EP2714740A1 - Neutralizing prolactin receptor antibody mat3 and its therapeutic use - Google Patents
Neutralizing prolactin receptor antibody mat3 and its therapeutic useInfo
- Publication number
- EP2714740A1 EP2714740A1 EP12729030.2A EP12729030A EP2714740A1 EP 2714740 A1 EP2714740 A1 EP 2714740A1 EP 12729030 A EP12729030 A EP 12729030A EP 2714740 A1 EP2714740 A1 EP 2714740A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- antibody
- prlr
- antigen
- human
- seq
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 108010002519 Prolactin Receptors Proteins 0.000 title claims abstract description 246
- 101100495256 Caenorhabditis elegans mat-3 gene Proteins 0.000 title claims abstract description 131
- 102100029000 Prolactin receptor Human genes 0.000 title claims abstract description 44
- 230000003472 neutralizing effect Effects 0.000 title abstract description 41
- 230000001225 therapeutic effect Effects 0.000 title description 13
- 230000027455 binding Effects 0.000 claims abstract description 131
- 239000000427 antigen Substances 0.000 claims abstract description 83
- 108091007433 antigens Proteins 0.000 claims abstract description 83
- 102000036639 antigens Human genes 0.000 claims abstract description 83
- 239000012634 fragment Substances 0.000 claims abstract description 58
- 238000011282 treatment Methods 0.000 claims abstract description 47
- 206010006187 Breast cancer Diseases 0.000 claims abstract description 41
- 208000026310 Breast neoplasm Diseases 0.000 claims abstract description 39
- 230000005764 inhibitory process Effects 0.000 claims abstract description 39
- 230000011664 signaling Effects 0.000 claims abstract description 35
- 208000011803 breast fibrocystic disease Diseases 0.000 claims abstract description 34
- 208000005641 Adenomyosis Diseases 0.000 claims abstract description 33
- 201000009273 Endometriosis Diseases 0.000 claims abstract description 30
- 230000001404 mediated effect Effects 0.000 claims abstract description 30
- 201000009274 endometriosis of uterus Diseases 0.000 claims abstract description 23
- 201000004384 Alopecia Diseases 0.000 claims abstract description 18
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 18
- 208000024963 hair loss Diseases 0.000 claims abstract description 17
- 230000003676 hair loss Effects 0.000 claims abstract description 17
- 206010004446 Benign prostatic hyperplasia Diseases 0.000 claims abstract description 15
- 206010006298 Breast pain Diseases 0.000 claims abstract description 15
- 208000006662 Mastodynia Diseases 0.000 claims abstract description 15
- 230000008556 epithelial cell proliferation Effects 0.000 claims abstract description 15
- 230000002265 prevention Effects 0.000 claims abstract description 13
- 230000006651 lactation Effects 0.000 claims abstract description 11
- 238000001794 hormone therapy Methods 0.000 claims abstract description 8
- 230000001833 anti-estrogenic effect Effects 0.000 claims abstract description 6
- 229940046836 anti-estrogen Drugs 0.000 claims abstract description 5
- 239000000328 estrogen antagonist Substances 0.000 claims abstract description 5
- 230000003054 hormonal effect Effects 0.000 claims abstract description 4
- 206010046798 Uterine leiomyoma Diseases 0.000 claims abstract description 3
- 201000010260 leiomyoma Diseases 0.000 claims abstract description 3
- 210000004027 cell Anatomy 0.000 claims description 171
- 241000282414 Homo sapiens Species 0.000 claims description 122
- 238000000034 method Methods 0.000 claims description 66
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 57
- 101100409237 Homo sapiens PRLR gene Proteins 0.000 claims description 45
- 241000282693 Cercopithecidae Species 0.000 claims description 33
- 150000007523 nucleic acids Chemical group 0.000 claims description 32
- 108091028043 Nucleic acid sequence Proteins 0.000 claims description 26
- 239000003814 drug Substances 0.000 claims description 21
- 101100454807 Caenorhabditis elegans lgg-1 gene Proteins 0.000 claims description 20
- RJKFOVLPORLFTN-LEKSSAKUSA-N Progesterone Chemical class C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H](C(=O)C)[C@@]1(C)CC2 RJKFOVLPORLFTN-LEKSSAKUSA-N 0.000 claims description 20
- 239000000583 progesterone congener Substances 0.000 claims description 20
- 229940011871 estrogen Drugs 0.000 claims description 16
- 239000000262 estrogen Substances 0.000 claims description 16
- 239000013598 vector Substances 0.000 claims description 13
- 101100454808 Caenorhabditis elegans lgg-2 gene Proteins 0.000 claims description 12
- 101001123448 Homo sapiens Prolactin receptor Proteins 0.000 claims description 12
- 101100409239 Mus musculus Prlr gene Proteins 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 230000001580 bacterial effect Effects 0.000 claims description 9
- 239000013604 expression vector Substances 0.000 claims description 9
- 238000004519 manufacturing process Methods 0.000 claims description 9
- 102000039446 nucleic acids Human genes 0.000 claims description 9
- 108020004707 nucleic acids Proteins 0.000 claims description 9
- 238000002560 therapeutic procedure Methods 0.000 claims description 7
- 210000004962 mammalian cell Anatomy 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 5
- 101100217502 Caenorhabditis elegans lgg-3 gene Proteins 0.000 claims description 4
- 239000000546 pharmaceutical excipient Substances 0.000 claims description 4
- 210000001236 prokaryotic cell Anatomy 0.000 claims description 3
- 229940124597 therapeutic agent Drugs 0.000 claims description 3
- 210000005253 yeast cell Anatomy 0.000 claims description 3
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 claims description 2
- 238000012258 culturing Methods 0.000 claims description 2
- 102100024952 Protein CBFA2T1 Human genes 0.000 claims 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 abstract description 37
- 208000035475 disorder Diseases 0.000 abstract description 8
- 108010057464 Prolactin Proteins 0.000 description 89
- 102100024819 Prolactin Human genes 0.000 description 89
- 229940097325 prolactin Drugs 0.000 description 89
- 108090000765 processed proteins & peptides Proteins 0.000 description 72
- 235000001014 amino acid Nutrition 0.000 description 60
- 241001529936 Murinae Species 0.000 description 50
- 230000001817 pituitary effect Effects 0.000 description 42
- 229940024606 amino acid Drugs 0.000 description 40
- 150000001413 amino acids Chemical class 0.000 description 39
- 102000004196 processed proteins & peptides Human genes 0.000 description 39
- 230000000694 effects Effects 0.000 description 38
- 230000014509 gene expression Effects 0.000 description 38
- 108090000623 proteins and genes Proteins 0.000 description 37
- 241000699670 Mus sp. Species 0.000 description 31
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 30
- 239000000872 buffer Substances 0.000 description 30
- 201000010099 disease Diseases 0.000 description 29
- 108020004414 DNA Proteins 0.000 description 28
- 241001465754 Metazoa Species 0.000 description 24
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 24
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 22
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 22
- 241000699666 Mus <mouse, genus> Species 0.000 description 21
- 230000035755 proliferation Effects 0.000 description 20
- 102000004169 proteins and genes Human genes 0.000 description 20
- 238000011161 development Methods 0.000 description 18
- 230000018109 developmental process Effects 0.000 description 18
- 230000003902 lesion Effects 0.000 description 18
- 229920001184 polypeptide Polymers 0.000 description 18
- 238000002054 transplantation Methods 0.000 description 18
- 235000018102 proteins Nutrition 0.000 description 17
- 238000002965 ELISA Methods 0.000 description 16
- 208000031424 hyperprolactinemia Diseases 0.000 description 16
- 210000005075 mammary gland Anatomy 0.000 description 16
- 102000005962 receptors Human genes 0.000 description 16
- 108020003175 receptors Proteins 0.000 description 16
- 239000000243 solution Substances 0.000 description 16
- 238000010494 dissociation reaction Methods 0.000 description 15
- 230000005593 dissociations Effects 0.000 description 15
- 230000003442 weekly effect Effects 0.000 description 15
- 210000004696 endometrium Anatomy 0.000 description 14
- 238000009396 hybridization Methods 0.000 description 14
- 230000006870 function Effects 0.000 description 13
- 210000004602 germ cell Anatomy 0.000 description 13
- 230000035772 mutation Effects 0.000 description 13
- 210000002307 prostate Anatomy 0.000 description 13
- 239000000523 sample Substances 0.000 description 13
- 238000006467 substitution reaction Methods 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 238000005406 washing Methods 0.000 description 13
- 125000000539 amino acid group Chemical group 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 12
- 230000002357 endometrial effect Effects 0.000 description 12
- 230000036515 potency Effects 0.000 description 12
- 230000002829 reductive effect Effects 0.000 description 12
- 108060003951 Immunoglobulin Proteins 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 11
- 102000018358 immunoglobulin Human genes 0.000 description 11
- 239000012071 phase Substances 0.000 description 11
- 241000282560 Macaca mulatta Species 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 231100000673 dose–response relationship Toxicity 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 10
- 238000003786 synthesis reaction Methods 0.000 description 10
- 206010028980 Neoplasm Diseases 0.000 description 9
- 210000000481 breast Anatomy 0.000 description 9
- 230000004663 cell proliferation Effects 0.000 description 9
- 239000012636 effector Substances 0.000 description 9
- 230000001976 improved effect Effects 0.000 description 9
- 238000002823 phage display Methods 0.000 description 9
- 206010063836 Atrioventricular septal defect Diseases 0.000 description 8
- 230000004913 activation Effects 0.000 description 8
