EP2729744B1 - Verfahren zum ausgleich von schmiermittelkonzentrationen in einem mehrstufiger verdichtungseinehit eines wärmeaustauschsystems und wärmeaustauschsystem zur umsetzung dieses verfahrens - Google Patents

Verfahren zum ausgleich von schmiermittelkonzentrationen in einem mehrstufiger verdichtungseinehit eines wärmeaustauschsystems und wärmeaustauschsystem zur umsetzung dieses verfahrens Download PDF

Info

Publication number
EP2729744B1
EP2729744B1 EP12738564.9A EP12738564A EP2729744B1 EP 2729744 B1 EP2729744 B1 EP 2729744B1 EP 12738564 A EP12738564 A EP 12738564A EP 2729744 B1 EP2729744 B1 EP 2729744B1
Authority
EP
European Patent Office
Prior art keywords
compressor
heat
crankcase
heat exchanger
lubricant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12738564.9A
Other languages
English (en)
French (fr)
Other versions
EP2729744A1 (de
Inventor
François Courtot
Bernard Horber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electricite de France SA
Original Assignee
Electricite de France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricite de France SA filed Critical Electricite de France SA
Publication of EP2729744A1 publication Critical patent/EP2729744A1/de
Application granted granted Critical
Publication of EP2729744B1 publication Critical patent/EP2729744B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/10Compression machines, plants or systems with non-reversible cycle with multi-stage compression
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/06Several compression cycles arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/16Lubrication

