EP2717773A1 - Dispositif portable et plateforme pour entrée sensorielle - Google Patents

Dispositif portable et plateforme pour entrée sensorielle

Info

Publication number
EP2717773A1
EP2717773A1 EP12797398.0A EP12797398A EP2717773A1 EP 2717773 A1 EP2717773 A1 EP 2717773A1 EP 12797398 A EP12797398 A EP 12797398A EP 2717773 A1 EP2717773 A1 EP 2717773A1
Authority
EP
European Patent Office
Prior art keywords
data
wearable device
motion
user
activity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12797398.0A
Other languages
German (de)
English (en)
Other versions
EP2717773A4 (fr
Inventor
Hosain Sadequr RAHMAN
Richard Lee DRYSDALE
Michael Edward Smith Luna
Scott Fullam
Travis Austin BOGARD
Jeremiah Robison
Thomas Alan Donaldson
Raymond A. Martino
Max Everett UTTER II
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AliphCom LLC
Original Assignee
AliphCom LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/158,372 external-priority patent/US20120313272A1/en
Priority claimed from US13/158,416 external-priority patent/US20120313296A1/en
Priority claimed from US13/180,320 external-priority patent/US8793522B2/en
Priority claimed from US13/181,498 external-priority patent/US20120316455A1/en
Application filed by AliphCom LLC filed Critical AliphCom LLC
Publication of EP2717773A1 publication Critical patent/EP2717773A1/fr
Publication of EP2717773A4 publication Critical patent/EP2717773A4/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • A61B5/02055Simultaneously evaluating both cardiovascular condition and temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1118Determining activity level
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/112Gait analysis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6829Foot or ankle
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/163Wearable computers, e.g. on a belt
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices
    • G16H40/67ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices for remote operation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0242Operational features adapted to measure environmental factors, e.g. temperature, pollution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2562/00Details of sensors; Constructional details of sensor housings or probes; Accessories for sensors
    • A61B2562/02Details of sensors specially adapted for in-vivo measurements
    • A61B2562/0219Inertial sensors, e.g. accelerometers, gyroscopes, tilt switches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0015Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system
    • A61B5/0024Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by features of the telemetry system for multiple sensor units attached to the patient, e.g. using a body or personal area network
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0531Measuring skin impedance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14532Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/14542Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/165Evaluating the state of mind, e.g. depression, anxiety
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising

Definitions

  • the present invention relates generally to electrical and electronic hardware, computer software, wired and wireless network communications, and computing devices. More
  • conventional devices such as fitness watches, heart rate monitors, GPS-enabled fitness monitors, health monitors (e.g., diabetic blood sugar testing units), digital voice recorders, pedometers, altimeters, and other conventional personal data capture devices are generally manufactured for conditions that occur in a single or small groupings of activities.
  • FIG. 1 illustrates an exemplary data-capable strapband system
  • FIG. 2A illustrates an exemplary wearable device and platform for sensory input
  • FIG. 2B illustrates an alternative exemplary wearable device and platform for sensory input
  • FIG. 3 illustrates sensors for use with an exemplary data-capable strapband
  • FIG. 4 illustrates an application architecture for an exemplary data-capable strapband
  • FIG. 5A illustrates representative data types for use with an exemplary data-capable strapband
  • FIG. 5B illustrates representative data types for use with an exemplary data-capable strapband in fitness-related activities
  • FIG. 5C illustrates representative data types for use with an exemplary data-capable strapband in sleep management activities
  • FIG. 5D illustrates representative data types for use with an exemplary data-capable strapband in medical-related activities
  • FIG. 5E illustrates representative data types for use with an exemplary data-capable strapband in social media/networking-related activities
  • FIG. 6 illustrates a transition between modes of operation of a strapband in accordance with various embodiments
  • FIG. 7A illustrates a perspective view of an exemplary data-capable strapband
  • FIG. 7B illustrates a side view of an exemplary data-capable strapband
  • FIG. 7C illustrates another side view of an exemplary data-capable strapband
  • FIG. 7D illustrates a top view of an exemplary data-capable strapband
  • FIG. 7E illustrates a bottom view of an exemplary data-capable strapband
  • FIG. 7F illustrates a front view of an exemplary data-capable strapband
  • FIG. 7G illustrates a rear view of an exemplary data-capable strapband
  • FIG. 8A illustrates a perspective view of an exemplary data-capable strapband
  • FIG. 8B illustrates a side view of an exemplary data-capable strapband
  • FIG. 8C illustrates another side view of an exemplary data-capable strapband
  • FIG. 8D illustrates a top view of an exemplary data-capable strapband
  • FIG. 8E illustrates a bottom view of an exemplary data-capable strapband
  • FIG. 8F illustrates a front view of an exemplary data-capable strapband
  • FIG. 8G illustrates a rear view of an exemplary data-capable strapband
  • FIG. 9A illustrates a perspective view of an exemplary data-capable strapband
  • FIG. 9B illustrates a side view of an exemplary data-capable strapband
  • FIG. 9C illustrates another side view of an exemplary data-capable strapband
  • FIG. 9D illustrates a top view of an exemplary data-capable strapband
  • FIG. 9E illustrates a bottom view of an exemplary data-capable strapband
  • FIG. 9F illustrates a front view of an exemplary data-capable strapband
  • FIG. 9G illustrates a rear view of an exemplary data-capable strapband
  • FIG. 10 illustrates an exemplary computer system suitable for use with a data-capable strapband
  • FIG. 1 1 depicts a variety of inputs in a specific example of a strapband, such as a data- capable strapband, according to various embodiments;
  • FIGs. 12A to 12F depict a variety of motion signatures as input into a strapband, such as a data-capable strapband, according to various embodiments;
  • FIG. 13 depicts an inference engine of a strapband configured to detect an activity and/or a mode based on monitored motion, according to various embodiments
  • FIG. 14 depicts a representative implementation of one or more strapbands and equivalent devices, as wearable devices, to form unique motion profiles, according to various embodiments;
  • FIG. 15 depicts an example of a motion capture manager configured to capture motion and portions thereof, according to various embodiments
  • FIG. 16 depicts an example of a motion analyzer configured to evaluate motion-centric events, according to various embodiments
  • FIG. 17 illustrates action and event processing during a mode of operation in accordance with various embodiments
  • FIG. 18A illustrates an exemplary wearable device for sensory user interface
  • FIG. 18B illustrates an alternative exemplary wearable device for sensory user interface
  • FIG. 18C illustrates an exemplary switch rod to be used with an exemplary wearable device
  • FIG. 18D illustrates an exemplary switch for use with an exemplary wearable device
  • FIG. 18E illustrates an exemplary sensory user interface.
  • FIG. 1 illustrates an exemplary data-capable strapband system.
  • system 100 includes network 102, strapbands (hereafter “bands”) 104-1 12, server 114, mobile computing device 115, mobile communications device 118, computer 120, laptop 122, and distributed sensor 124.
  • bands strapbands
  • bands 104-1 12 may be attached directly or indirectly to other items, organic or inorganic, animate, or static. In still other examples, bands 104-1 12 may be used differently.
  • bands 104-112 may be implemented as wearable personal data or data capture devices (e.g., data-capable devices) that are worn by a user around a wrist, ankle, arm, ear, or other appendage, or attached to the body or affixed to clothing.
  • One or more facilities, sensing elements, or sensors, both active and passive, may be implemented as part of bands 104-112 in order to capture various types of data from different sources, Temperature, environmental, temporal, motion, electronic, electrical, chemical, or other types of sensors (including those described below in connection with FIG.
  • GUI graphical user interface
  • a user interface may be any type of human-computing interface (e.g., graphical, visual, audible, haptic, or any other type of interface that communicates information to a user (i.e., wearer of bands 104-112) using, for example, noise, light, vibration, or other sources of energy and data generation (e.g., pulsing vibrations to represent various types of signals or meanings, blinking lights, and the like, without limitation)) implemented locally (i.e., on or coupled to one or more of bands 104-1 12) or remotely (i.e., on a device other than bands 104-112).
  • a user interface may be any type of human-computing interface (e.g., graphical, visual, audible, haptic, or any other type of interface that communicates information to a user (i.e., wearer of bands 104-112) using, for example, noise, light, vibration, or other sources of energy and data generation (e.g., pulsing vibrations to represent various
  • a wearable device such as bands 104-112 may also be implemented as a user interface configured to receive and provide input to or from a user (i.e., wearer), Bands 104-112 may also be implemented as data-capable devices that are configured for data communication using various types of communications infrastructure and media, as described in greater detail below. Bands 104-112 may also be wearable, personal, non-intrusive, lightweight devices that are configured to gather large amounts of personally relevant data that can be used to improve user health, fitness levels, medical conditions, athletic performance, sleeping physiology, and physiological conditions, or used as a sensory-based user interface ("UI") to signal social- related notifications specifying the state of the user through vibration, heat, lights or other sensory based notifications. For example, a social-related notification signal indicating a user is on-line can be transmitted to a recipient, who in turn, receives the notification as, for instance, a vibration.
  • UI sensory-based user interface
  • bands 104-112 may be used to perform various analyses and evaluations that can generate information as to a person's physical (e.g., healthy, sick, weakened, or other states, or activity level), emotional, or mental state (e.g., an elevated body temperature or heart rate may indicate stress, a lowered heart rate and skin temperature, or reduced movement (excessive sleeping), may indicate physiological depression caused by exertion or other factors, chemical data gathered from evaluating outgassing from the skin's surface may be analyzed to determine whether a person's diet is balanced or if various nutrients are lacking, salinity detectors may be evaluated to determine if high, lower, or proper blood sugar levels are present for diabetes management, and others).
  • bands 104-112 may be configured to gather from sensors locally and remotely.
  • band 104 may capture (i.e., record, store, communicate (i.e., send or receive), process, or the like) data from various sources (i.e., sensors that are organic (i.e., installed, integrated, or otherwise implemented with band 104) or distributed (e.g., microphones on mobile computing device 1 15, mobile communications device 118, computer 120, laptop 122, distributed sensor 124, global positioning system ("GPS") satellites (in low, mid, or high earth orbit), or others, without limitation)) and exchange data with one or more of bands 106-1 12, server 1 14, mobile computing device 1 15, mobile communications device 1 18, computer 120, laptop 122, and distributed sensor 124.
  • sources i.e., sensors that are organic (i.e., installed, integrated, or otherwise implemented with band 104) or distributed (e.g., microphones on mobile computing device 1 15, mobile communications device 118, computer 120, laptop 122, distributed sensor 124, global positioning system (“GPS") satellites (in low, mid, or high earth orbit), or others, without limitation)
  • a local sensor may be one that is incorporated, integrated, or otherwise implemented with bands 104-1 12.
  • a remote or distributed sensor e.g., mobile computing device 1 15, mobile communications device 1 18, computer 120, laptop 122, or, generally, distributed sensor 124) may be sensors that can be accessed, controlled, or otherwise used by bands 104-1 12.
  • band 1 12 may be configured to control devices that are also controlled by a given user (e.g., mobile computing device 115, mobile communications device 1 18, computer 120, laptop 122, and distributed sensor 124).
  • a microphone in mobile communications device 118 may be used to detect, for example, ambient audio data that is used to help identify a person's location, or an ear clip (e.g., a headset as described below) affixed to an ear may be used to record pulse or blood oxygen saturation levels.
  • a sensor implemented with a screen on mobile computing device 1 15 may be used to read a user's temperature or obtain a biometric signature while a user is interacting with data.
  • a further example may include using data that is observed on computer 120 or laptop 122 that provides information as to a user's online behavior and the type of content that she is viewing, which may be used by bands 104-1 12.
  • data may be transferred to bands 104-1 12 by using, for example, an analog audio jack, digital adapter (e.g., USB, mmi-USB), or other, without limitation, plug, or other type of connector that may be used to physically couple bands 104-112 to another device or system for transferring data and, in some examples, to provide power to recharge a battery (not shown).
  • an analog audio jack e.g., USB, mmi-USB
  • plug, or other type of connector may be used to physically couple bands 104-112 to another device or system for transferring data and, in some examples, to provide power to recharge a battery (not shown).
  • a wireless data communication interface or facility e.g., a wireless radio that is configured to communicate data from bands 104-1 12 using one or more data communication protocols (e.g., IEEE 802.1 la/b/g/n (WiFi), WiMax, ANTTM, ZigBee®, Bluetooth®, Near Field Communications (“NFC”), and others)) may be used to receive or transfer data.
  • bands 104-1 12 may be configured to analyze, evaluate, modify, or otherwise use data gathered, either directly or indirectly,
  • bands 104-112 may be configured to share data with each other or with an intermediary facility, such as a database, website, web service, or the like, which may be implemented by server 114.
  • server 114 can be operated by a third party providing, for example, social media-related services.
  • Bands 104-112 and other related devices may exchange data with each other directly, or bands 104-1 12 may exchange data via a third party server, such as a third party like Facebook®, to provide social-media related services.
  • third party servers include servers for social networking services, including, but not limited to, services such as Facebook®, Yahoo! IMTM, GTalkTM, MSN MessengerTM, Twitter® and other private or public social networks.
  • the exchanged data may include personal 20 physiological data and data derived from sensory-based user interfaces ("UP').
  • Server 114 may be implemented using one or more processor-based computing devices or networks, including computing clouds, storage area networks ("SAN"), or the like.
  • bands 104-112 may be used as a personal data or area network (e.g., "PDN” or "PAN”) in which data relevant to a given user or band (e.g,, one or more of bands 104-1 12) may be shared.
  • bands 104 and 112 may be configured to exchange data with each other over network 102 or indirectly using server 1 14.
  • bands 104 and 112 may direct a web browser hosted on a computer (e.g., computer 120, laptop 122, or the like) in order to access, view, modify, or perform other operations with data captured by bands 104 and 112.
  • a computer e.g., computer 120, laptop 122, or the like
  • two runners using bands 104 and 1 12 may be geographically remote (e.g., users are not geographically in close proximity locally such that bands being used by each user are in direct data communication), but wish to share data regarding their race times (pre, post, or in-race), personal records (i.e., "PR"), target split times, results, performance characteristics (e.g., target heart rate, target VO 2 max, and others), and other information.
  • race times pre, post, or in-race
  • PR personal records
  • target split times results
  • performance characteristics e.g., target heart rate, target VO 2 max, and others
  • data can be gathered for comparative analysis and other uses. Further, data can be shared in substantially real-time (taking into account any latencies incurred by data transfer rates, network topologies, or other data network factors) as well as uploaded after a given activity or event has been performed, In other words, data can be captured by the user as it is worn and configured to transfer data using, for example, a wireless network connection (e.g., a wireless network interface card, wireless local area network (“LAN”) card, cell phone, or the like, Data may also be shared in a temporally asynchronous manner in which a wired data connection (e.g., an analog audio plug (and associated software or firmware) configured to transfer digitally encoded data to encoded audio data that may be transferred between bands 1 4-1 12 and a plug configured to receive, encode/decode, and process data exchanged) may be used to transfer data from one or more bands 104-112 to various destinations (e.g., an analog audio plug (and associated software or firmware) configured to transfer digitally encoded data to encoded audio data
  • Bands 104-112 may be implemented with various types of wired and/or wireless communication facilities and are not intended to be limited to any specific technology.
  • data may be transferred from bands 104-1 12 using an analog audio plug (e.g., TRRS, TRS, or others),
  • wireless communication facilities using various types of data communication protocols e.g., WiFi, Bluetooth®, ZigBee®, ANTTM, and others
  • bands 104-112 may include circuitry, firmware, hardware, radios, antennas, processors, microprocessors, memories, or other electrical, electronic, mechanical, or physical elements configured to enable data communication capabilities of various types and characteristics.
  • bands 104-1 12 may be configured to collect data from a wide range of sources, including onboard (not shown) and distributed sensors (e.g., server 1 14, mobile computing device 115, mobile communications device 1 18, computer 120, laptop 122, and distributed sensor 124) or other bands, Some or all data captured may be personal, sensitive, or confidential and various techniques for providing secure storage and access may be implemented. For example, various types of security protocols and algorithms may be used to encode data stored or accessed by bands 1 04-1 12.
  • security protocols and algorithms include authentication, encryption, encoding, private and public key infrastructure, passwords, checksums, hash codes and hash functions (e.g., SHA, SHA-1, MD-5, and the like), or others may be used to prevent undesired access to data captured by bands 104-112.
  • data security for bands 104-112 may be implemented differently.
  • Bands 104-1 12 may be used as personal wearable, data capture devices that, when worn, are configured to identify a specific, individual user. By evaluating captured data such as motion data from an accelerometer, biometric data such as heart rate, skin galvanic response, and other biometric data, and using analysis techniques, both long and short-term (e.g., software packages or modules of any type, without limitation), a user may have a unique pattern of behavior or motion and/or biometric responses that can be used as a signature for identification. For example, bands 104-1 12 may gather data regarding an individual person's gait or other unique biometric, physiological or behavioral characteristics.
  • a biometric signature (e.g., fingerprint, retinal or iris vascular pattern, or others) may be gathered and transmitted to bands 104-112 that, when combined with other data, determines that a given user has been properly identified and, as such, authenticated.
  • bands 104-1 12 When bands 104-1 12 are worn, a user may be identified and authenticated to enable a variety of other functions such as accessing or modifying data, enabling wired or wireless data transmission facilities (i.e., allowing the transfer of data from bands 104-112), modifying functionality or functions of bands 104-112, authenticating financial transactions using stored data and information (e.g., credit card, PIN, card security numbers, and the like), running applications that allow for various operations to be performed (e.g., controlling physical security and access by transmitting a security code to a reader that, when authenticated, unlocks a door by turning off current to an electromagnetic lock, and others), and others.
  • stored data and information e.g., credit card, PIN, card security numbers, and the like
  • running applications that allow for various operations to be performed (e.g., controlling physical security and access by transmitting a security code to a reader that, when authenticated, unlocks a door by turning off current to an electromagnetic lock, and others), and others.
  • bands 104-1 12 can act as secure, personal, wearable, data-capable devices.
  • the number, type, function, configuration, specifications, structure, or other features of system 100 and the above-described elements may be varied and are not limited to the examples provided.
  • FIG. 2A illustrates an exemplary wearable device and platform for sensory input.
  • band (i.e., wearable device) 200 includes bus 202, processor 204, memory 206, vibration source 208, accelerometer 210, sensor 212, battery 214, and communications facility 216.
  • the quantity, type, function, structure, and configuration of band 200 and the elements e.g., bus 202, processor 204, memory 206, vibration source 208, accelerometer 210, sensor 212, battery 214, and communications facility 216) shown may be varied and are not limited to the examples provided.
  • processor 204 may be implemented as logic to provide control functions and signals to memory 206, vibration source 208, accelerometer 210, sensor 212, battery 214, and communications facility 216.
  • Processor 204 may be implemented using any type of processor or microprocessor suitable for packaging within bands 104-1 12 (FIG, 1), Various types of microprocessors may be used to provide data processing capabilities for band 200 and are not limited to any specific type or capability.
  • a MSP430F5528-type microprocessor manufactured by Texas Instruments of Dallas, Texas may be configured for data communication using audio tones and enabling the use of an audio plug-and-jack system (e.g., TRRS, TRS, or others) for transferring data captured by band 200.
  • TRRS audio plug-and-jack system
  • different processors may be desired if other functionality (e.g., the type and number of sensors (e.g., sensor 212)) are varied.
  • Data processed by processor 204 may be stored using, for example, memory 206.
