EP2719558A1 - Automobile air-conditioning system - Google Patents

Automobile air-conditioning system Download PDF

Info

Publication number
EP2719558A1
EP2719558A1 EP12797058.0A EP12797058A EP2719558A1 EP 2719558 A1 EP2719558 A1 EP 2719558A1 EP 12797058 A EP12797058 A EP 12797058A EP 2719558 A1 EP2719558 A1 EP 2719558A1
Authority
EP
European Patent Office
Prior art keywords
evaporator
conditioning system
automobile air
cooling ring
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12797058.0A
Other languages
German (de)
French (fr)
Other versions
EP2719558B1 (en
EP2719558A4 (en
Inventor
Rongrong Zhang
Edwin J. Stanke
Longzhou XU
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hangzhou Sanhua Research Institute Co Ltd
Original Assignee
Hangzhou Sanhua Research Institute Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Sanhua Research Institute Co Ltd filed Critical Hangzhou Sanhua Research Institute Co Ltd
Publication of EP2719558A1 publication Critical patent/EP2719558A1/en
Publication of EP2719558A4 publication Critical patent/EP2719558A4/en
Application granted granted Critical
Publication of EP2719558B1 publication Critical patent/EP2719558B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/02Evaporators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H1/3204Cooling devices using compression
    • B60H1/3229Cooling devices using compression characterised by constructional features, e.g. housings, mountings, conversion systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present application relates to a technical field of air conditioning, in particular to an air-conditioning system used in an automobile.
  • a throttle mechanism generally includes a thermal expansion valve and a throttling short tube.
  • the electronic expansion valve has a relatively strong advantage in overheat control and overall energy saving since the electronic expansion valve may realize an accurate control.
  • the electronic expansion valve is an electric component and is difficult to meet a requirement for temperature resistance of the automobile environment.
  • An overly high operating environment temperature may bum and damage the coil of the electronic expansion valve and the control chip, thus the electronic expansion valve can not work normally, which may in turn affect the operation of the whole air-conditioning system.
  • the volume of the electronic expansion valve must be increased, however the increased volume may not only increase the cost, but also fail to show the application advantages of the electronic expansion valve.
  • the thermal expansion valve is also applied in the new energy automobile air conditioner as well as the conventional gasoline car. Due to influences from factors of weather, road condition, thermal load, engine speed and etc., an automobile air conditioner generally works under a non-standard design working condition.
  • an automobile air conditioner generally works under a non-standard design working condition.
  • the set value of an overheat degree of the thermal expansion valve is set according to a standard working condition. When the system is operated under a non-standard working condition, the overheat degree tends to deviate from the set value of the overheat degree, thereby causing the decrease of the system efficiency and an unstable operation, and causing dew formation or even frost formation on the evaporator under a certain condition.
  • an electronic expansion valve is required to cooperate with a varying speed adjustment of a variable volume electrical compressor.
  • the electrical compressor works independently in the air-conditioning system of the electric automobile, which is different from that in the gasoline car that the compressor is driven by an engine belt pulley.
  • a flow adjusting characteristic of the thermal expansion valve can not be combined with a frequency conversion characteristic of the electrical compressor, which results in a large power load, and a low travel distance per charge of the electric automobile.
  • An object of the present application is to provide an automobile air-conditioning system to solve the defect in the prior art that the electronic expansion valve is difficult to meet the requirement for temperature resistance of the automobile environment, and the automobile air-conditioning system has a compact structural design, may effectively cool the electronic expansion valve, and has a high system strength, a stable transmission of refrigerant and a high security.
  • an automobile air-conditioning system which includes an evaporator and an electronic expansion valve which are communicated with each other via a pipeline, the electronic expansion valve including a coil and a valve body, and the coil being fixedly mounted on the valve body, wherein the automobile air-conditioning system further includes a bracket, the bracket includes a heat dissipation bridge and a cooling ring, the evaporator is arranged at one side of the heat dissipation bridge, the cooling ring is arranged at the other side of the heat dissipation bridge, the heat dissipation bridge and the cooling ring are integrally formed or are fixedly connected, and the coil is arranged in the cooling ring.
  • the side of the heat dissipation bridge close to the evaporator is in direct contact with the evaporator.
  • the side of the heat dissipation bridge close to the evaporator and the evaporator are fixedly connected to be in direct contact with one another.
  • the coil is in direct contact with the cooling ring.
  • the coil and the cooling ring are fixedly connected to be in direct contact with one another.
  • a cover configured to enclose the coil is arranged on the cooling ring, and the cover and the cooling ring are integrally formed or are fixedly connected.
  • the cover has no opening and completely encloses a top portion of the coil, or the cover has an opening and partially encloses a top portion of the coil.
  • the cooling ring is of a complete ring body structure.
  • the cooling ring has a gap
  • the cooling ring having the gap includes two connecting ends
  • the two connecting ends are two ring body extending portions extending outwardly from end portions of a ring body at the gap and arranged opposite to each other, and the two connecting ends are fixedly connected via a bolt.
  • the bracket further includes a connecting plate, the connecting plate is arranged between the evaporator and the electronic expansion valve, the heat dissipation bridge is arranged at one side of the connecting plate close to the electronic expansion valve, and the heat dissipation bridge and the connecting plate are integrally formed or are fixedly connected.
  • the side of the connecting plate close to the evaporator is in direct contact with the evaporator.
  • the side of the connecting plate close to the evaporator and the evaporator are fixedly connected to be in direct contact with one another.
  • the side of the connecting plate close to the evaporator is fixedly connected to the evaporator by welding, and a welding surface is an entire contacting surface between the connecting plate and the evaporator, or a contacting surface between the evaporator and a position, corresponding to the heat dissipation bridge, at the side of the connecting plate close to the evaporator.
  • the bracket further includes a base, the base is horizontally arranged at a bottom of the connecting plate, the connecting plate and the base are integrally formed or are fixedly connected, the base is fixedly mounted in automobile, and the evaporator and the electronic expansion valve are, respectively, located at two sides above the base.
  • the evaporator is directly fixed on one side of an upper surface of the base, and the valve body of the electronic expansion valve is directly fixed on the other side of the upper surface of the base.
  • the bracket further includes a first supporting board, the first supporting board is fixedly mounted on the side of the connecting plate close to the evaporator, and the evaporator is fixedly mounted on the first supporting board.
  • the bracket further includes a second supporting board, the second supporting board is fixedly mounted on the side of the connecting plate close to the electronic expansion valve, and the valve body of the electronic expansion valve is fixedly mounted on the second supporting board.
  • the automobile air-conditioning system according to the present application has the following beneficial effects.