Definitions

  • the invention relates to a method for balancing the lubricant levels in a multi-stage compression unit of a heat exchange system and to a heat exchange system implementing such a method.
  • the lubricant usually mineral or synthetic oil
  • the lubricant is generally not miscible in the heat transfer fluid but it can be driven and transported in the form of droplets by the heat transfer fluid. The risk is then to accumulate the lubricant in a part of the circuit until one and / or the other of the first and second compressors no longer contains enough lubricant and deteriorates rapidly.
  • the balancing of the lubricant level between the compressors is an important problem.
  • a known way to achieve lubricant balancing is to accumulate the lubricant in the high pressure part of the circuit, usually by installing a lubricant separator coupled to a reservoir. of lubricant on a common discharge line of the compressors.
  • Each compressor is equipped with a lubricant level detection means and a lubricant injection means connected to the lubricant reservoir via a pilot valve. It is thus possible to regulate the level of lubricant in each compressor.
  • a multi-stage circuit comprising a plurality of series compression stages, for example a low pressure compression stage comprising the first compressor (s) and a high pressure compression stage comprising the second compressor (s)
  • the risk is to accumulate lubricant. in the compressors of one of the compression stages at the expense of the compressors of the other stages of compression. While it is relatively easy to transport the lubricant from the high pressure compression stage to the low pressure compression stage by using the pressure difference, the reverse poses more difficulties.
  • the document EP 2,221,559 describes a heat exchange system of the type defined above in which the balancing of the low pressure compressor to the compressor high pressure occurs at the start of the heat exchange system and the balancing of the high pressure compressor to the low pressure compressor is effected at the start of the heat exchange system.
  • the invention improves the situation.
  • the invention takes advantage of the fact that when there is a large heating requirement, determined for example directly or indirectly from an outside temperature of the outside air, a compression ratio of the unit of compression or any other quantity, where appropriate with respect to a threshold value, the heat exchange system, acting as a heat pump for taking heat from the outside air and transferring it to the internal environment, passes necessarily by deicing cycles.
  • the heat exchange system may further comprise a single lubricant separator placed at the discharge of the second compressor and a lubricant return line between the lubricant separator and the casing of the second compressor.
  • the balancing method can then provide for separating the lubricant from the heat transfer fluid, collecting the lubricant in the lubricant separator and returning the collected lubricant to the casing of the second compressor.
  • the single lubricant separator placed at the discharge of the second compressor, high pressure slows the accumulation of lubricant that may occur in multi-stage operation in the casing of the first compressor, low pressure.
  • the balancing process can then take advantage of the defrost cycles, even several hours apart, to bring the lubricant from the low pressure compressor back to the high pressure compressor.
  • the control unit can be adapted to, when there is a need for moderate indoor heating, to control a single-stage operation by connecting the compression unit between the outlet of the first heat exchanger and the inlet of the second heat exchanger, connecting the expansion unit between the outlet of the second heat exchanger and the inlet of the first heat exchanger, stopping the first compressor and operating the second compressor.
  • the balancing method can then provide, during the single-stage operation, to transfer excess lubricant from the casing of the first compressor to the casing of the second compressor by the balancing line.
  • Lubricant balancing management is further improved by taking advantage of the fact that, when there is a need for moderate heating, determined in particular in the same way as the need for substantial heating, the heat exchange system acting as a heat pump operates in single-stage.
  • This method of balancing oil is particularly suitable for a heat pump for the building, which can operate alternately multi-stage and single-stage depending on the outside temperature and heating requirements.
  • the heat exchange system may comprise at least two first fixed capacity compressors connected in parallel, and a second compressor with variable capacity, the first compressors having different capacities, the balancing line comprising a pipe connecting the casings of the first compressors.
  • the balancing method can then provide to transfer the excess lubricant from the casing of the first compressor of lower capacity to the casing of the other first compressor.
  • the first valve may be a float valve and the second valve may be a valve.
  • the figures 1 and 2 represent a heat exchange system 1 respectively for cooling and heating an indoor environment, for example water, flowing in a space 2, such as a room of a dwelling, a technical room or other.
  • a space 2 such as a room of a dwelling, a technical room or other.
  • the internal environment could be other than water, including air.
  • the heat exchange system 1 allows either to heat the water by drawing heat from outside air located outside the space 2 (cold source) and transferring to the water (hot source) the heat taken ( figure 2 ), or to cool the water by taking heat (cold source) and transferring to the outside air (hot source) the heat taken ( figure 1 ).
  • the heat transfer fluid circuit comprises a multi-stage compression unit 20 and an expansion unit 10.
  • the compression unit 20 is bi-stepped and comprises a first compression stage 21 and a second compression stage 22 arranged in series.
  • the compression unit 20 could comprise more than two compression stages arranged in series.
  • the first compression stage or low pressure compression stage 21 comprises two first compressors or low-pressure compressors 23a, 23b connected in parallel.
  • Each of the low-pressure compressors 23a, 23b is, for example, with a fixed capacity, and in particular at a fixed speed.
  • the low-pressure compressors 23a, 23b respectively have different displacements.
  • the low-pressure compressor 23b, identified BP2 on the figure 3 has a higher capacity than that of the low pressure compressor 23a, identified BP1 on the figure 3 .
  • the low pressure compression stage 21 could comprise one or more two low pressure compressors 23 in parallel.
