EP2716066B1 - Agencement de circuit pour traitement d'un signal électrique de microphone - Google Patents
Agencement de circuit pour traitement d'un signal électrique de microphone Download PDFInfo
- Publication number
- EP2716066B1 EP2716066B1 EP11745494.2A EP11745494A EP2716066B1 EP 2716066 B1 EP2716066 B1 EP 2716066B1 EP 11745494 A EP11745494 A EP 11745494A EP 2716066 B1 EP2716066 B1 EP 2716066B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- microphone
- electrical
- signal
- electrical signal
- input
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Definitions
- the present invention relates to a combination of a microphone and a circuit assembly for processing an electrical signal of the microphone, a device comprising such a combination of a microphone and a circuit assembly for processing an electrical signal of the microphone, and a method for processing an electrical signal of a microphone.
- the invention relates especially to a reduction of disturbances on an electrical signal of a microphone when the microphone is connected to a device via a multi-port plug-and-socket connection.
- the disturbances may comprise for example a resonance, an echo, a crosstalk, or a so called bumblebee noise.
- PHF portable hands free sets
- These portable hands free sets comprise for example a stereo earphone, a microphone and an antenna.
- the portable hands free set is usually connected to the mobile device via a phone jack.
- the phone jack may comprise a multi-port plug-and-socket connection comprising for example four electrical contacts providing signal paths for a left and a right earphone signal, a microphone signal, and ground.
- An antenna signal may additionally be transferred by one of these signal paths, for example via a signal path of the left or the right earphone signal.
- a combination of a microphone and a circuit assembly for processing an electrical signal of the microphone according to the preamble of claim 1 is known from GB 2 377 848 A .
- WO 99/38355 A1 proposes to use switches to exchange a bias voltage and a microphone signal in order to be able to use two different connection types of microphones.
- this object is achieved by a combination of a microphone and a circuit assembly for processing an electrical signal of the microphone as defined in claim 1, and a method for processing an electrical signal of a microphone as defined in claim 12.
- the dependent claims define preferred and advantageous embodiments of the invention.
- a combination of a microphone and a circuit assembly for processing an electrical signal of the microphone is provided.
- the microphone has an inherent impedance and comprises a first electrical output and a second electrical output. A voltage between the first electrical output and the second output corresponds to an acoustic input signal received by the microphone.
- the circuit assembly comprises an impedance circuit, a signal processing unit comprising a first input and a second input, a first electrical signal path, and a second electrical signal path.
- the first electrical signal path is coupleable to the first electrical output of the microphone, that means that the first electrical signal path can be coupled to the first electrical output of the microphone via e.g. a phone jack.
- the first electrical signal path is coupled to the first input of the signal processing unit.
- the second electrical signal path is coupleable to the second electrical output of the microphone and is further coupled to the second input of the signal processing unit via the impedance circuit.
- An impedance value of the impedance circuit is selected based on an impedance value of the inherent impedance of the microphone.
- the microphone can be assumed to comprise a current source and an impedance in parallel. Therefore, an equivalent circuit of the microphone may comprise an ideal current source and the inherent impedance in parallel to the ideal current source.
- the disturbing signal influences a signal on the first electrical output of the microphone via the inherent impedance of the microphone, and the disturbing signal influences the signal of the microphone at the second electrical output of the microphone running through the impedance circuit. Therefore, the signal processing unit sees the disturbing signal at the first input through the inherent impedance of the microphone and at the second input through the impedance circuit. This allows the signal processing unit, for example by using a differential amplifier, to detect and compensate the disturbing signal.
- the circuit assembly comprises a further impedance circuit which couples the second electrical signal path to ground.
- the second electrical signal path may be used as a common ground return path for the microphone and one or more earphone loudspeakers of a portable hands free set.
- an impedance to ground for example via an inductive impedance like a bead
- a ground signal path can be provided and at the same time an antenna signal may be received from a wiring of the portable hands free set without being effected by the ground connection of the portable hands free set.
- the first electrical signal path and the second electrical signal path are comprised in a multiport plug and socket connection for detachably connecting the microphone to the first and second electrical signal paths.