  • FIG. 1 is a perspective view of an automobile air-conditioning system according to an embodiment of the present application.
  • the automobile air-conditioning system includes an evaporator 1 and an electronic expansion valve 2 which are communicated with each other via a pipe, the electronic expansion valve 2 includes a coil 200 and a valve body 201, and the coil 200 is fixedly mounted on the valve body 201.
  • the automobile air-conditioning system further includes a bracket 3, and the bracket 3 includes a base 300, a connecting plate 301, a heat dissipation bridge 303 and a cooling ring 302.
  • the evaporator 1 and the electronic expansion valve 2 are respectively arranged at two sides of the connecting plate 301, and the evaporator 1 is in direct contact with the connecting plate 301. Further, the evaporator 1 and the connecting plate 301 are fixedly connected to be in direct contact with one another. Contacting surfaces of the evaporator 1 and the connecting plate 301 may be fixedly connected by partially welding or wholly welding. As shown in Figure 2 , which is a left view of the automobile air-conditioning system of the embodiment shown in Figure 1 , the contacting surfaces of the connecting plate 301 and the evaporator 1 are connected by wholly welding.
  • the heat dissipation bridge 303 is arranged at a top of the connecting plate 301 at a side close to the electronic expansion valve 2, and the heat dissipation bridge 303 and the connecting plate 301 are fixedly connected or are formed integrally. It can be appreciated for those skilled in the art that, the heat dissipation bridge 303 may be arranged at any position on the connecting plate 301 at the side close to the electronic expansion valve 2.
  • the cooling ring 302 is of an annular structure, and the cooling ring 302 and the heat dissipation bridge 303 are fixedly connected or are formed integrally.
  • the coil 200 of the electronic expansion valve 2 is arranged inside the cooling ring 302 and is surrounded by the cooling ring 302, wherein the coil 200 is in direct contact with the cooling ring 302. Further, the coil 200 and the cooling ring 302 are fixedly connected to be in direct contact with one another. In a case that the coil 200 is in direct contact with the cooling ring 302 but is not fixedly connected to the cooling ring 302, the valve body 201 and the connecting plate 301 are fixedly connected to fixedly connect the electronic expansion valve 2 to the connecting plate 301. In a case that the coil 200 and the cooling ring 302 are fixedly connected, the valve body 201 and the connecting plate 301 may be in direct contact with one another without being fixedly connected, or be arranged with a gap therebetween, or be fixedly connected.
  • the side of the heat dissipation bridge 303 close to the evaporator 1 is in direct contact with the evaporator 1, and the coil 200 is in direct contact with the cooling ring 302, thus heat generated by the coil 200 of the electronic expansion valve 2 may be transmitted to the evaporator 1 via the heat dissipation bridge 303 and the coil 200.
  • the heat dissipation bridge 303 and the evaporator 1 are fixedly connected, and the coil 200 and the cooling ring 302 are fixedly connected, thereby not only improving a heat transfer efficiency between the electronic expansion valve 2 and the evaporator 1, but also making the structure of the automobile air-conditioning system more compact and improving the overall structural strength of the automobile air-conditioning system.
  • the base 300 is horizontally arranged at a bottom of the connecting plate 301, and the evaporator 1 and the electronic expansion valve 2 are, respectively, arranged at two sides above the base 300.
  • the base 300 is fixedly mounted on the automobile, and the connecting plate 301 and the base 300 are integrally formed, or the connecting plate 301 and the base 300 are formed separately and the connecting plate 301 is fixedly mounted on the base 300.
  • the electronic expansion valve 2 is fixedly mounted on the bracket 3, and the bracket 3 is fixedly mounted in the automobile and is fixedly connected to the evaporator 1.
  • the cooling ring 302 is fixedly mounted on the connecting plate 301 via the heat dissipation bridge 303, and the coil 200 of the electronic expansion valve 2 is fixedly mounted in the cooling ring 302.
  • the cooling ring 302 is of a complete annular structure.
  • the connecting plate 301, the cooling ring 302 and the heat dissipation bridge 303 are formed integrally.
  • the connecting plate 301, the cooling ring 302 and the heat dissipation bridge 303 may be formed separately.
  • the bracket 3 may only include the heat dissipation bridge 303, and the heat dissipation bridge 303 is arranged between the evaporator 1 and the electronic expansion valve 2.
  • the electronic expansion valve 2 is in contact with the evaporator 1 via the heat dissipation bridge 303 to transmit heat.
  • the coil 200 of the electronic expansion valve 2 is in contact with the evaporator 1 via the heat dissipation bridge 303 to transmit heat.
  • FIG. 3 is a left view of an automobile air-conditioning system according to another embodiment of the present application.
  • the bracket 3 may only include the heat dissipation bridge 303 and the cooling ring 302, and the heat dissipation bridge 303 and the cooling ring 302 are arranged between the evaporator 1 and the electronic expansion valve 2.
  • the heat dissipation bridge 303 has one side in contact with the evaporator 1 and the other side connected with the cooling ring 302 having a gap.
  • the electronic expansion valve 2 is in contact with the cooling ring 302 and transmits heat to the evaporator 1 via the cooling ring 302 and the heat dissipation bridge 303.
  • the heat dissipation bridge 303 has one side fixedly connected to the evaporator 1 and the other side fixedly connected to the cooling ring 302 having the gap, and the electronic expansion valve 2 is fixedly mounted on the cooling ring 302.
  • the coil 200 of the electronic expansion valve 2 is fixedly mounted inside the cooling ring 302, such that heat from the coil 200 of the electronic expansion valve 2 may be transmitted to the evaporator 1 via the cooling ring 302 and the heat dissipation bridge 303.
  • the heat dissipation bridge 303 and the cooling ring 302 may be formed integrally or separately. In a case that the heat dissipation bridge 303 and the cooling ring 302 are formed separately, the heat dissipation bridge 303 and the cooling ring 302 are fixedly connected, and the fixed connection may be realized by welding, threaded connection, clamping connection and etc..
  • the evaporator 1 is directly fixed on the automobile, and the electronic expansion valve 2 is fixedly connected to the evaporator 1 via the cooling ring 302 and the heat dissipation bridge 303, thereby making the structure of the automobile air-conditioning system more compact.
  • the coil 200 and the cooling ring 302 are fixedly connected, the heat dissipation bridge 303 and the evaporator 1 are fixedly connected, and the evaporator 1 is directly mounted in the automobile, thereby shortening the connecting pipe between the evaporator 1 and the electronic expansion valve 2, enhancing the vibration resistance, and meanwhile making the structure of the automobile air-conditioning system compact, effectively saving the usage space of the automobile air conditioner, and improving the overall structural strength of the automobile air conditioner.
  • the bracket 3 may only include the heat dissipation bridge 303, the cooling ring 302 and the connecting plate 301.
  • Figure 4 is a left view of an automobile air-conditioning system according to the embodiment of the present application.
  • the evaporator 1 is fixedly mounted in the automobile in practical use, and the connecting plate 301 has one plane in direct contact with the evaporator 1 and another plane fixedly arranged with the electronic expansion valve. Contacting planes of the connecting plate 301 and the evaporator 1 may also be partially welded.
  • Figure 5 is a left view of an automobile air-conditioning system according to another embodiment of the present application.
  • the bracket 3 further includes a first supporting board 304 and a second supporting board 305 which are respectively mounted on two planes at two sides of the connecting plate.
  • the first supporting board 304 is fixedly mounted at the side of the connecting plate 301 close to the evaporator 1 and is located below the evaporator 1, and the evaporator 1 is fixedly mounted on the first supporting board 304.