  • the second compression stage or high pressure compression stage 22 comprises a second compressor or high pressure compressor 24, identified HP on the figure 3 .
  • the high-pressure compressor 24 is, for example, variable capacity, including variable speed.
  • the high pressure compression stage 22 could comprise a plurality of high pressure compressors 24 in parallel.
  • Each of the low pressure compressors 23a, 23b and high pressure 24 has a suction inlet 25 and a discharge outlet 26.
  • the suction inlets 25 of the low pressure compressors 23a, 23b are connected to a same suction line 27 and the discharge outlets 26 of the low pressure compressors 23a, 23b are connected to the same discharge line 28.
  • the low pressure compressors 23a, 23b and high pressure 24 are arranged in series, that is to say that is, the delivery line 28 of the low-pressure compressors 23a, 23b is connected to the suction inlet 25 of the high-pressure compressor 24.
  • suction line 27 low pressure compressors 23a, 23b are connected to the output S of the first and second heat exchangers 15 which form the evaporator, and the discharge outlet 26 of the high pressure compressor 24 e It is connected to the inlet E of the first 5 and second 15 heat exchangers which forms the condenser.
  • the low pressure compressors 23a, 23b and high pressure 24 each comprise a housing 30 receiving lubricant, and in particular mineral or synthetic oil, which can be driven by the coolant to lubricate the low pressure compressors 23a, 23b and high pressure 24 and the other components of the coolant circuit.
  • the low pressure compressors 23a, 23b and high pressure 24 may be hermetic type, in which the oil is accumulated in the housing 30 at the suction pressure (typically scroll compressors or piston).
  • the housings 30 are provided with respective taps 31 located on their nominal oil levels.
  • the compression unit 20 comprises a branch line 11 provided a valve 12 connected in parallel with the low pressure compression stage 21, with an upstream end connected upstream of the suction line 27 and a downstream end connected downstream of the discharge line 28 of the low pressure compressors 23a , 23b.
  • the bypass line 11 bypasses the low pressure compression stage 21 to use only the high pressure compression stage 22 in the single-stage operation.
  • a bypass line 3 provided with a valve 4 may also be provided in parallel with the high pressure compression stage 22, with an upstream end connected upstream of the suction inlet 25 and a connected downstream end. downstream of the discharge outlet 26 of the high-pressure compressor 24.
  • This bypass line 3 has a role of protection against possible high pressures in the event of failure of the high-pressure compressor 24 while the low-pressure compressors 23a, 23b are in walk.
  • the heat exchange system used in a heat pump mode described below and according to the two-stage operation, operates according to an injection cycle with a subcooling exchanger 45 or economizer.
  • the subcooling exchanger 45 is connected to the first end 6 of the first heat exchanger 5 and to the second end 17 of the second heat exchanger 15.
  • the heat exchange system 1 further comprises a heat pipe.
  • injection 46 connecting the second end 17 of the second heat exchanger at the suction inlet 25 of the high-pressure compressor 24 through the subcooling exchanger 45.
  • An expander 47 is placed in the injection line 46 between the second heat exchanger 15 and the subcooling exchanger.
  • a liquid reservoir 48 may be provided. It is thus possible to cool the heat transfer fluid between the low pressure compression stage 21 and the high pressure compression stage 22 to limit the temperature at the discharge outlet 26 of the high pressure compression stage 22 and thereby achieve a higher condensing pressure.
  • the cooling is carried out here by taking condensed heat transfer fluid at the outlet of the condenser and re-injecting it between the delivery line 28 of the low pressure compression stage 21 and the suction inlet 25 of the compression stage. high pressure 22.
  • the invention is however not limited to a heat exchange system implementing an injection cycle with a subcooling exchanger and applies to a heat exchange system using for example an injection cycle total or a partial injection cycle, the heat exchange system being adapted accordingly.
  • the heat transfer fluid circuit also comprises a distribution circuit 40 for circulating the coolant from the compression unit 20 to the first heat exchanger 5 or from the compression unit 20 to the second heat exchanger 15 so to ensure the reversibility, or invertibility, of the heat exchange system 1.
  • the distribution circuit 40 comprises a compression loop 41 in which the low-pressure compressors 23a, 23b and high-pressure 24 are placed, and a four-way valve 42 connecting the compression loop 41 to the first 5 and second 15 heat exchangers. heat.
  • the four-way valve 42 is adapted to circulate the heat transfer fluid from one of the first 5 and second 15 heat exchangers and entering the compression loop 41 to the suction line 27 of the low-pressure compressors 23a, 23b, and for distributing the heat transfer fluid from the discharge outlet 26 of the high pressure compressor 24 to the other heat exchanger 5, 15.
  • the expansion unit 10 comprises an expansion valve connecting, via one or more pipes, the outlet S of that of the first 5 and second 15 heat exchangers. heat which forms the condenser and the inlet E of that of the first 5 and second 15 heat exchangers which forms the evaporator.
  • the heat exchange system 1 also comprises an air circuit 35 associated with the first heat exchanger 5 to achieve a heat exchange between the coolant and the outside air, and a water circuit 36 associated with the second heat exchanger 15 to achieve a heat exchange between the coolant and the water circulating inside the space 2.
  • the air circuit 35 may comprise pipes, not shown, connected to an air intake and an air outlet, and a fan 39 adapted to circulate the air between the air inlet and the air outlet through the first heat exchanger 5.
  • the water circuit 36 for example d a sanitary heating or floor heating installation may include pipes connected to a pumping system ensuring the circulation of water in the pipes.
  • the heat exchange system 1 can operate in an air conditioner mode ( figure 1 ) or in a heat pump mode ( figure 2 ).
  • a control of the heat exchange system 1 between the different modes is provided by a control unit connected to the coolant circuit.
  • the control unit comprises for example an electronic microprocessor to which a temperature sensor adapted to measure an outside temperature of the outside air is connected. Other sensors or measuring instruments of the control unit can be connected to the electronic microprocessor.
  • the control unit may also include a memory in which different data, and in particular a threshold temperature for the outside temperature, are stored.