- 235000018417 cysteine Nutrition 0.000 description 8
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 8
- 230000002950 deficient Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 238000000684 flow cytometry Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- 238000012552 review Methods 0.000 description 8
- 241000894007 species Species 0.000 description 8
- 108060001084 Luciferase Proteins 0.000 description 7
- 239000005089 Luciferase Substances 0.000 description 7
- 102220497176 Small vasohibin-binding protein_T47D_mutation Human genes 0.000 description 7
- 238000003491 array Methods 0.000 description 7
- 230000008901 benefit Effects 0.000 description 7
- 229960002802 bromocriptine Drugs 0.000 description 7
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 description 7
- 201000011510 cancer Diseases 0.000 description 7
- 210000004246 corpus luteum Anatomy 0.000 description 7
- 230000001419 dependent effect Effects 0.000 description 7
- 210000004907 gland Anatomy 0.000 description 7
- 239000007943 implant Substances 0.000 description 7
- 210000000754 myometrium Anatomy 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 239000000186 progesterone Substances 0.000 description 7
- 238000012216 screening Methods 0.000 description 7
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 7
- 230000009885 systemic effect Effects 0.000 description 7
- 210000004291 uterus Anatomy 0.000 description 7
- 208000023275 Autoimmune disease Diseases 0.000 description 6
- 208000000571 Fibrocystic breast disease Diseases 0.000 description 6
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 6
- 206010025323 Lymphomas Diseases 0.000 description 6
- 241000700159 Rattus Species 0.000 description 6
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 6
- 238000013459 approach Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 210000002919 epithelial cell Anatomy 0.000 description 6
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 6
- 235000004554 glutamine Nutrition 0.000 description 6
- 239000003217 oral combined contraceptive Substances 0.000 description 6
- 238000004091 panning Methods 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 102000003998 progesterone receptors Human genes 0.000 description 6
- 108090000468 progesterone receptors Proteins 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 208000024891 symptom Diseases 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- VOXZDWNPVJITMN-ZBRFXRBCSA-N 17β-estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 VOXZDWNPVJITMN-ZBRFXRBCSA-N 0.000 description 5
- 101000687438 Homo sapiens Prolactin Proteins 0.000 description 5
- 206010060800 Hot flush Diseases 0.000 description 5
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 5
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 5
- 108020004511 Recombinant DNA Proteins 0.000 description 5
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 5
- 230000003213 activating effect Effects 0.000 description 5
- 235000004279 alanine Nutrition 0.000 description 5
- 238000010171 animal model Methods 0.000 description 5
- 239000005557 antagonist Substances 0.000 description 5
- 239000003153 chemical reaction reagent Substances 0.000 description 5
- 229930182833 estradiol Natural products 0.000 description 5
- 229960005309 estradiol Drugs 0.000 description 5
- 230000012010 growth Effects 0.000 description 5
- 235000014304 histidine Nutrition 0.000 description 5
- 238000000338 in vitro Methods 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 239000003446 ligand Substances 0.000 description 5
- 206010025135 lupus erythematosus Diseases 0.000 description 5
- 230000035800 maturation Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 230000003389 potentiating effect Effects 0.000 description 5
- 229960003387 progesterone Drugs 0.000 description 5
- 230000000638 stimulation Effects 0.000 description 5
- 230000003797 telogen phase Effects 0.000 description 5
- 238000001890 transfection Methods 0.000 description 5
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 4
- 208000032843 Hemorrhage Diseases 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- 241000282567 Macaca fascicularis Species 0.000 description 4
- 108091034117 Oligonucleotide Proteins 0.000 description 4
- 206010033307 Overweight Diseases 0.000 description 4
- 108700008625 Reporter Genes Proteins 0.000 description 4
- 102000044437 S1 domains Human genes 0.000 description 4
- 108700036684 S1 domains Proteins 0.000 description 4
- NKANXQFJJICGDU-QPLCGJKRSA-N Tamoxifen Chemical compound C=1C=CC=CC=1C(/CC)=C(C=1C=CC(OCCN(C)C)=CC=1)/C1=CC=CC=C1 NKANXQFJJICGDU-QPLCGJKRSA-N 0.000 description 4
- 230000009824 affinity maturation Effects 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 235000009582 asparagine Nutrition 0.000 description 4
- 229960001230 asparagine Drugs 0.000 description 4
- 230000003305 autocrine Effects 0.000 description 4
- 230000000740 bleeding effect Effects 0.000 description 4
- 238000004113 cell culture Methods 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- POZRVZJJTULAOH-LHZXLZLDSA-N danazol Chemical compound C1[C@]2(C)[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=CC2=C1C=NO2 POZRVZJJTULAOH-LHZXLZLDSA-N 0.000 description 4
- 229960000766 danazol Drugs 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 238000010790 dilution Methods 0.000 description 4
- 239000012895 dilution Substances 0.000 description 4
- 239000003136 dopamine receptor stimulating agent Substances 0.000 description 4
- 230000002124 endocrine Effects 0.000 description 4
- 230000035558 fertility Effects 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000003779 hair growth Effects 0.000 description 4
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 4
- 229940088597 hormone Drugs 0.000 description 4
- 239000005556 hormone Substances 0.000 description 4
- 206010020718 hyperplasia Diseases 0.000 description 4
- 229940072221 immunoglobulins Drugs 0.000 description 4
- 238000000126 in silico method Methods 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 238000010172 mouse model Methods 0.000 description 4
- 239000013642 negative control Substances 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 230000001105 regulatory effect Effects 0.000 description 4
- 230000009870 specific binding Effects 0.000 description 4
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 4
- 235000019786 weight gain Nutrition 0.000 description 4
- ARSRBNBHOADGJU-UHFFFAOYSA-N 7,12-dimethyltetraphene Chemical compound C1=CC2=CC=CC=C2C2=C1C(C)=C(C=CC=C1)C1=C2C ARSRBNBHOADGJU-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 206010003694 Atrophy Diseases 0.000 description 3
- 206010065687 Bone loss Diseases 0.000 description 3
- 241000283707 Capra Species 0.000 description 3
- 238000003734 CellTiter-Glo Luminescent Cell Viability Assay Methods 0.000 description 3
- 241000701022 Cytomegalovirus Species 0.000 description 3
- VFZRZRDOXPRTSC-UHFFFAOYSA-N DMBA Natural products COC1=CC(OC)=CC(C=O)=C1 VFZRZRDOXPRTSC-UHFFFAOYSA-N 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- 229920002307 Dextran Polymers 0.000 description 3
- 206010014522 Embolism venous Diseases 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 108010074860 Factor Xa Proteins 0.000 description 3
- 208000007659 Fibroadenoma Diseases 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 3
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 3
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 3
- 208000037093 Menstruation Disturbances Diseases 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 3
- 238000010222 PCR analysis Methods 0.000 description 3
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 3
- 108010022394 Threonine synthase Proteins 0.000 description 3
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 3
- 210000000579 abdominal fat Anatomy 0.000 description 3
- 230000003698 anagen phase Effects 0.000 description 3
- 230000001548 androgenic effect Effects 0.000 description 3
- 230000003042 antagnostic effect Effects 0.000 description 3
- 230000001028 anti-proliverative effect Effects 0.000 description 3
- 230000037444 atrophy Effects 0.000 description 3
- 239000012148 binding buffer Substances 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 239000002775 capsule Substances 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 238000001516 cell proliferation assay Methods 0.000 description 3
- 239000006285 cell suspension Substances 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 230000000295 complement effect Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 206010012601 diabetes mellitus Diseases 0.000 description 3
- 102000004419 dihydrofolate reductase Human genes 0.000 description 3
- 239000000539 dimer Substances 0.000 description 3
- 208000002173 dizziness Diseases 0.000 description 3
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 3
- 210000005168 endometrial cell Anatomy 0.000 description 3
- 239000003623 enhancer Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229960004039 finasteride Drugs 0.000 description 3
- DBEPLOCGEIEOCV-WSBQPABSSA-N finasteride Chemical compound N([C@@H]1CC2)C(=O)C=C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](C(=O)NC(C)(C)C)[C@@]2(C)CC1 DBEPLOCGEIEOCV-WSBQPABSSA-N 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 108020001507 fusion proteins Proteins 0.000 description 3
- 102000037865 fusion proteins Human genes 0.000 description 3
- XLXSAKCOAKORKW-AQJXLSMYSA-N gonadorelin Chemical compound C([C@@H](C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1[C@@H](CCC1)C(=O)NCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)C1=CC=C(O)C=C1 XLXSAKCOAKORKW-AQJXLSMYSA-N 0.000 description 3
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 3
- 235000003642 hunger Nutrition 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 208000000509 infertility Diseases 0.000 description 3
- 230000036512 infertility Effects 0.000 description 3
