU is provided. Connections between the system components and subcomponents are made in the manner described in the general part of the description as a first, second, and third level bidirectional communication link, at least in part, on an optical fiber basis.

Ein Verfahren zum Betrieb eines solchen Netzes ist wie folgt: Es gibt ein Spezialprogramm auf einem Laptop oder einer Empfangseinheit mit Funkkanal, und dieses Programm findet einen Melder von unserer Firma, sobald er eingeschaltet ist. Dann werden die Melder einzeln nacheinander eingeschaltet und entsprechend der Projektdokumentation an der Decke angebracht, und es wird keine Drahtverbindung benötigt. Die Melder melden sich selbst im PC an, und sie bekommen je nach ihrer Priorität Zugriffsrechte. So montiert man zuerst "Server"-Melder, die Information von anderen untergeordneten Meldern an den PC weiterleiten, und die "Server"-Melder müssen immer in direkter Sicht aufeinander sein. Wenn ein "Server"-Melder von anderen durch eine Wand getrennt ist, kann es notwendig sein, eine kurze Drahtverbindung durch die Wand zum naheliegendsten Melder herzustellen. In der Praxis sind diese Drahtverbindungen sehr kurz (ca. 2 m) und können durch den Türeingang montiert werden. Untergeordnete Melder in jedem Raum übertragen ihre Information an die "Server"-Melder, die sie dann über einander an den Haupt-PC oder nur eine Empfangseinheit mit Funkkanal durchleiten. Dies bedeutet, dass ein Meldernetz etwa in einer Schule ohne Schwierigkeit, ohne Drahtverbindungen und Kosten für seine Montage und mit beträchtlicher Einsparung bei der Hardware aufgebaut werden kann.One method of operating such a network is as follows: There is a special program on a laptop or receiver unit with radio channel, and this program finds a detector from our company as soon as it is turned on. Then the detectors are switched on one at a time and attached to the ceiling according to the project documentation, and no wire connection is needed. The detectors register themselves in the PC, and they get access rights depending on their priority. So you first install "server" messages that forward information from other subordinate detectors to the PC, and the "server" messages must always be in direct view of each other. If a "server" detector is separated from others by a wall, it may be necessary to make a short wire connection through the wall to the nearest detector manufacture. In practice, these wire connections are very short (about 2 m) and can be mounted through the door entrance. Subordinate detectors in each room transmit their information to the "server" detectors, which then pass them through each other to the main PC or just a receiver unit with radio channel. This means that a detector network can be set up in a school without difficulty, without wire connections and costs for its assembly and with considerable savings in hardware.

Die Ausführung der Erfindung ist nicht auf die hier gezeigten und beschriebenen Beispiele und der hervorgehobenen Aspekten beschränkt, sondern ebenso in einer Vielzahl von Abwandlungen möglich, die im Rahmen fachgemäßen Handelns liegen. The embodiment of the invention is not limited to the examples shown and described herein and the aspects highlighted, but also in a variety of modifications are possible, which are within the scope of technical action.

Claims (16)

