EP2734293B1 - Mixing device for mixing agglomerating powder in a suspension - Google Patents

Mixing device for mixing agglomerating powder in a suspension Download PDF

Info

Publication number
EP2734293B1
EP2734293B1 EP12751481.8A EP12751481A EP2734293B1 EP 2734293 B1 EP2734293 B1 EP 2734293B1 EP 12751481 A EP12751481 A EP 12751481A EP 2734293 B1 EP2734293 B1 EP 2734293B1
Authority
EP
European Patent Office
Prior art keywords
suspension
mixing
powder
mixing chamber
diffuser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12751481.8A
Other languages
German (de)
French (fr)
Other versions
EP2734293A1 (en
Inventor
Stefan Blendinger
Werner Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Primetals Technologies Germany GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primetals Technologies Germany GmbH filed Critical Primetals Technologies Germany GmbH
Publication of EP2734293A1 publication Critical patent/EP2734293A1/en
Application granted granted Critical
Publication of EP2734293B1 publication Critical patent/EP2734293B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/421Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions by moving the components in a convoluted or labyrinthine path
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3121Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof with additional mixing means other than injector mixers, e.g. screens, baffles or rotating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/312Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof
    • B01F25/3124Injector mixers in conduits or tubes through which the main component flows with Venturi elements; Details thereof characterised by the place of introduction of the main flow
    • B01F25/31243Eductor or eductor-type venturi, i.e. the main flow being injected through the venturi with high speed in the form of a jet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/431Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor
    • B01F25/43197Straight mixing tubes with baffles or obstructions that do not cause substantial pressure drop; Baffles therefor characterised by the mounting of the baffles or obstructions
    • B01F25/431971Mounted on the wall
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/433Mixing tubes wherein the shape of the tube influences the mixing, e.g. mixing tubes with varying cross-section or provided with inwardly extending profiles
    • B01F25/4335Mixers with a converging-diverging cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/45Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads
    • B01F25/452Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces
    • B01F25/4521Mixers in which the materials to be mixed are pressed together through orifices or interstitial spaces, e.g. between beads characterised by elements provided with orifices or interstitial spaces the components being pressed through orifices in elements, e.g. flat plates or cylinders, which obstruct the whole diameter of the tube
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • B01F35/71Feed mechanisms
    • B01F35/711Feed mechanisms for feeding a mixture of components, i.e. solids in liquid, solids in a gas stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/56Mixing liquids with solids by introducing solids in liquids, e.g. dispersing or dissolving