- a detachable connection between the portable hands free set and a mobile device for example a mobile phone
- the multiport plug and socket connection may comprise furthermore a third electrical signal path which is coupled to an electrical signal source feeding a further electrical signal with respect to ground into the third electrical signal path.
- the further electrical signal may comprise for example an audio output signal to be output by an earphone speaker of the portable hands free set.
- the multiport plug and socket connection may comprise a fourth electrical signal path which is coupled to an electrical signal source feeding another electrical signal with respect to ground into the fourth electrical signal path.
- the other electrical signal may comprise for example a further audio output signal for a further earphone speaker.
- a portable hands free set with stereo earphone speakers and a microphone can be realized.
- the first, second, third or the fourth electrical signal path may be furthermore coupled to a radio frequency receiver adapted to receive an antenna signal via the first, second, third or fourth electrical signal path, respectively.
- a portable hands free set providing audio input and output as well as a radio frequency antenna can be coupled to a mobile device via a multiport plug and socket connection with a minimum of electrical contacts in the multiport plug and socket connection.
- a multiport plug and socket connection with four contacts may be sufficient to realize a stereo portable hands free set including a microphone and a radio frequency antenna.
- the circuit assembly may comprisethree switches.
- a first switch is coupled to the first electrical signal path, the second electrical signal path and the first input of the signal processing unit.
- the first switch is configured to selectively couple the first electrical signal path or the second electrical signal path to the first input of the signal processing unit.
- a second switch is coupled to the first electrical signal path, the second electrical signal path and ground. The second switch is configured to selectively couple the first electrical signal path or the second electrical signal path to ground via a further impedance circuit.
- the first switch and the second switch allow to couple portable hands free sets in which a ground and a microphone signal may be interchanged at the first electrical signal path and the second electrical signal path.
- the circuit assembly comprises a third switch coupled to the first electrical signal path, the second electrical signal path and the second input of the signal processing unit. The third switch is configured to selectively couple the first electrical signal path or the second electrical signal path to the second input of the signal processing unit via the impedance circuit.
- An impedance value of the impedance circuit is selected based on an impedance value of the inherent impedance of the microphone.
- a disturbance on the common ground return path may influence the electrical signals from the microphone.
- the signal processing unit is facilitated to detect and reduce such a disturbance.
- the switches themselves may have a resistance or an impedance, a disturbing signal e.g. due to an earphone signal on the common ground path may generate a disturbance due to the switch resistance or switch impedance.
- the switch resistance or switch impedance of the third switch is considerably smaller than the impedance of the impedance circuit and can be neglected.
- a disturbance generated due to the switch resistance or switch impedance of a switch coupled to ground may be considerable. Therefore, by providing the microphone signal at the first input of the processing unit and via the impedance circuit at the second input, the disturbance is thus detectable by the signal processing unit and can be removed or compensated.
- the impedance value of the impedance circuit corresponds substantially to the impedance value of the inherent impedance of the microphone.
- the impedance circuit may comprise a series connection of a resistive element and a capacitive element. This combination of elements allows to approximate the inherent impedance of the microphone appropriately.
- the value of the impedance circuit may be in the same order of magnitude as the value of the inherent impedance.
- the circuit assembly comprises furthermore a first low pass filter being coupled to the first input of the signal processing unit, and a second high pass filter being coupled to the second input of the signal processing unit.
- all signal paths may typically comprise inductive elements in a series connection, for example beads, to avoid a shortcut of the antenna signal.
- these inductive elements may also act as a part of a low pass filter for frequencies lower than for example 1-10MHz, which may help to reject frequencies introduced from the outside.
- the inductive elements may add an impedance during the first 100-1000ns after a discharge that forces more current to flow through corresponding ESD protection diodes and less current through the circuits more sensitive protection diodes during this time.
- these inductive elements may generate resonance disturbances on the microphone signals provided to the signal processing unit.
- the low pass filters at the inputs of the signal processing unit may reduce such resonances, which may especially occur due to the inductive elements during electrostatic discharge (ESD) or current clamp tests.