  • the control of the heat exchange system 1 according to the air conditioner mode, the heat pump mode and the various operations described in the following description in connection with the heat pump mode can be performed depending on the need for cooling or heating of the inner environment.
  • the need for cooling or heating can be determined in any suitable manner.
  • an operator can choose the mode and operation by acting directly on an input interface of the control unit.
  • the control unit can determine the mode and operation of the heat exchange system 1 directly or indirectly from a measured quantity and a corresponding corresponding threshold value.
  • the control unit may for example comprise a thermostat measuring a temperature of the internal environment and determining the mode and operation of the heat exchange system 1 from a set temperature for the indoor environment.
  • the control unit can further determine the mode and operation of the heat exchange system 1 from the outside temperature, in particular by means of a water law stored in the memory of the control unit. . It can also be provided that the mode and operation of the heat exchange system is determined by a compression ratio obtained by making a ratio between a suction pressure of the compression unit 20 and a discharge pressure of the compressor. compression unit 20. The compression ratio is high when the outside temperature is low and, conversely, it is low when the outside temperature is high. The control unit can also qualify, or even quantify, the need for cooling or heating, to thus determine in particular if this need is important or moderate.
  • the second heat exchanger 15 forms the evaporator collecting heat from the interior and the first heat exchanger 5 forms the condenser transferring the heat to the outside air, so as to cool the internal environment.
  • the first heat exchanger 5 forms the evaporator which draws heat from the outside air and the second heat exchanger 15 forms the heat transfer condenser, thereby heating the interior medium.
  • control unit determines the existence of a heating requirement from the outside temperature and a threshold temperature.
  • the control unit commands the start of the high-pressure compressor 24 and the stopping of the low-pressure compressors 23a, 23b which are bypassed via the pipe 11, an opening of the valve 12 being controlled by the unit control.
  • the control unit controls the start-up of the low-pressure compressors 23a, 23b in series with the high-pressure compressor 24.
  • the control unit acts on the heat transfer fluid circuit so that a first portion of the coolant flows from the second end 17 (outlet) the second heat exchanger 15 (condenser) to the suction inlet 25 of the high pressure compressor 24 through the injection pipe 46, and a second portion of the heat transfer fluid from the second end 17 (outlet) of the second heat exchanger 15 (condenser) to the first end 6 (inlet) of the first heat exchanger 5 (evaporator).
  • frost is formed on the first heat exchanger 5 acting as an evaporator.
  • the control unit then periodically controls a defrost of the first heat exchanger 5.
  • the four-way valve 42 is controlled to reverse the cycle and connect the compression unit 20 between the outlet S, formed by the first end 16 of the second heat exchanger 15 and the inlet E formed by the second end 7 of the first heat exchanger 7, and by connecting the expansion unit 10 between the outlet S formed by the first end 6 of the first heat exchanger 5 and the inlet E formed by the second end 17 of the second heat exchanger 15.
  • the control unit controls the shutdown of the low pressure compressors 23a, 23b and the start of the high pressure compressor 24.
  • the heat exchange system 1 also comprises an oil balancing line 50 which connects the crankcases 30 of the crankcases. low pressure compressors 23a, 23b and high pressure 24 by connecting them at their connections 31 on their respective nominal oil levels.
  • the balancing line 50 is controlled by the control unit to allow the implementation of a balancing process described below in connection with the figure 4 .
  • the first valve 51 makes it possible to transfer the oil during two-stage operation of the casing 30 of the high-pressure compressor 24 to the casing 30 of the low-pressure compressor BP1 23a of smaller capacity.
  • the first valve 51 then has a direction passing from the housing 30 of the high pressure compressor 24 to the housing 30 of the low pressure compressor BP1 23a.
  • the first valve 51 is preferably a float type valve which maintains the nominal oil level in the casing 30 of the high pressure compressor 24 and transfers the excess oil to the low pressure compressor BP1 23a thanks to the pressure difference between housings 30.
  • the second valve 52 makes it possible to transfer the oil from the casing 30 of the low-pressure compressor BP1 23a of smaller capacity to the casing 30 of the high-pressure compressor 24 when only the high-pressure compressor 24 is running (in two-stage operation this second valve remains closed).
  • the second valve 52 then has a direction passing from the casing 30 of the LP1 low pressure compressor 23a to the casing 30 of the high pressure compressor 24, and a blocking direction from the casing 30 of the high pressure compressor 24 to the casing 30 of the LP1 low pressure compressor 23a.
  • the second valve 52 is preferably a valve type valve, allowing the passage of oil only in the direction of the housing 30 of the LP1 low pressure compressor 23a to the housing of the high pressure compressor 24. In fact, when only the high pressure compressor 24 is in operation, the pressure drop created on the suction line causes the casing 30 of the high pressure compressor 24 is at a pressure slightly lower than that of the casing 30 of the LP1 low pressure compressor 23a.
  • a single oil separator 54 is connected to the discharge outlet 26 of the high pressure compressor 24.
  • An oil return line 55 extends between the float valve of the oil separator 54 and a tapping on the housing 30 of the high-pressure compressor 24 located above the nominal oil level, to be able to return the oil collected in the oil separator 54 in the housing 30 of the high-pressure compressor 24 .
  • the figure 4 represents the main steps of the method of balancing the oil levels in the compression unit 20.
  • the balancing method described in relation to the two-stage compression unit of the heat exchange system 1 described above applies to any invertible heat pump in which the coolant circuit comprises at least two separate compressors in series which can operate alternately in multi-stage, and in particular two-stage, and in single-stage, and in which the defrosting of the evaporator is done by cycle inversion.