Definitions

  • the invention relates to a mixing device for mixing agglomerating powder in a suspension.
  • microorganisms The cultivation of microorganisms on an industrial scale has found versatile applications in recent years. So microorganisms are bred to produce biomass for power generation or for the production of biodiesel. In the effort to reduce global carbon dioxide emissions, photosynthetically active microorganisms are also used to fix carbon dioxide from exhaust gases.
  • microorganisms such as algae or cyanobacteria
  • bioreactors and flat bed plants are used.
  • the microorganisms are cultured in a suitable nutrient solution containing water, a carbon source and optionally an energy source and supplements such as minerals or trace elements.
  • the composition depends on the requirements of the microorganisms.
  • microorganisms tolerate only very low cell densities, large amounts of liquid medium are produced during harvesting, from which the microorganisms must be separated in order to process them further.
  • Modern methods use energy-saving magnetic separation methods, in which the microorganisms are loaded with magnetite particles and then passed through a magnetic field. The magnetized microorganisms are separated from the non-magnetized liquid.
  • a magnetic separation method is, for example, in DE 10 2009 030 712 described.
  • a mixing device according to the preamble of claim 1 is known in which fluid is pumped through a tapered nozzle in a mixing chamber.
  • an additive may be added and mixed with the fluid.
  • a diffuser is arranged to calm the flow.
  • the object of the invention is to provide a mixing device for mixing agglomerating powder in a suspension, wherein during mixing mixing energy can be introduced evenly into the suspension and thereby good agglomeration is achieved.
  • the mixing device for mixing agglomerating powder into a suspension formed by a carrier fluid and particles suspended therein has a nozzle for producing a suspension jet, a feed device for introducing the powder into the suspension jet Mixing chamber, which is adapted to mix the particles with the powder so that the powder adheres to the particles, and a diffuser to calm the suspension so that the particles of the powder deposited in the suspension form agglomerates.
  • the powder is magnetite powder.
  • the particles algae and / or cyanobacteria and the carrier fluid are a nutrient solution for the algae and / or cyanobacteria.
  • the nozzle, the mixing chamber and the diffuser are preferably connected in series. It is preferred that the nozzle, the mixing chamber and the diffuser are joined together to form a tube.
  • the feed device preferably opens with its feed opening into the mixing chamber, so that when the suspension jet enters the mixing chamber, the powder can be introduced from the feed device through the feed opening into the suspension jet. In this case, it is preferable for the feed opening of the feed device to be arranged outside the suspension jet in the mixing chamber.
  • the mixing chamber is set up to fluidize the suspension jet with the powder.
  • the mixing bracket has a diaphragm or a diaphragm and a deflection profile with which the swirling of the suspension jet with the powder can be accomplished.
  • the diffuser preferably has an opening degree and a length such that the suspension in the diffuser can be relieved free of charge, as a result of which the agglomerates form in the suspension.
  • the mixing device With the mixing device according to the invention, a uniform introduction of the mixing energy into the suspension is made possible during the mixing of the powder into the suspension, whereby an intensive contacting of the powder with the particles is achieved. This allows the particles to effectively form the agglomerates due to the agglomeration effect of the powder.
  • the mixing device according to the invention works particularly advantageously when the suspension is formed from microorganisms and water, and the powder is magnetite powder.
  • the suspension containing the microorganisms is pumped as a propellant into the mixing device, whereby the suspension is accelerated in the nozzle.
  • a propulsion jet is formed, the magnetite powder either in the Gas phase or mixed in the liquid phase.
  • the microorganisms and the magnetic particles are homogeneously mixed by high shear forces and turbulences.
  • the velocity of the suspension is partly converted into pressure.
  • the shear forces and turbulence decrease and the desired formation of microorganism-magnetite agglomerates may occur in the diffuser.
  • a quasi multi-stage design of the mixing device is created by the tubular arrangement of the nozzle, the mixing chamber and the diffuser, wherein the mixing device can be flowed through by a continuous suspension flow.
  • the magnetite powder is admixed in a continuous process of the microorganism suspension with the mixing device according to the invention, whereby the formation of agglomerates is promoted.
  • the inventive design of the mixing device preferably with the diaphragm and the deflection, allows a good mixing of the microorganism suspension and the magnetite particles. In this case, the energy input into the suspension is uniform, whereby the energy required to achieve a predetermined degree of mixing of the suspension is minimized.
  • the mixing device is used in a plant for the production of microorganisms, that the suspension can be continuously produced with their agglomerates formed therein.
  • a mixing device 1 is elongated and tubular, wherein the Mixing device 1 seen in the figure left an inlet cross-section 2 and right has an outlet cross section 3.
  • the suspension is to be conveyed through the inlet cross-section 2 into the mixing device 1, for example with a pump.
  • the mixing device 1 has a nozzle 4, the inlet of which coincides with the inlet cross section 2.
  • the flow cross-section of the nozzle 4 tapers to its nozzle outlet cross-section 5, wherein the flow of the suspension is accelerated as it flows through the nozzle 4.
  • the length of the nozzle 4 is an acceleration section 6, which is chosen so long that at the nozzle outlet cross section 5, a jet of the suspension is formed.
  • the mixing device 1 Downstream of the nozzle 4, the mixing device 1 has a mixing chamber 7, which is of tubular design and has a mixing chamber inlet cross section 8, which coincides with the nozzle outlet cross section 5, and a mixing chamber outlet cross section 9. Between the mixer inlet cross-section 8 and the mixing chamber outlet cross-section 9 extends a mixing section 10, which is selected to be long enough for good mixing of the suspension in the mixing chamber 7 to be accomplished.
  • a swirling chamber 11 of the mixing chamber 7 is formed, the swirling chamber 11 having a larger cross section than the mixing chamber inlet cross section 8.
  • the suspension jet 20 entering through the nozzle outlet cross section 5 and the mixing chamber inlet cross section 8 is formed in the swirling chamber 11 as a free fluid jet.
  • a feed opening 12 is attached to which in turn a supply line 13 is fixed, through which a powder 21 in the swirl chamber 11 is conveyed.
  • the powder 21 is magnetite powder and is with any conceivable conveyor into the swirling chamber 11 via the feed opening 12 can be conveyed.
  • particles of the powder 21 reach the edge regions of the suspension jet 20 and are entrained by it. This results in a uniform distribution of the powder 21 in the suspension jet 20th
  • the mixing chamber 7 Downstream of the feed opening 12, the mixing chamber 7 has a diaphragm 14, through which the suspension flows under high turbulence. Further, the mixing chamber 7 downstream of the aperture 14 deflection profiles 15, which are arranged elevated on the inner wall of the mixing chamber 7 and thereby lead to a further turbulence of the suspension flow. Conceivable is the mixing chamber 7 without the aperture 14 and / or the deflection profiles 15th
  • the swirling chamber 11 Due to the fact that the swirling chamber 11 has a larger cross section than the mixing chamber inlet cross section 8, the area outside the mixing chamber inlet cross section 8 lies in its slipstream. In this area, the powder 21 is introduced through the feed opening 12, which is entrained by the suspension jet 20.
  • the subsequent flow through the aperture 14 and the passage of the deflection profiles 15 leads to such a strong additional mixing of the suspension flow in the mixing chamber 7, that an even more intensive contacting of the microorganisms with the magnetite powder is achieved.
  • an adhesion of the magnetite powder to the microorganisms takes place in the mixing chamber 7, as a result of which the microorganisms themselves tend to form agglomerates 22.
  • the microorganisms By attaching the magnetite powder 21 to the microorganisms, the microorganisms can magnetically attract via the magnetite powder. The resulting local accumulation of the microorganisms leads to the formation of the agglomerates 22.
  • a diffuser 16 is arranged at the mixing chamber outlet cross section 9, whose diffuser inlet cross section 17 coincides with the mixing chamber outlet cross section 9.
  • the diffuser 16 extends in Flow direction up to its diffuser outlet cross section 18 while overcoming a calming section 19, wherein the diffuser 16 widens in its cross section on the calming section 19.
  • the degree of opening of the diffuser 16 and the length of the settling section 19 are chosen so that the suspension flow in the diffuser 16 is so calmed that the formation of the agglomerates 22 takes place sufficiently.
  • the diffuser outlet cross-section 18, which coincides with the outlet cross-section 3 of the mixing device 1 the suspension with the agglomerates 22 flows off.
  • the nozzle 4, the mixing chamber 7 and the diffuser 16 are arranged in series one behind the other, wherein the suspension, the nozzle 4, the mixing chamber 7 and the diffuser 16 is flowing straight through.
  • the mixing device 1 is tubular, wherein it is conceivable that the nozzle 4, the mixing chamber 7 and the diffuser 16 are joined together in one piece.
  • the suspension flows with more or less finely distributed microorganisms in the mixing device 1 and at the outlet cross-section 3, the suspension flows with agglomerated microorganisms.
  • Harvesting of the microorganisms from the suspension can be carried out particularly advantageously with a magnetic separation method. Because the microorganisms are present as the agglomerates 22 and are still magnetic, the microorganisms in their agglomerates 22 are easily and effectively separable from the suspension with a magnet. It is conceivable that the mixing device 1 is installed in a feed unit of a magnetic separator. Here, the suspension can be fed via the mixing device 1 of the magnetic separator, wherein the agglomerates 22 can be obtained from the suspension with high yield and low energy consumption. Furthermore, the use of the mixing device 21 allows a continuous supply of the suspension to the magnetic separation device, so that the magnetic separation device is also continuously operable.
  • the mixing device with the nozzle 4, the mixing chamber 7 and the diffuser 16 is formed quasi multi-stage, takes place in the mixing device 1, a good mixing of the suspension, whereby the magnetite powder has an intensive contact with the microorganisms.
  • the energy input when mixed into the suspension is uniform, which allows a high degree of mixing of the suspension with a low energy input.
  • the pump for conveying the suspension to the inlet cross-section 2 of the mixing device 1 is provided as the only energy consumer. Any stirrers that are conventionally known for mixing a suspension with a powder and consume energy need not be provided in the mixing device 1.
  • the mixing chamber 7 there are large velocity gradients in the suspension flow, as a result of which the suspension is strongly swirled and turbulent. Thus prevail in the suspension in the mixing chamber 7 high shear forces that support the intensive contact of the magnetite with the microorganisms.
  • the powder mass flow is adjustable to the proportion of microorganisms in the suspension, so that as much powder 21 can adhere to the microorganisms and flows as little as possible powder 21 in suspension ineffective. This makes it possible that, in the event of a possible concentration fluctuation of the microorganisms in the suspension, the powder mass flow can be readjusted accordingly.
  • magnetite or a comparable material is used, the surface of which is chemically functionalized in such a way that the magnetite particles undergo particularly intense binding with the cell surfaces of the algae or of the microorganisms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Description

Die Erfindung betrifft eine Mischeinrichtung zum Mischen von agglomerierendem Pulver in einer Suspension.The invention relates to a mixing device for mixing agglomerating powder in a suspension.