- a device which comprises a multiport plug and socket connection for coupling the device to a microphone and a circuit assembly as described above.
- the device may comprise a mobile phone, a personal digital assistant, a mobile music player or a navigation system.
- the microphone may be comprised in a portable hands free set which may comprise additionally mono or stereo earspeakers and a radio frequency antenna for receiving for example broadcast radio frequency signals, especially radio broadcast signals in an FM frequency range.
- Fig. 1 shows a circuit diagram of a mobile device 100 adapted to adapt to a portable hands free set (PHF) according to either an OMTP or a CTIA standard.
- PHF portable hands free set
- FIG. 1 shows the two possible portable hands free sets 101 and 102 which can be connected to the mobile device 100 via an audio connector 110 .
- Portable hands free set 101 is wired according to the CTIA standard and portable hands free set 102 is wired according to the OMTP standard.
- Each of the portable hands free sets 101, 102 comprises a microphone 103, a right earspeaker 104, and a left earspeaker 105.
- the wire to the right earspeaker 104 may be used as an FM antenna, as will be explained below.
- the portable hands free set 101, 102 may be connected to the audio connector 110 of the mobile device 100 via an audio jack.
- the portable hands free set 101, 102 may comprise an audio jack plug with four terminals 106-109 which may be received by a corresponding audio jack socket of the audio connector 110 comprising four terminals 111-114 for establishing a connection to the corresponding terminals 106-109 of the portable hands free set.
- the audio jack plug and the audio jack socket constitute a so called multiport plug and socket connection.
- the audio connector 110 may comprise an additional electrical pin 115 which breaks the connection to terminal 114 when the audio jack plug of the portable hands free set is inserted into the audio connector 110.
- Pin 115 may be connected to a corresponding detect line 116 to detect when the portable hands free set is coupled to the mobile device 100.
- the terminals 111 and 112 of the audio connector 110 each comprise two terminals 117, 118 and 119, 120, respectively. Terminals 118 and 119 are used as so called “sense" terminals to couple the microphone 103 via an impedance comprising a resistor 125, 126 and a capacitance 130 to a microphone signal processing unit 140 to enable a disturbance reduction on the microphone signal, for example an echo cancellation, in the microphone signal processing unit 140 as will be described below.
- Terminal 118 is used as sense terminal when the CTIA portable hands free set 101 is connected to the mobile device 100, and terminal 119 is used as the sense terminal when the OMTP portable hands free set 102 is connected to the mobile device 100.
- the main difference between the two portable hands free sets is that the signal from the microphone 103 and the common ground are exchanged on terminals 106 and 107.
- terminal 106 is the common ground for the microphone 103 and the earspeakers 104, 105, and terminal 107 is used for passing the signal from the microphone 103.
- the common ground is located at terminal 107 and the signal of the microphone 103 is passed via terminal 106.
- a signal for the right earspeaker 104 is passed via terminal 108 and a signal for the left earspeaker 105 is passed via terminal 109.
- terminal 109 is connected to terminal 114
- terminal 108 is connected to terminal 113
- terminal 107 is connected to terminal 112 (and thus to terminals 119, 120)
- terminal 106 is connected to terminal 111 (and thus to terminals 117 and 118).
- each of the terminals 113, 114, 117 and 120 of the audio connector 110 is first connected to corresponding ferrite beads 121-124 to provide high impedance for the FM antenna signal.
- the resistors 125, 126 provide the high impedance for the FM antenna signal.
- the FM antenna signal is decoupled from terminal 113 via a capacitor 127 and provided for further use at terminal 128. Audio signals for the earspeakers 104 and 105 are provided at corresponding terminals 138 and 139.
- the switches 131-133 may be simultaneously toggled from a first switching position to a second switching position and vice versa under control of a control signal on line 134.
- the switches 131-133 may be comprised in an integrated semiconductor circuit or a relay or a manual switch.
- the terminals 111 and 112 are coupled via the beads 121, 122 and the resistors 125, 126 to one side of the switches 131-133, and a first microphone input terminal 135 and a second microphone input terminal 136 of the microphone signal processing unit, and ground 137 are connected to another side of the switches 131-133.