  • the second supporting board 305 is fixedly mounted at the side of the connecting plate 301 close to the electronic expansion valve 2 and is located below the cooling ring 302, and the valve body 201 of the electronic expansion valve 2 is fixedly mounted on the second supporting board 305.
  • the connecting plate 301 and the evaporator 1 may be in direct contact with one another, or the contacting surfaces thereof may be wholly welded. Only one of the first supporting board 304 and the second supporting board 305 may be mounted, for example, in a case that the first supporting board 304 is not provided, the connecting plate 301 and the evaporator 1 may be directly connected by welding; and similarly, in a case that the second supporting board 305 is not provided, the connecting plate 301 and the electronic expansion valve 2 may be directly connected by welding.
  • the connecting plate 301, the first supporting board 304 and the second supporting board 305 may not only strengthen the automobile air-conditioning system, but also accelerate the heat transfer between the electronic expansion valve 2 and the evaporator 1.
  • Figure 6 is a perspective view of an automobile air-conditioning system according to another embodiment of the present application.
  • the connecting plate 301 and the evaporator 1 are partially welded or are in contact with one another partially, for example, the side of the connecting plate 301 close to the evaporator 1 is welded to the evaporator 1 at a position corresponding to the heat dissipation bridge 303.
  • FIG. 7 is a perspective view of the bracket according to another embodiment of an automobile air-conditioning system in the present application.
  • a cover 307 having an opening may be further arranged on the cooling ring 302 at the top of the coil 200 to enclose the coil 200, and the cover 307 is connected to the cooling ring 302.
  • the cover 307 on the cooling ring 302 may be sealed or may have an opening.
  • FIG 8 is a perspective view of the bracket according to another embodiment of an automobile air-conditioning system in the present application.
  • the cooling ring 302 has a gap, and such cooling ring 302 having the gap may facilitate the installation of the electronic expansion valve.
  • FIG. 9 is a perspective view of the bracket according to another embodiment of an automobile air-conditioning system in the present application.
  • Two ends of the gap of the cooling ring 302 are fixedly connected.
  • the cooling ring 302 having the gap includes two connecting ends 306, the two connecting ends 306 are two ring body extending portions extending outwardly from end portions of the ring body at the gap and arranged opposite to each other, and the two connecting ends 306 are fixedly connected via a bolt.
  • Such cooling ring 302 having the gap may facilitate the installation of the electronic expansion valve 2, and the electronic expansion valve 2 may be mounted more firmly.
  • connection manner of the cooling ring 302 in this embodiment is simply an exemplary embodiment, and specific connection manner is not limited to the present embodiment.
  • each of the heat dissipation bridge, the cooling ring, the connecting plate, the base, the first supporting board and the second supporting board is made of heat conduction materials, and is preferably metallic material.
  • a surface temperature of the evaporator 1 is a constant low temperature, while the coil 200 of the electronic expansion valve 2 generates heat in operation, and when in summer or under a working environment of high temperature region, the temperature of the electronic expansion valve 2 is very likely to exceed a temperature resistance standard of 120 degree Celsius.
  • a heat dissipation bridge 303 is provided between the evaporator 1 and the electronic expansion valve 2, such that the heat from the electronic expansion valve 2 may be transmitted to the evaporator 1 via the cooling ring 302 and the heat dissipation bridge 303, thereby realizing a cooling effect.
  • the heat dissipation bridge 303 Since the heat dissipation bridge 303 is in contact with the evaporator 1, the heat dissipation bridge 303 is cooled by the evaporator 1, thereby further cooling the cooling ring 302, and then heat transfer occurs between the cooling ring 302 and the coil 300 to cool the electronic expansion valve 2.
  • the cooling ring 302 and the heat dissipation bridge 303 function to transfer heat and fix the system structure.
  • the extreme heat-resistance temperature of the electronic expansion valve in this experiment is set as 120 degree Celsius, and other data are shown in Sheet 1.
  • Sheet 1 Type of analysis Steady state thermal analysis Material Aluminium alloy Environment temperature 120 degree Celsius Unit m
  • Heat quantity of the electronic expansion valve 7W Load Convection a vertical convective heat transfer coefficient is 5.7w/m 2 gk, and a horizontal convective heat transfer coefficient is 6.15 w/m 2 gk
  • Thermal load a surface temperature of the evaporator is 2 degree Celsius
  • Internal heat source 286720.734 w/m 3
  • the analysis result shows that the solution in the embodiment of the present application shown in Figure 1 has a significant heat dissipation effect.
  • the highest temperature of the electronic expansion valve is around 8 degree Celsius, the temperature field distribution of the valve body of the electronic expansion valve is even, and the temperature difference is about 0.5 degree Celsius, which will not affect the system operation.
  • heat transfer may be controlled by designing and modifying dimensions of the heat dissipation bridge and the cooling ring.
  • Main parameters influencing the heat transfer in the technical solution of the present application are a height of the cooling ring and a width of the heat dissipation bridge.
  • the heat dissipation bridge has a length a and a width b.
  • the cooling ring is a height c.
  • the cooling ring is set to have the same thickness and diameter
  • the connecting plate is set to have the same dimension
  • a distance from a center of the cooling ring to the connecting plate is set be the same
  • the same components in each solution has the same material.
  • Thermal analysis validations are conducted, respectively, to analyze influences on the heat dissipation efficiency of the cooling ring caused by the width of the heat dissipation bridge and the height of the cooling ring.
  • the width of the heat dissipation bridge is 0.015m
  • the maximum temperature of the cooling ring is about 8 degree Celsius, which may basically satisfy the cooling requirement of the electronic expansion valve.
  • the maximum temperature of the cooling ring decreases as the width of the heat dissipation bridge increases. That is, the larger the width of the heat dissipation bridge, the better the cooling effect.
  • the height of the cooling ring is 0.003m, and the maximum temperature of the cooling ring is about 44 degree Celsius, which may basically satisfy the cooling requirement of the electronic expansion valve.
  • the maximum temperature of the cooling ring increases as the height of the cooling ring decreases. That is, the larger the height of the cooling ring, the better the cooling effect.
  • the automobile air-conditioning system in the present application may better solve the problem that the electronic expansion valve is difficult to meet the requirement for temperature resistance of the automobile environment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Disclosed is an automobile air-conditioning system, which comprises an evaporator (1) and an electrical expansion valve (2) in communication via pipes, with the electrical expansion valve (2) comprising a coil (200) and a valve body (201), the coil (200) being fixedly mounted on the valve body (201); the system also comprises a support (3), the support (3) comprising a heat-sinking bridge (303) and a cooling ring (302), with the evaporator (1) provided on one side of the heat-sinking bridge (303) and the cooling ring (302) provided on the other side of the heat-sinking bridge (303); the heat-sinking bridge (303) and the cooling ring (302) are formed in one piece or are connected with each other fixedly, and the coil (200) is provided within the cooling ring (302). The automobile air-conditioning system has the advantages of a compact structural design, is capable of effectively cooling the electrical expansion valve, and has high system strength, stable transmission of coolant, and high security.