Die Kultivierung von Mikroorganismen im industriellen Maßstab hat in den letzten Jahren vielseitige Anwendungen gefunden. So werden Mikroorganismen gezüchtet, um Biomasse zur Stromgewinnung oder zur Produktion von Biodiesel herzustellen. Im Zuge der Bemühungen den weltweiten Kohlenstoffdioxidausstoß zu reduzieren, werden außerdem photosynthetisch aktive Mikroorganismen zur Fixierung von Kohlenstoffdioxid aus Abgasen eingesetzt.The cultivation of microorganisms on an industrial scale has found versatile applications in recent years. So microorganisms are bred to produce biomass for power generation or for the production of biodiesel. In the effort to reduce global carbon dioxide emissions, photosynthetically active microorganisms are also used to fix carbon dioxide from exhaust gases.

Für die Kultivierung von Mikroorganismen, wie beispielsweise Algen oder Cyanobakterien, werden sowohl Bioreaktoren als auch Flachbettanlagen (Aquakulturen) verwendet. Die Mikroorganismen werden in einer geeigneten Nährlösung kultiviert, die Wasser, eine Kohlenstoffquelle sowie gegebenenfalls eine Energiequelle und Ergänzungsstoffe wie Mineralien oder Spurenelementen enthält. Die Zusammensetzung richtet sich dabei nach den Anforderungen der Mikroorganismen.For the cultivation of microorganisms, such as algae or cyanobacteria, both bioreactors and flat bed plants (aquacultures) are used. The microorganisms are cultured in a suitable nutrient solution containing water, a carbon source and optionally an energy source and supplements such as minerals or trace elements. The composition depends on the requirements of the microorganisms.

Da Mikroorganismen nur sehr geringe Zelldichten tolerieren, fallen beim Ernten große Mengen flüssigen Mediums an, von dem die Mikroorganismen getrennt werden müssen, um sie weiter zu verarbeiten. Moderne Verfahren setzen hierzu energiesparendere Magnetseparationsverfahren ein, bei denen die Mikroorganismen mit Magnetitteilchen beladen und anschließend durch ein magnetisches Feld geleitet werden. Dabei werden die magnetisierten Mikroorganismen von der nicht magnetisierten Flüssigkeit getrennt. Ein Magnetseparationsverfahren ist beispielsweise in DE 10 2009 030 712 beschrieben.Since microorganisms tolerate only very low cell densities, large amounts of liquid medium are produced during harvesting, from which the microorganisms must be separated in order to process them further. Modern methods use energy-saving magnetic separation methods, in which the microorganisms are loaded with magnetite particles and then passed through a magnetic field. The magnetized microorganisms are separated from the non-magnetized liquid. A magnetic separation method is, for example, in DE 10 2009 030 712 described.

Um eine effiziente Trennung mittels Magnetitteilchen zu erlangen, müssen sich diese stabil an die Mikroorganismen binden. Hierfür ist ein intensiver Kontakt zwischen den Mikroorganismen und den Magnetitteilchen erforderlich, der zu einem stabilen Anhaften der Magnetitteilchen an die Mikroorganismen und einer Bildung von Agglomeraten führt. Herkömmlich wird der Kontakt zwischen den Mikroorganismen und den Magnetitteilchen durch Einrühren der Magnetitteilchen in eine Mikroorganismen-Nährlösung-Suspension hergestellt. Nachteilig hierbei ist allerdings, dass der Energieeintrag der Rührenergie in die Suspension nur ungleichmäßig ist. Dadurch ist insgesamt mehr Energie zum Rühren notwendig, als notwendig wäre, wenn die Rührenergie gleichmäßig in die Suspension eintragbar wäre, um eine ausreichend intensive Kontaktierung der Magnetitteilchen mit den Mikroorganismen zu erreichen.In order to achieve an efficient separation by means of magnetite particles, they must bind stably to the microorganisms. For this purpose, intensive contact between the microorganisms and the magnetite particles is required, which leads to stable adhesion of the magnetite particles to the microorganisms and formation of agglomerates. Conventionally, the contact between the microorganisms and the magnetite particles is made by stirring the magnetite particles into a microorganism-nutrient solution suspension. The disadvantage here, however, is that the energy input of the stirring energy in the suspension is only uneven. As a result, a total of more energy is required for stirring than would be necessary if the stirring energy could be introduced uniformly into the suspension in order to achieve a sufficiently intensive contacting of the magnetite particles with the microorganisms.

Aus der US 7,784,999 B1 ist eine Mischeinrichtung entsprechend dem Oberbegriff des Anspruch 1 bekannt, bei der Fluid durch eine sich verjüngende Düse in eine Mischkammer gepumpt wird. In der Mischkammer kann ein Additiv zugegeben und mit dem Fluid vermischt werden. In Strömungsrichtung nach der Mischkammer ist ein Diffusor zur Beruhigung der Strömung angeordnet.From the US 7,784,999 B1 a mixing device according to the preamble of claim 1 is known in which fluid is pumped through a tapered nozzle in a mixing chamber. In the mixing chamber, an additive may be added and mixed with the fluid. In the flow direction after the mixing chamber, a diffuser is arranged to calm the flow.

Aufgabe der Erfindung ist es eine Mischeinrichtung zum Mischen von agglomerierendem Pulver in einer Suspension zu schaffen, wobei beim Mischen Mischenergie gleichmäßig in die Suspension eintragbar ist und dadurch eine gute Agglomeratbildung erzielt ist.The object of the invention is to provide a mixing device for mixing agglomerating powder in a suspension, wherein during mixing mixing energy can be introduced evenly into the suspension and thereby good agglomeration is achieved.

Die Aufgabe wird gelöst mit den Merkmalen des Patentanspruchs 1. Vorteilhafte Ausgestaltungen dazu sind in den weiteren Patentansprüchen angegeben.The object is solved with the features of claim 1. Advantageous embodiments thereof are given in the further claims.

Die erfindungsgemäße Mischeinrichtung zum Mischen von agglomerierendem Pulver in eine von einem Trägerfluid und darin suspendierter Partikel gebildete Suspension weist eine Düse zum Erzeugen eines Suspensionsstrahls, eine Zuführeinrichtung zum Einbringen des Pulvers in den Suspensionsstrahl, eine Mischkammer, die eingerichtet ist, die Partikel mit dem Pulver zu mischen, so dass sich das Pulver an die Partikel anhaftet, und einen Diffusor auf zum Beruhigen der Suspension derart, dass die von dem Pulver angelagerten Partikel in der Suspension Agglomerate bilden.The mixing device according to the invention for mixing agglomerating powder into a suspension formed by a carrier fluid and particles suspended therein has a nozzle for producing a suspension jet, a feed device for introducing the powder into the suspension jet Mixing chamber, which is adapted to mix the particles with the powder so that the powder adheres to the particles, and a diffuser to calm the suspension so that the particles of the powder deposited in the suspension form agglomerates.