  • a maximum period T1 of two-stage operation before performing a defrost for the purposes of the oil balance is stored in the memory of the control unit.
  • the control unit then comprises a counter C1 which increments the time during two-stage operation.
  • a minimum defrost duration T2 or single-stage operation for the purposes of the oil balance is also stored in the memory of the control unit.
  • the control unit then comprises a counter C2 which increments the time during defrosting or single-stage operation.
  • the maximum period T1 of two-stage operation is between three hours and 10 hours and the minimum duration T2 defrosting or single-stage operation is between one minute and 20 minutes.
  • the control unit When there is a heating requirement (S1) detected by the control unit, the heat exchange system 1 is in heat pump mode. The control unit then determines whether the heating requirement is large or moderate (S2), for example from the outside temperature. To do this, the control unit compares the outside temperature with the threshold temperature.
  • S1 heating requirement
  • S2 moderate
  • the heat pump is in single-stage operation (S3). During this operation, there is no risk of accumulation of oil in one of the housings 30. All the excess oil of the housings 30 of the low-pressure compressors 23a, 23b can be brought back to the crankcase 30 of the high pressure compressor 24 by the equalization line 50 through the second valve 52 (valve). The low pressure compressors 23a, 23b being stopped, there is no risk that their oil levels fall below their nominal levels. All the oil collected at the oil separator 54 can also be returned to the casing 30 of the high-pressure compressor 24.
  • the counter C2 is started to count the one-stage operating time whereas counter C1 is reset (reset). It can be expected that when the counter C2 exceeds the minimum duration T2 of single-stage operation, the control unit checks whether there is a need for heating and whether the need is large or moderate.
  • the heat pump is in two-stage operation (S4). During this operation, the excess oil of the casing 30 of the high-pressure compressor 24 can be transferred to the casings 30 of the low-pressure compressors 23a, 23b by the first valve 51 (float).
  • the counter C1 is started to count the two-stage operation time while the counter C2 is reset (reset).
  • the oil separator 54 limits the amount of oil transported by the coolant. The accumulation of oil that may occur in the crankcase 30 low-pressure compressors 23a, 23b is thus very slowed down by the presence of the oil separator 54.
  • the heat pump regularly performs the defrost (S5), especially when the counter C1 exceeds the maximum period T1. If necessary, to limit ice accumulation on the evaporator, it is possible to defrost with a shorter period.
  • a defrost condition due to ice accumulation may be different from the defrost condition due to the need for oil balance.
  • a defrosting requirement due to ice accumulation can be detected from the difference between the outdoor temperature and the evaporation temperature or through pressure drop sensors on the air passing through the evaporator.
  • a defrost termination condition due to defrosted evaporator may be different from the defrost end condition due to the end of oil balance.
  • the end of defrosting due to defrosted evaporator can be detected from a measurement of the condensation pressure.
  • the heat pump can return to two-stage operation, checking continuously or periodically whether the heating requirement still exists.
  • the lower-pressure compressor BP2 23b of higher capacity having a higher suction mass flow rate than the low-pressure compressor BP1 23a of lower capacity its pressure Carter 30 will tend to be lower.
  • the excess oil from the casing 30 of the low pressure compressor BP1 23a can therefore be transported to the casing 30 of the low pressure compressor BP2 23b by pressure difference.
  • the oil is separated from the coolant and collected. All collected oil is then returned to the housing 30 of the high pressure compressor 24 which is the oil reservoir of the coolant circuit.
  • the balancing line 50 comprises a float valve 51 and a flapper valve 52 arranged between the housings 30 of the low pressure compressor BP1 23a and the high pressure compressor 24.
  • the invention is however not limited to this type of valve or this arrangement.
  • the float valve 51 is replaced by a solenoid valve 511.
  • a flow reduction device 512 preferably of the capillary tube type, is optionally placed in series with the solenoid valve 511.
  • the method of balancing the oil levels in this variant is similar to that described above in relation to the figure 4 , with particularity the control of the solenoid valve 511: when the heat exchange system operates in two-stage mode (S4), the solenoid valve 511 is open for a few seconds or fractions of seconds at a determined time interval. When the heat exchange system operates in defrost mode (S5) or single-stage mode (S3), the solenoid valve 511 is preferably open. Alternatively, when the heat exchange system operates in two-stage mode, the solenoid valve could be controlled by an oil level sensor in the housing 30 of the high pressure compressor 24.
  • the two valves 51, 52 could be replaced by a single solenoid valve.
  • the figure 6 illustrates the process of balancing the oil levels in such a variant. The balancing process is similar to that previously described in relation to the figure 4 and will not be repeated in detail.
  • the steps S1 ', S2', S3 ', S4' and S5 ' respectively correspond to the steps S1, S2, S3, S4 and S5 of the figure 4 and reference is made to the description that has been made of these steps for more detail.
  • the solenoid valve in two-stage operation (S4 '), the solenoid valve is open for a time T3, generally of a few seconds, for example between a half second and three seconds, at a determined time interval T4 for example between ten minutes and two hours. In single-stage operation (S3 '), the solenoid valve is always open.
  • the figure 5 illustrates a single valve 56 combining the functions of the float valve and the valve described above.
  • a closure element 58 for example in the form of a ball movable relative to a seat 59 formed at one end of a pipe connecting the valve 56 to the housing 30 of the low compressor pressure 23a, is connected to a float 60.
  • the assembly thus formed by the ball 58 and the float 60 is guided in translation relative to the housing 57.
  • An excess of oil in the housing 30 of the high pressure compressor 24 opens the valve by means of the float 60 and an excess of oil in the casing 30 of the low-pressure compressor 23a opens the valve by acting directly on the ball 58 when the difference in pressure allows it.
  • valve or valves described above could be placed inside the housing 30 of the high-pressure compressor 24.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Claims (10)