Description

  • This application claims the benefit of priority to Chinese patent application No. 201110161555.0 titled "AUTOMOBILE AIR-CONDITIONING SYSTEM" and filed with the Chinese State Intellectual Property Office on June 9, 2011, the entire disclosure of which is incorporated herein by reference.
  • TECHNICAL FIELD
  • The present application relates to a technical field of air conditioning, in particular to an air-conditioning system used in an automobile.
  • BACKGROUND
  • Energy saving of an automobile air-conditioning system appears to be quite important as the requirement for the automobile energy saving becomes increasingly higher. In a conventional automobile air-conditioning system, a throttle mechanism generally includes a thermal expansion valve and a throttling short tube. Compared to the conventional throttle mechanism, the electronic expansion valve has a relatively strong advantage in overheat control and overall energy saving since the electronic expansion valve may realize an accurate control.
  • However, there are some limitations for the application of the electronic expansion valve in the automobile air conditioner, and one main factor is that the electronic expansion valve is an electric component and is difficult to meet a requirement for temperature resistance of the automobile environment. An overly high operating environment temperature may bum and damage the coil of the electronic expansion valve and the control chip, thus the electronic expansion valve can not work normally, which may in turn affect the operation of the whole air-conditioning system. In order to enhance the level of the temperature resistance of the electronic expansion valve, the volume of the electronic expansion valve must be increased, however the increased volume may not only increase the cost, but also fail to show the application advantages of the electronic expansion valve.
  • At present, due to the price factor and the technical bottleneck of the electronic expansion valve, the thermal expansion valve is also applied in the new energy automobile air conditioner as well as the conventional gasoline car. Due to influences from factors of weather, road condition, thermal load, engine speed and etc., an automobile air conditioner generally works under a non-standard design working condition. However, the set value of an overheat degree of the thermal expansion valve is set according to a standard working condition. When the system is operated under a non-standard working condition, the overheat degree tends to deviate from the set value of the overheat degree, thereby causing the decrease of the system efficiency and an unstable operation, and causing dew formation or even frost formation on the evaporator under a certain condition.
  • In an air-conditioning system of an electric automobile, an electronic expansion valve is required to cooperate with a varying speed adjustment of a variable volume electrical compressor. Especially, the electrical compressor works independently in the air-conditioning system of the electric automobile, which is different from that in the gasoline car that the compressor is driven by an engine belt pulley. However, a flow adjusting characteristic of the thermal expansion valve can not be combined with a frequency conversion characteristic of the electrical compressor, which results in a large power load, and a low travel distance per charge of the electric automobile.
  • Therefore, the application of the electronic expansion valve in the automobile air-conditioning field appears to be extremely important.
  • SUMMARY
  • An object of the present application is to provide an automobile air-conditioning system to solve the defect in the prior art that the electronic expansion valve is difficult to meet the requirement for temperature resistance of the automobile environment, and the automobile air-conditioning system has a compact structural design, may effectively cool the electronic expansion valve, and has a high system strength, a stable transmission of refrigerant and a high security.
  • In order to solve the defect in the prior art, an automobile air-conditioning system is provided, which includes an evaporator and an electronic expansion valve which are communicated with each other via a pipeline, the electronic expansion valve including a coil and a valve body, and the coil being fixedly mounted on the valve body, wherein the automobile air-conditioning system further includes a bracket, the bracket includes a heat dissipation bridge and a cooling ring, the evaporator is arranged at one side of the heat dissipation bridge, the cooling ring is arranged at the other side of the heat dissipation bridge, the heat dissipation bridge and the cooling ring are integrally formed or are fixedly connected, and the coil is arranged in the cooling ring.
  • Preferably, the side of the heat dissipation bridge close to the evaporator is in direct contact with the evaporator.
  • Preferably, the side of the heat dissipation bridge close to the evaporator and the evaporator are fixedly connected to be in direct contact with one another.
  • Preferably, the coil is in direct contact with the cooling ring.
  • Preferably, the coil and the cooling ring are fixedly connected to be in direct contact with one another.
  • Preferably, a cover configured to enclose the coil is arranged on the cooling ring, and the cover and the cooling ring are integrally formed or are fixedly connected.
  • Preferably, the cover has no opening and completely encloses a top portion of the coil, or the cover has an opening and partially encloses a top portion of the coil.
  • Preferably, the cooling ring is of a complete ring body structure.
  • Preferably, the cooling ring has a gap, the cooling ring having the gap includes two connecting ends, the two connecting ends are two ring body extending portions extending outwardly from end portions of a ring body at the gap and arranged opposite to each other, and the two connecting ends are fixedly connected via a bolt.
  • Preferably, the bracket further includes a connecting plate, the connecting plate is arranged between the evaporator and the electronic expansion valve, the heat dissipation bridge is arranged at one side of the connecting plate close to the electronic expansion valve, and the heat dissipation bridge and the connecting plate are integrally formed or are fixedly connected.
  • Preferably, the side of the connecting plate close to the evaporator is in direct contact with the evaporator.
  • Preferably, the side of the connecting plate close to the evaporator and the evaporator are fixedly connected to be in direct contact with one another.
  • Preferably, the side of the connecting plate close to the evaporator is fixedly connected to the evaporator by welding, and a welding surface is an entire contacting surface between the connecting plate and the evaporator, or a contacting surface between the evaporator and a position, corresponding to the heat dissipation bridge, at the side of the connecting plate close to the evaporator.
  • Preferably, the bracket further includes a base, the base is horizontally arranged at a bottom of the connecting plate, the connecting plate and the base are integrally formed or are fixedly connected, the base is fixedly mounted in automobile, and the evaporator and the electronic expansion valve are, respectively, located at two sides above the base.
  • Preferably, the evaporator is directly fixed on one side of an upper surface of the base, and the valve body of the electronic expansion valve is directly fixed on the other side of the upper surface of the base.
  • Preferably, the bracket further includes a first supporting board, the first supporting board is fixedly mounted on the side of the connecting plate close to the evaporator, and the evaporator is fixedly mounted on the first supporting board.
  • Preferably, the bracket further includes a second supporting board, the second supporting board is fixedly mounted on the side of the connecting plate close to the electronic expansion valve, and the valve body of the electronic expansion valve is fixedly mounted on the second supporting board.
  • The automobile air-conditioning system according to the present application has the following beneficial effects.
    1. 1) In the automobile air-conditioning system according to the present application, heat quantity from the electronic expansion valve may be rapidly transmitted to the evaporator via the heat dissipation bridge and the cooling ring, and the refrigerating capacity of the evaporator is effectively utilized to cool the electronic expansion valve, thereby effectively utilizing a cold source and reducing an energy waste. Further the level of the temperature resistance of the electronic expansion valve is not required to be improved, thereby saving cost and avoiding a valve failure caused when the electronic expansion valve is working under a nonstandard working condition.
    2. 2) The automobile air-conditioning system according to the present application further includes a cooling ring having a gap, and two ends of the gap are fixedly connected, such that the cooling ring and the electronic expansion valve are abutted against each other more tightly, thereby improving the heat transfer efficiency of the cooling ring.
    3. 3) The automobile air-conditioning system according to the present application further includes a cover arranged at the top of the coil and connected to the cooling ring so as to enclose the coil and further improving the heat transfer efficiency between the electronic expansion valve and the evaporator.
    4. 4) The automobile air-conditioning system according to the present application further includes a connecting plate arranged between the electronic expansion valve and the evaporator so as to improve the heat transfer efficiency between the electronic expansion valve and the evaporator.
    5. 5) In the automobile air-conditioning system according to the present application, the electronic expansion valve and the evaporator are fixedly mounted on the bracket, thereby further enhancing the overall structural strength of the automobile air conditioner.
    6. 6) In the automobile air-conditioning system according to the present application, the electronic expansion valve is fixedly mounted next to the evaporator, which realizes a well cooperation between the evaporator and the electronic expansion valve, shortens a connection pipeline between the evaporator and the electronic expansion valve, and enhances the capability of vibration resistance; and meanwhile the automobile air-conditioning system has a compact structure, the using space of the automobile air conditioner is effectively saved, and the overall structural strength of the automobile air-conditioning system is enhanced.
    7. 7) The structural design philosophy of fixedly mounting the electronic expansion valve next to the evaporator via a bracket to make the coil of the electronic expansion valve work under a standard working condition in the automobile air-conditioning system according to the present application may be applied in a traditional refrigerating system to provide a basis for realizing a comprehensive utilization of the energy of the refrigerating system.
    BRIEF DESCRIPTION OF THE DRAWINGS
    • Figure 1 is a perspective view of an automobile air-conditioning system according to an embodiment of the present application;