- 231100000535 infertility Toxicity 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 238000001361 intraarterial administration Methods 0.000 description 3
- 238000007918 intramuscular administration Methods 0.000 description 3
- 238000007912 intraperitoneal administration Methods 0.000 description 3
- 238000001990 intravenous administration Methods 0.000 description 3
- 210000003734 kidney Anatomy 0.000 description 3
- 235000005772 leucine Nutrition 0.000 description 3
- 235000018977 lysine Nutrition 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229960002985 medroxyprogesterone acetate Drugs 0.000 description 3
- PSGAAPLEWMOORI-PEINSRQWSA-N medroxyprogesterone acetate Chemical compound C([C@@]12C)CC(=O)C=C1[C@@H](C)C[C@@H]1[C@@H]2CC[C@]2(C)[C@@](OC(C)=O)(C(C)=O)CC[C@H]21 PSGAAPLEWMOORI-PEINSRQWSA-N 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 239000002773 nucleotide Substances 0.000 description 3
- 230000016087 ovulation Effects 0.000 description 3
- 230000027758 ovulation cycle Effects 0.000 description 3
- 102000040430 polynucleotide Human genes 0.000 description 3
- 108091033319 polynucleotide Proteins 0.000 description 3
- 239000002157 polynucleotide Substances 0.000 description 3
- 230000035935 pregnancy Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 235000013930 proline Nutrition 0.000 description 3
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 3
- 230000002797 proteolythic effect Effects 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 230000001850 reproductive effect Effects 0.000 description 3
- 230000028327 secretion Effects 0.000 description 3
- 239000000333 selective estrogen receptor modulator Substances 0.000 description 3
- 235000004400 serine Nutrition 0.000 description 3
- 230000000391 smoking effect Effects 0.000 description 3
- 238000011301 standard therapy Methods 0.000 description 3
- 230000037351 starvation Effects 0.000 description 3
- 238000007920 subcutaneous administration Methods 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 231100000419 toxicity Toxicity 0.000 description 3
- 230000001988 toxicity Effects 0.000 description 3
- 238000011830 transgenic mouse model Methods 0.000 description 3
- 208000004043 venous thromboembolism Diseases 0.000 description 3
- 230000004584 weight gain Effects 0.000 description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- NFGXHKASABOEEW-UHFFFAOYSA-N 1-methylethyl 11-methoxy-3,7,11-trimethyl-2,4-dodecadienoate Chemical compound COC(C)(C)CCCC(C)CC=CC(C)=CC(=O)OC(C)C NFGXHKASABOEEW-UHFFFAOYSA-N 0.000 description 2
- 101150096316 5 gene Proteins 0.000 description 2
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 2
- 206010001928 Amenorrhoea Diseases 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000282836 Camelus dromedarius Species 0.000 description 2
- 201000009030 Carcinoma Diseases 0.000 description 2
- 102000009016 Cholera Toxin Human genes 0.000 description 2
- 108010049048 Cholera Toxin Proteins 0.000 description 2
- 102100021809 Chorionic somatomammotropin hormone 1 Human genes 0.000 description 2
- 208000016216 Choristoma Diseases 0.000 description 2
- 241000557626 Corvus corax Species 0.000 description 2
- 238000012286 ELISA Assay Methods 0.000 description 2
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 2
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 2
- 108010051696 Growth Hormone Proteins 0.000 description 2
- 208000004547 Hallucinations Diseases 0.000 description 2
- 206010019233 Headaches Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 101000617830 Homo sapiens Sterol O-acyltransferase 1 Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- 208000001953 Hypotension Diseases 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 102000042838 JAK family Human genes 0.000 description 2
- 108091082332 JAK family Proteins 0.000 description 2
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 2
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 2
- 101000687480 Macaca mulatta Prolactin Proteins 0.000 description 2
- 206010027304 Menopausal symptoms Diseases 0.000 description 2
- NIPNSKYNPDTRPC-UHFFFAOYSA-N N-[2-oxo-2-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 NIPNSKYNPDTRPC-UHFFFAOYSA-N 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 2
- 206010030113 Oedema Diseases 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 241000283973 Oryctolagus cuniculus Species 0.000 description 2
- 102000015731 Peptide Hormones Human genes 0.000 description 2
- 108010038988 Peptide Hormones Proteins 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 108010003044 Placental Lactogen Proteins 0.000 description 2
- 239000000381 Placental Lactogen Substances 0.000 description 2
- 108091027981 Response element Proteins 0.000 description 2
- 206010065951 Retrograde menstruation Diseases 0.000 description 2
- BKRGVLQUQGGVSM-KBXCAEBGSA-N Revanil Chemical compound C1=CC(C=2[C@H](N(C)C[C@H](C=2)NC(=O)N(CC)CC)C2)=C3C2=CNC3=C1 BKRGVLQUQGGVSM-KBXCAEBGSA-N 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- 108020004682 Single-Stranded DNA Proteins 0.000 description 2
- 102100038803 Somatotropin Human genes 0.000 description 2
- 102100021993 Sterol O-acyltransferase 1 Human genes 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- 101000697584 Streptomyces lavendulae Streptothricin acetyltransferase Proteins 0.000 description 2
- MUMGGOZAMZWBJJ-DYKIIFRCSA-N Testostosterone Chemical compound O=C1CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 MUMGGOZAMZWBJJ-DYKIIFRCSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 206010047700 Vomiting Diseases 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000000556 agonist Substances 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 239000003886 aromatase inhibitor Substances 0.000 description 2
- 229940046844 aromatase inhibitors Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 230000008033 biological extinction Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 201000008275 breast carcinoma Diseases 0.000 description 2
- 239000007975 buffered saline Substances 0.000 description 2
- -1 but not limited to Substances 0.000 description 2
- 210000004899 c-terminal region Anatomy 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229960001714 calcium phosphate Drugs 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 230000000711 cancerogenic effect Effects 0.000 description 2
- 231100000357 carcinogen Toxicity 0.000 description 2
- 239000003183 carcinogenic agent Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 230000035606 childbirth Effects 0.000 description 2
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 2
- 238000010367 cloning Methods 0.000 description 2
- 239000003086 colorant Substances 0.000 description 2
- 238000012937 correction Methods 0.000 description 2
- 230000009260 cross reactivity Effects 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 238000012217 deletion Methods 0.000 description 2
- 230000037430 deletion Effects 0.000 description 2
- 238000004925 denaturation Methods 0.000 description 2
- 230000036425 denaturation Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000006471 dimerization reaction Methods 0.000 description 2
- 229960003638 dopamine Drugs 0.000 description 2
- 238000001211 electron capture detection Methods 0.000 description 2
- 238000004520 electroporation Methods 0.000 description 2
- 230000001076 estrogenic effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000003721 exogen phase Effects 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 239000003862 glucocorticoid Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 239000000122 growth hormone Substances 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 210000004209 hair Anatomy 0.000 description 2
- 231100000869 headache Toxicity 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 210000004408 hybridoma Anatomy 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 230000036543 hypotension Effects 0.000 description 2
- 230000004185 hypothalamic-pituitary-gonadal axis Effects 0.000 description 2
- 230000002519 immonomodulatory effect Effects 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 238000002513 implantation Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 208000015181 infectious disease Diseases 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 231100000546 inhibition of ovulation Toxicity 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000002955 isolation Methods 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000001983 lactogenic effect Effects 0.000 description 2
- 229960003587 lisuride Drugs 0.000 description 2
- 238000003468 luciferase reporter gene assay Methods 0.000 description 2
- 210000004072 lung Anatomy 0.000 description 2
- 201000005202 lung cancer Diseases 0.000 description 2
- 208000020816 lung neoplasm Diseases 0.000 description 2
- 210000004698 lymphocyte Anatomy 0.000 description 2
- 230000008774 maternal effect Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 235000006109 methionine Nutrition 0.000 description 2
- 229960000485 methotrexate Drugs 0.000 description 2
- 235000013336 milk Nutrition 0.000 description 2
- 239000008267 milk Substances 0.000 description 2
- 210000004080 milk Anatomy 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 230000008693 nausea Effects 0.000 description 2
- 230000036963 noncompetitive effect Effects 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 210000001672 ovary Anatomy 0.000 description 2
- 230000002018 overexpression Effects 0.000 description 2
- 239000012188 paraffin wax Substances 0.000 description 2
- 238000007911 parenteral administration Methods 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000000813 peptide hormone Substances 0.000 description 2
- 210000003200 peritoneal cavity Anatomy 0.000 description 2
- 210000004303 peritoneum Anatomy 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 230000026731 phosphorylation Effects 0.000 description 2