  • memory 206 may be implemented using various types of data storage technologies and standards, including, without limitation, read-only memory (“ROM”), random access memory (“RAM”), dynamic random access memory (“DRAM”), static random access memory (“SRAM”), static/dynamic random access memory (“SDRAM”), magnetic random access memory (“MRAM”), solid state, two and three-dimensional memories, Flash®, and others,
  • ROM read-only memory
  • RAM random access memory
  • DRAM dynamic random access memory
  • SRAM static random access memory
  • SDRAM static/dynamic random access memory
  • MRAM magnetic random access memory
  • Solid state two and three-dimensional memories
  • Flash® Flash®
  • Memory 206 may also be implemented using one or more partitions that are configured for multiple types of data storage technologies to allow for non-modifiable (i.e., by a user) software to be installed (e.g., firmware installed on ROM) while also providing for storage of captured data and applications using, for example, RAM.
  • Vibration source 208 may be implemented as a motor or other mechanical structure that functions to provide vibratory energy that is communicated through band 200.
  • an application stored on memory 206 may be configured to monitor a clock signal from processor 204 in order to provide timekeeping functions to band 200. If an alarm is set for a desired time, vibration source 208 may be used to vibrate when the desired time occurs, As another example, vibration source 208 may be coupled to a framework (not shown) or other structure that is used to translate or communicate vibratory energy throughout the physical structure of band 200. In other examples, vibration source 208 may be implemented differently.
  • Power may be stored in battery 214, which may be implemented as a battery, battery module, power management module, or the like. Power may also be gathered from local power sources such as solar panels, thermo-electric generators, and kinetic energy generators, among others that are alternatives power sources to external power for a battery. These additional sources can either power the system directly or can charge a battery, which, in turn, is used to power the system (e.g., of a strapband).
  • battery 214 may be implemented as a battery, battery module, power management module, or the like. Power may also be gathered from local power sources such as solar panels, thermo-electric generators, and kinetic energy generators, among others that are alternatives power sources to external power for a battery. These additional sources can either power the system directly or can charge a battery, which, in turn, is used to power the system (e.g., of a strapband).
  • battery 214 may include a rechargeable, expendable, replaceable, or other type of battery, but also circuitry, hardware, or software that may be used in connection with in lieu of processor 204 in order to provide power management, charge/recharging, sleep, or other functions, Further, battery 214 may be implemented using various types of battery technologies, including Lithium Ion ("LI”), Nickel Metal Hydride (“NiMH”), or others, without limitation. Power drawn as electrical current may be distributed from battery via bus 202, the latter of which may be implemented as deposited or formed circuitry or using other forms of circuits or cabling, including flexible circuitry. Electrical current distributed from battery 204 and managed by processor 204 may be used by one or more of memory 206, vibration source 208, accelerometer 210, sensor 212, or communications facility 216.
  • various sensors may be used as input sources for data captured by band 200.
  • accelerometer 210 may be used to detect a motion or other condition and convert it to data as measured across one, two, or three axes of motion.
  • other sensors i.e., sensor 212
  • sensor 212 may be implemented to provide temperature, environmental, physical, chemical, electrical, or other types of sensory inputs.
  • sensor 212 may include one or multiple sensors and is not intended to be limiting as to the quantity or type of sensor implemented.
  • Sensory input captured by band 200 using accelerometer 210 and sensor 212 or data requested from another source i.e., outside of band 200
  • communications facility 216 may include a wireless radio, control circuit or logic, antenna, transceiver, receiver, transmitter, resistors, diodes, transistors, or other elements that are used to transmit and receive data from band 200.
  • communications facility 216 may be implemented to provide a "wired" data communication capability such as an analog or digital attachment, plug, jack, or the like to allow for data to be transferred.
  • communications facility 216 may be implemented to provide a wireless data communication capability to transmit digitally encoded data across one or more frequencies using various types of data communication protocols, without limitation,
  • band 200 and the above-described elements may be varied in function, structure, configuration, or implementation and are not limited to those shown and described.
  • FIG. 2B illustrates an alternative exemplary wearable device and platform for sensory input.
  • band (i.e., wearable device) 220 includes bus 202, processor 204, memory 206, vibration source 208, accelerometer 210, sensor 212, battery 214, communications facility 216, switch 222, and light-emitting diode (hereafter "LED") 224.
  • LED light-emitting diode
  • band 200 and the elements e.g., bus 202, processor 204, memory 206, vibration source 208, accelerometer 210, sensor 212, battery 214, and communications facility 216) shown may be varied and are not limited to the examples provided,
  • band 200 may be implemented as an alternative structure to band 200 (FTG, 2A) described above.
  • sensor 212 may be configured to sense, detect, gather, or otherwise receive input (i.e., sensed physical, chemical, biological, physiological, or psychological quantities) that, once received, may be converted into data and transferred to processor 204 using bus 202.
  • input i.e., sensed physical, chemical, biological, physiological, or psychological quantities
  • processor 204 may be converted into data and transferred to processor 204 using bus 202.
  • temperature, heart rate, respiration rate, galvanic skin response (i.e., skin conductance response), muscle stiffness/fatigue, and other types of conditions or parameters may be measured using sensor 212, which may be implemented using one or multiple sensors.
  • sensor 212 is generally coupled (directly or indirectly) to band 220.
  • “coupled” may refer to a sensor being locally implemented on band 220 or remotely on, for example, another device that is in data communication with it.
  • Sensor 212 may be configured, in some examples, to sense various types of environmental (e.g., ambient air temperature, barometric pressure, location (e.g., using GPS or other satellite constellations for calculating Cartesian or other coordinates on the earth's surface, micro-cell network tri ngulation, or others), physical, physiological, psychological, or activity-based conditions in order to determine a state of a user of wearable device 220 (i.e., band 220).
  • environmental e.g., ambient air temperature, barometric pressure, location (e.g., using GPS or other satellite constellations for calculating Cartesian or other coordinates on the earth's surface, micro-cell network tri ngulation, or others)
  • location e.g., using GPS or other satellite constellations for calculating Cartesian or other coordinates on the earth's surface, micro-cell network tri ngulation, or others
  • physical, physiological, psychological, or activity-based conditions e.g., band 220.
  • sensors 212 may be used for various purposes such as measuring caloric burn rate, providing active (e.g., generating an alert such as vibration, audible, or visual indicator) or inactive (e.g., providing information, content, promotions, advertisements, or the like on a website, mobile website, or other location that is accessible using an account that is associated with a user and band 220) feedback, measuring fatigue (e.g., by calculating skin conductance response (hereafter "SCR”) using sensor 212 or accelerometer 210) or other physical states, determining a mood of a user, and others, without limitation.
  • SCR skin conductance response
  • feedback may be provided using a mechanism (i.e., feedback mechanism) that is configured to provide an alert or other indicator to a user.
  • a mechanism i.e., feedback mechanism
  • Various types of feedback mechanisms may be used, including a vibratory source, motor, light source (e.g., pulsating, blinking, or steady illumination), light emitting diode (e.g., LED 224), audible, audio, visual, haptic, or others, without limitation.
  • Feedback mechanisms may provide sensory output of the types indicated above via band 200 or, in other examples, using other devices that may be in data communication with it.
  • a driver may receive a vibratory alert from vibration source (e.g., motor) 208 when sensor 212 detects skin tautness (using, for example, accelerometer to detect muscle stiffness) that indicates she is falling asleep and, in connection with a GPS- sensed signal, wearable device 220 determines that a vehicle is approaching a divider, intersection, obstacle, or is accelerating/decelerating rapidly, and the like. Further, an audible indicator may be generated and sent to an ear-worn communication device such as a Bluetooth® (or other data communication protocol, near or far field) headset. Other types of devices that have a data connection with wearable device 220 may also be used to provide sensory output to a user, such as using a mobile communications or computing device having a graphical user interface to display data or information associated with sensory input received by sensor 212,
  • sensory output may be an audible tone, visual indication, vibration, or other indicator that can be provided by another device that is in data communication with band 220.
  • sensory output may be a media file such as a song that is played when sensor 212 detects a given parameter. For example, if a user is running and sensor 212 detects a heart rate that is lower than the recorded heart rate as measured against 65 previous runs, processor 204 may be configured to generate a control signal to an audio device that begins playing an upbeat or high tempo song to the user in order to increase her heart rate and activity- based performance.
  • sensor 212 and/or accelerometer 210 may sense various inputs that can be measured against a calculated "lifeline” (e.g., LIFELINETM) that is an abstract representation of a user's health or wellness. If sensory input to sensor 212 (or accelerometer 210 or any other sensor implemented with band 220) is received, it may be compared to the user's lifeline or abstract representation (hereafter "representation") in order to determine whether feedback, if any, should be provided in order to modify the user's behavior.
  • a user may input a range of tolerance (i.e., a range within which an alert is not generated) or processor 204 may determine a range of tolerance to be stored in memory 206 with regard to various sensory input.
  • sensor 212 may be configured to measure internal bodily temperature, a user may set a 0.1 degree Fahrenheit range of tolerance to allow her body temperature to fluctuate between 98.5 and 98.7 degrees Fahrenheit before an alert is generated (e.g., to avoid heat stress, heat exhaustion, heat stroke, or the like).
  • Sensor 212 may also be implemented as multiple sensors that are disposed (i.e., positioned) on opposite sides of band 220 such that, when worn on a wrist or other bodily appendage, allows for the measurement of skin conductivity in order to determine skin conductance response.
  • Skin conductivity may be used to measure various types of parameters and conditions such as cognitive effort, arousal, lying, stress, physical fatigue due to poor sleep quality, emotional responses to various stimuli, and others.
  • band 220 may be configured to provide feedback to a user in order to help him achieve a desired level of fitness, athletic performance, health, or wellness. In addition to feedback, band 220 may also be configured to provide indicators of use to a wearer during, before, or after a given activity or state.
  • band 220 may be configured with switch 222 that can be implemented using various types of structures as indicators of device state, function, operation, mode, or other conditions or characteristics.
  • indicators include "wheel” or rotating structures such as dials or buttons that, when turned to a given position, indicate a particular function, mode, or state of band 220.
  • Other structures may include single or multiple-position switches that, when turned to a given position, are also configured for the user to visually recognize a function, mode, or state of band 220.
  • a 4-position switch or button may indicate “on,” “off,” standby,” “active,” “inactive,” or other mode
  • a 2-position switch or button may also indicate other modes of operation such as “on” and “off.”
  • a single switch or button may be provided such that, when the switch or button is depressed, band 220 changes mode or function without, alternatively, providing a visual indication.
  • different types of buttons, switches, or other user interfaces may be provided and are not limited to the examples shown.
  • FIG. 3 illustrates sensors for use with an exemplary data-capable strapband.
  • Sensor 212 may be implemented using various types of sensors, some of which are shown. Like-numbered and named elements may describe the same or substantially similar element as those shown in other descriptions.
  • sensor 212 FIG. 3
  • accelerometer 302 may be implemented as accelerometer 302, altimeter/barometer 304, light/infrared (“IR”) sensor 306, pulse/heart rate (“HR”) monitor 308, audio sensor (e.g., microphone, transducer, or others) 310, pedometer 312, velocimeter 314, GPS receiver 316, location-based service sensor (e.g., sensor for determining location within a cellular or micro-cellular network, which may or may not use GPS or other satellite constellations for fixing a position) 318, motion detection sensor 320, environmental sensor 322, chemical sensor 324, electrical sensor 326, or mechanical sensor 328.
  • accelerometer 302 may be used to capture data associated with motion detection along 1, 2, or 3 -axes of measurement, without limitation to any specific type of specification of sensor. Accelerometer 302 may also be implemented to measure various types of user motion and may be configured based on the type of sensor, firmware, software, hardware, or circuitry used.
  • altimeter/barometer 304 may be used to measure
  • altimeter/barometer 304 may be an altimeter, a barometer, or a combination thereof.
  • altimeter/barometer 304 may be implemented as an altimeter for measuring above ground level ("AGL") pressure in band 200, which has been configured for use by naval or military aviators.
  • altimeter/barometer 304 may be implemented as a barometer for reading atmospheric pressure for marine-based applications. In other examples, altimeter/barometer 304 may be implemented differently.
  • motion detection sensor 320 may be configured to detect motion using a variety of techniques and technologies, including, but not limited to comparative or differential light analysis (e.g., comparing foreground and background lighting), sound monitoring, or others.
  • Audio sensor 310 may be implemented using any type of device configured to record or capture sound.
  • pedometer 312 may be implemented using devices to measure various types of data associated with pedestrian-oriented activities such as running or walking.
  • Footstrikes, stride length, stride length or interval, time, and other data may be measured.
  • Velocimeter 314 may be implemented, in some examples, to measure velocity (e.g., speed and directional vectors) without limitation to any particular activity.
  • additional sensors that may be used as sensor 212 include those configured to identify or obtain location-based data.
  • GPS receiver 316 may be used to obtain coordinates of the geographic location of band 200 using, for example, various types of signals transmitted by civilian and/or military satellite constellations in low, medium, or high earth orbit (e.g., "LEO,” "MEO,” or "GEO").
  • differential GPS algorithms may also be implemented with GPS receiver 316, which may be used to generate more precise or accurate coordinates.
  • location-based services sensor 318 may be implemented to obtain location-based data including, but not limited to location, nearby services or items of interest, and the like.
  • location-based services sensor 318 may be configured to detect an electronic signal, encoded or otherwise, that provides information regarding a physical locale as band 200 passes.
  • the electronic signal may include, in some examples, encoded data regarding the location and information associated therewith.
  • Electrical sensor 326 and mechanical sensor 328 may be configured to include other types (e.g., haptic, kinetic, piezoelectric, piezomechanicai, pressure, touch, thermal, and others) of sensors for data input to band 200, without limitation. Other types of sensors apart from those shown may also be used, including magnetic flux sensors such as solid-state compasses and the like.
  • the sensors can also include gyroscopic sensors. While the present illustration provides numerous examples of types of sensors that may be used with band 200 (FIG. 2), others not shown or described may be implemented with or as a substitute for any sensor shown or described.
  • FIG. 4 illustrates an application architecture for an exemplary data-capable strapband.
  • application architecture 400 includes bus 402, logic module 404, communications module 406, security module 408, interface module 410, data management 412, audio module 414, motor controller 416, service management module 418, sensor input evaluation module 420, and power management module 422.
  • application architecture 400 and the above-listed elements may be implemented as software using various computer programming and formatting languages such as Java, C++, C, and others
  • logic module 404 may be firmware or application software that is installed in memory 206 (FIG. 2) and executed by processor 204 (FIG. 2). Included with logic module 404 may be program instructions or code (e.g., source, object, binary executables, or others) that, when initiated, called, or instantiated, perform various functions.
  • logic module 404 may be configured to send control signals to
  • communications module 406 in order to transfer, transmit, or receive data stored in memory 206, the latter of which may be managed by a database management system ("DBMS") or utility in data management module 412,
  • security module 408 may be controlled by logic module 404 to provide encoding, decoding, encryption, authentication, or other functions to band 200 (FIG. 2).
  • security module 408 may also be implemented as an application that, using data captured from various sensors and stored in memory 206 (and accessed by data management module 412) may be used to provide identification functions that enable band 200 to passively identify a user or wearer of band 200.
  • various types of security software and applications may be used and are not limited to those shown and described.
  • Interface module 410 may be used to manage user interface controls such as switches, buttons, or other types of controls that enable a user to manage various functions of band 200.
  • a 4-position switch may be turned to a given position that is interpreted by interface module 410 to determine the proper signal or feedback to send to logic module 404 in order to generate a particular result.
  • a button (not shown) may be depressed that allows a user to trigger or initiate certain actions by sending another signal to logic module 404.
  • interface module 410 may be used to interpret data from, for example, accelerometer 210 (FIG. 2) to identify specific movement or motion that initiates or triggers a given response.
  • interface module 410 may be used to manage different types of displays (e.g., light-emitting diodes (LEDs), interferometric modulator display (IMOD), electrophoretic ink (E Ink), organic light-emitting diode (OLED), etc.).
  • interface module 410 may be implemented differently in function; structure, or configuration and is not limited to those shown and described.
  • audio module 414 may be configured to manage encoded or unencoded data gathered from various types of audio sensors.
  • audio module 414 may include one or more codecs that are used to encode or decode various types of audio waveforms.
  • analog audio input may be encoded by audio module 414 and, once encoded, sent as a signal or collection of data packets, messages, segments, frames, or the like to logic module 404 for transmission via communications module 406.