    • Figure 2 is a left view of the automobile air-conditioning system of the embodiment shown in Figure 1;
    • Figure 3 is a left view of an automobile air-conditioning system according to another embodiment of the present application;
    • Figure 4 is a left view of an automobile air-conditioning system according to another embodiment of the present application;
    • Figure 5 is a left view of an automobile air-conditioning system according to another embodiment of the present application;
    • Figure 6 is a perspective view of an automobile air-conditioning system according to another embodiment of the present application;
    • Figure 7 is a perspective view of a bracket of an automobile air-conditioning system according to another embodiment of the present application;
    • Figure 8 is a perspective view of a bracket of an automobile air-conditioning system according to another embodiment of the present application;
    • Figure 9 is a perspective view of a bracket of an automobile air-conditioning system according to another embodiment of the present application;
    • Figure 10 is a top view of the bracket of the embodiment shown in Figure 1;
    • Figure 11 is a rear view of the bracket of the embodiment shown in Figure 1;
    • Figure 12 is a diagram showing highest temperatures of a cooling ring of the embodiment shown in Figure 1 in a first thermal test; and
    • Figure 13 is a diagram showing highest temperatures of the cooling ring of the embodiment shown in Figure 1 in a second thermal test.
    DETAILED DESCRIPTION
  • In the automobile air-conditioning system according to the present application, heat from an electronic expansion valve is rapidly transferred to an evaporator through a bracket having a heat dissipation bridge and a cooling ring, and the refrigerating capacity of the evaporator is effectively utilized to cool the electronic expansion valve, thereby effectively utilizing a cold source and reducing an energy waste. Further the level of the temperature resistance of the electronic expansion valve is not required to be improved, thereby saving cost and avoiding a valve failure caused when the electronic expansion valve is working under a nonstandard working condition. Embodiments of an automobile air-conditioning system of the present application will be described in detail hereinafter in conjunction with the drawings.
  • Reference is made to Figure 1, which is a perspective view of an automobile air-conditioning system according to an embodiment of the present application. The automobile air-conditioning system includes an evaporator 1 and an electronic expansion valve 2 which are communicated with each other via a pipe, the electronic expansion valve 2 includes a coil 200 and a valve body 201, and the coil 200 is fixedly mounted on the valve body 201. The automobile air-conditioning system further includes a bracket 3, and the bracket 3 includes a base 300, a connecting plate 301, a heat dissipation bridge 303 and a cooling ring 302.
  • The evaporator 1 and the electronic expansion valve 2 are respectively arranged at two sides of the connecting plate 301, and the evaporator 1 is in direct contact with the connecting plate 301. Further, the evaporator 1 and the connecting plate 301 are fixedly connected to be in direct contact with one another. Contacting surfaces of the evaporator 1 and the connecting plate 301 may be fixedly connected by partially welding or wholly welding. As shown in Figure 2, which is a left view of the automobile air-conditioning system of the embodiment shown in Figure 1, the contacting surfaces of the connecting plate 301 and the evaporator 1 are connected by wholly welding.
  • The heat dissipation bridge 303 is arranged at a top of the connecting plate 301 at a side close to the electronic expansion valve 2, and the heat dissipation bridge 303 and the connecting plate 301 are fixedly connected or are formed integrally. It can be appreciated for those skilled in the art that, the heat dissipation bridge 303 may be arranged at any position on the connecting plate 301 at the side close to the electronic expansion valve 2.
  • The cooling ring 302 is of an annular structure, and the cooling ring 302 and the heat dissipation bridge 303 are fixedly connected or are formed integrally. The coil 200 of the electronic expansion valve 2 is arranged inside the cooling ring 302 and is surrounded by the cooling ring 302, wherein the coil 200 is in direct contact with the cooling ring 302. Further, the coil 200 and the cooling ring 302 are fixedly connected to be in direct contact with one another. In a case that the coil 200 is in direct contact with the cooling ring 302 but is not fixedly connected to the cooling ring 302, the valve body 201 and the connecting plate 301 are fixedly connected to fixedly connect the electronic expansion valve 2 to the connecting plate 301. In a case that the coil 200 and the cooling ring 302 are fixedly connected, the valve body 201 and the connecting plate 301 may be in direct contact with one another without being fixedly connected, or be arranged with a gap therebetween, or be fixedly connected.
  • The side of the heat dissipation bridge 303 close to the evaporator 1 is in direct contact with the evaporator 1, and the coil 200 is in direct contact with the cooling ring 302, thus heat generated by the coil 200 of the electronic expansion valve 2 may be transmitted to the evaporator 1 via the heat dissipation bridge 303 and the coil 200.
  • Further, the heat dissipation bridge 303 and the evaporator 1 are fixedly connected, and the coil 200 and the cooling ring 302 are fixedly connected, thereby not only improving a heat transfer efficiency between the electronic expansion valve 2 and the evaporator 1, but also making the structure of the automobile air-conditioning system more compact and improving the overall structural strength of the automobile air-conditioning system.
  • The base 300 is horizontally arranged at a bottom of the connecting plate 301, and the evaporator 1 and the electronic expansion valve 2 are, respectively, arranged at two sides above the base 300. The base 300 is fixedly mounted on the automobile, and the connecting plate 301 and the base 300 are integrally formed, or the connecting plate 301 and the base 300 are formed separately and the connecting plate 301 is fixedly mounted on the base 300.
  • In the above embodiments, the electronic expansion valve 2 is fixedly mounted on the bracket 3, and the bracket 3 is fixedly mounted in the automobile and is fixedly connected to the evaporator 1.
  • Further, the cooling ring 302 is fixedly mounted on the connecting plate 301 via the heat dissipation bridge 303, and the coil 200 of the electronic expansion valve 2 is fixedly mounted in the cooling ring 302. In this embodiment, the cooling ring 302 is of a complete annular structure. The connecting plate 301, the cooling ring 302 and the heat dissipation bridge 303 are formed integrally. Alternatively, the connecting plate 301, the cooling ring 302 and the heat dissipation bridge 303 may be formed separately.
  • According to another embodiment of the present application, the bracket 3 may only include the heat dissipation bridge 303, and the heat dissipation bridge 303 is arranged between the evaporator 1 and the electronic expansion valve 2. The electronic expansion valve 2 is in contact with the evaporator 1 via the heat dissipation bridge 303 to transmit heat. Further, the coil 200 of the electronic expansion valve 2 is in contact with the evaporator 1 via the heat dissipation bridge 303 to transmit heat.
  • Reference is made to Figure 3, which is a left view of an automobile air-conditioning system according to another embodiment of the present application. The bracket 3 may only include the heat dissipation bridge 303 and the cooling ring 302, and the heat dissipation bridge 303 and the cooling ring 302 are arranged between the evaporator 1 and the electronic expansion valve 2. The heat dissipation bridge 303 has one side in contact with the evaporator 1 and the other side connected with the cooling ring 302 having a gap. The electronic expansion valve 2 is in contact with the cooling ring 302 and transmits heat to the evaporator 1 via the cooling ring 302 and the heat dissipation bridge 303.
  • The heat dissipation bridge 303 has one side fixedly connected to the evaporator 1 and the other side fixedly connected to the cooling ring 302 having the gap, and the electronic expansion valve 2 is fixedly mounted on the cooling ring 302. The coil 200 of the electronic expansion valve 2 is fixedly mounted inside the cooling ring 302, such that heat from the coil 200 of the electronic expansion valve 2 may be transmitted to the evaporator 1 via the cooling ring 302 and the heat dissipation bridge 303.
  • The heat dissipation bridge 303 and the cooling ring 302 may be formed integrally or separately. In a case that the heat dissipation bridge 303 and the cooling ring 302 are formed separately, the heat dissipation bridge 303 and the cooling ring 302 are fixedly connected, and the fixed connection may be realized by welding, threaded connection, clamping connection and etc.. The evaporator 1 is directly fixed on the automobile, and the electronic expansion valve 2 is fixedly connected to the evaporator 1 via the cooling ring 302 and the heat dissipation bridge 303, thereby making the structure of the automobile air-conditioning system more compact.
  • Unlike the embodiment in Figure 1, in this embodiment, the coil 200 and the cooling ring 302 are fixedly connected, the heat dissipation bridge 303 and the evaporator 1 are fixedly connected, and the evaporator 1 is directly mounted in the automobile, thereby shortening the connecting pipe between the evaporator 1 and the electronic expansion valve 2, enhancing the vibration resistance, and meanwhile making the structure of the automobile air-conditioning system compact, effectively saving the usage space of the automobile air conditioner, and improving the overall structural strength of the automobile air conditioner.
  • According to another embodiment of the present application, the bracket 3 may only include the heat dissipation bridge 303, the cooling ring 302 and the connecting plate 301. Reference is made to Figure 4, which is a left view of an automobile air-conditioning system according to the embodiment of the present application. The evaporator 1 is fixedly mounted in the automobile in practical use, and the connecting plate 301 has one plane in direct contact with the evaporator 1 and another plane fixedly arranged with the electronic expansion valve. Contacting planes of the connecting plate 301 and the evaporator 1 may also be partially welded.
  • Reference is made to Figure 5, which is a left view of an automobile air-conditioning system according to another embodiment of the present application. Unlike the embodiment shown in Figure 1, in this embodiment, besides the heat dissipation bridge 303, the cooling ring 302 and the connecting plate 301, the bracket 3 further includes a first supporting board 304 and a second supporting board 305 which are respectively mounted on two planes at two sides of the connecting plate.
  • The first supporting board 304 is fixedly mounted at the side of the connecting plate 301 close to the evaporator 1 and is located below the evaporator 1, and the evaporator 1 is fixedly mounted on the first supporting board 304.