- 238000006366 phosphorylation reaction Methods 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 2
- 229920000053 polysorbate 80 Polymers 0.000 description 2
- 230000002062 proliferating effect Effects 0.000 description 2
- 230000000069 prophylactic effect Effects 0.000 description 2
- 229940044601 receptor agonist Drugs 0.000 description 2
- 239000000018 receptor agonist Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000003248 secreting effect Effects 0.000 description 2
- 229940095743 selective estrogen receptor modulator Drugs 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 210000002536 stromal cell Anatomy 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 230000002194 synthesizing effect Effects 0.000 description 2
- 229940037128 systemic glucocorticoids Drugs 0.000 description 2
- 229960001603 tamoxifen Drugs 0.000 description 2
- 235000008521 threonine Nutrition 0.000 description 2
- 229940113082 thymine Drugs 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 239000006213 vaginal ring Substances 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 239000003981 vehicle Substances 0.000 description 2
- 230000003612 virological effect Effects 0.000 description 2
- 230000008673 vomiting Effects 0.000 description 2
- WWYNJERNGUHSAO-XUDSTZEESA-N (+)-Norgestrel Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](CC)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 WWYNJERNGUHSAO-XUDSTZEESA-N 0.000 description 1
- UVGHPGOONBRLCX-NJSLBKSFSA-N (2,5-dioxopyrrolidin-1-yl) 6-[5-[(3as,4s,6ar)-2-oxo-1,3,3a,4,6,6a-hexahydrothieno[3,4-d]imidazol-4-yl]pentanoylamino]hexanoate Chemical compound C([C@H]1[C@H]2NC(=O)N[C@H]2CS1)CCCC(=O)NCCCCCC(=O)ON1C(=O)CCC1=O UVGHPGOONBRLCX-NJSLBKSFSA-N 0.000 description 1
- OXHOPZLBSSTTBU-UHFFFAOYSA-N 1,3-bis(bromomethyl)benzene Chemical compound BrCC1=CC=CC(CBr)=C1 OXHOPZLBSSTTBU-UHFFFAOYSA-N 0.000 description 1
- PKYCWFICOKSIHZ-UHFFFAOYSA-N 1-(3,7-dihydroxyphenoxazin-10-yl)ethanone Chemical compound OC1=CC=C2N(C(=O)C)C3=CC=C(O)C=C3OC2=C1 PKYCWFICOKSIHZ-UHFFFAOYSA-N 0.000 description 1
- NVKAWKQGWWIWPM-ABEVXSGRSA-N 17-β-hydroxy-5-α-Androstan-3-one Chemical compound C1C(=O)CC[C@]2(C)[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CC[C@H]21 NVKAWKQGWWIWPM-ABEVXSGRSA-N 0.000 description 1
- BFPYWIDHMRZLRN-UHFFFAOYSA-N 17alpha-ethynyl estradiol Natural products OC1=CC=C2C3CCC(C)(C(CC4)(O)C#C)C4C3CCC2=C1 BFPYWIDHMRZLRN-UHFFFAOYSA-N 0.000 description 1
- VZSRBBMJRBPUNF-UHFFFAOYSA-N 2-(2,3-dihydro-1H-inden-2-ylamino)-N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]pyrimidine-5-carboxamide Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C(=O)NCCC(N1CC2=C(CC1)NN=N2)=O VZSRBBMJRBPUNF-UHFFFAOYSA-N 0.000 description 1
- KLDBMPMWBVTYGW-AIDJSRAFSA-N 2-aminoacetic acid (2S)-2-amino-3-hydroxypropanoic acid Chemical compound NCC(O)=O.NCC(O)=O.NCC(O)=O.NCC(O)=O.OC[C@H](N)C(O)=O KLDBMPMWBVTYGW-AIDJSRAFSA-N 0.000 description 1
- BFSVOASYOCHEOV-UHFFFAOYSA-N 2-diethylaminoethanol Chemical compound CCN(CC)CCO BFSVOASYOCHEOV-UHFFFAOYSA-N 0.000 description 1
- YRNWIFYIFSBPAU-UHFFFAOYSA-N 4-[4-(dimethylamino)phenyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C1=CC=C(N(C)C)C=C1 YRNWIFYIFSBPAU-UHFFFAOYSA-N 0.000 description 1
- ZWSWPQHKDLDIDL-UHFFFAOYSA-N 7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-3,4,5,6,7,8-hexahydronaphthalen-2-one Chemical compound C1C(C(C)(C)O)CCC2(C)CCC(=O)C(C)=C21 ZWSWPQHKDLDIDL-UHFFFAOYSA-N 0.000 description 1
- 208000002874 Acne Vulgaris Diseases 0.000 description 1
- 206010000599 Acromegaly Diseases 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 208000003200 Adenoma Diseases 0.000 description 1
- 206010001233 Adenoma benign Diseases 0.000 description 1
- HJCMDXDYPOUFDY-WHFBIAKZSA-N Ala-Gln Chemical compound C[C@H](N)C(=O)N[C@H](C(O)=O)CCC(N)=O HJCMDXDYPOUFDY-WHFBIAKZSA-N 0.000 description 1
- 201000000736 Amenorrhea Diseases 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 201000005670 Anovulation Diseases 0.000 description 1
- 206010002659 Anovulatory cycle Diseases 0.000 description 1
- 101100450694 Arabidopsis thaliana HFR1 gene Proteins 0.000 description 1
- 101100331373 Arabidopsis thaliana LCR3 gene Proteins 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 206010071445 Bladder outlet obstruction Diseases 0.000 description 1
- 206010063575 Bladder perforation Diseases 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 206010049872 Breast discomfort Diseases 0.000 description 1
- 206010006313 Breast tenderness Diseases 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- 231100000023 Cell-mediated cytotoxicity Toxicity 0.000 description 1
- 206010057250 Cell-mediated cytotoxicity Diseases 0.000 description 1
- 102000000989 Complement System Proteins Human genes 0.000 description 1
- 108010069112 Complement System Proteins Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 101710107142 Dopamine receptor 2 Proteins 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 206010013908 Dysfunctional uterine bleeding Diseases 0.000 description 1
- 206010013935 Dysmenorrhoea Diseases 0.000 description 1
- 206010014328 Ejaculation failure Diseases 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 206010014733 Endometrial cancer Diseases 0.000 description 1
- 206010014759 Endometrial neoplasm Diseases 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- BFPYWIDHMRZLRN-SLHNCBLASA-N Ethinyl estradiol Chemical compound OC1=CC=C2[C@H]3CC[C@](C)([C@](CC4)(O)C#C)[C@@H]4[C@@H]3CCC2=C1 BFPYWIDHMRZLRN-SLHNCBLASA-N 0.000 description 1
- 108010087819 Fc receptors Proteins 0.000 description 1
- 102000009109 Fc receptors Human genes 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 241000724791 Filamentous phage Species 0.000 description 1
- 208000036119 Frailty Diseases 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 239000000579 Gonadotropin-Releasing Hormone Substances 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 206010020112 Hirsutism Diseases 0.000 description 1
- 101000997832 Homo sapiens Tyrosine-protein kinase JAK2 Proteins 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010062767 Hypophysitis Diseases 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 108020005350 Initiator Codon Proteins 0.000 description 1
- 206010022971 Iron Deficiencies Diseases 0.000 description 1
- 108010024121 Janus Kinases Proteins 0.000 description 1
- 102000015617 Janus Kinases Human genes 0.000 description 1
- 102000018329 Keratin-18 Human genes 0.000 description 1
- 108010066327 Keratin-18 Proteins 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 102000016267 Leptin Human genes 0.000 description 1
- 108010092277 Leptin Proteins 0.000 description 1
- 102000043136 MAP kinase family Human genes 0.000 description 1
- 108091054455 MAP kinase family Proteins 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 206010027514 Metrorrhagia Diseases 0.000 description 1
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 description 1
- 101001123446 Mus musculus Prolactin receptor Proteins 0.000 description 1
- 241001045988 Neogene Species 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 208000001132 Osteoporosis Diseases 0.000 description 1
- 108010058846 Ovalbumin Proteins 0.000 description 1
- 101150008197 PRL gene Proteins 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000057297 Pepsin A Human genes 0.000 description 1
- 108090000284 Pepsin A Proteins 0.000 description 1
- 108010067902 Peptide Library Proteins 0.000 description 1
- 208000007913 Pituitary Neoplasms Diseases 0.000 description 1
- 201000005746 Pituitary adenoma Diseases 0.000 description 1
- 206010061538 Pituitary tumour benign Diseases 0.000 description 1
- 206010035226 Plasma cell myeloma Diseases 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 208000018525 Postpartum Hemorrhage Diseases 0.000 description 1
- 206010036618 Premenstrual syndrome Diseases 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 101150015730 Prlr gene Proteins 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- 102000014400 SH2 domains Human genes 0.000 description 1
- 108050003452 SH2 domains Proteins 0.000 description 1
- 108010029477 STAT5 Transcription Factor Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 201000001880 Sexual dysfunction Diseases 0.000 description 1
- 102100024481 Signal transducer and activator of transcription 5A Human genes 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- 108020004459 Small interfering RNA Proteins 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 101000857870 Squalus acanthias Gonadoliberin Proteins 0.000 description 1
- 241000191940 Staphylococcus Species 0.000 description 1
- 241000187747 Streptomyces Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108091008874 T cell receptors Proteins 0.000 description 1
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 1
- DRHKJLXJIQTDTD-OAHLLOKOSA-N Tamsulosine Chemical compound CCOC1=CC=CC=C1OCCN[C@H](C)CC1=CC=C(OC)C(S(N)(=O)=O)=C1 DRHKJLXJIQTDTD-OAHLLOKOSA-N 0.000 description 1
- 108020005038 Terminator Codon Proteins 0.000 description 1
- 101710120037 Toxin CcdB Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 102100033444 Tyrosine-protein kinase JAK2 Human genes 0.000 description 1
- 208000003800 Urinary Bladder Neck Obstruction Diseases 0.000 description 1
- 101150117115 V gene Proteins 0.000 description 1
- 206010046914 Vaginal infection Diseases 0.000 description 1
- 201000008100 Vaginitis Diseases 0.000 description 1
- 208000021017 Weight Gain Diseases 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 206010048259 Zinc deficiency Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 206010000496 acne Diseases 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000000674 adrenergic antagonist Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 150000001295 alanines Chemical class 0.000 description 1
- 229960004607 alfuzosin Drugs 0.000 description 1