  1. Open-type smoke detector comprising at least one pulse-operated light emitting element and at least one light detecting element in an open housing, and a power supply unit coupled with said light emitting element or elements, wherein the power supply unit comprises voltage stabilizing means and an energy collecting device and a digital operation monitoring and controlling unit for monitoring and controlling the operation of the power supply unit and thus the light emitting element or elements, wherein the digital operation monitoring and controlling unit is configured for real-time controlling a switch-on time and pulse duration of the light emitting element or elements as a function of a temperature signal.
  2. Smoke detector according to claim 1, having at least one built-in temperature sensor coupled with a T-sensor input of the digital operation monitoring and controlling unit.
  3. Smoke detector according to claim 1 or 2, wherein the power supply unit comprises current stabilizing means arranged at the output side of the energy collecting device and coupled with the operation monitoring and controlling unit via a control line so as to be controlled by the operation monitoring and controlling unit.
  4. Smoke detector according to any one of the preceding claims, wherein the power supply unit is configured for supplying the light emitting element or elements with sine pulses.
  5. Smoke detector according to any one of the preceding claims, wherein the operation monitoring and controlling unit comprises interference signal monitoring means for optically monitoring the detection area and is configured for applying supply pulses to the light emitting element or elements in periods in which external optical noise has a value below an average value determined over a predetermined period.
  6. Smoke detector according to claim 5, wherein the operation monitoring and controlling unit is configured for storing, as a background interference signal, an optical signal detected over a predetermined monitoring period in the absence of a smoke detection signal, which optical signal contains e.g. reflection signals from the smoke detector's constructional environment, and for utilizing it in compensation controlling the operation of the light emitting element or elements.
  7. Smoke detector according to claim 6, wherein, for compensation controlling the light emitting element or elements, the operation monitoring and controlling unit operates at the same pulse shapes as are provided for the operation thereof without compensation control.
  8. Smoke detector according to any one of the preceding claims, wherein the light emitting element or elements are configured for supplying an emission signal in at least two different spectral ranges, and the light detecting element or light detecting elements are adapted to detect signals in all of the spectral ranges of emission used.
  9. Smoke detector according to any one of the preceding claims, comprising a built-in flame detector coupled with a flame detector input of the operation monitoring and controlling unit, and wherein the operation monitoring and controlling unit is configured for controlling detector operation in response to a signal from the flame detector.
  10. Smoke detector according to claim 9, wherein the flame detector comprises a UV-type and/or IR-type detector.
  11. Smoke detector according to any one of the preceding claims, comprising three or more LEDs arranged in a common plane on a hyperbolic or spiral curve facing the light emitting element or elements.
  12. Smoke detector according to any one of the preceding claims, including a test light emitting element provided and configured solely for an operation for test purposes.
  13. Smoke detector according to any one of the preceding claims, including a calibrating light detecting element provided and configured solely for an operation by means of which signals of the light detecting element or light detecting elements are calibrated.
  14. Smoke detector according to claim 13, wherein the open housing comprises at least one light reflecting surface configured for shaping the optical path between the light emitting element and the light detecting element so as to effect a dust correction of the detector signals.
  15. Smoke detector according to any one of the preceding claims, wherein light emitting elements are provided in the direct detection area of light detecting elements on the same optical axis, and a first pair of a first light emitting element and a first light detecting element is enclosed in a hermetically tight housing, and a second pair of a second light emitting element and a second light detecting element is disposed within the open housing, and an evaluation unit is configured for receiving the signals from the pair of first and second elements and for processing the signals from the first pair for interference-compensating the signals from the second pair of elements.
  16. Smoke detector according to any one of the preceding claims, comprising at least one sensor input, e.g. a multimode optical fiber input, for coupling the smoke detector with an external sensor element, e.g. an external temperature sensor and/or external flame detector.
EP12751113.7A 2011-07-22 2012-07-04 Pulse-operated smoke detector with digital control unit Not-in-force EP2734988B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011108389A DE102011108389A1 (en) 2011-07-22 2011-07-22 smoke detector
PCT/IB2012/053409 WO2013014561A1 (en) 2011-07-22 2012-07-04 Pulse-operated smoke detector with digital control unit

Publications (2)

Publication Number Publication Date
EP2734988A1 EP2734988A1 (en) 2014-05-28
EP2734988B1 true EP2734988B1 (en) 2016-03-02

Family

ID=46750375

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12751113.7A Not-in-force EP2734988B1 (en) 2011-07-22 2012-07-04 Pulse-operated smoke detector with digital control unit

Country Status (4)

Country Link
EP (1) EP2734988B1 (en)
DE (1) DE102011108389A1 (en)
EA (1) EA026448B1 (en)
WO (1) WO2013014561A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018220600A1 (en) * 2018-11-29 2020-06-04 Robert Bosch Gmbh Particle detection method and apparatus
US11493229B2 (en) 2019-03-20 2022-11-08 Carrier Corporation Chamberless wide area duct smoke detector