  1. Verfahren zum Ausgleich der Schmiermittelniveaus in einer mehrstufigen Verdichtungseinheit (20) eines Wärmeaustauschsystems (1), das dafür ausgelegt ist, Wärmeaustauschvorgänge zwischen außerhalb eines Raumes (2) befindlicher Außenluft und einem im Inneren des Raumes (2) zirkulierenden inneren Medium zu realisieren, wobei das Wärmeaustauschsystem (1) umfasst:
    - einen ersten (5) und einen zweiten (15) Wärmetauscher zum Austauschen von Wärme mit der Außenluft bzw. dem inneren Medium, wobei der erste (5) und der zweite (15) Wärmetauscher jeweils einen Eingang (E) und einen Ausgang (S) aufweisen und wobei der eine einen Verdampfer und der andere einen Kondensator bildet,
    - einen Wärmeträgerfluidkreis, der dafür ausgelegt ist, ein Wärmeträgerfluid zwischen dem Verdampfer und dem Kondensator zirkulieren zu lassen, wobei der Wärmeträgerfluidkreis die mehrstufige Verdichtungseinheit (20), die zwischen dem Ausgang (S) des Verdampfers und dem Eingang (E) des Kondensators angeordnet ist, und eine Entspannungseinheit (10), die zwischen dem Ausgang (S) des Kondensators und dem Eingang (E) des Verdampfers angeordnet ist, umfasst, wobei die Verdichtungseinheit (20) wenigstens einen ersten Verdichter (23) und wenigstens einen zweiten Verdichter (24), die in Reihe angeordnet sind, umfasst, wobei der erste Verdichter (23) das Wärmeträgerfluid in den zweiten Verdichter (24) fördert, wobei der erste (23) und der zweite (24) Verdichter jeweils ein Gehäuse (30) aufweisen, das Schmiermittel aufnimmt,
    - eine Ausgleichsleitung (50), die dafür ausgelegt ist, Schmiermittel zwischen den Gehäusen (30) des ersten (23) und zweiten (24) Verdichters strömen zu lassen, wobei die Ausgleichsleitung (50) ein erstes Ventil (51) umfasst, das eine Durchlassrichtung vom Gehäuse (30) des zweiten Verdichters (24) zum Gehäuse (30) des ersten Verdichters (23) aufweist,
    - eine Steuereinheit, die mit dem Wärmeträgerfluidkreis und mit der Ausgleichsleitung (50) verbunden ist, wobei die Steuereinheit dafür ausgelegt ist zu bestimmen, ob ein Bedarf an Erwärmung des inneren Mediums besteht und ob der Bedarf an Erwärmung des inneren Mediums hoch oder mäßig ist, und dafür, wenn ein hoher Bedarf an Erwärmung des inneren Mediums besteht:
    einen mehrstufigen Betrieb zu steuern, indem die Verdichtungseinheit (20) zwischen den Ausgang (7, S) des ersten Wärmetauschers (5) und den Eingang (16, E) des zweiten Wärmetauschers (15) geschaltet wird, indem die Entspannungseinheit (10) zwischen den Ausgang (17, S) des zweiten Wärmetauschers (15) und den Eingang (6, E) des ersten Wärmetauschers (5) geschaltet wird und indem der erste (23) und zweite (24) Verdichter in Reihe betrieben werden, und
    periodisch eine Enteisung des ersten Wärmetauschers (5) zu steuern, indem die Verdichtungseinheit (20) zwischen den Ausgang (16, S) des zweiten Wärmetauschers (15) und den Eingang (7, E) des ersten Wärmetauschers (5) geschaltet wird, indem die Entspannungseinheit (10) zwischen den Ausgang (6, S) des ersten Wärmetauschers (5) und den Eingang (17, E) des zweiten Wärmetauschers (15) geschaltet wird, indem der erste Verdichter (23) abgeschaltet wird und indem der zweite Verdichter (24) laufen gelassen wird,
    wobei das Verfahren zum Ausgleich dadurch gekennzeichnet ist, dass ein zweites Ventil (52) zum Einsatz kommt, das parallel zu dem ersten Ventil (51) in der Ausgleichsleitung (50) des Wärmeaustauschsystems (1) angeordnet ist, wobei das zweite Ventil (52) eine Durchlassrichtung vom Gehäuse (30) des ersten Verdichters (23) zum Gehäuse (30) des zweiten Verdichters (24) und eine Sperrrichtung vom Gehäuse (30) des zweiten Verdichters (24) zum Gehäuse (30) des ersten Verdichters (23) aufweist,
    und dadurch, dass es vorsieht:
    - während des mehrstufigen Betriebs den Überschuss an Schmiermittel des Gehäuses (30) des zweiten Verdichters (24) zum Gehäuse (30) des ersten Verdichters (23) über das erste Ventil (51) der Ausgleichsleitung (50) zu übertragen,
    - während der Enteisung des ersten Wärmetauschers (5) einen Überschuss an Schmiermittel des Gehäuses (30) des ersten Verdichters (23) zum Gehäuse (30) des zweiten Verdichters (24) über das zweite Ventil (52) der Ausgleichsleitung (50) zu übertragen.
  2. Verfahren zum Ausgleich nach Anspruch 1, wobei das Wärmeaustauschsystem außerdem einen einzigen Schmiermittelabscheider (54), der auf der Druckseite des zweiten Verdichters (24) angeordnet ist, und eine Schmiermittelrücklaufleitung (55) zwischen dem Schmiermittelabscheider (54) und dem Gehäuse (30) des zweiten Verdichters (24) umfasst, wobei das Verfahren zum Ausgleich vorsieht, das Schmiermittel von dem Wärmeträgerfluid zu trennen, das Schmiermittel in dem Schmiermittelabscheider (54) zu sammeln und das gesammelte Schmiermittel zum Gehäuse (30) des zweiten Verdichters (24) zurückzuführen.
  3. Verfahren zum Ausgleich nach einem der Ansprüche 1 und 2, wobei die Steuereinheit dafür ausgelegt ist, wenn ein mäßiger Bedarf an Erwärmung des inneren Mediums besteht, einen einstufigen Betrieb zu steuern, indem die Verdichtungseinheit (20) zwischen den Ausgang (7, S) des ersten Wärmetauschers (5) und den Eingang (16, E) des zweiten Wärmetauschers (15) geschaltet wird, indem die Entspannungseinheit (10) zwischen den Ausgang (17, S) des zweiten Wärmetauschers (15) und den Eingang (6, E) des ersten Wärmetauschers (5) geschaltet wird, indem der erste Verdichter (23) abgeschaltet wird und indem der zweite Verdichter (24) laufen gelassen wird,
    wobei das Verfahren zum Ausgleich vorsieht, während des einstufigen Betriebs den Überschuss an Schmiermittel des Gehäuses (30) des ersten Verdichters (23) zum Gehäuse (30) des zweiten Verdichters (24) über die Ausgleichsleitung (50) zu übertragen.
  4. Verfahren zum Ausgleich nach einem der Ansprüche 1 bis 3, wobei das Wärmeaustauschsystem (1) wenigstens zwei erste Verdichter (23a, 23b) mit fester Leistung, welche parallel geschaltet sind, und einen zweiten Verdichter (24) mit variabler Leistung umfasst, wobei die ersten Verdichter (23a, 23b) unterschiedliche Leistungen aufweisen, wobei die Ausgleichsleitung (50) eine Leitung (53) umfasst, welche die Gehäuse (30) der ersten Verdichter (23a, 23b) verbindet,