- WNMJYKCGWZFFKR-UHFFFAOYSA-N alfuzosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(C)CCCNC(=O)C1CCCO1 WNMJYKCGWZFFKR-UHFFFAOYSA-N 0.000 description 1
- 208000004631 alopecia areata Diseases 0.000 description 1
- 231100000540 amenorrhea Toxicity 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 238000012870 ammonium sulfate precipitation Methods 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 201000002996 androgenic alopecia Diseases 0.000 description 1
- 229960003473 androstanolone Drugs 0.000 description 1
- 238000005571 anion exchange chromatography Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 231100000552 anovulation Toxicity 0.000 description 1
- 230000008485 antagonism Effects 0.000 description 1
- 230000001263 anti-prolactin effect Effects 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 230000002054 antogonadotrophic effect Effects 0.000 description 1
- 230000001640 apoptogenic effect Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 206010003549 asthenia Diseases 0.000 description 1
- 238000011888 autopsy Methods 0.000 description 1
- OHDRQQURAXLVGJ-HLVWOLMTSA-N azane;(2e)-3-ethyl-2-[(e)-(3-ethyl-6-sulfo-1,3-benzothiazol-2-ylidene)hydrazinylidene]-1,3-benzothiazole-6-sulfonic acid Chemical compound [NH4+].[NH4+].S/1C2=CC(S([O-])(=O)=O)=CC=C2N(CC)C\1=N/N=C1/SC2=CC(S([O-])(=O)=O)=CC=C2N1CC OHDRQQURAXLVGJ-HLVWOLMTSA-N 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000002459 blastocyst Anatomy 0.000 description 1
- 208000034158 bleeding Diseases 0.000 description 1
- 210000004204 blood vessel Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 201000003163 breast adenoma Diseases 0.000 description 1
- 210000000069 breast epithelial cell Anatomy 0.000 description 1
- 201000003149 breast fibroadenoma Diseases 0.000 description 1
- 201000006957 breast giant fibroadenoma Diseases 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000012730 carminic acid Nutrition 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000003778 catagen phase Effects 0.000 description 1
- 238000005277 cation exchange chromatography Methods 0.000 description 1
- 230000005890 cell-mediated cytotoxicity Effects 0.000 description 1
- 230000033077 cellular process Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 210000003756 cervix mucus Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 239000013599 cloning vector Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000012875 competitive assay Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 210000002808 connective tissue Anatomy 0.000 description 1
- 230000002254 contraceptive effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000013632 covalent dimer Substances 0.000 description 1
- 239000000287 crude extract Substances 0.000 description 1
- 208000031513 cyst Diseases 0.000 description 1
- 108010057085 cytokine receptors Proteins 0.000 description 1
- 102000003675 cytokine receptors Human genes 0.000 description 1
- 210000005220 cytoplasmic tail Anatomy 0.000 description 1
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical class NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- METQSPRSQINEEU-UHFFFAOYSA-N dihydrospirorenone Natural products CC12CCC(C3(CCC(=O)C=C3C3CC33)C)C3C1C1CC1C21CCC(=O)O1 METQSPRSQINEEU-UHFFFAOYSA-N 0.000 description 1
- 229940052760 dopamine agonists Drugs 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- RUZYUOTYCVRMRZ-UHFFFAOYSA-N doxazosin Chemical compound C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 RUZYUOTYCVRMRZ-UHFFFAOYSA-N 0.000 description 1
- 229960001389 doxazosin Drugs 0.000 description 1
- 229960004845 drospirenone Drugs 0.000 description 1
- METQSPRSQINEEU-HXCATZOESA-N drospirenone Chemical compound C([C@]12[C@H]3C[C@H]3[C@H]3[C@H]4[C@@H]([C@]5(CCC(=O)C=C5[C@@H]5C[C@@H]54)C)CC[C@@]31C)CC(=O)O2 METQSPRSQINEEU-HXCATZOESA-N 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 201000003511 ectopic pregnancy Diseases 0.000 description 1
- 230000008144 egg development Effects 0.000 description 1
- 210000002257 embryonic structure Anatomy 0.000 description 1
- 230000002996 emotional effect Effects 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 201000003914 endometrial carcinoma Diseases 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000008508 epithelial proliferation Effects 0.000 description 1
- 230000001856 erectile effect Effects 0.000 description 1
- 102000015694 estrogen receptors Human genes 0.000 description 1
- 108010038795 estrogen receptors Proteins 0.000 description 1
- 238000009164 estrogen replacement therapy Methods 0.000 description 1
- 238000012869 ethanol precipitation Methods 0.000 description 1
- 229960002568 ethinylestradiol Drugs 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- 239000013613 expression plasmid Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 239000010685 fatty oil Substances 0.000 description 1
- 230000004720 fertilization Effects 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 230000003152 gestagenic effect Effects 0.000 description 1
- 230000000762 glandular Effects 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 239000006481 glucose medium Substances 0.000 description 1
- 125000003712 glycosamine group Chemical group 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000002710 gonadal effect Effects 0.000 description 1
- 229940035638 gonadotropin-releasing hormone Drugs 0.000 description 1
- 210000002503 granulosa cell Anatomy 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 230000003659 hair regrowth Effects 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 150000002411 histidines Chemical class 0.000 description 1
- 229960002163 hydrogen peroxide Drugs 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000004191 hydrophobic interaction chromatography Methods 0.000 description 1
- 238000012872 hydroxylapatite chromatography Methods 0.000 description 1
- 230000000544 hyperemic effect Effects 0.000 description 1
- 230000001190 hypoprolactinemic effect Effects 0.000 description 1
- 230000002267 hypothalamic effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000012744 immunostaining Methods 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000002637 immunotoxin Effects 0.000 description 1
- 229940051026 immunotoxin Drugs 0.000 description 1
- 239000002596 immunotoxin Substances 0.000 description 1
- 231100000608 immunotoxin Toxicity 0.000 description 1
- 201000001881 impotence Diseases 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 208000020082 intraepithelial neoplasia Diseases 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- FZWBNHMXJMCXLU-BLAUPYHCSA-N isomaltotriose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1OC[C@@H]1[C@@H](O)[C@H](O)[C@@H](O)[C@@H](OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C=O)O1 FZWBNHMXJMCXLU-BLAUPYHCSA-N 0.000 description 1
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 1
- 230000000009 lactational effect Effects 0.000 description 1
- 210000001756 lactotroph Anatomy 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 229940039781 leptin Drugs 0.000 description 1
- NRYBAZVQPHGZNS-ZSOCWYAHSA-N leptin Chemical compound O=C([C@H](CO)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](N)CC(C)C)CCSC)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CS)C(O)=O NRYBAZVQPHGZNS-ZSOCWYAHSA-N 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 150000002614 leucines Chemical group 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 201000005630 leukorrhea Diseases 0.000 description 1
- 229960004400 levonorgestrel Drugs 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000029849 luteinization Effects 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000023247 mammary gland development Effects 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 208000004396 mastitis Diseases 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000009245 menopause Effects 0.000 description 1
- 230000002175 menstrual effect Effects 0.000 description 1
- 231100000544 menstrual irregularity Toxicity 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 229960003632 minoxidil Drugs 0.000 description 1
- 239000003226 mitogen Substances 0.000 description 1
- 230000002297 mitogenic effect Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 238000001823 molecular biology technique Methods 0.000 description 1
- 230000003387 muscular Effects 0.000 description 1
- 201000000050 myeloid neoplasm Diseases 0.000 description 1
- 230000002632 myometrial effect Effects 0.000 description 1
- UPSFMJHZUCSEHU-JYGUBCOQSA-N n-[(2s,3r,4r,5s,6r)-2-[(2r,3s,4r,5r,6s)-5-acetamido-4-hydroxy-2-(hydroxymethyl)-6-(4-methyl-2-oxochromen-7-yl)oxyoxan-3-yl]oxy-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]acetamide Chemical compound CC(=O)N[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1O[C@H]1[C@H](O)[C@@H](NC(C)=O)[C@H](OC=2C=C3OC(=O)C=C(C)C3=CC=2)O[C@@H]1CO UPSFMJHZUCSEHU-JYGUBCOQSA-N 0.000 description 1
- 101150091879 neo gene Proteins 0.000 description 1
- 230000009826 neoplastic cell growth Effects 0.000 description 1
- 201000008383 nephritis Diseases 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000000287 oocyte Anatomy 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 229940043515 other immunoglobulins in atc Drugs 0.000 description 1
- 229940092253 ovalbumin Drugs 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 229940055729 papain Drugs 0.000 description 1
- 235000019834 papain Nutrition 0.000 description 1
- 230000003076 paracrine Effects 0.000 description 1
- 230000001991 pathophysiological effect Effects 0.000 description 1
- 230000008289 pathophysiological mechanism Effects 0.000 description 1
- 230000007310 pathophysiology Effects 0.000 description 1
- 230000006320 pegylation Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 229940111202 pepsin Drugs 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 230000002263 peptidergic effect Effects 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 229940080469 phosphocellulose Drugs 0.000 description 1