- ESD electrostatic discharge
- the first microphone input terminal 135 is connected to terminal 117
- the second microphone input terminal 136 is connected to terminal 119
- ground 137 is connected to terminal 120.
- the first microphone input terminal 135 is connected via switch 131 to terminal 120
- the second microphone input terminal 136 is connected via the switch 132 to terminal 118
- ground 137 is connected via the switch 133 to terminal 117.
- the CTIA PHF 101 may be driven correctly by the mobile device 100.
- the three switches 131-133 can select between OMTP and CTIA operation by cross connecting the microphone input signal of the microphone input terminals 135, 136 and the common ground 137.
- the ESD diodes 141-144 and additional components for EMC (electromagnetic compatibility) protection may be comprised in an integrated circuit 129 as shown in Fig. 1 .
- the circuit 129 may also comprise components of an audio and current clamp input filtering system together with some capacitors and the current clamp rejecting system together with additional ferrite beads 145, 146.
- a bias voltage for driving the microphone 103 is provided via a resistor 148 and resistors 149, 150 to the microphone 103. Furthermore, at each microphone input terminal 135, 136 of the microphone signal processing unit 140 a filter comprising a capacitor 151, 152 and a resistor 153, 154 is provided for reducing resonance on the microphone signals during an ESD protection test or a current clamp test which may occur due to the beads 121-124.
- Fig. 2 shows a circuit diagram representing only the essential parts of the circuit diagram of Fig. 1 , wherein some components of Fig. 1 are replaced by equivalent components for simulating the circuit diagram with an analogue circuit simulation tool.
- Same reference signs in Fig. 2 and Fig. 1 refer to same components or to equivalent components as will be described in the following.
- Fig. 2 shows the case in which the OMTP PHF 102 is coupled to the mobile device 100 and therefore the switches 131-133 are in the first switching position as shown in Fig. 1 .
- the common ground return path of the microphone 103 and the earspeakers 104, 105 is therefore located at terminal 112, 107, 119, and 120.
- the common ground return path is connected via bead 122 and switch 133 to ground 137.
- the microphone 103 is shown as an equivalent circuit comprising a current source 201 and in parallel an inherent impedance comprising a series connection of a capacitor 202 and a resistor 203.
- the earspeakers 104 and 105 are represented in Fig. 2 as resistors 104 and 105, respectively.
- a resistance of a signal path from the earspeaker signal sources 138, 139 to the earspeakers 104, 105 is represented in Fig. 2 by resistors 205, 206.
- the signal sources of the audio signals for the earspeakers 104, 105 are represented in Fig. 2 as oscillating voltage sources 138, 139.
- signal source 138 represents the audio source for the right channel and may have a frequency of for example 827 Hz
- signal source 139 may represent the left audio channel and may have a frequency of 1000 Hz.
- the bias voltage 147 is represented by a direct current voltage source 147 in Fig. 2 .
- an oscillating voltage source 207 is shown in Fig. 2 which represents a variation of the bias voltage when in practice of a mobile device the battery voltage drops for example during a GSM transmission burst.
- the disturbance generated by the transmission burst of a mobile phone working according to the GSM standard would typically generate a disturbing sound signal which is also called "bumblebee" noise due to its frequency profile.
- a ground potential may be raised and therefore an oscillating voltage source 208 is shown in Fig. 2 representing a corresponding disturbance on the ground signal.
- a frequency of the oscillating voltage sources 207, 208 may be selected at 1230 Hz.
- the microphone signal processing unit 140 of Fig. 1 is replaced in Fig. 2 by an operational amplifier 140 which receives at a first input 135 the signal from one end of the microphone 103 and at a second input 136 the signal from the other end of the microphone 103 guided through the impedance circuit comprising the resistor 126 and the capacity 130.
- a microphone signal 209 is provided at the output of the operational amplifier 140 .
- the ground signal 107 of the common ground path of the portable hands free set is additionally guided through the impedance circuit comprising resistor 126 and capacitor 130 to the operational amplifier 140.