    wobei das Verfahren zum Ausgleich vorsieht, den Überschuss an Schmiermittel des Gehäuses (30) des ersten Verdichters (23b) mit geringerer Leistung zum Gehäuse (30) des anderen ersten Verdichters (23a) zu übertragen.
  5. Wärmeaustauschsystem (1), welches dafür ausgelegt ist, Wärmeaustauschvorgänge zwischen außerhalb eines Raumes (2) befindlicher Außenluft und einem im Inneren des Raumes (2) zirkulierenden inneren Medium zu realisieren, wobei das Wärmeaustauschsystem (1) umfasst:
    - einen ersten (5) und einen zweiten (15) Wärmetauscher zum Austauschen von Wärme mit der Außenluft bzw. dem inneren Medium, wobei der erste (5) und der zweite (15) Wärmetauscher jeweils einen Eingang (E) und einen Ausgang (S) aufweisen und wobei der eine einen Verdampfer und der andere einen Kondensator bildet,
    - einen Wärmeträgerfluidkreis, der dafür ausgelegt ist, ein Wärmeträgerfluid zwischen dem Verdampfer und dem Kondensator zirkulieren zu lassen, wobei der Wärmeträgerfluidkreis eine mehrstufige Verdichtungseinheit (20), die zwischen dem Ausgang (S) des Verdampfers und dem Eingang (E) des Kondensators angeordnet ist, und eine Entspannungseinheit (10), die zwischen dem Ausgang (S) des Kondensators und dem Eingang (E) des Verdampfers angeordnet ist, umfasst, wobei die Verdichtungseinheit wenigstens einen ersten Verdichter (23) und wenigstens einen zweiten Verdichter (24), die in Reihe angeordnet sind, umfasst, wobei der erste Verdichter (23) das Wärmeträgerfluid in den zweiten Verdichter (24) fördert, wobei der erste (23) und der zweite (24) Verdichter jeweils ein Gehäuse (30) aufweisen, das Schmiermittel aufnimmt,
    - eine Ausgleichsleitung (50), die dafür ausgelegt ist, Schmiermittel zwischen den Gehäusen (50) des ersten (23) und zweiten (24) Verdichters strömen zu lassen, wobei die Ausgleichsleitung (50) ein erstes Ventil (51) umfasst, das eine Durchlassrichtung vom Gehäuse (30) des zweiten Verdichters (24) zum Gehäuse (30) des ersten Verdichters (23) aufweist,
    - eine Steuereinheit, die mit dem Wärmeträgerfluidkreis und mit der Ausgleichsleitung (50) verbunden ist, wobei die Steuereinheit dafür ausgelegt ist zu bestimmen, ob ein Bedarf an Erwärmung des inneren Mediums besteht und ob der Bedarf an Erwärmung des inneren Mediums hoch oder mäßig ist, und dafür, wenn ein hoher Bedarf an Erwärmung des inneren Mediums besteht:
    einen mehrstufigen Betrieb zu steuern, indem die Verdichtungseinheit (20) zwischen den Ausgang (7, S) des ersten Wärmetauschers (5) und den Eingang (16, E) des zweiten Wärmetauschers (15) geschaltet wird, indem die Entspannungseinheit (10) zwischen den Ausgang (17, S) des zweiten Wärmetauschers (15) und den Eingang (6, E) des ersten Wärmetauschers (5) geschaltet wird und indem der erste (23) und zweite (24) Verdichter in Reihe betrieben werden, und
    periodisch eine Enteisung des ersten Wärmetauschers (5) zu steuern, indem die Verdichtungseinheit (20) zwischen den Ausgang (16, S) des zweiten Wärmetauschers (15) und den Eingang (7, E) des ersten Wärmetauschers (5) geschaltet wird, indem die Entspannungseinheit (10) zwischen den Ausgang (6, S) des ersten Wärmetauschers (5) und den Eingang (17, E) des zweiten Wärmetauschers (15) geschaltet wird, indem der erste Verdichter (23) abgeschaltet wird und indem der zweite Verdichter (24) laufen gelassen wird,
    wobei das Wärmeaustauschsystem dadurch gekennzeichnet ist, dass die Ausgleichsleitung (50) ein zweites Ventil (52) umfasst, das parallel zu dem ersten Ventil (51) angeordnet ist, wobei das zweite Ventil (52) eine Durchlassrichtung vom Gehäuse (30) des ersten Verdichters (23) zum Gehäuse (30) des zweiten Verdichters (24) und eine Sperrrichtung vom Gehäuse (30) des zweiten Verdichters (24) zum Gehäuse (30) des ersten Verdichters (23) aufweist,
    und dadurch, dass die Steuereinheit außerdem dafür ausgelegt ist, das Verfahren zum Ausgleich nach einem der Ansprüche 1 bis 4 durchzuführen.
  6. Wärmeaustauschsystem (1) nach Anspruch 5, wobei das erste Ventil (51) ein Schwimmerventil ist und das zweite Ventil (52) ein Klappenventil ist.
  7. Wärmeaustauschsystem (1) nach Anspruch 5, wobei das erste Ventil (51) ein Magnetventil ist und das zweite Ventil (52) ein Klappenventil ist.
  8. Wärmeaustauschsystem (1) nach Anspruch 7, wobei das Magnetventil mit einem Durchflussreduzierungsorgan vom Typ eines Kapillarrohres ist.
  9. Wärmeaustauschsystem (1) nach einem der Ansprüche 5 bis 8, welches außerdem einen einzigen Schmiermittelabscheider (54), der auf der Druckseite des zweiten Verdichters (24) angeordnet ist, und eine Schmiermittelrücklaufleitung (55) zwischen dem Schmiermittelabscheider (54) und dem Gehäuse (30) des zweiten Verdichters (24) umfasst.
  10. Wärmeaustauschsystem (1) nach einem der Ansprüche 5 bis 9, welches wenigstens zwei erste Verdichter (23a, 23b) mit fester Leistung, welche parallel geschaltet sind, und einen zweiten Verdichter (24) mit variabler Leistung umfasst, wobei die ersten Verdichter (23a, 23b) unterschiedliche Leistungen aufweisen, wobei die Ausgleichsleitung (50) eine Leitung (53) umfasst, welche die Gehäuse (30) der ersten Verdichter (23a, 23b) verbindet.
EP12738564.9A 2011-07-06 2012-07-04 Verfahren zum ausgleich von schmiermittelkonzentrationen in einem mehrstufiger verdichtungseinehit eines wärmeaustauschsystems und wärmeaustauschsystem zur umsetzung dieses verfahrens Not-in-force EP2729744B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1156120A FR2977657B1 (fr) 2011-07-06 2011-07-06 Procede d'equilibrage des niveaux de lubrifiant dans une unite de compression multi-etagee d'un systeme d'echange thermique et systeme d'echange thermique mettant en oeuvre un tel procede
PCT/FR2012/051564 WO2013004974A1 (fr) 2011-07-06 2012-07-04 Procede d'equilibrage des niveaux de lubrifiant dans une unite de compression multi-etagee d'un systeme d'echange thermique et systeme d'echange thermique mettant en oeuvre un tel procede