Bevorzugtermaßen ist das Pulver Magnetitpulver. Außerdem ist es bevorzugt, dass die Partikel Algen und/oder Cyanobakterien und das Trägerfluid eine Nährlösung für die Algen und/oder Cyanobakterien sind.Preferred dimensions of the powder is magnetite powder. In addition, it is preferred that the particles algae and / or cyanobacteria and the carrier fluid are a nutrient solution for the algae and / or cyanobacteria.

Die Düse, die Mischkammer und der Diffusor sind bevorzugt in Reihe geschaltet. Hierbei ist es bevorzugt, dass die Düse, die Mischkammer und der Diffusor zu einem Rohr zusammengefügt sind. Die Zuführeinrichtung mündet bevorzugt mit ihrer Zuführöffnung in die Mischkammer, so dass beim Eintreten des Suspensionsstrahls in die Mischkammer das Pulver von der Zuführeinrichtung durch die Zuführöffnung in den Suspensionsstrahl einbringbar ist. Hierbei ist es bevorzugt, dass die Zuführöffnung der Zuführeinrichtung außerhalb des Suspensionsstrahls in der Mischkammer angeordnet ist.The nozzle, the mixing chamber and the diffuser are preferably connected in series. It is preferred that the nozzle, the mixing chamber and the diffuser are joined together to form a tube. The feed device preferably opens with its feed opening into the mixing chamber, so that when the suspension jet enters the mixing chamber, the powder can be introduced from the feed device through the feed opening into the suspension jet. In this case, it is preferable for the feed opening of the feed device to be arranged outside the suspension jet in the mixing chamber.

Die Mischkammer ist eingerichtet den Suspensionsstrahl mit dem Pulver zu verwirbeln. Hierzu weist die Mischklammer eine Blende oder eine Blende und ein Umlenkprofil auf, mit denen das Verwirbeln des Suspensionsstrahls mit dem Pulver bewerkstelligbar ist. Außerdem hat bevorzugt der Diffusor einen Öffnungsgrad und eine Länge, so dass die Suspension in dem Diffusor ablösefrei beruhigbar ist, wodurch sich in der Suspension die Agglomerate bilden.The mixing chamber is set up to fluidize the suspension jet with the powder. For this purpose, the mixing bracket has a diaphragm or a diaphragm and a deflection profile with which the swirling of the suspension jet with the powder can be accomplished. In addition, the diffuser preferably has an opening degree and a length such that the suspension in the diffuser can be relieved free of charge, as a result of which the agglomerates form in the suspension.

Mit der erfindungsgemäßen Mischeinrichtung ist beim Mischen von dem Pulver in die Suspension ein gleichmäßiges Eintragen der Mischenergie in die Suspension ermöglicht, wodurch eine intensive Kontaktierung des Pulvers mit den Partikeln erreicht ist. Dadurch können die Partikel aufgrund der Agglomerierungswirkung des Pulvers die Agglomerate effektiv bilden. Die erfindungsgemäße Mischeinrichtung funktioniert besonders vorteilhaft, wenn die Suspension aus Mikroorganismen und Wasser gebildet ist sowie das Pulver Magnetitpulver ist. Die Suspension mit den Mikroorganismen wird als ein Treibmedium in die Mischeinrichtung gepumpt, wobei in der Düse die Suspension beschleunigt wird. Dadurch wird von der Düse ein Treibstrahl gebildet, dem das Magnetitpulver entweder in der Gasphase oder in der Flüssigphase zugemischt wird. In der Mischkammer werden die Mikroorganismen und die Magnetpartikel durch hohe Scherkräfte und Turbulenzen homogen vermischt. Im stromab der Mischkammer angeordneten Diffusor wird die Geschwindigkeit der Suspension zum Teil in Druck umgewandelt. In dem Diffusor nehmen die Scherkräfte und die Turbulenzen ab und es kann in dem Diffusor zur gewünschten Bildung von Mikroorganismen-Magnetit-Agglomeraten kommen.With the mixing device according to the invention, a uniform introduction of the mixing energy into the suspension is made possible during the mixing of the powder into the suspension, whereby an intensive contacting of the powder with the particles is achieved. This allows the particles to effectively form the agglomerates due to the agglomeration effect of the powder. The mixing device according to the invention works particularly advantageously when the suspension is formed from microorganisms and water, and the powder is magnetite powder. The suspension containing the microorganisms is pumped as a propellant into the mixing device, whereby the suspension is accelerated in the nozzle. As a result of the nozzle, a propulsion jet is formed, the magnetite powder either in the Gas phase or mixed in the liquid phase. In the mixing chamber, the microorganisms and the magnetic particles are homogeneously mixed by high shear forces and turbulences. In the downstream of the mixing chamber arranged diffuser, the velocity of the suspension is partly converted into pressure. In the diffuser, the shear forces and turbulence decrease and the desired formation of microorganism-magnetite agglomerates may occur in the diffuser.

Ferner ist durch die rohrartige Anordnung der Düse, der Mischkammer und des Diffusors eine quasi mehrstufige Ausgestaltung der Mischeinrichtung geschaffen, wobei die Mischeinrichtung von einer kontinuierlichen Suspensionsströmung durchströmbar ist. Somit wird mit der erfindungsgemäßen Mischeinrichtung das Magnetitpulver in einem kontinuierlichen Prozess der Mikroorganismussuspension beigemischt, wodurch die Ausbildung von Agglomeraten gefördert ist. Die erfindungsgemäße Ausgestaltung der Mischeinrichtung, bevorzugt mit der Blende und dem Umlenkprofil, ermöglicht eine gute Vermischung der Mikroorganismussuspension und der Magnetitpartikel. Hierbei erfolgt der Energieeintrag in die Suspension gleichmäßig, wodurch die erforderliche Energie zum Erreichen eines vorherbestimmten Durchmischungsgrads der Suspension minimiert ist. Somit kann vorteilhaft im Vergleich zu herkömmlichen Mischeinrichtungen, bei denen der Energieeintrag in eine Suspension ungleichmäßig ist, Energie eingespart werden. Außerdem ist es vorteilhaft, wenn die Mischeinrichtung in eine Anlage zur Erzeugung von Mikroorganismen eingesetzt ist, dass die Suspension mit ihren darin ausgebildeten Agglomeraten kontinuierlich erzeugt werden kann.Furthermore, a quasi multi-stage design of the mixing device is created by the tubular arrangement of the nozzle, the mixing chamber and the diffuser, wherein the mixing device can be flowed through by a continuous suspension flow. Thus, the magnetite powder is admixed in a continuous process of the microorganism suspension with the mixing device according to the invention, whereby the formation of agglomerates is promoted. The inventive design of the mixing device, preferably with the diaphragm and the deflection, allows a good mixing of the microorganism suspension and the magnetite particles. In this case, the energy input into the suspension is uniform, whereby the energy required to achieve a predetermined degree of mixing of the suspension is minimized. Thus, in comparison to conventional mixing devices in which the energy input into a suspension is uneven, it is possible to save energy. Moreover, it is advantageous if the mixing device is used in a plant for the production of microorganisms, that the suspension can be continuously produced with their agglomerates formed therein.