- the resistor 126 and the capacitor 130 are selected such that the resulting impedance corresponds substantially the inherent impedance of the microphone 103 represented by resistor 203 and capacitor 202.
- a value of the impedance circuit 126, 130 may be selected in the same order of magnitude as the impedance value of the inherent impedance 202, 203 of the microphone 103.
- a typical microphone of a portable hands free set may have an inherent impedance with the capacitance 202 being about 4.7 ⁇ F and the resistance 203 being about 6 k ⁇ . Therefore, the capacitance 130 may be selected in a range of 1-10 ⁇ F and the resistor 126 may be selected in the range of 1-10 k ⁇ .
- this disturbance may be simulated by the oscillating voltage 208 which influences a voltage on the signal at 107.
- this disturbance acts in the same way on both signals which are received at the inputs 135 and 136 of the operational amplifier 140. Therefore, the disturbance generated by the oscillating voltage 208 acts in a common mode on the operational amplifier 140 which performs a common mode rejection which reduces the disturbance on the microphone output signal 209.
- Fig. 1 the mirror impedance circuit is switched by a separate switch 132 instead of being switched together with switch 133. The reasons for this will be explained in the following in connection with Figs. 3 and 5 .
- Fig. 3 shows a circuit diagram which may be used for simulating the circuit of Fig. 1 when only one switch instead of the two switches 133 and 132 is used.
- the circuit diagram of Fig. 3 is very similar to the circuit diagram of Fig. 2 and the only difference is an additional resistor 210 in the common ground return path.
- This additional resistor 210 represents a resistance of the audio connector 110, the bead 121 and the common switch which replaces the two switches 133 and 132.
- An assumed value of this resistor 210 may be 2 ⁇ .
- Fig. 4 shows a frequency spectrum 401 of the audio signal for the right earspeaker, a frequency spectrum 402 of the audio signal for the left earspeaker, a frequency spectrum 403 of the common ground return path (for example at 107), a frequency spectrum 404 at the output 209 of the operational amplifier 140, and a frequency spectrum 405 at the output of the oscillating voltage generator 208.
- the signal 403 on the common ground return path (for example at 107) is about 30 dB below the audio signals 401, 402 for the right and the left earspeakers.
- the echo signals 404 from the right and left earspeakers are about 40 dB below the audio signals 401, 402 of the earspeakers. Furthermore, as shown in Fig. 4 , the above-described bumblebee disturbance 405, which has in the frequency range around 1230 Hz the same spectrum as the spectrum 403 of the common ground return path, is reduced by the common mode rejection by around 30 dB (the peak of spectrum 403 is about -40 dB and the peak of the spectrum 404 is about -70 dB at 1230 Hz). As can be seen from Fig.
- the common mode rejection works very efficiently (30 dB) on the bumblebee noise, but rather poor (10 dB between spectrum 403 and spectrum 404 at 827 Hz and 1000 Hz) for the echo reduction.
- the reason for this is that the voltage drop over resistor 210 is mainly influenced by the relatively high currents of the audio signals for the earphones on the common ground return path. This voltage drop cannot be compensated by the common mode rejection of the circuit of Fig. 3 .
- Fig. 1 two separate switches 132 and 133 are provided for coupling the common return path 107 separately to the mirror impedance circuit 126, 130 and to ground, respectively.
- a corresponding circuit diagram for simulating both switches 132 and 133 is shown in Fig. 5 .
- Resistor 210 represents switch 133 connecting the common ground path to ground 137.
- Resistor 211 represents switch 132 connecting the common return path to the mirror impedance circuit 126, 130.
- a voltage drop over the resistor 210 due to the currents of the audio signals for the left and right earspeakers still occurs. However, this voltage drop will not occur over resistor 211 as resistor 211 is in series connection with the mirror impedance 126, 130 which is much higher than the resistance of the switch 132 (which may be assumed to 2 ⁇ ).
- FIG. 6 Simulation results of the circuit of Fig. 5 are depicted in Fig. 6 .
- the common mode rejection is now working on the echo from the audio signals from the earspeakers as well as on the bumblebee disturbance.
- the spectrum 404 of the microphone output signal 209 is now around 30 dB below the spectrum 403 of the echo disturbance on the common ground path.