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015004458B4 (en) * 2014-06-26 2016-05-12 Elmos Semiconductor Aktiengesellschaft Apparatus and method for a classifying, smokeless air condition sensor for predicting a following operating condition
DE102014019773B4 (en) 2014-12-17 2023-12-07 Elmos Semiconductor Se Device and method for distinguishing between solid objects, cooking fumes and smoke using the display of a mobile telephone
DE102014019172B4 (en) * 2014-12-17 2023-12-07 Elmos Semiconductor Se Device and method for distinguishing between solid objects, cooking fumes and smoke using a compensating optical measuring system
WO2017218763A1 (en) * 2016-06-15 2017-12-21 Carrier Corporation Smoke detection methodology
US10852233B2 (en) * 2016-06-15 2020-12-01 Kidde Technologies, Inc. Systems and methods for chamberless smoke detection and indoor air quality monitoring
CN111263958B (en) * 2017-10-30 2022-05-27 开利公司 Compensator in detector device

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ZA763862B (en) * 1975-07-21 1977-05-25 Gen Signal Corp Photodiode smoke detector
GB2044504B (en) * 1979-03-17 1983-04-20 Hochiki Co Count discriminating fire detector
DE3369213D1 (en) * 1982-05-13 1987-02-19 Cerberus Ag Smoke detector according to the radiation-extinction principle
DE4202057C2 (en) 1992-01-25 1993-12-09 Werner Pfleiderer Gmbh Elektro Protection device for monitoring and securing access areas in storage rooms
DE69325852T2 (en) * 1992-05-25 2000-01-27 Nohmi Bosai Ltd., Tokio/Tokyo Fire detector
JPH06288917A (en) * 1993-03-31 1994-10-18 Nohmi Bosai Ltd Smoke detection type fire sensor
GB9315779D0 (en) 1993-07-30 1993-09-15 Stoneplan Limited Apparatus and methods
GB9417142D0 (en) 1994-08-25 1994-10-12 Jsb Electrical Plc Fire alarms
US6195011B1 (en) 1996-07-02 2001-02-27 Simplex Time Recorder Company Early fire detection using temperature and smoke sensing
GB2319604A (en) 1996-11-25 1998-05-27 Kidde Fire Protection Ltd Smoke and particle detector
DE19740922A1 (en) 1997-09-17 1999-03-18 Siemens Nixdorf Inf Syst Fire warning system for early fire detection
DE19741853A1 (en) 1997-09-23 1999-03-25 Bosch Gmbh Robert Hollow ellipse smoke alarm
DE19809896A1 (en) 1998-03-07 1999-09-09 Bosch Gmbh Robert Fire alarm
US6075447A (en) 1998-12-17 2000-06-13 Nightingale; Michael S. Smoke detecting christmas tree ornament system
DE19902319B4 (en) 1999-01-21 2011-06-30 Novar GmbH, Albstadt-Ebingen Zweigniederlassung Neuss, 41469 Scattered light fire detectors
DE19951403B4 (en) 1999-10-26 2010-01-07 Schako Metallwarenfabrik Ferdinand Schad Kg Zweigniederlassung Kolbingen Method for detecting smoke
US6462653B1 (en) 1999-12-13 2002-10-08 Pittway Corporation System and method of group definition
DE10066246A1 (en) 2000-09-22 2005-10-06 Robert Bosch Gmbh Scattered light smoke
DE10104861B4 (en) 2001-02-03 2013-07-18 Robert Bosch Gmbh Procedure for fire detection
DE10118913B4 (en) 2001-04-19 2006-01-12 Robert Bosch Gmbh Scattered light smoke
DE10246056A1 (en) 2002-10-02 2004-04-22 Robert Bosch Gmbh smoke detector
CN100593179C (en) 2002-10-04 2010-03-03 瓦列里·瓦西里耶维奇·奥夫奇尼科夫 Method for forming and transmitting signals
DE10246756B4 (en) 2002-10-07 2006-03-16 Novar Gmbh Fire detection procedure and fire detector for its implementation
EP1688898A4 (en) 2003-11-17 2010-03-03 Hochiki Co Smoke sensor using scattering light
DE102004001699A1 (en) 2004-01-13 2005-08-04 Robert Bosch Gmbh fire alarm
DE102004002591B4 (en) 2004-01-16 2016-03-03 Robert Bosch Gmbh fire alarm
DE102004004098B3 (en) * 2004-01-27 2005-09-01 Wagner Alarm- Und Sicherungssysteme Gmbh Method for evaluating a scattered light signal and scattered light detector for carrying out the method
JP4344269B2 (en) 2004-03-30 2009-10-14 能美防災株式会社 Fire detector and its status information acquisition system
WO2006024960A1 (en) 2004-07-09 2006-03-09 Tyco Safety Products Canada Ltd. Smoke detector calibration
EP1619640A1 (en) 2004-07-23 2006-01-25 Siemens Schweiz AG Scattered-light smoke detector
EP1887536A1 (en) 2006-08-09 2008-02-13 Siemens Schweiz AG Smoke alarm using light scattering