Im Folgenden wird eine bevorzugte Ausführungsform der erfindungsgemäßen Mischeinrichtung anhand der beigefügten schematischen Zeichnung erläutert. Es zeigt die Figur einen Längsschnitt dieser Ausführungsform der Mischeinrichtung.In the following, a preferred embodiment of the mixing device according to the invention will be explained with reference to the accompanying schematic drawing. The figure shows a longitudinal section of this embodiment of the mixing device.

Wie es aus der Figur ersichtlich ist, ist eine Mischeinrichtung 1 langgestreckt und rohrförmig ausgebildet, wobei die Mischeinrichtung 1 in der Figur gesehen links einen Eintrittsquerschnitt 2 und rechts einen Austrittsquerschnitt 3 hat. Zum Mischen einer Suspension ist die Suspension durch den Eintrittsquerschnitt 2 in die Mischeinrichtung 1 beispielsweise mit einer Pumpe zu fördern. An dem Eintrittsquerschnitt 2 weist die Mischeinrichtung 1 eine Düse 4 auf, deren Eintritt mit dem Eintrittsquerschnitt 2 zusammenfällt. In Strömungsrichtung verjüngt sich der Strömungsquerschnitt der Düse 4 bis zu deren Düsenaustrittsquerschnitt 5, wobei beim Durchströmen der Düse 4 die Strömung der Suspension beschleunigt wird. Somit ist die Länge der Düse 4 eine Beschleunigungsstrecke 6, die derart lang gewählt ist, dass an dem Düsenaustrittsquerschnitt 5 ein Strahl der Suspension ausgebildet ist.As can be seen from the figure, a mixing device 1 is elongated and tubular, wherein the Mixing device 1 seen in the figure left an inlet cross-section 2 and right has an outlet cross section 3. For mixing a suspension, the suspension is to be conveyed through the inlet cross-section 2 into the mixing device 1, for example with a pump. At the inlet cross section 2, the mixing device 1 has a nozzle 4, the inlet of which coincides with the inlet cross section 2. In the flow direction, the flow cross-section of the nozzle 4 tapers to its nozzle outlet cross-section 5, wherein the flow of the suspension is accelerated as it flows through the nozzle 4. Thus, the length of the nozzle 4 is an acceleration section 6, which is chosen so long that at the nozzle outlet cross section 5, a jet of the suspension is formed.

Stromab der Düse 4 weist die Mischeinrichtung 1 eine Mischkammer 7 auf, die rohrförmig ausgebildet ist und einen Mischkammereintrittsquerschnitt 8, der mit dem Düsenaustrittsquerschnitt 5 zusammenfällt, und einen Mischkammeraustrittsquerschnitt 9 aufweist. Zwischen dem Mischerkammeintrittsquerschnitt 8 und dem Mischkammeraustrittsquerschnitt 9 erstreckt sich eine Mischstrecke 10, die derart lang gewählt ist, dass eine gute Durchmischung der Suspension in der Mischkammer 7 bewerkstelligbar ist.Downstream of the nozzle 4, the mixing device 1 has a mixing chamber 7, which is of tubular design and has a mixing chamber inlet cross section 8, which coincides with the nozzle outlet cross section 5, and a mixing chamber outlet cross section 9. Between the mixer inlet cross-section 8 and the mixing chamber outlet cross-section 9 extends a mixing section 10, which is selected to be long enough for good mixing of the suspension in the mixing chamber 7 to be accomplished.

Am Mischkammereintritt 8 ist eine Verwirbelungskammer 11 der Mischkammer 7 ausgebildet, wobei die Verwirbelungskammer 11 einen größeren Querschnitt hat als der Mischkammereintrittsquerschnitt 8 ist. Dadurch ist der durch den Düsenaustrittsquerschnitt 5 und den Mischkammereintrittsquerschnitt 8 eintretende Suspensionsstrahl 20 in der Verwirbelungskammer 11 als ein freier Fluidstrahl ausgebildet.At the mixing chamber inlet 8, a swirling chamber 11 of the mixing chamber 7 is formed, the swirling chamber 11 having a larger cross section than the mixing chamber inlet cross section 8. As a result, the suspension jet 20 entering through the nozzle outlet cross section 5 and the mixing chamber inlet cross section 8 is formed in the swirling chamber 11 as a free fluid jet.

An der Verwirbelungskammer 11 ist eine Zuführöffnung 12 angebracht, an der wiederum eine Zuführleitung 13 befestigt ist, durch die ein Pulver 21 in die Verwirbelungskammer 11 förderbar ist. Das Pulver 21 ist Magnetitpulver und ist mit jeder denkbaren Fördereinrichtung in die Verwirbelungskammer 11 via die Zuführöffnung 12 förderbar. In der Verwirbelungskammer 11 gelangen Partikel des Pulvers 21 in die Randbereiche des Suspensionsstrahls 20 und werden von diesem mitgerissen. Dadurch erfolgt eine gleichmäßige Verteilung des Pulvers 21 in dem Suspensionsstrahl 20.At the swirl chamber 11, a feed opening 12 is attached to which in turn a supply line 13 is fixed, through which a powder 21 in the swirl chamber 11 is conveyed. The powder 21 is magnetite powder and is with any conceivable conveyor into the swirling chamber 11 via the feed opening 12 can be conveyed. In the swirling chamber 11, particles of the powder 21 reach the edge regions of the suspension jet 20 and are entrained by it. This results in a uniform distribution of the powder 21 in the suspension jet 20th

Stromab der Zuführöffnung 12 weist die Mischkammer 7 eine Blende 14 auf, durch die die Suspension unter starker Verwirbelung strömt. Ferner weist die Mischkammer 7 stromab der Blende 14 Umlenkprofile 15 auf, die erhaben an der Innenwand der Mischkammer 7 angeordnet sind und dadurch zu einer weiteren Verwirbelung der Suspensionsströmung führen. Denkbar ist die Mischkammer 7 auch ohne der Blende 14 und/oder der Umlenkprofile 15.Downstream of the feed opening 12, the mixing chamber 7 has a diaphragm 14, through which the suspension flows under high turbulence. Further, the mixing chamber 7 downstream of the aperture 14 deflection profiles 15, which are arranged elevated on the inner wall of the mixing chamber 7 and thereby lead to a further turbulence of the suspension flow. Conceivable is the mixing chamber 7 without the aperture 14 and / or the deflection profiles 15th