Publications (2)

Publication Number Publication Date
EP2729744A1 EP2729744A1 (de) 2014-05-14
EP2729744B1 true EP2729744B1 (de) 2017-11-22

Family

ID=46579225

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12738564.9A Not-in-force EP2729744B1 (de) 2011-07-06 2012-07-04 Verfahren zum ausgleich von schmiermittelkonzentrationen in einem mehrstufiger verdichtungseinehit eines wärmeaustauschsystems und wärmeaustauschsystem zur umsetzung dieses verfahrens

Country Status (3)

Country Link
EP (1) EP2729744B1 (de)
FR (1) FR2977657B1 (de)
WO (1) WO2013004974A1 (de)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080098760A1 (en) * 2006-10-30 2008-05-01 Electro Industries, Inc. Heat pump system and controls
US20060073026A1 (en) * 2004-10-06 2006-04-06 Shaw David N Oil balance system and method for compressors connected in series
KR101387478B1 (ko) * 2007-03-13 2014-04-24 엘지전자 주식회사 압축 시스템 및 이를 이용한 공기조화 시스템
FR2920838B1 (fr) * 2007-09-07 2009-11-27 Electricite De France Dispositif et procede d'equilibrage d'huile entre compresseurs
ES2600474T3 (es) * 2009-02-19 2017-02-09 Systemair Ac S.A.S Instalación termodinámica con lubricación mejorada

Also Published As

Publication number Publication date
FR2977657A1 (fr) 2013-01-11
EP2729744A1 (de) 2014-05-14
FR2977657B1 (fr) 2018-05-04
WO2013004974A1 (fr) 2013-01-10

Similar Documents

Publication Publication Date Title
FR2715211A1 (fr) Procédé d'exploitation d'un système de réfrigération et système de réfrigération fonctionnant selon ce procédé.
EP2221559B1 (de) Thermodynamische Anlage mit verbesserter Schmierung
FR2715212A1 (fr) Procédé et appareil d'exploitation d'un système de réfrigération, caractérisés par une régulation du liquide de refroidissement du moteur.
FR2715213A1 (fr) Procédé et appareil d'exploitation d'un système de réfrigération, caractérisés par une régulation de la pression maximale de fonctionnement.
EP2511627A1 (de) Zweistufige Hochleistungs-Wärmepumpe
JP2019078440A (ja) 空気調和機
US20180010833A1 (en) Accumulator for charge management
JP4691138B2 (ja) ヒートポンプ給湯機
EP3612769A1 (de) Thermodynamischer co2-kessel und thermischer kompressor
EP1987292B1 (de) Für heiz- oder luftklimatisierungssysteme bestimmte wärmetauschervorrichtung
EP2863130B1 (de) Verfahren zur Regulierung einer thermischen Anlage für ein Gebäude
EP2729744B1 (de) Verfahren zum ausgleich von schmiermittelkonzentrationen in einem mehrstufiger verdichtungseinehit eines wärmeaustauschsystems und wärmeaustauschsystem zur umsetzung dieses verfahrens
EP2034258B1 (de) Verfahren und Vorrichtung zum Ölausgleich zwischen Kompressoren
EP2318783B1 (de) Reversibles system zur rückgewinnung von wärmeenergie durch entnahme und übertragung von wärmeenergie von einem oder mehreren medien in ein oder mehrere andere solcher medien
US11391496B2 (en) Refrigerating cycle apparatus
WO2010043829A2 (fr) Pompe a chaleur
FR2986860A1 (fr) Installation thermique et procede assurant un conditionnement thermique d'un local et une production d'eau chaude sanitaire
FR2966565A1 (fr) Installation de production d’eau chaude sanitaire pour habitation collective et procede de mise en oeuvre d’une telle installation
EP1748191B1 (de) Kompressionseinheit und damit versehene thermische Anlage
RU2434185C1 (ru) Контур хладагента и способ управления в нем масла
FR2966563A1 (fr) Installation de production d'eau chaude sanitaire pour habitation collective
EP2034256B1 (de) Vorrichtung und Verfahren zum Ölausgleich zwischen Verdichtern
FR2889733A1 (fr) Systeme de pompe a chaleur avec deux compresseurs
EP2310769B1 (de) Einrichtung zum kühlen mindestens eines möbelstücks und/oder einer kältekammer und zum heizen mindestens eines raums und luftwärmetauscher für diese einrichtung
FR2937410A1 (fr) Pompe a chaleur

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 948795

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012040081

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171122

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 948795

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180222

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180223

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180222

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012040081

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602012040081

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180731

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171122

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20220621

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731