  • audio module 414 may be implemented differently in function, structure, configuration, or implementation and is not limited to those shown and described.
  • band 200 Other elements that may be used by band 200 include motor controller 416, which may be firmware or an application to control a motor or other vibratory energy source (e.g., vibration source 208 (FIG; 2)).
  • Power used for band 200 may be drawn from battery 214 (FIG. 2) and managed by power management module 422, which may be firmware or an application used to manage, with or without user input, how power is consumer, conserved, or otherwise used by band 200 and the above-described elements, including one or more sensors (e.g., sensor 212 (FIG. 2), sensors 302-328 (FIG. 3)).
  • sensors e.g., sensor 212 (FIG. 2), sensors 302-328 (FIG. 3).
  • sensor input evaluation module 420 may be a software engine or module that is used to evaluate and analyze data received from one or more inputs (e.g., sensors 302-328) to band 200, When received, data may be analyzed by sensor input evaluation module 420, which may include custom or "off-the- shelf analytics packages that are configured to provide application-specific analysis of data to determine trends, patterns, and other useful information, In other examples, sensor input module 420 may also include firmware or software that enables the generation of various types and formats of reports for presenting data and any analysis performed thereupon.
  • service management module 418 may be firmware, software, or an application that is configured to manage various aspects and operations associated with executing software-related instructions for band 200.
  • libraries or classes that are used by software or applications on band 200 may be served from an online or networked source.
  • Service management module 418 may be implemented to manage how and when these services are invoked in order to ensure that desired applications are executed properly within application architecture 400.
  • service management module 41 8 may be implemented differently and is not limited to the examples provided herein.
  • application architecture 400 is an example of a
  • FIG. 5A illustrates representative data types for use with an exemplary data-capable strapband.
  • wearable device 502 may capture various types of data, including, but not limited to sensor data 504, manually-entered data 506, application data 508, location data 510, network data 512, system/operating data 514, and user data 516.
  • Various types of data may be captured from sensors, such as those described above in connection with FIG. 3.
  • Manually- entered data in some examples, may be data or inputs received directly and locally by band 200 (FIG, 2).
  • manually-entered data may also be provided through a third-party website that stores the data in a database and may be synchronized from server 1 14 (FIG. 1) with one or more of bands 104-1 12.
  • Other types of data that may be captured including application data 508 and system/operating data 514, which may be associated with firmware, software, or hardware installed or implemented on band 200.
  • location data 510 may be used by wearable device 502, as described above.
  • User data 516 in some examples, may be data that include profile data, preferences, rules, or other information that has been previously entered by a given user of wearable device 502.
  • network data 512 may be data is captured by wearable device with regard to routing tables, data paths, network or access availability (e.g., wireless network access availability), and the like, Other types of data may be captured by wearable device 502 and are not limited to the examples shown and described. Additional context-specific examples of types of data captured by bands 104-112 (FIG. 1) are provided below.
  • FIG. 5B illustrates representative data types for use with an exemplary data-capable strapband in fitness-related activities.
  • band 519 may be configured to capture types (i.e., categories) of data such as heart rate/pulse monitoring data 520, blood oxygen saturation data 522, skin temperature data 524, salinity/emission/outgassing data 526, location/GPS data 528, environmental data 530, and accelerometer data 532.
  • a runner may use or wear band 519 to obtain data associated with his physiological condition (i.e., heart rate/pulse monitoring data 520, skin temperature, salinity/emission/outgassing data 526, among others), athletic efficiency (i.e., blood oxygen saturation data 522), and performance (i.e., location/GPS data 528 (e.g., distance or laps run), environmental data 530 (e.g., ambient temperature, humidity, pressure, and the like), accelerometer 532 (e.g., biomechanical information, including gait, stride, stride length, among others)).
  • his physiological condition i.e., heart rate/pulse monitoring data 520, skin temperature, salinity/emission/outgassing data 526, among others
  • athletic efficiency i.e., blood oxygen saturation data 522
  • performance i.e., location/GPS data 528 (e.g., distance or laps run)
  • environmental data 530 e.g., ambient temperature, humidity, pressure,
  • band 519 Other or different types of data may be captured by band 519, but the above-described examples are illustrative of some types of data that may be captured by band 519.
  • data captured may be uploaded to a website or online/networked destination for storage and other uses.
  • fitness-related data may be used by applications that are downloaded from a "fitness marketplace" where athletes may find, purchase, or download applications for various uses. Some applications may be activity-specific and thus may be used to modify or alter the data capture capabilities of band 519 accordingly.
  • a fitness marketplace may be a website accessible by various types of mobile and non-mobile clients to locate applications for different exercise or fitness categories such as running, swimming, tennis, golf, baseball, football, fencing, and many others.
  • a fitness marketplace When downloaded, a fitness marketplace may also be used with user-specific accounts to manage the retrieved applications as well as usage with band 519, or to use the data to provide services such as online personal coaching or targeted advertisements. More, fewer, or different types of data may be captured for fitness-related activities.
  • FIG. 5C illustrates representative data types for use with an exemplary data-capable strapband in sleep management activities.
  • band 539 may be used for sleep management purposes to track various types of data, including heart rate monitoring data 540, motion sensor data 542, accelerometer data 544, skin resistivity data 546, user input data 548, clock data 550, and audio data 552.
  • heart rate monitor data 540 may be captured to evaluate rest, waking, or various states of sleep
  • Motion sensor data 542 and accelerometer data 544 may be used to determine whether a user of band 539 is experiencing a restful or fitful sleep
  • some motion sensor data 542 may be captured by a light sensor that measures ambient or differential light patterns in order to determine whether a user is sleeping on her front, side, or back.
  • Accelerometer data 544 may also be captured to determine whether a user is experiencing gentle or violent disruptions when sleeping, such as those often found in afflictions of sleep apnea or other sleep disorders. Further, skin resistivity data 546 may be captured to determine whether a user is ill (e.g., running a temperature, sweating, experiencing chills, clammy skin, and others). Still further, user input data may include data input by a user as to how and whether band 539 should trigger vibration source 208 (FIG, 2) to wake a user at a given time or whether to use a series of increasing or decreasing vibrations to trigger a waking state. Clock data (550) may be used to measure the duration of sleep or a finite period of time in which a user is at rest.
  • Audio data may also be captured to determine whether a user is snoring and, if so, the frequencies and amplitude therein may suggest physical conditions that a user may be interested in knowing (e.g., snoring, breathing interruptions, talking in one's sleep, and the like). More, fewer, or different types of data may be captured for sleep management-related activities,
  • band 539 may also be configured for medical purposes and related-types of data such as heart rate monitoring data 560, respiratory monitoring data 562, body temperature data 564, blood sugar data 566, chemical protein/analysis data 568, patient medical records data 570, and healthcare professional (e.g., doctor, physician, registered nurse, physician's assistant, dentist, orthopedist, surgeon, and others) data 572.
  • data may be captured by band 539 directly from wear by a user.
  • band 539 may be able to sample and analyze sweat through a salinity or moisture detector to identify whether any particular chemicals, proteins, hormones, or other organic or inorganic compounds are present, which can be analyzed by band 539 or communicated to server 1 14 to perform further analysis. If sent to server 1 14, further analyses may be performed by a hospital or other medical facility using data captured by band 539. In other examples, more, fewer, or different types of data may be captured for medical-related activities.
  • FIG. 5E illustrates representative data types for use with an exemplary data-capable strapband in social media/networking-related activities.
  • social media/networking-related activities include related to Internet-based Social Networking 15 Services ("SNS"), such as Facebook ⁇ , Twitter®, etc.
  • SNS Social Networking 15 Services
  • band 519 shown with an audio data plug, may be configured to capture data for use with various types of social media and networking-related services, websites, and activities.
  • Accelerometer data 580, manual data 582, other user/friends data 584, location data 586, network data 588, clock/timer data 590, and environmental data 592 are examples of data that may be gathered and shared by, for example, uploading data from band 519 using, for example, an audio plug such as those described herein.
  • accelerometer data 580 may be captured and shared with other users to share motion, activity, or other movement-oriented data.
  • Manual data 582 may be data that a given user also wishes to share with other users.
  • other user/friends data 584 may be from other bands (not shown) that can be shared or aggregated with data captured by band 519.
  • Location data 586 for band 519 may also be shared with other users.
  • a user may also enter manual data 582 to prevent other users or friends from receiving updated location data from band 519.
  • network data 588 and clock/timer data may be captured and shared with other users to indicate, for example, activities or events that a given user (i.e., wearing band 519) was engaged at certain locations.
  • band 519 if a user of band 519 has friends who are not geographically located in close or near proximity (e.g., the user of band 519 is located in San Francisco and her friend is located in Rome), environmental data can be captured by band 519 (e.g., weather, temperature, humidity, sunny or overcast (as interpreted from data captured by a light sensor and combined with captured data for humidity and temperature), among others). In other examples, more, fewer, or different types of data may be captured for medical-related activities.
  • environmental data can be captured by band 519 (e.g., weather, temperature, humidity, sunny or overcast (as interpreted from data captured by a light sensor and combined with captured data for humidity and temperature), among others).
  • more, fewer, or different types of data may be captured for medical-related activities.
  • FIG. 6 illustrates a transition between modes of operation for a strapband in accordance with various embodiments.
  • a strapband can transition between modes by either entering a mode at 602 or exiting a mode at 660.
  • the flow to enter a mode begins at 602 and flows downward, whereas the flow to exit the mode begins at 660 and flows upward.
  • a mode can be entered and exited explicitly 603 or entered and exited implicitly 605,
  • a user can indicate explicitly whether to enter or exit a mode of operation by using inputs 620.
  • Examples of inputs 620 include a switch with one or more positions that are each associated with a selectable mode, and a display I/O 624 that can be touch-sensitive for entering commands explicitly to enter or exit a mode.
  • a motion signature is a set of motions or patterns of motion that the strapband can detect using the logic of the strapband, whereby the logic can infer a mode from the motion signature. Examples of motion signatures are discussed below in FIG. 1 1.
  • a set of motions can be predetermined, and then can be associated with a command to enter or exit a mode. Thus, motion can select a mode of operation.
  • modes of operation include a "normal” mode, an "active mode,” a “sleep mode” or “resting mode,”), among other types of modes.
  • a normal mode includes usual or normative amount of activities, whereas, an “active mode” typically includes relatively large amounts of activity. Active mode can include activities, such as running and swimming, for example.
  • a “sleep mode” or “resting mode” typically includes a relatively low amount of activity that is indicative of sleeping or resting can be indicative of the user sleeping.
  • a mode can be entered and exited implicitly 605,
  • a strapband and its logic can determine whether to enter or exit a mode of operation by inferring either an activity or a mode at 630, An inferred mode of operation can be determined as a function of user
  • characteristics 632 such as determined by user-relevant sensors (e.g., heart rate, body
  • An inferred mode of operation can be determined using motion matching 634 (e.g., motion is analyzed and a type of activity is determined). Further, an inferred mode of operation can be determined by examining environmental factors 636 (e.g., ambient temperature, time, ambient light, etc.). To illustrate, consider that: (1.) user characteristics 632 specify that the user's heart rate is at a resting rate and the body temperature falls (indicative of resting or sleeping), (2.) motion matching 634 determines that the user has a relatively low level of activity, and (3.) environment factors 636 indicate that the time is 3:00 am and the ambient light is negligible.
  • environmental factors 636 e.g., ambient temperature, time, ambient light, etc.
  • an inference engine or other logic of the strapband likely can infer that the user is sleeping and then operate to transition the strapband into sleep mode. In this mode, power may be reduced. Note that while a mode may transition either explicitly or implicitly, it need not exit the same way.
  • FIG. 7 A illustrates a perspective view of an exemplary data-capable strapband configured to receive overmolding.
  • band 700 includes framework 702, covering 704, flexible circuit 706, covering 708, motor 710, coverings 714-724, plug 726, accessory 728, control housing 734, control 736, and flexible circuits 737-738.
  • band 700 is shown with various elements (i.e., covering 704, flexible circuit 706, covering 708, motor 710, coverings 714-724, plug 726, accessory 728, control housing 734, control 736, and flexible circuits 737-738) coupled to framework 702,
  • Coverings 708, 714-724 and control housing 734 may be configured to protect various types of elements, which may be electrical, electronic, mechanical, structural, or of another type, without limitation.
  • covering 708 may be used to protect a battery and power management module from protective material formed around band 700 during an injection molding operation.
  • housing 704 may be used to protect a printed circuit board assembly ("PCBA”) from similar damage.
  • PCBA printed circuit board assembly
  • control housing 734 may be used to protect various types of user interfaces (e.g., switches, buttons (e.g., control 736), lights, light- emitting diodes, or other control features and functionality) from damage.
  • the elements shown may be varied in quantity, type, manufacturer, specification, function, structure, or other aspects in order to provide data capture, communication, analysis, usage, and other capabilities to band 700, which may be worn by a user around a wrist, arm, leg, ankle, neck or other protrusion or aperture, without restriction
  • Band 700 in some examples, illustrates an initial unlayered device that may be protected using the techniques for protective overmolding as described above.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation,
  • FIG. 7B illustrates a side view of an exemplary data-capable strapband.
  • band 740 includes framework 702, covering 704, flexible circuit 706, covering 708, motor 710, battery 712, coverings 714-724, plug 726, accessory 728, button/switch/LED/LCD Display 730-732, control housing 734, control 736, and flexible circuits 737-738 and is shown as a side view of band 700.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 7C illustrates another side view of an exemplary data-capable strapband.
  • band 750 includes framework 702, covering 704, flexible circuit 706, covering 708, motor 710, battery 712, coverings 714-724, accessory 728, button/switch/LED/LCD Display 730-732, control housing 734, control 736, and flexible circuits 737-738 and is shown as an opposite side view of band 740,
  • button/switch/LED/LCD Display 730-732 may be implemented using different types of switches, including multiple position switches that may be manually turned to indicate a given function or command.
  • underlighting provided by light emitting diodes (“LED”) or other types of low power lights or lighting systems may be used to provide a visual status for band 750.
  • LED light emitting diodes
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 7D illustrates a top view of an exemplary data-capable strapband.
  • band 760 includes framework 702, coverings 714-716 and 722-724, plug 726, accessory 728, control housing 734, control 736, flexible circuits 737-738, and PCBA 762.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation,
  • FIG. 7E illustrates a bottom view of an exemplary data-capable strapband.
  • band 770 includes framework 702, covering 704, flexible circuit 706, covering 708, motor 710, coverings 714-720, plug 726, accessory 728, control housing 734, control 736, and PCBA 772.
  • PCBA 772 may be implemented as any type of electrical or electronic circuit board element or component, without restriction. In other examples, the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 7F illustrates a front view of an exemplary data-capable strapband.
  • band 780 includes framework 702, flexible circuit 706, covering 708, motor 710, coverings 714-718 and 722, accessory 728, button/switch/LED/LCD Display 730, control housing 734, control 736, and flexible circuit 737.
  • button/switch/LED/LCD Display 730 may be
  • LCD liquid crystal
  • active matrix active matrix
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG, 7G illustrates a rear view of an exemplary data-capable strapband.
  • band 790 includes framework 702, covering 708, motor 710, coverings 714-722, analog audio plug 726, accessory 728, control 736, and flexible circuit 737.
  • control 736 may be a button configured for depression in order to activate or initiate other functionality of band 790.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 8A illustrates a perspective of an exemplary data-capable strapband having a first molding.
  • an alternative band i.e., band 800
  • plug analog audio TRRS- type plug
  • a first protective overmolding i.e., molding 802 has been applied over band 700 (FIG.
  • band 800 may be varied and are not limited to those shown and described,
  • TRRS plug 804 may be removed if a wireless communication facility is instead attached to framework 810, thus having a transceiver, logic, and antenna instead being protected by molding 802
  • button 808 may be removed and replaced by another control mechanism (e.g., an accelerometer that provides motion data to a processor that, using firmware and/or an application, can identify and resolve different types of motion that band 800 is undergoing), thus enabling molding 802 to be extended more fully, if not completely, over band 800.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 8B illustrates a side view of an exemplary data-capable strapband.
  • band 820 includes molding 802, plug 804, plug housing 806, button 808, control housing 812, and indicator lights 814 and 822.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG, 8C illustrates another side view of an exemplary data-capable strapband.
  • band 825 includes molding 802, plug 804, button 808, framework 810, control housing 812, and indicator lights 814 and 822.
  • the view shown is an opposite view of that presented in FIG, 8B.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation,
  • FIG, 8D illustrates a top view of an exemplary data-capable strapband.