Dadurch, dass die Verwirbelungskammer 11 einen größeren Querschnitt hat als der Mischkammereintrittsquerschnitt 8 ist, liegt der Bereich außerhalb des Mischkammereintrittquerschnitts 8 in dessen Windschatten. In diesem Bereich wird durch die Zuführöffnung 12 das Pulver 21 eingebracht, das von dem Suspensionsstrahl 20 mitgerissen wird. Das anschließende Durchströmen der Blende 14 und das Passieren der Umlenkprofile 15 führt zu einer derart starken zusätzlichen Durchmischung der Suspensionsströmung in der Mischkammer 7, dass eine noch intensivere Kontaktierung der Mikroorganismen mit dem Magnetitpulver erreicht wird. Dadurch findet in der Mischkammer 7 eine Anhaftung des Magnetitpulvers an die Mikroorganismen statt, wodurch die Mikroorganismen ihrerseits zur Bildung von Agglomeraten 22 neigen. Durch die Anlagerung des Magnetitpulvers 21 an die Mikroorganismen können sich die Mikroorganismen via das Magnetitpulver magnetisch anziehen. Die dadurch erwirkte lokale Anhäufung der Mikroorganismen führt zu der Bildung der Agglomerate 22.Due to the fact that the swirling chamber 11 has a larger cross section than the mixing chamber inlet cross section 8, the area outside the mixing chamber inlet cross section 8 lies in its slipstream. In this area, the powder 21 is introduced through the feed opening 12, which is entrained by the suspension jet 20. The subsequent flow through the aperture 14 and the passage of the deflection profiles 15 leads to such a strong additional mixing of the suspension flow in the mixing chamber 7, that an even more intensive contacting of the microorganisms with the magnetite powder is achieved. As a result, an adhesion of the magnetite powder to the microorganisms takes place in the mixing chamber 7, as a result of which the microorganisms themselves tend to form agglomerates 22. By attaching the magnetite powder 21 to the microorganisms, the microorganisms can magnetically attract via the magnetite powder. The resulting local accumulation of the microorganisms leads to the formation of the agglomerates 22.

Stromab der Mischkammer 7 ist am Mischkammeraustrittsquerschnitt 9 ein Diffusor 16 angeordnet, dessen Diffusoreintrittsquerschnitt 17 mit dem Mischkammeraustrittsquerschnitt 9 zusammenfällt. Der Diffusor 16 erstreckt sich in Strömungsrichtung bis zu seinem Diffusoraustrittsquerschnitt 18 unter Überwinden einer Beruhigungsstrecke 19, wobei der Diffusor 16 in seinem Querschnitt über die Beruhigungsstrecke 19 sich aufweitet. Der Öffnungsgrad des Diffusors 16 und die Länge der Beruhigungsstrecke 19 sind derart gewählt, dass die Suspensionsströmung in dem Diffusor 16 derart beruhigt wird, dass die Bildung der Agglomerate 22 in ausreichendem Maße stattfindet. Am Diffusoraustrittsquerschnitt 18, der mit dem Austrittsquerschnitt 3 der Mischeinrichtung 1 zusammenfällt, strömt die Suspension mit den Agglomeraten 22 ab.Downstream of the mixing chamber 7, a diffuser 16 is arranged at the mixing chamber outlet cross section 9, whose diffuser inlet cross section 17 coincides with the mixing chamber outlet cross section 9. The diffuser 16 extends in Flow direction up to its diffuser outlet cross section 18 while overcoming a calming section 19, wherein the diffuser 16 widens in its cross section on the calming section 19. The degree of opening of the diffuser 16 and the length of the settling section 19 are chosen so that the suspension flow in the diffuser 16 is so calmed that the formation of the agglomerates 22 takes place sufficiently. At the diffuser outlet cross-section 18, which coincides with the outlet cross-section 3 of the mixing device 1, the suspension with the agglomerates 22 flows off.

Die Düse 4, die Mischkammer 7 und der Diffusor 16 sind in Reihe hintereinander angeordnet, wobei die Suspension die Düse 4, die Mischkammer 7 und den Diffusor 16 gerade durchströmt. Somit ist die Mischeinrichtung 1 rohrförmig ausgebildet, wobei es denkbar ist, dass die Düse 4, die Mischkammer 7 und der Diffusor 16 einstückig aneinandergefügt sind. Am Eintrittsquerschnitt 2 der Mischeinrichtung 1 strömt die Suspension mit mehr oder wenig fein verteilten Mikroorganismen in die Mischeinrichtung 1 ein und am Austrittsquerschnitt 3 strömt die Suspension mit agglomerierten Mikroorganismen ab.The nozzle 4, the mixing chamber 7 and the diffuser 16 are arranged in series one behind the other, wherein the suspension, the nozzle 4, the mixing chamber 7 and the diffuser 16 is flowing straight through. Thus, the mixing device 1 is tubular, wherein it is conceivable that the nozzle 4, the mixing chamber 7 and the diffuser 16 are joined together in one piece. At the inlet cross section 2 of the mixing device 1, the suspension flows with more or less finely distributed microorganisms in the mixing device 1 and at the outlet cross-section 3, the suspension flows with agglomerated microorganisms.

Ein Ernten der Mikroorganismen aus der Suspension ist besonders vorteilhaft mit einem magnetischen Trennverfahren durchführbar. Dadurch, dass die Mikroorganismen als die Agglomerate 22 vorliegen und dazu noch magnetisch sind, sind die Mikroorganismen in ihren Agglomeraten 22 einfach und effektiv aus der Suspension mit einem Magnet abtrennbar. Denkbar ist es, dass die Mischeinrichtung 1 in einer Zuführeinheit einer magnetischen Trenneinrichtung eingebaut ist. Hierbei kann die Suspension via die Mischeinrichtung 1 der magnetischen Trenneinrichtung zugeführt werden, wobei die Agglomerate 22 bei hoher Ausbeute und geringem Energieaufwand aus der Suspension gewonnen werden können. Ferner ermöglicht der Einsatz der Mischeinrichtung 21 eine kontinuierliche Zufuhr der Suspension zu der magnetischen Trenneinrichtung, so dass die magnetische Trenneinrichtung ebenfalls kontinuierlich betreibbar ist.Harvesting of the microorganisms from the suspension can be carried out particularly advantageously with a magnetic separation method. Because the microorganisms are present as the agglomerates 22 and are still magnetic, the microorganisms in their agglomerates 22 are easily and effectively separable from the suspension with a magnet. It is conceivable that the mixing device 1 is installed in a feed unit of a magnetic separator. Here, the suspension can be fed via the mixing device 1 of the magnetic separator, wherein the agglomerates 22 can be obtained from the suspension with high yield and low energy consumption. Furthermore, the use of the mixing device 21 allows a continuous supply of the suspension to the magnetic separation device, so that the magnetic separation device is also continuously operable.