- 150000008300 phosphoramidites Chemical class 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 210000003635 pituitary gland Anatomy 0.000 description 1
- 208000021310 pituitary gland adenoma Diseases 0.000 description 1
- 230000036470 plasma concentration Effects 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000001323 posttranslational effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 108010042121 probasin Proteins 0.000 description 1
- 230000000757 progestagenic effect Effects 0.000 description 1
- 208000037821 progressive disease Diseases 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000035752 proliferative phase Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 208000023958 prostate neoplasm Diseases 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000003127 radioimmunoassay Methods 0.000 description 1
- 238000001959 radiotherapy Methods 0.000 description 1
- 238000002708 random mutagenesis Methods 0.000 description 1
- 238000003259 recombinant expression Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000003571 reporter gene assay Methods 0.000 description 1
- 230000033458 reproduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000002271 resection Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 206010039073 rheumatoid arthritis Diseases 0.000 description 1
- 102200142660 rs7565275 Human genes 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 239000008159 sesame oil Substances 0.000 description 1
- 235000011803 sesame oil Nutrition 0.000 description 1
- 231100000872 sexual dysfunction Toxicity 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 210000002460 smooth muscle Anatomy 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 239000000600 sorbitol Substances 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 238000011272 standard treatment Methods 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 229960002613 tamsulosin Drugs 0.000 description 1
- 230000008685 targeting Effects 0.000 description 1
- 229960001693 terazosin Drugs 0.000 description 1
- VCKUSRYTPJJLNI-UHFFFAOYSA-N terazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1CCCO1 VCKUSRYTPJJLNI-UHFFFAOYSA-N 0.000 description 1
- 229960003604 testosterone Drugs 0.000 description 1
- UZVUJVFQFNHRSY-OUTKXMMCSA-J tetrasodium;(2s)-2-[bis(carboxylatomethyl)amino]pentanedioate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]C(=O)CC[C@@H](C([O-])=O)N(CC([O-])=O)CC([O-])=O UZVUJVFQFNHRSY-OUTKXMMCSA-J 0.000 description 1
- 231100001274 therapeutic index Toxicity 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 102000027257 transmembrane receptors Human genes 0.000 description 1
- 108091008578 transmembrane receptors Proteins 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- 239000000439 tumor marker Substances 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 210000003708 urethra Anatomy 0.000 description 1
- 210000001635 urinary tract Anatomy 0.000 description 1
- 208000019206 urinary tract infection Diseases 0.000 description 1
- 206010046901 vaginal discharge Diseases 0.000 description 1
- 230000000304 vasodilatating effect Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000011534 wash buffer Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 208000016261 weight loss Diseases 0.000 description 1
- 238000001262 western blot Methods 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2869—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against hormone receptors
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/395—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
- A61K39/39533—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals
- A61K39/3955—Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum against materials from animals against proteinaceous materials, e.g. enzymes, hormones, lymphokines
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/08—Drugs for disorders of the urinary system of the prostate
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
- A61P15/18—Feminine contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/14—Drugs for dermatological disorders for baldness or alopecia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P5/00—Drugs for disorders of the endocrine system
- A61P5/06—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH
- A61P5/08—Drugs for disorders of the endocrine system of the anterior pituitary hormones, e.g. TSH, ACTH, FSH, LH, PRL, GH for decreasing, blocking or antagonising the activity of the anterior pituitary hormones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/30—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants from tumour cells
- C07K16/3015—Breast
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/21—Immunoglobulins specific features characterized by taxonomic origin from primates, e.g. man
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/33—Crossreactivity, e.g. for species or epitope, or lack of said crossreactivity
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/30—Immunoglobulins specific features characterized by aspects of specificity or valency
- C07K2317/34—Identification of a linear epitope shorter than 20 amino acid residues or of a conformational epitope defined by amino acid residues
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/565—Complementarity determining region [CDR]
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/73—Inducing cell death, e.g. apoptosis, necrosis or inhibition of cell proliferation
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention is directed towards the prolactin receptor antibody Mat3 and provides recombinant antigen-binding regions of the antibody Mat3 and functional fragments containing such antigen-binding regions, that specifically bind and neutralize the prolactin receptor, nucleic acid sequences encoding the foregoing antibody, vectors containing the same, pharmaceutical compositions containing them and their use in the treatment or prevention of endometriosis and other diseases which benefit from inhibition of prolactin receptor mediated signalling.
- Prolactin is a polypeptide hormone composed of 199 amino acids.
- PRL belongs to the growth hormone (GH), placental lactogen (PL) family of polypeptide hormones and is synthesized in lactotroph cells of the pituitary and in several extrapituitary tissues such as lymphocytes, mammary epithelial cells, the myometrium, and the prostate.
- GH growth hormone
- PL placental lactogen
- PRL binds to the PRL receptor (PRLR), a single transmembrane receptor belonging to the class 1 cytokine receptor superfamily (Endocrine Reviews 19:225-268, 1998).
- PRLR PRL receptor
- the PRLR exists in three different isoforms, the short, the long, and the intermediate form that can be distinguished by the length of their cytoplasmic tails.
- PRLR activation Upon ligand binding, a sequential process leads to PRLR activation.
- PRL interacts via its binding site 1 with one PRLR molecule and then attracts via its binding site 2 a second receptor molecule leading to an active dimer of PRLRs.
- PRLR dimerization leads to the predominant activation of the JAK/STAT (Janus Kinase/Signal transducers and activators of transcription) pathway.
- JAK/STAT Janus Kinase/Signal transducers and activators of transcription
- JAKs Upon receptor dimerization, JAKs (predominantly JAK2) associated with the receptor, transphosphorylate and activate each other.
- PRLR is also phosphorylated and can bind to SH2-domain containing proteins such as STATs. Receptor bound STATs are subsequently phosphorylated, dissociate from the receptor and translocate to the nucleus where they stimulate transcription of target genes.
- STATs SH2-domain containing proteins
- Receptor bound STATs are subsequently phosphorylated, dissociate from the receptor and translocate to the nucleus where they stimulate transcription of target genes.
- activation of the Ras-Raf-MAPK pathway and activation of the cytoplasmic src kinase by PRLRs have been described (for review Endocrine Reviews 19: 225-268, 1998).
- PRLR-mediated signalling plays a role in a variety of processes such as mammary gland development, lactation, reproduction, mammary and prostate tumor growth, autoimmune diseases, general growth and metabolism, and immunomodulation (Endocrine Reviews 19: 225-268. 1998; Annu. Rev. Physiol. 64: 47-67, 2002).
- prolactin has been implicated in these diseases.
- Antibodies binding to PRLR for breast cancer diagnosis were described in WO2003/004989 (Millenium Pharmaceuticals) for the first time.
- numerous genes and corresponding proteins including PRLR being overexpressed in several breast tumor tissues were regarded as suitable markers for early detection of malignancy.
- WO03/008583 focussing on lymphoma and leukemia, carcinoma- associated genes and proteins are described including PRLR.
- PRLR over-expression as a cancer marker and the use of PRLR-specific antibodies for diagnosis and treatment of breast cancer and other cancer types (lung, prostate and skin cancer) were described.
- First PRLR antibodies claimed for the prevention and treatment of breast cancer, were described in US 2007/0269438 (Biogen).
- the expression products (antibodies) from five hybridoma cell lines were described by their ability to tightly bind breast cancer cell lines T47D and MCF7 and to block PRL-mediated signalling (STAT5-, MAPK-, AKT- phosphorylation).
- PRL-mediated signalling STAT5-, MAPK-, AKT- phosphorylation
- peptidergic PRLR antagonists that are derived from prolactin and that carry an N-terminal deletion and a point mutation (e.g. delta1 -9G129R prolactin) also behave as antagonists of the PRLR, however they suffer from reduced half-life time (15-20 min) and low potency if compared to prolactin (Pituitary 6:89-95,2003). Therefore, neutralising PRLR antibodies are superior especially with regard to the inhibition of enhanced autocrine prolactin signalling that plays a role in breast cancer and prostate cancer.