- Fig. 7 shows a further circuit diagram for coupling a portable hands free set (PHF) according to either an OMTP or a CTIA standard.
- Switches 703 and 704 provide the same cross connect switching logic as switches 131 and 133 of Fig. 1 .
- Beads 121 a and 122a are used for decoupling the radio frequency signal received by the PHF.
- Protection diodes 701 and 702 are used for ESD protection of the switches 703 and 704, respectively.
- Beads 121b and 122b serve for a current clamp protection.
- beads 121b and 122b contribute to an ESD protection together with diodes 701 and 702.
- DC resistance affects return echo, therefore, preferably beads with a low DC resistance may be used.
- An on-resistance of the switches 703 and 704 may also be low as the resistance adds to the return echo.
- Capacitor 130, switch 132, and resistors 125a, 125b, 126a, 126b form a feedback net which may cancel unwanted signals on the ground connection of the audio connector 110. Furthermore, these components may improve current clamp and bumble-bee performance. Protection diodes 705, 706 and resistors 125b, 126b may serve for ESD protection of switch 132.
Landscapes
- Telephone Function (AREA)
- Circuit For Audible Band Transducer (AREA)
Claims (13)
- Combinaison d'un microphone (103) et d'un ensemble de circuits pour traiter un signal électrique du microphone (103),
le microphone (103) ayant une impédance inhérente (202, 203) et comprenant une première sortie électrique (106) et une deuxième sortie électrique (107), où une tension entre la première sortie électrique (106) et la deuxième sortie électrique (107) correspond à un signal d'entrée acoustique reçu par le microphone (103), et l'ensemble de circuits comprenant :- un circuit d'impédance (125, 126, 130) ayant une valeur d'impédance devant être sélectionnée sur la base d'une valeur d'impédance de l'impédance inhérente (202, 203) du microphone (103),- une unité de traitement de signal (140) comprenant une première entrée (135) et une deuxième entrée (136),- un premier chemin de signal électrique (111) pouvant être couplé à la première sortie électrique (106) du microphone (103) et couplé à la première entrée (135) de l'unité de traitement de signal (140), et- un deuxième chemin de signal électrique (112) pouvant être couplé à la deuxième sortie électrique (107) du microphone (103) et à la deuxième entrée (136) de l'unité de traitement de signal (140) par l'intermédiaire du circuit d'impédance (125, 126, 130),caractérisé en ce que le deuxième chemin de signal électrique (112) est en outre couplé à la masse (137) par l'intermédiaire d'un circuit d'impédance inductive supplémentaire (122). - Combinaison de la revendication 1, dans laquelle l'ensemble de circuits comprend en outre :- un premier commutateur (131) couplé au premier chemin de signal électrique (111), au deuxième chemin de signal électrique (112) et à la première entrée (135) de l'unité de traitement de signal (140), et configuré pour coupler sélectivement le premier chemin de signal électrique (111) ou le deuxième chemin de signal électrique (112) à la première entrée (135) de l'unité de traitement de signal (140),- un deuxième commutateur (133) couplé au premier chemin de signal électrique (111), au deuxième chemin de signal électrique (112) et à la masse (137), et configuré pour coupler sélectivement le premier chemin de signal électrique (111) ou le deuxième chemin de signal électrique (112) à la masse (137) par l'intermédiaire d'un circuit d'impédance inductive supplémentaire (121, 122), et- un troisième commutateur (132) couplé au premier chemin de signal électrique (111), au deuxième chemin de signal électrique (112) et à la deuxième entrée (136) de l'unité de traitement de signal (140), et configuré pour coupler sélectivement le premier chemin de signal électrique (111) ou le deuxième chemin de signal électrique (112) à la deuxième entrée (136) de l'unité de traitement de signal (140) par l'intermédiaire du circuit d'impédance (125, 126, 130).
- Combinaison selon l'une quelconque des revendications précédentes, dans laquelle le premier chemin de signal électrique (111) et le deuxième chemin de signal électrique (112) sont compris dans une connexion mâle-femelle à ports multiples (110) pour connecter de manière amovible le microphone (103) aux premier et deuxième chemins de signal électrique (111, 112).