Dadurch, dass die Mischeinrichtung mit der Düse 4, der Mischkammer 7 und dem Diffusor 16 quasi mehrstufig ausgebildet ist, findet in der Mischeinrichtung 1 eine gute Vermischung der Suspension statt, wodurch das Magnetitpulver einen intensiven Kontakt mit den Mikroorganismen hat. Der Energieeintrag beim Durchmischen in die Suspension ist gleichmäßig, wodurch ein hoher Vermischungsgrad der Suspension bei einem geringen Energieeinsatz ermöglicht ist. Beim Betreiben der Mischeinrichtung 1 ist als einziger Energieverbraucher die Pumpe zum Fördern der Suspension zu dem Eintrittsquerschnitt 2 der Mischeinrichtung 1 vorgesehen. Etwaige Rührgeräte, die herkömmlich zum Vermischen einer Suspension mit einem Pulver bekannt sind und Energie verbrauchen, brauchen bei der Mischeinrichtung 1 nicht vorgesehen zu werden. In der Mischkammer 7 herrschen große Geschwindigkeitsgradienten in der Suspensionsströmung, wodurch die Suspension stark verwirbelt und turbulent ist. Somit herrschen in der Suspension in der Mischkammer 7 hohe Scherkräfte, die den intensiven Kontakt des Magnetitpulvers mit den Mikroorganismen unterstützen.Characterized in that the mixing device with the nozzle 4, the mixing chamber 7 and the diffuser 16 is formed quasi multi-stage, takes place in the mixing device 1, a good mixing of the suspension, whereby the magnetite powder has an intensive contact with the microorganisms. The energy input when mixed into the suspension is uniform, which allows a high degree of mixing of the suspension with a low energy input. When operating the mixing device 1, the pump for conveying the suspension to the inlet cross-section 2 of the mixing device 1 is provided as the only energy consumer. Any stirrers that are conventionally known for mixing a suspension with a powder and consume energy need not be provided in the mixing device 1. In the mixing chamber 7 there are large velocity gradients in the suspension flow, as a result of which the suspension is strongly swirled and turbulent. Thus prevail in the suspension in the mixing chamber 7 high shear forces that support the intensive contact of the magnetite with the microorganisms.

Über die Zuführöffnung 12 ist der Massenstrom an dem Pulver 21, der in die Mischkammer 7 eingebracht wird, dosierbar. Der Pulvermassenstrom ist auf den Anteil der Mikroorganismen in der Suspension einstellbar, so dass möglichst viel Pulver 21 an den Mikroorganismen anhaften kann und möglichst wenig Pulver 21 in der Suspension wirkungslos mitströmt. Dadurch ist es ermöglicht, dass bei einer eventuellen Konzentrationsschwankung der Mikroorganismen in der Suspension der Pulvermassenstrom entsprechend nachjustiert werden kann.Via the feed opening 12, the mass flow of the powder 21, which is introduced into the mixing chamber 7, metered. The powder mass flow is adjustable to the proportion of microorganisms in the suspension, so that as much powder 21 can adhere to the microorganisms and flows as little as possible powder 21 in suspension ineffective. This makes it possible that, in the event of a possible concentration fluctuation of the microorganisms in the suspension, the powder mass flow can be readjusted accordingly.

In einer besonders vorteilhaften Ausführung wird Magnetit oder ein vergleichbares Material eingesetzt, dessen Oberfläche dergestalt chemisch funktionalisiert ist, dass die Magnetitpartikel eine besonders intensive Bindung mit den Zelloberflächen der Algen bzw. der Mikroorganismen eingehen.In a particularly advantageous embodiment, magnetite or a comparable material is used, the surface of which is chemically functionalized in such a way that the magnetite particles undergo particularly intense binding with the cell surfaces of the algae or of the microorganisms.

Claims (8)

  1. Mixing device for mixing agglomerating powder (21) into a suspension formed by a carrier fluid and particles suspended therein, with a nozzle (4) for creating a suspension jet (20), a feed device (12, 13) for introducing the powder (21) into the suspension stream (20), a mixing chamber (7), which is configured for mixing the particles with the powder (21) so that the powder (21) adheres to the particles, and a diffuser (16) for stabilizing the suspension such that the particles to which the powder (21) attaches form agglomerates (22) in the suspension, characterised in that the mixing chamber (7), in an area in which its cross-section narrows in the direction of flow, has an aperture (14) or or an aperture (14) and a deflection profile (15), with which a swirling of the suspension jet (20) with the powder (21) is able to be brought about.
  2. Mixing device according to claim 1, wherein the powder (21) is magnetite powder.
  3. Mixing device according to claim 1 or 2, wherein the particles are algae and/or cyanobacteria and the carrier fluid is a nutrient solution for the algae and/or the cyanobacteria.
  4. Mixing device according to one of claims 1 to 3, wherein the nozzle (4), the mixing chamber (7) and the diffuser (16) are connected in series.
  5. Mixing device according to claim 4, wherein the nozzle (4), the mixing chamber (7) and the diffuser (16) are combined to form a tube.
  6. Mixing device according to one of claims 1 to 5, wherein the feed device (12, 13) opens out with its feed opening (12) into the mixing chamber (7), so that, on entry of the suspension jet (20) into the mixing chamber (7), the powder (21) is able to be introduced by the feed device (12, 13) through the feed opening (12) into the suspension jet (20).
  7. Mixing device according to claim 6, wherein the feed opening (12) of the feed device (13) is disposed outside the suspension jet (21) in the mixing chamber (7).
  8. Mixing device according to one of claims 1 to 7, wherein the diffuser (16) has a degree of opening and a length (19) such that the suspension is able to be stabilized without separation in the diffuser (16), through which the agglomerates (22) form in the suspension.
EP12751481.8A 2011-09-16 2012-08-16 Mixing device for mixing agglomerating powder in a suspension Active EP2734293B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011082862A DE102011082862A1 (en) 2011-09-16 2011-09-16 Mixing device for mixing agglomerating powder in a suspension
PCT/EP2012/065990 WO2013037592A1 (en) 2011-09-16 2012-08-16 Mixing device for mixing agglomerating powder in a suspension

Publications (2)

Publication Number Publication Date
EP2734293A1 EP2734293A1 (en) 2014-05-28
EP2734293B1 true EP2734293B1 (en) 2016-06-22

Family

ID=46754968

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12751481.8A Active EP2734293B1 (en) 2011-09-16 2012-08-16 Mixing device for mixing agglomerating powder in a suspension

Country Status (10)