- PRLR-mediated signalling was also investigated in the context of the benign disease endometriosis.
- the expression pattern of the PRLR in endometriotic samples and eutopic endometrium from endometriosis patients was analysed (Acta Obstet Gynecol Scand 81 :5-10, 2002) during the mid-late proliferative phase of the menstrual cycle. It was demonstrated that the PRLR mRNA was present in the eutopic endometrium in 79% of the analysed endometriosis patients, whereas it was absent in the endometriotic lesions in 86% of the endometriosis patients. These data suggested a possible differential regulation of PRLR expression between normal and endometriotic tissue.
- PRLR-mediated signalling plays a role in a variety of cellular processes
- very few and partially contradictory results have been disclosed demonstrating the therapeutic value of PRLR antagonism for most of the benign diseases including endometriosis.
- PRLR might play a causative role in breast cancer.
- potent PRLR antagonists might be appropriate agents to demonstrate the therapeutic value of PRLR inhibition for breast cancer.
- PRLR blockade indeed leads to inhibition of tumor growth (except lymphoma treatment and inhibition of breast cancer development) and moreover that antagonistic PRLR antibodies can be used for the treatment of benign diseases which benefit from blockade of PRLR signalling. Therefore, the antibodies currently available cannot be used in predictive models which allow pre-clinical proof-of-concept studies.
- the underlying problem of the present invention lies in the provision of new PRLR antibodies which can be used in predictive models which allow pre-clinical proof of concept studies and which can be used for treatment of diseases which benefit from blockade of prolaction receptor signalling.
- said antibody is surprisingly specific to and has a high affinity for PRLR in human, monkey and mouse in biochemical as well as cellular binding studies without binding competitively to PRL and this way neutralizes the PRLR- mediated signalling in all three species, in contrast to those antibodies as disclosed in WO 2008/022295, which bind non-competitively to PRL such as HE06642.
- said antibody enables to perform pre-clinical proof-of-concept studies in mouse as well as - at reasonable doses - also in monkey.
- said antibody can deliver a therapeutic benefit to the subject by being more potent and more closely related to human germline sequences and thus offers the opportunity of an improved side-effect profile, i.e. reduced risk of immunogenicity due to reduced dosage and increased similarity to human germline sequences, compared to those antibodies as disclosed in WO 2008/022295, which bind non-competitively to PRL such as HE06642.
- the novel Mat3 antibody is preferably cross-reactive to PRLR from different species such as Macaca mulatta (rhesus monkey) and Macaca fascicularis (cynomolgus), Mus musculus (mouse) and Homo sapiens (human).
- Cross-reactivity here means that the affinities (KD values) and cell-binding ECso values of said antibody to human, monkey and mouse PRLR are below 10 x 10 9 M (see Table 1 , examples 9, 10, 13 and 14) and proliferation inhibiton IC 5 o values are below 20 x 10 9 M (see examples 1 to 3).
- the present invention is based on the discovery of the novel antibody Mat3 which can deliver a therapeutic benefit to the subject (seqences of the novel antibody are as in SEQ ID NO: 1 -10).
- the antibody of the invention which may be most preferably fully human with very close relationship to human germline sequences or which may be humanized or chimeric or human engineered variants thereof carrying the CDRs of the fully human version, can be used in many contexts which are more fully described herein.
- HE06642 contains the variable domains SEQ ID NOs: 14 and 15, which are identical to the sequences of he06.642-2 in WO 2008/022295.
- the antibody Mat3 was characterized in several cellular systems to determine its species specificity and its potency as well as efficacy in different readout paradigms addressing the inactivation of PRLR-mediated signalling and proliferation.
- Proliferation assays were performed in Ba/F cell lines either stably transfected with the human PRLR (Example 1 ), the murine PRLR (Example 2) or the rhesus PRLR (Example 3).
- Antibody Mat3 completely inhibited proliferation of cells carrying the human, the murine, and the rhesus PRLR (Example 1 -3).
- Antibody HE06642 (WO 2008/022295) was inactive at the cells carrying the murine PRLR and showed strongly reduced activity at the rhesus PRLR-cells if compared with Mat3.
- Antibody at3 was also more potent at the human PRLR than antibody HE06.642.
- luciferase reporter assays were performed using HEK293 cell lines stably transfected with either the human or murine PRLR (Example 12) and transiently transfected with a luciferase reporter gene under the control of LHRE's (lactogenic hormone response elements). Using these systems, it could be confirmed that a promoter dependent on PRLR-mediated signalling is switched off in the presence of at3. The inability of the antibody HE06.642 to efficiently block murine PRLR-mediated signalling became evident again.
- antibody Mat3 is therefore suitable for testing the inhibition of PRLR- mediated signalling in murine and monkey models.
- the antibody contains variable domains being more similar to translated human germline V-genes than HE06642.
- Figure 6 shows that the VH and VL domain are each 90% identical to the translated human germline heavy chain V and lambda light chain V genes [VBASE2 database; Retter I, Althaus HH, Munch R, Muller W: VBASE2, an integrative V gene database. Nucleic Acids Res. 2005 Jan 1 ;33 (Database issue):D671- 4].
- HE06642 exhibits 89% identity to the most similar translated VH germline sequence and only 80% identity to the most similar translated germline kappa light chain V sequence found in VBASE2.
- a human monoclonal antibody Mat3 according to table 5 (SEQ ID NO. 1-10) or antigen-binding fragments thereof which antagonize prolactin receptor-mediated signalling.
- the antibody specifically binds to the extracellular domain (ECD) of PRLR (SEQ ID NO: 12) or human polymorphic variants of SEQ ID No: 12 such as the I146L and I76V variants being described in PNAS 105 (38), 14533, 2008, and J. Clin. Endocrinol. Metab. 95 (1 ), 271 , 2010.
- the antibody specifically binds to the extracellular domain (ECD) of rhesus and cynomulgus monkey PRLR (SEQ ID NO: 1 1 ) as well as murine PRLR (SEQ ID NO: 13).
- human antibody Mat3, or humanized, human-engineered or chimeric antibody or antigen-binding fragment thereof whereby the antibody comprises a variable heavy region corresponding with a nucleic acid sequence according to SEQ ID NO: 3, and an amino acid sequence according to SEQ ID NO: 1 , and a variable light region with a nucleic acid sequence according to SEQ ID NO: 4, and an amino acid sequence according to SEQ ID NO: 2 which antagonize prolactin receptor-mediated signalling.
- an antibody or antigen-binding fragment comprising the CDRs of the antibody as described above, whereby
- the variable heavy chain contains the CDR sequences corresponding to SEQ ID NO: 5, 6, and 7 and the variable light chain contains the CDR sequences corresponding to SEQ ID NO: 8, 9, and 10.
- the antibody Mat3 consists of an antigen-binding region that binds specifically to one or more regions of the extracellular domain of PRLR from human, monkey and mouse, and whereby the amino acid sequences of the human PRLR are depicted by the amino acid sequences from position 1 to 210 of SEQ ID NO: 12 and human polymorphic variants of SEQ ID NO: 12, by the amino acid sequences from position 1 to 210 of the monkey PRLR according to SEQ ID NO: 1 1 and of the mouse PRLR according to SEQ ID NO: 13.
- the Mat3 consists of an antigen-binding region whereby the affinity to the extracellular domain of PRLR from human, monkey and mouse is at least 100 nM, preferably less than about 100 n , more preferably less than about 30 nM, even more preferred less than about 10 nM.
- the antibody Mat3 consists of an antigen-binding region that binds specifically to one or more regions of the extracellular domain of human PRLR and whereby the affinity is at least 10 nM, more preferable less than about 1 nM.
- Also object of the present invention is the aforementioned Mat3, wherein the heavy chain constant domains determine a modified or unmodified lgG1 , lgG2, lgG3 or lgG4.
- Table 1 provides a summary of dissociation constants (affinities) and dissociation rates of the antibody Mat3 of the invention, as determined by surface plasmon resonance (Biacore) with monomeric extracellular domains (amino acid 1- to 210) of human PRLR (SEQ ID NO: 12), rhesus and cynomolgus PRLR (SEQ ID NO: 1 1 , whereby the Fc-His fusion has been removed by proteolytic Factor Xa digestion) and murine PRLR (SEQ ID NO: 13) on the directly immobilized antibody (Example 10).
- Biacore surface plasmon resonance
- Table 1 Monovalent dissociation constants and dissociation rates of the extracellular domain of human, rhesus/cynomolgus monkey and mouse PRLR expressed in HEK293 cells determined for Mat3 as human IgG molecule by surface plasmon resonance (see Example 10)
- affinities disclosed for HE06642 in WO 2008/022295 are 2.6 x 10 9 M on the extracellular domain of human PRLR, 38.9 x 10 9 M on the corresponding domain of cynomolgus PRLR and 2.7 x 10 9 M on the corresponding domain of murine PRLR.
- the cell-based affinity of the antibody Mat3 was determined by fluorescence-activated cell sorting (FACS) combined with Scatchard analysis (Example 9).