  • The second supporting board 305 is fixedly mounted at the side of the connecting plate 301 close to the electronic expansion valve 2 and is located below the cooling ring 302, and the valve body 201 of the electronic expansion valve 2 is fixedly mounted on the second supporting board 305.
  • Other structures of the present embodiment are the same as the first embodiment. In this embodiment, the connecting plate 301 and the evaporator 1 may be in direct contact with one another, or the contacting surfaces thereof may be wholly welded. Only one of the first supporting board 304 and the second supporting board 305 may be mounted, for example, in a case that the first supporting board 304 is not provided, the connecting plate 301 and the evaporator 1 may be directly connected by welding; and similarly, in a case that the second supporting board 305 is not provided, the connecting plate 301 and the electronic expansion valve 2 may be directly connected by welding.
  • The connecting plate 301, the first supporting board 304 and the second supporting board 305 may not only strengthen the automobile air-conditioning system, but also accelerate the heat transfer between the electronic expansion valve 2 and the evaporator 1.
  • Reference is made to Figure 6, which is a perspective view of an automobile air-conditioning system according to another embodiment of the present application. Unlike the embodiment shown in Figure 5, in this embodiment, the connecting plate 301 and the evaporator 1 are partially welded or are in contact with one another partially, for example, the side of the connecting plate 301 close to the evaporator 1 is welded to the evaporator 1 at a position corresponding to the heat dissipation bridge 303.
  • Reference is made to Figure 7, which is a perspective view of the bracket according to another embodiment of an automobile air-conditioning system in the present application. To strengthen the cooling effect, a cover 307 having an opening may be further arranged on the cooling ring 302 at the top of the coil 200 to enclose the coil 200, and the cover 307 is connected to the cooling ring 302. The cover 307 on the cooling ring 302 may be sealed or may have an opening.
  • Reference is made to Figure 8, which is a perspective view of the bracket according to another embodiment of an automobile air-conditioning system in the present application. The cooling ring 302 has a gap, and such cooling ring 302 having the gap may facilitate the installation of the electronic expansion valve.
  • Reference is made to Figure 9, which is a perspective view of the bracket according to another embodiment of an automobile air-conditioning system in the present application. Two ends of the gap of the cooling ring 302 are fixedly connected. In this embodiment, the cooling ring 302 having the gap includes two connecting ends 306, the two connecting ends 306 are two ring body extending portions extending outwardly from end portions of the ring body at the gap and arranged opposite to each other, and the two connecting ends 306 are fixedly connected via a bolt. Such cooling ring 302 having the gap may facilitate the installation of the electronic expansion valve 2, and the electronic expansion valve 2 may be mounted more firmly. Since the two ends of the gap of the cooling ring 302 are fixedly connected, the cooling ring and the electronic expansion valve are abutted against each other more tightly, thereby improving the heat transfer efficiency of the cooling ring. The connection manner of the cooling ring 302 in this embodiment is simply an exemplary embodiment, and specific connection manner is not limited to the present embodiment.
  • In the above embodiments, each of the heat dissipation bridge, the cooling ring, the connecting plate, the base, the first supporting board and the second supporting board is made of heat conduction materials, and is preferably metallic material.
  • The operating principle of the above embodiments is as follows. When the refrigerating system is working, a surface temperature of the evaporator 1 is a constant low temperature, while the coil 200 of the electronic expansion valve 2 generates heat in operation, and when in summer or under a working environment of high temperature region, the temperature of the electronic expansion valve 2 is very likely to exceed a temperature resistance standard of 120 degree Celsius. A heat dissipation bridge 303 is provided between the evaporator 1 and the electronic expansion valve 2, such that the heat from the electronic expansion valve 2 may be transmitted to the evaporator 1 via the cooling ring 302 and the heat dissipation bridge 303, thereby realizing a cooling effect. Since the heat dissipation bridge 303 is in contact with the evaporator 1, the heat dissipation bridge 303 is cooled by the evaporator 1, thereby further cooling the cooling ring 302, and then heat transfer occurs between the cooling ring 302 and the coil 300 to cool the electronic expansion valve 2. In the present application, the cooling ring 302 and the heat dissipation bridge 303 function to transfer heat and fix the system structure.
  • Thermal analysis validation is conducted as follows.
  • In order to verify the actual using effect of the present application, a thermal analysis validation is conducted on the automobile air conditioner according to the embodiment of the present application shown in Figure 1. The heat dissipation bridge and the cooling ring in each solution in the following experiments are parts made of aluminium alloy material.
  • First Experiment: a comparison validation between the prior art and the embodiment of the present application shown in Figure 1
  • The extreme heat-resistance temperature of the electronic expansion valve in this experiment is set as 120 degree Celsius, and other data are shown in Sheet 1. Sheet 1
    Type of analysis Steady state thermal analysis
    Material Aluminium alloy
    Environment temperature 120 degree Celsius
    Unit m
    Temperature of a heat exchanger 2 degree Celsius
    Heat quantity of the electronic expansion valve 7W
    Load Convection: a vertical convective heat transfer coefficient is 5.7w/m2gk, and a horizontal convective heat transfer coefficient is 6.15 w/m2gk
    Thermal load: a surface temperature of the evaporator is 2 degree Celsius
    Internal heat source: 286720.734 w/m3
  • A comparison experiment is conducted under the above experimental conditions, and according to the analysis result, the highest temperature of the electronic expansion valve in the prior art reaches around 218 degree Celsius when the evaporator is not provided for transmitting heat. And the temperature at the top of the coil of the electronic expansion valve is relatively higher, and the temperature at the bottom of the coil is relatively lower, the above situation is caused because heat generated by the coil in operation is absorbed from the bottom of the coil by the valve body, and there is no heat dissipation approach at the top of the coil.
  • The analysis result shows that the solution in the embodiment of the present application shown in Figure 1 has a significant heat dissipation effect. The highest temperature of the electronic expansion valve is around 8 degree Celsius, the temperature field distribution of the valve body of the electronic expansion valve is even, and the temperature difference is about 0.5 degree Celsius, which will not affect the system operation.
  • In the solution of the embodiment of the present application shown in Figure 1, heat transfer may be controlled by designing and modifying dimensions of the heat dissipation bridge and the cooling ring. Main parameters influencing the heat transfer in the technical solution of the present application are a height of the cooling ring and a width of the heat dissipation bridge. As shown in Figure 10, which is a top view of the bracket of the embodiment shown in Figure 1, the heat dissipation bridge has a length a and a width b. As shown in Figure 11, which is a rear view of the bracket of the embodiment shown in Figure 1, the cooling ring is a height c. In the following solutions, the cooling ring is set to have the same thickness and diameter, the connecting plate is set to have the same dimension, a distance from a center of the cooling ring to the connecting plate is set be the same, and the same components in each solution has the same material. Thermal analysis validations are conducted, respectively, to analyze influences on the heat dissipation efficiency of the cooling ring caused by the width of the heat dissipation bridge and the height of the cooling ring.
  • Second Experiment: a comparison validation is conducted with different widths of the heat dissipation bridge in the embodiment of the present application shown in Figure 1, wherein the cooling ring has the same dimension, and the height of the cooling ring is 0.015m. The experimental condition is shown in Sheet 1 and Sheet 2. The width of the heat dissipation bridge in each solution is shown in Sheet 2. Sheet 2
    Experiment solution The width of the heat dissipation bridge (m)
    First Solution 0.015
    Second Solution 0.02
    Third Solution 0.026
    Fourth Solution 0.032
  • The experimental results of the four solutions are shown in Figure 12. In the first solution, the width of the heat dissipation bridge is 0.015m, and the maximum temperature of the cooling ring is about 8 degree Celsius, which may basically satisfy the cooling requirement of the electronic expansion valve. And as can be seen from Figure 12, the maximum temperature of the cooling ring decreases as the width of the heat dissipation bridge increases. That is, the larger the width of the heat dissipation bridge, the better the cooling effect.
  • Third Experiment: a comparison validation is conducted with different heights of the cooling ring in the embodiment of the present application shown in Figure 1, wherein the heat dissipation bridge in each solution has the same dimension, and the width of the heat dissipation bridge is 0.015m. The experimental condition is shown in Sheet 1 and Sheet 3. The height of the cooling ring in each solution is shown in Figure 3. Sheet 3
    Experiment solution the height of the cooling ring (m)
    Fifth Solution 0.015
    Sixth Solution 0.01
    Seventh Solution 0.005
    Eighth Solution 0.003
  • The experimental results of the four solutions are shown in Figure 13. In the eighth solution, the height of the cooling ring is 0.003m, and the maximum temperature of the cooling ring is about 44 degree Celsius, which may basically satisfy the cooling requirement of the electronic expansion valve. As can be seen from Figure 13, the maximum temperature of the cooling ring increases as the height of the cooling ring decreases. That is, the larger the height of the cooling ring, the better the cooling effect.
  • As can be concluded from the above verification results, the automobile air-conditioning system in the present application may better solve the problem that the electronic expansion valve is difficult to meet the requirement for temperature resistance of the automobile environment.
  • The embodiments described hereinabove are only exemplary embodiments of the present application. It should be noted that, for the person skilled in the art, many modifications and improvements may be made to the present application without departing from the principle of the present application. The protection scope of the present application is defined by the accompanying claims.