- Combinaison selon la revendication 3, dans laquelle la connexion mâle-femelle à ports multiples (110) comprend en outre un troisième chemin de signal électrique (113), où le troisième chemin de signal électrique (113) est couplé à une source de signal électrique (138) alimentant un signal électrique supplémentaire par rapport à la masse (137) dans le troisième chemin de signal électrique (113).
- Combinaison selon la revendication 4, dans laquelle le premier, le deuxième ou le troisième chemin de signal électrique (111-113) est en outre couplé à un récepteur de radiofréquence (128) adapté pour recevoir un signal d'antenne via le premier, le deuxième ou le troisième chemin de signal électrique (111-113).
- Combinaison selon l'une quelconque des revendications précédentes, dans laquelle la valeur d'impédance du circuit d'impédance (125, 126, 130) correspond sensiblement à la valeur d'impédance de l'impédance inhérente (202, 203) du microphone (103).
- Combinaison selon l'une quelconque des revendications précédentes, dans laquelle le circuit d'impédance (125, 126, 130) comprend une connexion en série d'un élément résistif (125, 126) et d'un élément capacitif (130).
- Combinaison selon l'une quelconque des revendications précédentes, dans laquelle l'unité de traitement de signal (140) comprend un amplificateur différentiel configuré pour générer un signal de sortie électrique de microphone (209) basé sur une différence de tension au niveau de la première entrée (135) et de la deuxième entrée (136).
- Combinaison selon l'une quelconque des revendications précédentes, dans laquelle l'ensemble de circuits comprend en outre :- un premier filtre passe-bas (151, 153) étant couplé à la première entrée (135) de l'unité de traitement de signal (140), et- un deuxième filtre passe-bas (152, 154) étant couplé à la deuxième entrée (136) de l'unité de traitement de signal (140).
- Dispositif comprenant :- la combinaison d'un microphone (103) et d'un ensemble de circuits selon l'une quelconque des revendications précédentes, et- une connexion mâle-femelle à ports multiples (110) pour coupler le dispositif (100) au microphone (103).
- Dispositif selon la revendication 10, dans lequel le dispositif (100) comprend au moins un dispositif d'un groupe constitué par un téléphone mobile, un assistant numérique personnel, un lecteur audio portable et un système de navigation.
- Procédé de traitement d'un signal électrique d'un microphone, le microphone (103) ayant une impédance inhérente (202, 203) et fournissant un premier signal de sortie électrique et un deuxième signal de sortie électrique, dans lequel une tension entre le premier signal de sortie électrique et le deuxième signal de sortie électrique correspond à un signal d'entrée acoustique reçu par le microphone (103), le procédé comprenant le fait :- de guider le deuxième signal de sortie électrique du microphone (103) à travers un circuit d'impédance (125, 126, 130) ayant une valeur d'impédance choisie sur la base d'une valeur d'impédance de l'impédance inhérente (202, 203) du microphone (103), et- de générer un signal de sortie électrique de microphone (209) sur la base d'une différence de signal entre le premier signal de sortie électrique et le deuxième signal de sortie électrique guidé à travers le circuit d'impédance (125, 126, 130),caractérisé en ce que le deuxième signal de sortie électrique du microphone (103) est en outre guidé par l'intermédiaire d'un circuit d'impédance inductif supplémentaire (122) vers la masse (137).