  • band 830 includes molding 802, plug 804, plug housing 806, button 808, control housing 812, and indicator lights 814 and 822.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 8E illustrates a bottom view of an exemplary data-capable strapband.
  • band 840 includes molding 802, plug 804, plug housing 806, button 808, control housing 812, and indicator lights 814 and 822.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG, 8F illustrates a front view of an exemplary data-capable strapband.
  • band 850 includes molding 802, plug 804, plug housing 806, button 808, control housing 812, and indicator light 814.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 8G illustrates a rear view of an exemplary data-capable strapband.
  • band 860 includes molding 802 and button 808.
  • button 808 buttons
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 9A illustrates a perspective view of an exemplary data-capable strapband having a second molding.
  • band 900 includes molding 902, plug 904, and button 906, As shown another overmolding or protective material has been formed by injection molding, for example, molding 902 over band 900, As another molding or covering layer, molding 902 may also be configured to receive surface designs, raised textures, or patterns, which may be used to add to the commercial appeal of band 900.
  • band 900 may be illustrative of a finished data-capable strapband (i.e., band 700 (FIG. 7), 800 (FIG. 8) or 900) that may be configured to provide a wide range of electrical, electronic, mechanical, structural, photonic, or other capabilities.
  • band 900 may be configured to perform data communication with one or more other data-capable devices (e.g., other bands, computers, networked computers, clients, servers, peers, and the like) using wired or wireless features.
  • plug 900 may be used, in connection with firmware and software that allow for the transmission of audio tones to send or receive encoded data, which may be performed using a variety of encoded waveforms and protocols, without limitation.
  • plug 904 may be removed and instead replaced with a wireless communication facility that is protected by molding 902.
  • band 900 may communicate with other data-capable devices such as cell phones, smart phones, computers (e.g., desktop, laptop, notebook, tablet, and the like), computing networks and clouds, and other types of data-capable devices, without limitation,
  • band 900 and the elements described above in connection with FIGs. 1-9 may be varied in type, configuration, function, structure, or other aspects, without limitation to any of the examples shown and described.
  • FIG, 9B illustrates a side view of an exemplary data-capable strapband.
  • band 910 includes molding 902, plug 904, and button 906.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 9C illustrates another side view of an exemplary data-capable strapband.
  • band 920 includes molding 902 and button 906.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 9D illustrates a top view of an exemplary data-capable strapband.
  • band 930 includes molding 902, plug 904, button 906, and textures 932-934.
  • textures 932-934 may be applied to the external surface of molding 902.
  • textured surfaces may be molded into the exterior surface of molding 902 to aid with handling or to provide ornamental or aesthetic designs.
  • the type, shape, and repetitive nature of textures 932-934 are not limiting and designs may be either two or three-dimensional relative to the planar surface of molding 902. In other examples, the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 9E illustrates a bottom view of an exemplary data-capable strapband.
  • band 940 includes molding 902 and textures 932-934, as described above.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG, 9F illustrates a front view of an exemplary data-capable strapband.
  • band 950 includes molding 902, plug 904, and textures 932-934.
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation.
  • FIG. 9G illustrates a rear view of an exemplary data-capable strapband.
  • band 960 includes molding 902, button 906, and textures 932-934,
  • the number, type, function, configuration, ornamental appearance, or other aspects shown may be varied without limitation,
  • FIG. 10 illustrates an exemplary computer system suitable for use with a data-capable strapband.
  • computer system 1000 may be used to implement computer programs, applications, methods, processes, or other software to perform the above-described techniques.
  • Computer system 1000 includes a bus 1002 or other communication mechanism for communicating information, which interconnects subsystems and devices, such as processor 1004, system memory 1006 (e.g., RAM), storage device 1008 (e.g., ROM), disk drive 1010 (e.g., magnetic or optical), communication interface 1012 (e.g., modem or Ethernet card), display 1014 (e.g., CRT or LCD), input device 1016 (e.g., keyboard), and cursor control 1018 (e.g., mouse or trackball).
  • processor 1004 system memory 1006 (e.g., RAM), storage device 1008 (e.g., ROM), disk drive 1010 (e.g., magnetic or optical), communication interface 1012 (e.g., modem or Ethernet card), display 1014 (e.g.
  • computer system 1000 performs specific operations by processor 1004 executing one or more sequences of one or more instructions stored in system memory 1006. Such instructions may be read into system memory 1006 from another computer readable medium, such as static storage device 1008 or disk drive 1010. In some examples, hard- wired circuitry may be used in place of or in combination with software instructions for implementation.
  • Non-volatile media includes, for example, optical or magnetic disks, such as disk drive 1010
  • Volatile media includes dynamic memory, such as system memory 1006.
  • Computer readable media includes, for example, floppy disk, flexible disk, hard disk, magnetic tape, any other magnetic medium, CD-ROM, any other optical medium, punch cards, paper tape, any other physical medium with patterns of holes, RAM, PROM, EPROM, FLASH-EPROM, any other memory chip or cartridge, or any other medium from which a computer can read.
  • Transmission medium may include any tangible or intangible medium that is capable of storing, encoding or carrying instructions for execution by the machine, and includes digital or analog communications signals or other intangible medium to facilitate communication of such instructions.
  • Transmission media includes coaxial cables, copper wire, and fiber optics, including wires that comprise bus 1002 for transmitting a computer data signal.
  • execution of the sequences of instructions may be performed by a single computer system 1000.
  • two or more computer systems 1000 coupled by communication link 1020 may perform the sequence of instructions in coordination with one another.
  • Computer system 1000 may transmit and receive messages, data, and instructions, including program, i.e., application code, through communication link 1020 and communication interface 1012.
  • Received program code may be executed by processor 1004 as it is received, and/or stored in disk drive 1010, or other non- volatile storage for later execution.
  • FIG, 1 1 depicts a variety of inputs in a specific example of a strapband, such as a data- capable strapband, according to various embodiments
  • strapband 1 102 can include one or more of the following: a switch 1104, a display I/O 1 120, and a multi-pole or multi-position switch 1 101.
  • Switch 1104 can rotate in direction 1 107 to select a mode, or switch 1 104 can be a push button operable by pushing in direction 1105, whereby subsequent pressing of the button cycles through different modes of operation. Or, different sequences of short and long durations during which the button is activated.
  • Display I/O 1 120 can be a touch-sensitive graphical user interface.
  • the multi-pole switch 1 101 can be a four-position switch, each position being associated with a mode (e.g., a sleep mode, an active mode, a normal mode, etc.). Additionally, commands can be entered via graphical user interface 1 1 12 via wireless (or wired) communication device 11 10. Further, any number of visual outputs (e.g., LEDs as indicator lights), audio outputs, and/or mechanical (e.g., vibration) outputs can be implemented to inform the user of an event, a mode, or any other status of interest relating to the functionality of the strapband.
  • a mode e.g., a sleep mode, an active mode, a normal mode, etc.
  • commands can be entered via graphical user interface 1 1 12 via wireless (or wired) communication device 11 10.
  • any number of visual outputs e.g., LEDs as indicator lights
  • audio outputs e.g., audio outputs
  • mechanical (e.g., vibration) outputs can be implemented to inform the user of an event, a mode,
  • FIGs, 12A to 12F depict a variety of motion signatures as input into a strapband, such as a data-capable strapband, according to various embodiments.
  • diagram 1200 depicts a user's arm (e.g., as a locomotive member or appendage) with a strapband 1202 attached to user wrist 1203, Strapband 1202 can envelop or substantially surround user wrist 1203 as well.
  • FIGs. 12B to 12D illustrate different "motion signatures" defined by various ranges of motion and/or motion patterns (as well as number of motions), whereby each of the motion signatures identifies a mode of operation.
  • FIG. 12B depicts up-and-down motion
  • FIG. 12C depicts rotation about the wrist
  • FIG, 12D depicts side-to-side motion
  • FIG, 12E depicts an ability detect a change in mode as a function of the motion and deceleration (e.g., when a user claps hands or makes contact with a surface 1220 to get strapband to change modes)
  • FIG. 12F depicts an ability to detect "no motion” initially and experience an abrupt acceleration of the strapband (e.g., user taps strapband with finger 1230 to change modes).
  • motion signatures can be motion patterns that are predetermined, with the user selecting or linking a specific motion signature to invoke a specific mode. Note, too, a user can define unique motion signatures.
  • any number of detect motions can be used to define a motion signature.
  • different numbers of the same motion can activate different modes. For example, two up-and-down motions in FIG. 12B can activate one mode, whereas four up-and-down motions can activate another mode.
  • any combination of motions e.g., two up-and-down motions of FIG. 12B and two taps of FIG. 12E
  • FIG. 13 depicts an inference engine of a strapband configured to detect an activity and/or a mode based on monitored motion, according to various embodiments.
  • inference engine 1304 of a strapband can be configured to detect an activity or mode, or a state of a strapband, as a function of at least data derived from one or more sources of data, such as any number of sensors.
  • Examples of data obtained by the sensors include, but are not limited to, data describing motion, location, user characteristics (e.g., heart rate, body temperature, etc.), environmental characteristics (e.g., time, degree of ambient light, altitude, magnetic flux (e.g., magnetic field of the earth), or any other source of magnetic flux), GPS-generated position data, proximity to other strapband wearers, etc.), and data derived or sensed by any source of relevant information.
  • user characteristics e.g., heart rate, body temperature, etc.
  • environmental characteristics e.g., time, degree of ambient light, altitude, magnetic flux (e.g., magnetic field of the earth), or any other source of magnetic flux
  • GPS-generated position data e.g., GPS-generated position data, proximity to other strapband wearers, etc.
  • inference engine 1304 is configured to analyze sets of data from a variety of inputs and sources of information to identify an activity, mode and/or state of a strapband.
  • a set of sensor data can include GPS-derived data, data representing magnetic flux, data representing rotation (e.g., as derived by a gyroscope), and any other data that can be relevant to inference engine 1304 in its operation.
  • the inference engine can use positional data along with motion-related information to identify an activity or mode, among other purposes.
  • inference engine 1304 can be configured to analyze real-time sensor data, such as user-related data 1301 derived in real-time from sensors and/or environmental-related data 1303 derived in real-time from sensors.
  • inference engine 1304 can compare any of the data derived in real-time (or from storage) against other types of data (regardless of whether the data is real-time or archived), The data can originate from different sensors, and can obtained in real-time or from memory as user data 1352. Therefore, inference engine 1304 can be configured to compare data (or sets of data) against each other, thereby matching sensor data, as well as other data, to determine an activity or mode.
  • Diagram 1300 depicts an example of an inference engine 1304 that is configured to determine an activity in which the user is engaged, as a function of motion and, in some embodiments, as a function of sensor data, such as user-related data 1301 derived from sensors and/or environmental -related data 1303 derived from sensors, Examples of activities that inference engine 1304 evaluates include sitting, sleeping, working, running, walking, playing soccer or baseball, swimming, resting, socializing, touring, visiting various locations, shopping at a store, and the like, These activities are associated with different motions of the user, and, in particular, different motions of one or more locomotive members (e.g., motion of a user's arm or wrist) that are inherent in the different activities.
  • locomotive members e.g., motion of a user's arm or wrist
  • Diagram 1300 also depicts a motion matcher 1320, which is configured to detect and analyze motion to determine the activity (or the most probable activity) in which the user is engaged.
  • inference engine 1304 includes a user characterizer 1310 and an environmental detector 1311 to detect sensor data for purposes of comparing subsets of sensor data (e.g., one or more types of data) against other subsets of data, Upon determining a match between sensor data, inference engine 1304 can use the matched sensor data, as well as motion-related data, to identify a specific activity or mode.
  • User characterizer 1310 is configured to accept user-related data 1301 from relevant sensors, Examples of user-related data 1301 include heart rate, body temperature, or any other personally-related information with which inference engine 1304 can determine, for example, whether a user is sleeping or not.
  • environmental detector 131 1 is configured to accept environmental-related data 1303 from relevant sensors.
  • Examples of environmental-related data 1303 include time, ambient temperature, degree of brightness (e.g., whether in the dark or in sunlight), location data (e.g., GPS data, or derived from wireless networks), or any other environmental-related information with which inference engine 1304 can determine whether a user is engaged in a particular activity.
  • degree of brightness e.g., whether in the dark or in sunlight
  • location data e.g., GPS data, or derived from wireless networks
  • inference engine 1304 can determine whether a user is engaged in a particular activity.
  • a strapband can operate in different modes of operation.
  • One mode of operation is an "active mode." Active mode can be associated with activities that involve relatively high degrees of motion at relatively high rates of change. Thus, a strapband enters the active mode to sufficiently capture and monitor data with such activities, with power consumption as being less critical.
  • a controller such as mode controller 1302, operates at a higher sample rate to capture the motion of the strapband at, for example, higher rates of speed.
  • Certain safety or health-related monitoring can be implemented in active mode, or, in response to engaging in a specific activity.
  • a controller of strapband can monitor a user's heart rate against normal and abnormal heart rates to alert the user to any issues during, for example, a strenuous activity
  • strapband can be configured as set forth in FIG. 5B and user characterizer 1310 can process user-related information from sensors described in relation FIG, 5B.
  • Another mode of operation is a "sleep mode." Sleep mode can be associated with activities that involve relatively low degrees of motion at relatively low rates of change. Thus, a strapband enters the sleep mode to sufficiently capture and monitor data with such activities, while preserving power,
  • strapband can be configured as set forth in FIG. 5C and user characterizer 1310 can process user-related information from sensors described in relation FIG. 5C.
  • a strapband can operate in any number different modes, including a health monitoring mode, which can implement, for example, the features set forth in FIG. 5D.
  • a health monitoring mode which can implement, for example, the features set forth in FIG. 5D.
  • Another mode of operation is a "social mode" of operation in which the user interacts with other users of similar strapbands or communication devices, and, thus, a strapband can implement, for example, the features set forth in FIG. 5E. Any of these modes can be entered or exited either explicitly or implicitly.
  • Diagram 1300 also depicts a motion matcher 1320, which is configured to detect and analyze motion to determine the activity (or the most probable activity) in which the user is engaged.
  • motion matcher 1320 can form part of inference engine 1304 (not shown), or can have a structure and/or function separate therefrom (as shown).
  • the structures and/or functions of inference engine 1304, including user characterizer 1310 and an environmental detector 131 1, and motion matcher 1320 cooperate to determine an activity in which the user is engaged and transmit data indicating the activity (and other related information) to a controller (e.g., a mode controller 1302) that is configured to control operation of a mode, such as an "active mode," of the strapband.
  • a controller e.g., a mode controller 1302
  • Motion matcher 1320 of FIG. 13 includes a motion/activity deduction engine 1324, a motion capture manager 1322 and a motion analyzer 1326.
  • Motion matcher 1320 can receive motion-related data 1303 from relevant sensors, including those sensors that relate to space or position and to time. Examples of such sensors include accelerometers, motion detectors, velocimeters, altimeters, barometers, etc.
  • Motion capture manager 1322 is configured to capture portions of motion, and to aggregate those portions of motion to form an aggregated motion pattern or profile, Further, motion capture manager 1322 is configured to store motion patterns as profiles 1 344 in database 1340 for real-time or future analysis.
  • Motion profiles 1344 include sets of data relating to instances of motion or aggregated portions of motion (e.g., as a function of time and space, such as expressed in X, Y, Z coordinate systems).
  • motion capture manager 1322 can be configured to capture motion relating to the activity of walking and motion relating to running, each motion being associated with a specific profile 1344.
  • motion profiles 1344 of walking and running share some portions of motion in common. For example, the user's wrist motion during running and walking share a "pendulum-like" pattern over time, but differ in sampled positions of the strapband.
  • the wrist and strapband is generally at waist-level as the user walks with arms relaxed (e.g., swinging of the arms during walking can result in a longer arc-like motion pattern over distance and time), whereas during running, a user typically raises the wrists and changes the orientation of the strapband (e.g., swinging of the arms during running can result in a shorter arc-like motion pattern).
  • Motion/activity deduction engine 1324 is configured to access profiles 1344 and deduce, for example, in real-time whether the activity is walking or running.
  • Motion/activity deduction engine 1324 is configured to analyze a portion of motion and deduce the activity (e.g., as an aggregate of the portions of motion) in which the user is engaged and provide that information to the inference engine 1304, which, in turn, compares user characteristics and environmental characteristics against the deduced activity to confirm or reject the determination. For example, if motion/activity deduction engine 1324 deduces that monitored motion indicates that the user is sleeping, then the heart rate of the user, as a user characteristic, can be used to compare against thresholds in user data 1352 of database 1350 to confirm that the user's heart rate is consistent with a sleeping user.
  • User data 1352 can also include past location data, whereby historic location data can be used to determine whether a location is frequented by a user (e.g., as a means of identifying the user). Further, inference engine 1304 can evaluate environmental characteristics, such as whether there is ambient light (e.g., darkness implies conditions for resting), the time of day (e.g., a person's sleeping times typically can be between 12 midnight and 6 am), or other related information.