Claims (17)

  1. An automobile air-conditioning system, comprising an evaporator and an electronic expansion valve which are communicated with each other via a pipeline, the electronic expansion valve comprising a coil and a valve body, and the coil being fixedly mounted on the valve body, wherein the automobile air-conditioning system further comprises a bracket, the bracket comprises a heat dissipation bridge and a cooling ring, the evaporator is arranged at one side of the heat dissipation bridge, the cooling ring is arranged at the other side of the heat dissipation bridge, the heat dissipation bridge and the cooling ring are integrally formed or are fixedly connected, and the coil is arranged in the cooling ring.
  2. The automobile air-conditioning system according to claim 1, wherein the side of the heat dissipation bridge close to the evaporator is in direct contact with the evaporator.
  3. The automobile air-conditioning system according to claim 2, wherein the heat dissipation bridge and the evaporator are fixedly connected to be in direct contact with one another.
  4. The automobile air-conditioning system according to claim 1, wherein the coil is in direct contact with the cooling ring.
  5. The automobile air-conditioning system according to claim 4, wherein the coil and the cooling ring are fixedly connected to be in direct contact with one another.
  6. The automobile air-conditioning system according to claim 1, wherein a cover configured to enclose the coil is arranged on the cooling ring, and the cover and the cooling ring are integrally formed or are fixedly connected.
  7. The automobile air-conditioning system according to claim 6, wherein the cover has no opening and completely encloses a top portion of the coil, or the cover has an opening and partially encloses a top portion of the coil.
  8. The automobile air-conditioning system according to claim 1, wherein the cooling ring is of a complete ring body structure.
  9. The automobile air-conditioning system according to claim 1, wherein the cooling ring has a gap, the cooling ring having the gap comprises two connecting ends, the two connecting ends are two ring body extending portions extending outwardly from end portions of a ring body at the gap and arranged opposite to each other, and the two connecting ends are fixedly connected via a bolt.
  10. The automobile air-conditioning system according to claim 1, wherein the bracket further comprises a connecting plate, the connecting plate is arranged between the evaporator and the electronic expansion valve, the heat dissipation bridge is arranged at one side of the connecting plate close to the electronic expansion valve, and the heat dissipation bridge and the connecting plate are integrally formed or are fixedly connected.
  11. The automobile air-conditioning system according to claim 10, wherein the side of the connecting plate close to the evaporator is in direct contact with the evaporator.
  12. The automobile air-conditioning system according to claim 11, wherein the side of the connecting plate close to the evaporator and the evaporator are fixedly connected to be in direct contact with one another.
  13. The automobile air-conditioning system according to claim 12, wherein the side of the connecting plate close to the evaporator is fixedly connected to the evaporator by welding, and a welding surface is an entire contacting surface between the connecting plate and the evaporator, or a contacting surface between the evaporator and a position, corresponding to the heat dissipation bridge, at the side of the connecting plate close to the evaporator.
  14. The automobile air-conditioning system according to claim 11, wherein the bracket further comprises a base, the base is horizontally arranged at a bottom of the connecting plate, the connecting plate and the base are integrally formed or are fixedly connected, the base is fixedly mounted in automobile, and the evaporator and the electronic expansion valve are, respectively, located at two sides above the base.
  15. The automobile air-conditioning system according to claim 14, wherein the evaporator is directly fixed on one side of an upper surface of the base, and the valve body of the electronic expansion valve is directly fixed on the other side of the upper surface of the base.
  16. The automobile air-conditioning system according to claim 14, wherein the bracket further comprises a first supporting board, the first supporting board is fixedly mounted on the side of the connecting plate close to the evaporator, and the evaporator is fixedly mounted on the first supporting board.
  17. The automobile air-conditioning system according to claim 14 or 16, wherein the bracket further comprises a second supporting board, the second supporting board is fixedly mounted on the side of the connecting plate close to the electronic expansion valve, and the valve body of the electronic expansion valve is fixedly mounted on the second supporting board.
EP12797058.0A 2011-06-09 2012-06-06 Automobile air-conditioning system Active EP2719558B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110161555.0A CN102815181B (en) 2011-06-09 2011-06-09 A kind of automotive air-conditioning system
PCT/CN2012/076529 WO2012167726A1 (en) 2011-06-09 2012-06-06 Automobile air-conditioning system