- Procédé de la revendication 12, le procédé comprenant en outre le fait de :- fournir une unité de traitement de signal (140) configurée pour générer le signal de sortie électrique de microphone (209) sur la base de signaux électriques de microphone au niveau d'une première entrée (135) et d'une deuxième entrée (136) de l'unité de traitement de signal (140),- coupler une première sortie électrique (106) du microphone (103) à la première entrée (135) de l'unité de traitement de signal (140),- coupler une deuxième sortie électrique (107) du microphone (103) et la deuxième entrée (136) de l'unité de traitement de signal (140) par l'intermédiaire du circuit d'impédance (125, 126, 130).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11745494.2A EP2716066B1 (fr) | 2011-05-30 | 2011-08-11 | Agencement de circuit pour traitement d'un signal électrique de microphone |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/EP2011/002675 WO2012163371A1 (fr) | 2011-05-30 | 2011-05-30 | Réduction d'une perturbation sur un chemin de signal d'un commutateur à semi-conducteur |
EP11745494.2A EP2716066B1 (fr) | 2011-05-30 | 2011-08-11 | Agencement de circuit pour traitement d'un signal électrique de microphone |
PCT/EP2011/004049 WO2012163379A1 (fr) | 2011-05-30 | 2011-08-11 | Ensemble circuit pour traitement d'un signal électrique de microphone |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2716066A1 EP2716066A1 (fr) | 2014-04-09 |
EP2716066B1 true EP2716066B1 (fr) | 2016-06-01 |
Family
ID=45626211
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11745494.2A Not-in-force EP2716066B1 (fr) | 2011-05-30 | 2011-08-11 | Agencement de circuit pour traitement d'un signal électrique de microphone |
Country Status (1)
Country | Link |
---|---|
EP (1) | EP2716066B1 (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112700777A (zh) * | 2021-01-13 | 2021-04-23 | 深圳市创将科技有限公司 | 用于智能保健按摩床垫的控制方法及语音控制系统 |
-
2011
- 2011-08-11 EP EP11745494.2A patent/EP2716066B1/fr not_active Not-in-force
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112700777A (zh) * | 2021-01-13 | 2021-04-23 | 深圳市创将科技有限公司 | 用于智能保健按摩床垫的控制方法及语音控制系统 |
Also Published As
Publication number | Publication date |
---|---|
EP2716066A1 (fr) | 2014-04-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9077342B2 (en) | Circuit assembly for processing an electrical signal of a microphone | |
KR101607899B1 (ko) | 감소된 크로스토크 잡음을 가진 집적 헤드셋 스위치를 위한 방법 및 장치 | |
US9872103B2 (en) | Microphone biasing circuitry and method thereof | |
EP2834993B1 (fr) | Interrupteur d'un casque d'écoute avec diaphotie réduite | |
JP4310383B2 (ja) | 差動オーディオ線受信器 | |
US9099967B2 (en) | Increasing ground noise rejection in audio systems | |
CN109286878B (zh) | 一种信号传输电路 | |
KR20110040359A (ko) | 휴대용 단말기에서 이어폰 인식 회로 장치 | |
CN105721980A (zh) | 一种音频差分信号的实现方法 | |
US20150063585A1 (en) | Method and apparatus for reducing crosstalk in an integrated headset | |
EP2319232B1 (fr) | Procédé pour commander une référence de masse sur un chemin de signal, circuit de commande pour commander une référence de masse sur un chemin de signal et dispositif mobile | |
EP2716066B1 (fr) | Agencement de circuit pour traitement d'un signal électrique de microphone | |
US9793658B2 (en) | Reuse of plug detection contacts to reduce crosstalk | |
US8988089B2 (en) | Pin card | |
KR20110028491A (ko) | 멀티포트 커넥터에서 출력 신호에 의해 유발되는 입력 신호 내의 교란을 감소시키기 위한 방법, 멀티포트 커넥터, 및 모바일 장치 | |
CN114827831A (zh) | 伪差分音频输入电路和装置 | |
US20050152556A1 (en) | Passive surround sound adapter | |
EP2297863B1 (fr) | Réduction de la perturbation dans un signal de sortie d'un connecteur multiports | |
CN101677421B (zh) | 扬声器及具有该扬声器的移动通信终端 | |
CN109863760B (zh) | 改进的平衡电枢驱动装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20131218 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150430 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151214 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 804498 Country of ref document: AT Kind code of ref document: T Effective date: 20160615 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011027100 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160901 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 804498 Country of ref document: AT Kind code of ref document: T Effective date: 20160601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161003 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011027100 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
26N | No opposition filed |
Effective date: 20170302 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20160901 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170428 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160811 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160901 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160811 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20170808 Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110811 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160601 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011027100 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190301 |