  • environmental characteristics such as whether there is ambient light (e.g., darkness implies conditions for resting), the time of day (e.g., a person's sleeping times typically can be between 12 midnight and 6 am), or other related information.
  • motion/activity deduction engine 1324 can be configured to store motion- related data to form motion profiles 1344 in real-time (or near real-time).
  • the motion-related data can be compared against motion reference data 1346 to determine "a match" of motions.
  • Motion reference data 1346 which includes reference motion profiles and patterns, can be derived by motion data captured for the user during previous activities, whereby the previous activities and motion thereof serve as a reference against which to compare.
  • motion reference data 1346 can include ideal or statistically-relevant motion patterns against which motion/activity deduction engine 1324 determines a match by determining which reference profile data 1346 "best fits" the real-time motion data.
  • Motion/activity deduction engine 1324 can operate to determine a motion pattern, and, thus, determine an activity.
  • motion reference profile data 1346 serves as a "motion fingerprint" for a user and can be unique and personal to a specific user. Therefore, motion reference profile data 1346 can be used by a controller to determine whether subsequent use of a strapband is by the authorized user or whether the current user's real-time motion data is a mismatch against motion reference profile data 1346. If there is mismatch, a controller can activate a security protocol responsive to the unauthorized use to preserve information or generate an alert to be communicated external to the strapband.
  • Motion analyzer 1326 is configured to analyze motion, for example, in real-time, among other things. For example, if the user is swinging a baseball bat or golf club (e.g., when the strapband is located on the wrist) or the user is kicking a soccer ball (e.g., when the strapband is located on the ankle), motion analyzer 1326 evaluates the captured motion to detect, for example, a deceleration in motion (e.g., as a motion-centric event), which can be indicative of an impulse event, such as striking an object, like a golf ball.
  • a deceleration in motion e.g., as a motion-centric event
  • Motion-related characteristics such as space and time, as well as other environment and user characteristics can be captured relating to the motion- centric event
  • a motion-centric event for example, is an event that can relate to changes in position during motion, as well as changes in time or velocity.
  • inference engine 1304 stores user characteristic data and environmental data in database 1350 as user data 1352 for archival purposes, reporting purposes, or any other purpose.
  • inference engine 1304 and/or motion matcher 1320 can store motion-related data as motion data 1342 for real-time and/or future use.
  • stored data can be accessed by a user or any entity (e.g., a third party) to adjust the data of databases 1340 and 1350 to, for example, optimize motion profile data or sensor data to ensure more accurate results.
  • a user can access motion profile data in database 1350, Or, a user can adjust the functionality of inference engine 1304 to ensure more accurate or precise determinations. For example, if inference engine 1304 detects a user's walking motion as a running motion, the user can modify the behavior of the logic in the strapband to increase the accuracy and optimize the operation of the strapband.
  • FIG. 14 depicts a representative implementation of one or more strapbands and equivalent devices, as wearable devices, to form unique motion profiles, according to various embodiments.
  • strapbands and an equivalent device are disposed on locomotive members of the user, whereby the locomotive members facilitate motion relative to and about a center point 1430 (e.g., a reference point for a position, such as a center of mass).
  • a headset 1410 is configured to communicate with strapbands 141 1, 1412, 1413 and 1414 and is disposed on a body portion 1402 (e.g., the head), which is subject to motion relative to center point 1430.
  • Strapbands 141 1 and 1412 are disposed on locomotive portions 1404 of the user (e.g., the arms or wrists), whereas strapbands 1413 and 1414 are disposed on locomotive portion 1406 of the user (e.g., the legs or ankles).
  • headset 1410 is disposed at distance 1420 from center point 1430
  • strapbands 141 1 and 1412 are disposed at distance 1422 from center point 1430
  • strapbands 1413 and 1414 are disposed at distance 1424 from center point 1430.
  • a great number of users have different values of distances 1420, 1422, and 1424.
  • a "motion fingerprint” is unique to a user and can be compared against detected motion profiles to determine, for example, whether a use of the strapband by a subsequent wearer is unauthorized. In some cases, unauthorized users do not typically share common motion profiles. Note that while four are shown, fewer than four can be used to establish a "motion fingerprint," or more can be shown (e.g., a strapband can be disposed in a pocket or otherwise carried by the user). For example, a user can place a single strapbands at different portions of the body to capture motion patterns for those body parts in a serial fashion.
  • each of the motions patterns can be combined to form a "motion fingerprint.”
  • a single strapband 141 1 is sufficient to establish a "motion fingerprint.”
  • one or more of strapbands 1411, 1412, 1413 and 1414 can be configured to operate with multiple users, including non-human users, such as pets.
  • FIG. 15 depicts an example of a motion capture manager configured to capture motion and portions therefore, according to various embodiments.
  • Diagram 1500 depicts an example of a motion matcher 1560 and/or a motion capture manager 1561, one or both of which are configured to capture motion of an activity or state of a user and generate one or more motion profiles, such as motion profile 1502 and motion profile 1552.
  • Database 1570 is configured to store motion profiles 1502 and 1552.
  • motion profiles 1502 and 1552 are shown as graphical representation of motion data for purposes of discussion, and can be stored in any suitable data structure or arrangement. Note, too, that motion profiles 1502 and 1552 can represent real-time motion data with which a motion matcher 1560 uses to determine modes and activities.
  • motion profile 1502 represents motion data captured for a running or walking activity.
  • the data of motion profile 1502 indicates the user is traversing along the Y-axis with motions describable in X, Y, Z coordinates or any other coordinate system,
  • the rate at which motion is captured along the Y- axis is based on the sampling rate and includes a time component.
  • motion capture manager 1561 captures portions of motion, such as repeated motion segments A-to-B and B-to-C.
  • motion capture manager 1561 is configured to detect motion for an arm 1501a in the +Y direction from the beginning of the forward swinging arm (e.g., point A) to the end of the forward swinging arm (e.g., point B). Further, motion capture manager 1561 is configured to detect motion for arm 1501b in the -Y direction from the beginning of the backward swinging arm (e.g., point B) to the end of the backward swinging arm (e.g., point C). Note that point C is at a greater distance along the Y-axis than point A as the center point or center mass of the user has advanced in the +Y direction. . Motion capture manager 1561 continues to monitor and capture motion until, for example, motion capture manager 1561 detects no significant motion (i.e., below a threshold) or an activity or mode is ended,
  • a motion profile can be captured by motion capture manager 1561 in a "normal mode" of operation and sampled at a first sampling rate (“sample rate 1") 1532 between samples of data 1520, which is a relatively slow sampling rate that is configured to operate with normal activities.
  • Samples of data 1520 represent not only motion data (e.g., data regarding X, Y, and Z coordinates, time, accelerations, velocities, etc.), but can also represent or link to user related information captured at those sample times.
  • Motion matcher 1560 analyzes the motion, and, if the motion relates to an activity associated with an "active mode," motion matcher 1560 signals to the controller, such as a mode controller, to change modes (e.g., from normal to active mode).
  • sampling rate 2 a second sampling rate
  • sample rate 2 a second sampling rate
  • An increased sampling rate can facilitate, for example, a more accurate set of captured motion data.
  • a motion/activity deduction engine can deduce the activity of running, and then can infer the mode ought to be the active mode.
  • the logic of the strapband then can place the strapband into the active mode.
  • the strapband can change modes of operation implicitly (i.e., explicit actions to change modes need not be necessary).
  • a mode controller can identify an activity as a "running" activity, and then invoke activity-specific functions, such as an indication (e.g., a vibratory indication) to the user every one-quarter mile or 15 minute duration during the activity.
  • FIG. 15 also depicts another motion profile 1552,
  • motion profile 1552 represents motion data captured for swimming activity (e.g., using a freestyle stroke). Similar to profile 1502, the motion pattern data of motion profile 1552 indicates the user is traversing along the Y-axis, The rate at which motion is captured along the Y-axis is based on the sampling rate of samples 1520 and 1540, for example, For a strapband disposed on a wrist of a user, motion capture manager 1561 captures the portions of motion, such as motion segments A-to-B and B-to- C.
  • motion capture manager 1561 is configured to detect motion for an arm 1551a in the +Y direction from the beginning of a forward arc (e.g., point A) to the end of the forward arc (e.g., point B), Further, motion capture manager 1561 is configured to detect motion for arm 1551b in the -Y direction from the beginning of reverse arc (e.g., point B) to the end of the reverse arc (e.g., point C). Motion capture manager 1561 continues to monitor and capture motion until, for example, motion capture manager 1561 detects no significant motion (i.e., below a threshold) or an activity or mode is ended.
  • a mode controller can determine that the motion data of profile 1552 is associated with an active mode, similar with the above-described running activity, and can place the strapband into the active mode, if it is not already in that mode. Further, motion matcher 1560 can analyze the motion pattern data of profile 1 52 against, for example, the motion data of profile 1502 and conclude that the activity associated with the data being captured for profile 1552 does not relate to a running activity.
  • Motion matcher 1560 then can analyze profile 1552 of the real-time generated motion data, and, if it determines a match with reference motion data for the activity of swimming, motion matcher 1560 can generate an indication that the user is performing "swimming" as an activity, Thus, the strapband and its logic can implicitly determine an activity that a user is performing (i.e., explicit actions to specify an activity need not be necessary). Therefore, a mode controller then can invoke swimming-specific functions, such as an application to generate an indication (e.g., a vibratory indication) to the user at completion of every lap, or can count a number of strokes.
  • an indication e.g., a vibratory indication
  • motion matcher 1560 and/or a motion capture manager 561 can be configured to implicitly determine modes of operation, such as a sleeping mode of operation (e.g., the mode controller, in part, can analyze motion patterns against a motion profile that includes sleep-related motion data.
  • Motion matcher 1560 and/or a motion capture manager 1561 also can be configured to an activity out of a number of possible activities.
  • FIG. 16 depicts an example of a motion analyzer configured to evaluate motion-centric events, according to various embodiments.
  • Diagram 1600 depicts an example of a motion matcher 1660 and/or a motion analyzer 1666 for capturing motion of an activity or state of a user and generating one or more motion profiles, such as a motion profile 1602.
  • motion profile 1602 represents motion data captured for an activity of swinging a baseball bat 1604.
  • the motion pattern data of motion profile 1602 indicates the user begins the swing at position 1604a in the -Y direction. The user moves the strapband and the bat to position 1604b, and then swings the bat toward the -Y direction when contact is made with the baseball at position 1604c.
  • the set of data samples 1630 includes data samples 1630a and 1630b at relatively close proximity to each other in profile 1602. This indicates a deceleration (e.g., a slight, but detectable deceleration) in the bat when it hits the baseball.
  • motion analyzer 1666 can analyze motion to determine motion-centric events, such as striking a baseball, striking a golf ball, or kicking a soccer ball. Data regarding the motion-centric events can be stored in database 1670 for additional analysis or archiving purposes, for example.
  • FIG. 17 illustrates action and event processing during a mode of operation in accordance with various embodiments.
  • the strapband enters a mode of operation.
  • a controller e.g., a mode controller
  • the logic of the strapband can operate to detect user and mode-related events at 1710, as well as motion-centric events at 1712.
  • the logic of the strapband can perform an action at 1714 or inhibit an action at 1716, and continue to loop at 1718 during the activity or mode.
  • the logic of the strapband analyzes user characteristics at 1704, such as sleep patterns, and determines that the person has been getting less than a normal amount of sleep for the last few days, and that the person's heart rate indicates the user is undergoing strenuous exercise as confirmed by detected motion in 1706. Further, the logic determines a large number of wireless signals, indicating a populated area, such as along a busy street. Next, the logic detects an incoming call to the user's headset at 1710. Given the state of the user, the logic suppresses the call at 1716 to ensure that the user is not distracted and thus not endangered.
  • the logic of the strapband analyzes user characteristics at 1704, such as heart rate, body temperature, and other user characteristics relevant to the determination whether the person is in REM sleep, Further, the person's motion has decreased sufficiently to match that typical of periods of deep or REM sleep as confirmed by detected motion (or lack thereof) at 1706. Environmental factors indicate a relatively dark room at 1708.
  • the logic of the strapband inhibits an alarm at 1716 set to wake the user until REM sleep is over. This process loops at 1718 until the user is out of REM sleep, when the alarm can be performed subsequently at 1714.
  • the alarm is implemented as a vibration generated by the strapband.
  • the strapband can inhibit the alarm features of a mobile phone, as the strapband can communicate an alarm disable signal to the mobile phone.
  • the structures and/or functions of any of the above-described features can be implemented in software, hardware, firmware, circuitry, or a combination thereof.
  • the structures and constituent elements above, as well as their functionality may be aggregated with one or more other structures or elements.
  • the elements and their functionality may be subdivided into constituent sub-elements, if any.
  • the above- described techniques may be implemented using various types of programming or formatting languages, frameworks, syntax, applications, protocols, objects, or techniques.
  • the above-described techniques may be implemented using various types of programming or integrated circuit design languages, including hardware description languages, such as any register transfer language (“RTL”) configured to design field-programmable gate arrays (“FPGAs”), application-specific integrated circuits (“ASICs”), or any other type of integrated circuit. These can be varied and are not limited to the examples or descriptions provided.
  • RTL register transfer language
  • FPGAs field-programmable gate arrays
  • ASICs application-specific integrated circuits
  • FIG. 18A illustrates an exemplary wearable device for sensory user interface.
  • a cross-sectional view of wearable device 1800 includes housing 1802, switch 1804, switch rod 1806, switch seal 1808, pivot arm 1810, spring 1812, printed circuit board (hereafter "PCB") 1814, support 1816, light pipes 1818-1820, and light windows 1822-1824.
  • wearable device 1800 may be implemented as part of band 900 (FIG, 9A), providing a user interface for a user to interact, manage, or otherwise manipulate controls for a data-capable strapband.
  • switch rod 1806 may be configured to mechanically engage pivot arm 1810 and cause electrical contact with one or more elements on PCB 1814.
  • pivot arm 1810 may cause light to be selectively reflected back, depending on the position of pivot arm 1810, to PCB 1814, which may comprise an optical transmitter/receiver to detect the reflection and to report back different rotational positions of pivot arm 1810.
  • pivot arm 1810 may comprise magnets, which may be brought into, and out of, proximity with one or more magnetic field sensor on PCB 1814 indicating different rotational positions of switch 1804.
  • switch 1804 may be configured to rotate and cause electrical contact with other elements on PCB 1814
  • Spring 1812 is configured to return switch rod 1 806 and button 1804 to a recoiled position to await another user input (e.g., depression of switch 1804).
  • light sources e.g., LED 224 (FIG. 2A)
  • LED 224 FIG. 2A
  • light pipes 1818 and 1820 provide illuminated displays through light windows 1822 and 1824.
  • light windows 1822 and 1824 may be implemented as rotating switches that are translucent, transparent, or opaque and, when rotated, emit light from different features that visually indicate when a different function, mode, or operation is present.
  • wearable device 1800 may be implemented differently and is not limited to those provided.
  • FIG. 18B illustrates an alternative exemplary wearable device for sensory user interface
  • a cross-sectional view of an alternative wearable device 1830 includes switch rod 1806, pivot arm 1810, spring 1812, light pipes 1818-1820, switch seal 1832, and detents 1834.
  • switch seal 1 832 may be configured differently than as shown in FIG. 18A, providing a flush surface against which switch 1804 (FIG, 18A) may be depressed until stopped by detents 1834.
  • switch seal 1832 may be formed using material that is waterproof, water-resistant, or otherwise able to prevent the intrusion of undesired materials, chemicals, or liquids into the interior cavity of wearable device 1830,
  • wearable device 1830 may be configured, designed, formed, fabricated, function, or otherwise implemented differently and is not limited to the features, functions, and structures shown,
  • FIG. 18C illustrates an exemplary switch rod to be used with an exemplary wearable device
  • Limits on the rotation or movement of switch rod 1806 may be provided by various types of mechanical structures and are not limited to any examples shown and described.
  • FIG. 18D illustrates an exemplary switch for use with an exemplary wearable device.
  • a distal end of wearable device 1840 is shown including housing 1802, switch 1804, and concentric seal 1842.
  • concentric seal 1842 may be implemented to provide greater connectivity between switch 1804 and detents 1834 (not shown; FIG. 18B).
  • a concentric well in concentric seal 1842 may be configured to receive switch 1804 and, when depressed, engage switch rod 1806 (not shown; FIG, 18A),
  • wearable device 1840 and the above-described elements may be varied in function, structure, design, implementation, or other aspects and are not limited to those shown.
  • FIG. 18E illustrates an exemplary sensory user interface.
  • wearable device 1850 includes housing 1802, switch 1804, and light windows 1822-1824.
  • light windows 1822-1824 may be implemented using various designs, shapes, or features in order to permit light to emanate from, for example, LEDs mounted on PCB 1814, Further, light windows 1822-1824 may also be implemented as rotating switches that, when turned to a given orientation, provide a visual indication of a function, mode, activity, state, or operation being performed.
  • wearable device 1850 and the above-described elements may be implemented differently in design, function, or structure, and are not limited to those shown,