Publications (3)

Publication Number Publication Date
EP2719558A1 true EP2719558A1 (en) 2014-04-16
EP2719558A4 EP2719558A4 (en) 2014-11-12
EP2719558B1 EP2719558B1 (en) 2017-09-13

Family

ID=47295480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12797058.0A Active EP2719558B1 (en) 2011-06-09 2012-06-06 Automobile air-conditioning system

Country Status (4)

Country Link
US (1) US9581368B2 (en)
EP (1) EP2719558B1 (en)
CN (1) CN102815181B (en)
WO (1) WO2012167726A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106766441A (en) * 2015-11-25 2017-05-31 开利公司 Refrigeration system and its throttling control method
WO2018213243A1 (en) * 2017-05-15 2018-11-22 Carrier Corporation Control systems and methods for heat pump systems
DE102017110706A1 (en) * 2017-05-17 2018-11-22 Miele & Cie. Kg Throttle device for a heat pump and heat pump with a throttle device
CN213954489U (en) * 2020-12-14 2021-08-13 广东威灵电机制造有限公司 Stator module, electronic expansion valve and refrigeration equipment
CN113829832A (en) * 2021-09-27 2021-12-24 浙江吉利控股集团有限公司 Thermal management system and vehicle

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW278112B (en) * 1994-05-27 1996-06-11 Toyota Automatic Loom Co Ltd
EP0788906B1 (en) * 1995-10-02 2003-09-03 Calsonic Kansei Corporation Evaporator/Expansion valve unit for use in automotive air conditioning system
JP4091452B2 (en) * 2003-02-13 2008-05-28 カルソニックカンセイ株式会社 Pressure control device and pressure control method for refrigeration cycle using supercritical refrigerant
CN100494830C (en) * 2004-08-23 2009-06-03 王春刚 Inserted independent intelligent throttle apparatus
KR20060034109A (en) * 2004-10-18 2006-04-21 삼성전자주식회사 Air condirioner and method of controlling the same
CN201281502Y (en) * 2008-09-25 2009-07-29 广东美的电器股份有限公司 Mounting structure for electronic expansion valve component of suspended air conditioner
CN101930821B (en) * 2009-06-25 2012-11-14 浙江三花股份有限公司 Electromagnetic coil device
CN201429257Y (en) * 2009-07-01 2010-03-24 河南千年冷冻设备有限公司 Electronic expansion valve refrigeration system
CN201488398U (en) 2009-08-31 2010-05-26 宗占国 Air source heat pump unit with electronic auxiliary heating device
CN102026527A (en) * 2010-11-16 2011-04-20 深圳市航宇德升科技有限公司 Miniature refrigerator for cooling electronic equipment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
No further relevant documents disclosed *
None *
See also references of WO2012167726A1 *

Also Published As

Publication number Publication date
EP2719558B1 (en) 2017-09-13
CN102815181B (en) 2017-03-15
WO2012167726A1 (en) 2012-12-13
CN102815181A (en) 2012-12-12
US20140123698A1 (en) 2014-05-08
EP2719558A4 (en) 2014-11-12
US9581368B2 (en) 2017-02-28

Similar Documents

Publication Publication Date Title
EP2719558B1 (en) Automobile air-conditioning system
CN104296422A (en) Heat exchanger integrated assembly
CN202083266U (en) Heat transfer element with pipe integrated with corrugated fins
CN106016504B (en) A kind of convertible frequency air-conditioner radiator and transducer air conditioning
CN109099523B (en) Radiator and air conditioning system
CN203719037U (en) Air conditioning electric control component and air conditioner with same
CN203718983U (en) Air conditioning electric control component and air conditioner with same
CN203718974U (en) Air conditioning electric control box component and inverter air conditioner with same
CN110336096A (en) Batteries of electric automobile cooling system based on semiconductor heat power technology
CN211822831U (en) Heat dissipation component and air condensing units
CN210568872U (en) Heat dissipation device and air conditioner
CN103134246B (en) A kind of automotive air-conditioning system
CN209882431U (en) Heat dissipation component, air condensing units and air conditioner
CN2826690Y (en) Heat radiator for large power consumption power device
CN203718984U (en) Air conditioning electric control box component and inverter air conditioner with same
CN111336716A (en) Lower box of refrigeration vehicle
CN210399247U (en) Heat dissipation device based on loop heat pipe and air conditioner
CN1852646A (en) Evapouration cooling-radiating structure of power device
CN210399250U (en) Automatically controlled subassembly, radiator unit and air conditioner
CN218769722U (en) Battery system with modules cooled vertically and simultaneously and vehicle using battery system
CN219976807U (en) Volume-reduced integrated aluminum foil radiator
CN213931207U (en) Radiator and air condensing units
CN213040671U (en) Frequency conversion air conditioner's promotion superheat degree structure and refrigerant system thereof
CN216391858U (en) Wireless PCBA that charges of external heat radiation structure
CN219761183U (en) Passive heat conduction type outdoor cabinet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012037366

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: B60H0001000000

Ipc: F25B0041040000

A4 Supplementary search report drawn up and despatched

Effective date: 20141010

RIC1 Information provided on ipc code assigned before grant

Ipc: B60H 1/00 20060101ALI20141006BHEP

Ipc: F25B 41/04 20060101AFI20141006BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170411

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 928565

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012037366

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170913

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 928565

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180113

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012037366

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

26N No opposition filed

Effective date: 20180614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180606

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180630

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120606

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170913

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170913

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602012037366

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0041040000

Ipc: F25B0041200000

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240613

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240517

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240624

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240620

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240606

Year of fee payment: 13