Country Link
US (1) US20140369159A1 (en)
EP (1) EP2734293B1 (en)
CN (1) CN103945926B (en)
AU (1) AU2012307687B2 (en)
BR (1) BR112014006123B1 (en)
CA (1) CA2848769A1 (en)
CL (1) CL2014000629A1 (en)
DE (1) DE102011082862A1 (en)
RU (1) RU2564331C1 (en)
WO (1) WO2013037592A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103846026B (en) * 2014-02-10 2015-10-21 西安交通大学 The venturi mixer of adjustable contraction is contained in a kind of throat
CN104110233A (en) * 2014-07-25 2014-10-22 中国石油天然气股份有限公司 Profile control and displacement system and chemical preparation device for profile control and displacement
CN104399378A (en) * 2014-11-10 2015-03-11 华玉叶 Method for dispersing conductive powder and monomers
KR101647107B1 (en) * 2015-01-08 2016-08-11 한국원자력연구원 Apparatus of controlling the bubble size and contents of bubble, and that method
CN106492667B (en) * 2016-12-23 2022-09-06 中国计量大学 Multistage dispersion method and device for dry powder micro-nano particles
CN106925175B (en) * 2017-03-29 2019-10-15 南京辉锐光电科技有限公司 A kind of powder mixing device and method
WO2018177518A1 (en) 2017-03-29 2018-10-04 Loesche Gmbh Magnetic separator
US20190168175A1 (en) * 2017-12-06 2019-06-06 Larry Baxter Solids-Producing Siphoning Exchanger
PT110818A (en) * 2018-07-04 2020-01-06 Nanospectral Lda CAVITATION PROCESS FOR PREPARING FUEL EMULSIONS WITH WATER AND REACTOR TO PERFORM THE PROCESS.
FI20195196A1 (en) * 2019-03-15 2020-09-16 Hilla Consulting Oy A mixing and dissolving tube
CN111603954B (en) * 2020-06-04 2022-07-19 大庆市裕丰生物科技有限公司 Feed granulator raw and other materials humidification stirring subassembly

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB802711A (en) * 1955-08-25 1958-10-08 Paul Menzen Improved device for introducing finely divided solids into liquid metal
US4308138A (en) * 1978-07-10 1981-12-29 Woltman Robert B Treating means for bodies of water
CA2050624C (en) * 1990-09-06 1996-06-04 Vladimir Vladimirowitsch Fissenko Method and device for acting upon fluids by means of a shock wave
RU2033854C1 (en) * 1992-02-12 1995-04-30 Владимир Викторович Головченко Device for obtaining dosed compounds
EP0808292B1 (en) * 1995-02-23 2006-06-28 Ecolab, Inc. Apparatus for dispensing a viscous use solution and its use in dispensing
US5863128A (en) * 1997-12-04 1999-01-26 Mazzei; Angelo L. Mixer-injectors with twisting and straightening vanes
JP2000210599A (en) * 1999-01-26 2000-08-02 Kuroda Precision Ind Ltd Gas-liquid nixing sprayer
US7905653B2 (en) * 2001-07-31 2011-03-15 Mega Fluid Systems, Inc. Method and apparatus for blending process materials
US7311270B2 (en) * 2003-12-23 2007-12-25 M-I L.L.C. Device and methodology for improved mixing of liquids and solids
DE202007018723U1 (en) * 2007-10-25 2009-05-14 Siemens Aktiengesellschaft Air flow carburettor with cooling screen and inner water jacket
DE102009030712A1 (en) 2009-06-26 2010-12-30 Friedrich-Alexander-Universität Erlangen-Nürnberg Method for removing CO2 from a smoke or exhaust of a combustion process
US7784999B1 (en) * 2009-07-01 2010-08-31 Vortex Systems (International) Ci Eductor apparatus with lobes for optimizing flow patterns
CN201692784U (en) * 2009-11-19 2011-01-05 史杨 Hydrokinetic ultrasonic jet homogenizer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CL2014000629A1 (en) 2014-12-05
US20140369159A1 (en) 2014-12-18
BR112014006123A8 (en) 2018-04-03
BR112014006123B1 (en) 2020-11-17
AU2012307687A1 (en) 2014-03-27
EP2734293A1 (en) 2014-05-28
CN103945926A (en) 2014-07-23
CA2848769A1 (en) 2013-03-21
BR112014006123A2 (en) 2017-04-11
WO2013037592A1 (en) 2013-03-21
RU2564331C1 (en) 2015-09-27
CN103945926B (en) 2016-08-24
DE102011082862A1 (en) 2013-03-21
AU2012307687B2 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
EP2734293B1 (en) Mixing device for mixing agglomerating powder in a suspension
EP1085939B1 (en) Method and device for selective catalytic reduction of nitrogen oxides in a gaseous medium containing oxygen
DE102010021438B4 (en) exhaust aftertreatment device
DE102010012613A1 (en) Apparatus and method for the treatment of solid-liquid mixtures
DE1906895C3 (en) Device for direct heating of a fluidized bed reactor
EP1771385B1 (en) Hydrodynamic homogenization
EP3239119A1 (en) Method for obtaining organic fertilizer with humic character
DE102011083402A1 (en) Mixing device for use in bioreactor for mixing carbon dioxide into suspension formed by nutrient solution for cultivation of e.g. algae, has diffuser for appeasing suspension such that gas in gas bubbles dissolves in suspension
DE102012209787B4 (en) Pump system with screw conveyor and pumping method
EP3055071B1 (en) Method for producing a dispersed fluid mixture
EP2686272B1 (en) Method for the continuous production of precipitated calcium carbonate
WO2005082786A1 (en) Method and device for treating water that is contaminated with pollutants by cavitation
CN204490528U (en) A kind of continuous acidolysis feeding unit
DE202010011968U1 (en) Device for continuous drying and functionalization of digestate
DE102006062151A1 (en) Process and plant for the heat treatment of particulate solids, in particular for the production of metal oxide from metal hydroxide
EP1670723B1 (en) Method for biologically purifying waste water
DE102017203745A1 (en) Mixing device for introducing a liquid into an exhaust gas stream and internal combustion engine with such a mixing device
EP3585513B1 (en) Method and device for the hydrolysis of a compound
EP1884279B1 (en) Method and device for feeding a gas into a fluid at supersonic velocity, and use of the method
DD244076A1 (en) PLASMACHEMICAL REACTOR FOR DISPERSE MATERIALS
AT511202B1 (en) METHOD AND DEVICE FOR GAS-GAS HEATING
DE1250786B (en)
DE102010023631A1 (en) Static mixer and mixing method
DE102006007634A1 (en) Device for processing the components of a stream comprises a housing with a pre-chamber which has a cross-section running perpendicular to its central axis in the region surrounding a turbulence-producing element
EP0489414A1 (en) Process and apparatus for raising the gas concentration in water

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20140224

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150401

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160204

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 807338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007466

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160922

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160923

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161024

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007466

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160922

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

26N No opposition filed

Effective date: 20170323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160922

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160816

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 807338

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170816

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012007466

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: PRIMETALS TECHNOLOGIES GERMANY GMBH, 91052 ERLANGEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012007466

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B01F0003120000

Ipc: B01F0023500000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20230821

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230821

Year of fee payment: 12