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Pulmonology (AREA)
  • Business, Economics & Management (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

Des techniques pour un dispositif portable et une plateforme pour entrée sensorielle sont divulgués, comprenant un capteur couplé à un cadre possédant une enveloppe dotée d'un ou plusieurs moulages, capteur configuré pour capter au moins une entrée sensorielle, un processeur configuré pour transformer la/les entrées sensorielles en données au cours d'une activité dans laquelle le dispositif portable est porté, et un dispositif de communications couplé au dispositif portable et configuré pour transférer les données entre le dispositif portable et un dispositif pendant l'activité, les données étant configurées pour être présentées sur une interface utilisateur.
EP12797398.0A 2011-06-10 2012-03-29 Dispositif portable et plateforme pour entrée sensorielle Withdrawn EP2717773A4 (fr)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US13/158,372 US20120313272A1 (en) 2011-06-10 2011-06-10 Component protective overmolding
US201161495997P 2011-06-11 2011-06-11
US201161495996P 2011-06-11 2011-06-11
US201161495995P 2011-06-11 2011-06-11
US201161495994P 2011-06-11 2011-06-11
US13/158,416 US20120313296A1 (en) 2011-06-10 2011-06-11 Component protective overmolding
US13/180,320 US8793522B2 (en) 2011-06-11 2011-07-11 Power management in a data-capable strapband
US13/180,000 US20120316458A1 (en) 2011-06-11 2011-07-11 Data-capable band for medical diagnosis, monitoring, and treatment
US13/181,498 US20120316455A1 (en) 2011-06-10 2011-07-12 Wearable device and platform for sensory input
US13/405,241 US20120316406A1 (en) 2011-06-10 2012-02-25 Wearable device and platform for sensory input
PCT/US2012/031326 WO2012170110A1 (fr) 2011-06-10 2012-03-29 Dispositif portable et plateforme pour entrée sensorielle