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018220600A1 (en) * 2018-11-29 2020-06-04 Robert Bosch Gmbh Particle detection method and apparatus
DE102018220600B4 (en) * 2018-11-29 2020-08-20 Robert Bosch Gmbh Method and device for detecting particles
US11493229B2 (en) 2019-03-20 2022-11-08 Carrier Corporation Chamberless wide area duct smoke detector

Also Published As

Publication number Publication date
EP2734988A1 (en) 2014-05-28
EA201391722A1 (en) 2014-06-30
EA026448B1 (en) 2017-04-28
DE102011108389A1 (en) 2013-01-24
WO2013014561A1 (en) 2013-01-31

Similar Documents

Publication Publication Date Title
EP2734988B1 (en) Pulse-operated smoke detector with digital control unit
EP3029647B1 (en) Open scattered light smoke detector, particularly with a sidelooker LED
DE2504300C3 (en) Device for measuring the absorption capacity of a medium, in particular smoke
EP2603907B1 (en) Evaluating scattered-light signals in an optical hazard detector and outputting a dust/steam warning or a fire alarm
EP3234641B1 (en) Automatically movable cleaning device
WO2008017698A1 (en) Scattered light smoke detector
EP2348495B1 (en) Smoke alarm with ultrasound coverage monitoring
EP3504692A1 (en) Method for detecting a fire according to the scattered light principle with a staggered addition of a further led unit for radiating in further light pulses with different wavelengths and scattered light angles, and such scattered light smoke detectors
WO2004001693A1 (en) Scattered-light smoke detector
DE202014008301U1 (en) Photoelectric sensor
DE1960218A1 (en) Temperature radiation detector for automatic fire detection or flame monitoring
EP0926646B1 (en) Optical smoke detector
EP0711442A1 (en) Active ir intrusion detector
DE102011108390B4 (en) Method of making an open type smoke detector
DE112020002849T5 (en) Optical particle sensor
EP2093731A1 (en) Linear optical smoke alarm with multiple part-beams
DE4320873A1 (en) Circuit arrangement for an optical detector for environmental monitoring and display of an interference medium
DE102013213458A1 (en) Method for measuring the concentration of a gas component in a sample gas
EP0631265B1 (en) Circuit arrangement of an optical detector for environmental monitoring and indication of a disturbing medium
EP0971329B1 (en) Device for testing smoke detectors of the light diffusion type
DE102016104452A1 (en) Control of an LED arrangement and LED lighting system
EP2402793B1 (en) Method for pulsed operation of a light barrier and light barrier
EP2227068A1 (en) Alternating transmission of electromagnetic radiation with two radiation sources
DE102013019532A1 (en) Light beam receiver with improved noise suppression
DE102008009213A1 (en) Radiation conductor, detector, manufacturing process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150529

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 778490

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160315

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012006155

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160302

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: FIAMMENGHI-FIAMMENGHI, CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160603

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160704

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012006155

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160731

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

26N No opposition filed

Effective date: 20161205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160602

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 778490

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20180730

Year of fee payment: 7

Ref country code: FR

Payment date: 20180726

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180726

Year of fee payment: 7

Ref country code: GB

Payment date: 20180716

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012006155

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731