Publications (2)

Publication Number Publication Date
EP2717773A1 true EP2717773A1 (fr) 2014-04-16
EP2717773A4 EP2717773A4 (fr) 2015-03-18

Family

ID=47296353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12797398.0A Withdrawn EP2717773A4 (fr) 2011-06-10 2012-03-29 Dispositif portable et plateforme pour entrée sensorielle

Country Status (4)

Country Link
EP (1) EP2717773A4 (fr)
CN (1) CN204520692U (fr)
CA (1) CA2819907A1 (fr)
WO (1) WO2012170110A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9069380B2 (en) 2011-06-10 2015-06-30 Aliphcom Media device, application, and content management using sensory input
KR101865486B1 (ko) * 2013-10-25 2018-06-07 인텔 코포레이션 사용자 경험들을 캡처하고 생성하는 장치 및 방법들
WO2015132782A2 (fr) * 2014-03-02 2015-09-11 Kgps (Israel) Ltd. Dispositif porté au poignet avec une seule carte de circuit imprimé
US10258280B2 (en) 2014-05-30 2019-04-16 Microsoft Technology Licensing, Llc Wearable electronic device
US9471102B2 (en) * 2014-08-28 2016-10-18 Pebble Technology, Corp. Connection by securing device with integrated circuitry layer
CN104287706B (zh) * 2014-10-29 2016-09-14 云南大学 一种人体健康状态实时监测及诊疗推荐系统
WO2016198030A1 (fr) * 2015-06-12 2016-12-15 Corporación Universidad De La Costa Cuc Mécanisme multicanal portable pour mesurer des variables physiologiques aux extrémités du corps humain
US20190008465A1 (en) * 2015-08-07 2019-01-10 Koninklijke Philips N.V. Generating an indicator of a condition of a patient
CN105054900B (zh) * 2015-08-13 2018-02-13 浙江创力电子股份有限公司 一种基于飞行员健康检测的方法、智能手环和诊断仪
CN105380624A (zh) * 2015-12-15 2016-03-09 天脉聚源(北京)传媒科技有限公司 一种基于移动设备反馈生理信息的方法及装置
CN106091393B (zh) * 2016-06-14 2019-04-19 美的集团股份有限公司 热水器控制方法及装置
BE1024349B1 (nl) * 2016-07-04 2018-02-05 Jeppe Verbist Polshorloge
JP6378719B2 (ja) * 2016-07-19 2018-08-22 矢崎総業株式会社 生体情報記憶システム、及び、車内生体情報記憶装置
WO2022157542A1 (fr) * 2021-01-21 2022-07-28 Zhibo Chen Dispositif de surveillance de stress thermique

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009140360A1 (fr) * 2008-05-14 2009-11-19 Espenuda Holding, Llc Dispositif de surveillance d'activité physique et unité de collecte de données
US20100201500A1 (en) * 2006-01-09 2010-08-12 Harold Dan Stirling Apparatus, systems, and methods for communicating biometric and biomechanical information
WO2010096691A2 (fr) * 2009-02-20 2010-08-26 The Regents Of The University Of Colorado, A Body Corporate Moniteur de poids corporel basé sur une chaussure et calculateur d'allocation de posture, de classification d'activité physique et de dépense d'énergie

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090131759A1 (en) * 2003-11-04 2009-05-21 Nathaniel Sims Life sign detection and health state assessment system
US7914468B2 (en) * 2004-09-22 2011-03-29 Svip 4 Llc Systems and methods for monitoring and modifying behavior
US20090112626A1 (en) * 2007-10-30 2009-04-30 Cary Talbot Remote wireless monitoring, processing, and communication of patient data
US8972197B2 (en) * 2009-09-15 2015-03-03 Numera, Inc. Method and system for analyzing breathing of a user
US8140143B2 (en) * 2009-04-16 2012-03-20 Massachusetts Institute Of Technology Washable wearable biosensor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100201500A1 (en) * 2006-01-09 2010-08-12 Harold Dan Stirling Apparatus, systems, and methods for communicating biometric and biomechanical information
WO2009140360A1 (fr) * 2008-05-14 2009-11-19 Espenuda Holding, Llc Dispositif de surveillance d'activité physique et unité de collecte de données
WO2010096691A2 (fr) * 2009-02-20 2010-08-26 The Regents Of The University Of Colorado, A Body Corporate Moniteur de poids corporel basé sur une chaussure et calculateur d'allocation de posture, de classification d'activité physique et de dépense d'énergie

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2012170110A1 *

Also Published As

Publication number Publication date
CN204520692U (zh) 2015-08-05
WO2012170110A1 (fr) 2012-12-13
CA2819907A1 (fr) 2012-12-13
EP2717773A4 (fr) 2015-03-18

Similar Documents

Publication Publication Date Title
US20120316406A1 (en) Wearable device and platform for sensory input
US20120316456A1 (en) Sensory user interface
US20130173171A1 (en) Data-capable strapband
EP2718918A1 (fr) Interface utilisateur sensorielle
WO2012170110A1 (fr) Dispositif portable et plateforme pour entrée sensorielle
US20140306821A1 (en) Motion profile templates and movement languages for wearable devices
CA2814681A1 (fr) Dispositif pouvant etre porte et plateforme pour une entree sensorielle
US20140243637A1 (en) Data-capable band for medical diagnosis, monitoring, and treatment
US20130198694A1 (en) Determinative processes for wearable devices
CA2818020A1 (fr) Modeles de profil de mouvement et langues de mouvement pour dispositifs a porter
CA2814741A1 (fr) Bracelet adapte pour communiquer des donnees
EP2718771A1 (fr) Commande de dispositif utilisant l'entrée sensorielle
CA2814749A1 (fr) Bande a capacite de donnees pour des diagnostic, surveillance et traitement medicaux
CA2917761A1 (fr) Bande de poignet capable de traiter des donnees, pourvue d'une montre amovible
AU2012268764A1 (en) Media device, application, and content management using sensory input
CA2814834A1 (fr) Analyse vectorielle spatiale et temporelle dans des dispositifs aptes a etre portes utilisant des donnees de capteur
AU2016200692A1 (en) Sensory user interface
AU2012266893A1 (en) Wearable device and platform for sensory input
AU2012268640A1 (en) Sensory user interface
AU2012268595A1 (en) Device control using sensory input

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131112

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20150217

RIC1 Information provided on ipc code assigned before grant

Ipc: G06Q 50/22 20120101ALI20150211BHEP

Ipc: A61B 5/00 20060101AFI20150211BHEP

Ipc: A61B 5/11 20060101ALI20150211BHEP

Ipc: A61B 5/024 20060101ALI20150211BHEP

Ipc: A61B 5/16 20060101ALN20150211BHEP

Ipc: G06F 19/00 20110101ALI20150211BHEP

Ipc: G06F 1/16 20060101ALI20150211BHEP

Ipc: A61B 5/0205 20060101ALI20150211BHEP

Ipc: A61B 5/145 20060101ALN20150211BHEP

Ipc: A61B 5/053 20060101ALI20150211BHEP

Ipc: G06F 1/32 20060101ALI20150211BHEP

Ipc: A61B 5/01 20060101ALN20150211BHEP

Ipc: A61B 5/08 20060101ALN20150211BHEP

111Z Information provided on other rights and legal means of execution

Free format text: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

Effective date: 20150814

17Q First examination report despatched

Effective date: 20170814

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180103