- Table 2 denotes the binding strength of Mat3 as human lgG2 molecule on the HEK293 cell line stably transfected with human and rhesus monkey PRLR, respectively.
- Table 2 Cell-based binding potency of anti-PRLR antibody Mat3 in lgG2 format determined by FACS on the HEK293 cell line stably transfected with human and Rhesus monkey PRLR, respectively (see Example 9)
- n-CoDeR® synthetic human antibody phage display library
- scFv and Fab fragments were investigated in parallel.
- the targets used for scFv or Fab selection were the soluble ECD of human PRLR (amino acid positions 1 to 210 of SEQ ID NO.
- mouse PRLR amino acid positions 1 to 210 of SEQ ID NO: 13
- biotinylated NHS-LC biotin, Pierce
- non-biotinylated variant as well as the human breast cancer cell line T47D expressing PRLR.
- a combination of various approaches in phage-display technology was used to isolate high affinity, PRLR-specific, human monoclonal antibodies, by a combination of protein and whole cell pannings and through the development of specific tools.
- the panning tools and screening methods include the ECD of the human and mouse PRLR recombinantly expressed in fusion with an Fc domain (R&D Systems, catalogue no. 1 167-PR and 1309-PR, respectively; pos. 1-216 of SEQ ID NO: 12 and 13, respectively, each fused to the human lgG1 Fc domain, pos.
- Antibodies of the invention are not limited to the specific peptide sequences provided herein. Rather, the invention also embodies variants of these polypeptides. With reference to the instant disclosure and conventionally available technologies and references, the skilled worker will be able to prepare, test and utilize functional variants of the antibodies disclosed herein, while appreciating that variants having the ability to bind und to functionally block PRLR fall within the scope of the present invention.
- a variant can include, for example, an antibody that has at least one altered complementarity determining region (CDR) (hyper-variable) and/or framework (FR) (variable) domain/position, vis-a-vis a peptide sequence disclosed herein.
- CDR complementarity determining region
- FR framework
- An antibody is composed of two peptide chains, each containing one (light chain) or three (heavy chain) constant domains and a variable region (VL, VH), the latter of which is in each case made up of four FR regions (VH: HFR1 , HFR2, HFR3, HFR4; VL: LFR1 , LFR2, LFR3, LFR4) and three interspaced CDRs (VL: LCDR1 , LCDR2, LCDR3: VH: HCDR1 , HCDR2, HCDR3).
- the antigen-binding site is formed by one or more CDRs, yet the FR regions provide the structural framework for the CDRs and, hence, play an important role in antigen binding.
- the skilled worker routinely can generate mutated or diversified antibody sequences, which can be screened against the antigen, for new or improved properties, for example.
- Figure 4 provides the schemes for numbering each amino acid position in the variable domains VL and VH.
- Tables 3 (VH) and 4 (VL) delineate the CDR regions for antibody Mat3 of the invention and compare amino acids at a given position to a corresponding consensus or "master gene" sequence, in which the CDR regions are marked with X.
- Table 5 and 6 help to assign the SEQ ID Numbers to the antibodies, antibody fragments and PRLR variants provided in this invention.
- variants are constructed by changing amino acids within one or more CDR regions; a variant might also have one or more altered framework regions (FR).
- FR framework regions
- a peptide FR domain might be altered where there is a deviation in a residue compared to a germline sequence.
- variants may be obtained by maturation, i. e. by using one antibody as starting point for optimization by diversifying one or more amino acid residues in the antibody, preferably amino acid residues in one or more CDRs, and by screening the resulting collection of antibody variants for variants with improved properties.
- Particularly preferred is diversification of one or more amino acid residues in LCDR3 of VL, HCDR3 of VH, LCDR1 of VL and/or HCDR2 of VH.
- Trinucleotide mutagenesis (TRIM) technology
- TriM trinucleotide mutagenesis
- Polypeptide variants may be made that conserve the overall molecular structure of an antibody peptide sequence described herein. Given the properties of the individual amino acids, some rational substitutions will be recognized by the skilled worker. Amino acid substitutions, i.e., "conservative substitutions,” may be made, for instance, on the basis of similarity in polarity, charge, solubility, hydrophobicity, hydrophilicity, and/or the amphipathic nature of the residues involved.
- nonpolar (hydrophobic) amino acids include alanine, leucine, isoleucine, valine, proline, phenylalanine, tryptophan, and methionine;
- polar neutral amino acids include glycine, serine, threonine, cysteine, tyrosine, asparagine, and glutamine;
- positively charged (basic) amino acids include arginine, lysine, and histidine;
- negatively charged (acidic) amino acids include aspartic acid and glutamic acid. Substitutions typically may be made within groups (a)-(d).
- glycine and proline may be substituted for one another based on their ability to disrupt a-helices.
- certain amino acids such as alanine, cysteine, leucine, methionine, glutamic acid, glutamine, histidine and lysine are more commonly found in a-helices
- valine, isoleucine, phenylalanine, tyrosine, tryptophan and threonine are more commonly found in ⁇ -pleated sheets.
- Glycine, serine, aspartic acid, asparagine, and proline are commonly found in turns.
- sequence identity indicates the percentage of amino acids that are identical between the sequences.
- sequence homology indicates the percentage of amino acids that either are identical or that represent conservative amino acid substitutions.
- Preferred polypeptide sequences of the invention contain amino acid sequences, whereby
- the amino acid sequence of the HCDR1 is identical to SEQ ID NO: 5 in at least 7 of 8 amino acids, and
- the amino acid sequence of the HCDR2 is identical to SEQ ID NO: 6 in at least 14 of 19, more preferred 15 of 19, more preferred 16 of 19, more preferred 17 of 19, or even more preferred 18 of 19 amino acids
- the amino acid sequence of the HCDR3 is identical to SEQ ID NO: 7 in at least 8 of 1 1 , more preferred 9 of 1 1 , or even more preferred 10 of 1 1 amino acids
- the amino acid sequence of the LCDR1 is identical to SEQ ID NO: 8 in at least 12 of 14. or more preferred 13 of 14 amino acids
- the amino acid sequence of the LCDR2 is identical to SEQ ID NO: 9 in at least 4 of 7, more preferred 5 of 7, or even more preferred 6 of 7 amino acids
- amino acid sequence of the LCR3 is identical to SEQ ID NO: 10 in at least 1 1 of 12 amino acids.
- the present invention also relates to the DNA molecules that encode an antibody of the invention. These sequences include, but are not limited to, those DNA molecules set forth in SEQ ID NOs 3 and 4.
- DNA molecules of the invention are not limited to the sequences disclosed herein, but also include variants thereof.
- DNA variants within the invention may be described by reference to their physical properties in hybridization. The skilled worker will recognize that DNA can be used to identify its complement and, since DNA is double stranded, its equivalent or homolog, using nucleic acid hybridization techniques. It also will be recognized that hybridization can occur with less than 100% complementarity. However, given appropriate choice of conditions, hybridization techniques can be used to differentiate among DNA sequences based on their structural relatedness to a particular probe. For guidance regarding such conditions see, Sambrook et al., 1989 [Sambrook, J., Fritsch, E. F. and Maniatis, T.
- Structural similarity between two polynucleotide sequences can be expressed as a function of "stringency" of the conditions under which the two sequences will hybridize with one another.
- stringency refers to the extent that the conditions disfavor hybridization. Stringent conditions strongly disfavor hybridization, and only the most structurally related molecules will hybridize to one another under such conditions. Conversely, non-stringent conditions favor hybridization of molecules displaying a lesser degree of structural relatedness. Hybridization stringency, therefore, directly correlates with the structural relationships of two nucleic acid sequences. The following relationships are useful in correlating hybridization and relatedness (where T m is the melting temperature of a nucleic acid duplex):
- T m 69.3 + 0.41 (G+C)% b.
- the Tm of a duplex DNA decreases by 1 °C with every increase of
- ⁇ 1 and ⁇ 2 are the ionic strengths of two solutions.
- Hybridization stringency is a function of many factors, including overall DNA concentration, ionic strength, temperature, probe size and the presence of agents which disrupt hydrogen bonding. Factors promoting hybridization include high DNA concentrations, high ionic strengths, low temperatures, longer probe size and the absence of agents that disrupt hydrogen bonding. Hybridization typically is performed in two phases: the "binding" phase and the “washing” phase.
- the probe is bound to the target under conditions favoring hybridization.
- Stringency is usually controlled at this stage by altering the temperature.
- the temperature is usually between 65°C and 70°C, unless short ( ⁇ 20 nt) oligonucleotide probes are used.
- a representative hybridization solution comprises 6x SSC, 0.5% SDS, 5x Denhardt's solution and 100 pg of nonspecific carrier DNA [see Ausubel et a/., section 2.9, supplement 27 (1994)].
- buffer conditions are known. Where the degree of relatedness is lower, a lower temperature may be chosen.
- Low stringency binding temperatures are between about 25°C and 40°C.
- Medium stringency is between at least about 40°C to less than about 65°C.
- High stringency is at least about 65°C.
- washing solutions typically contain lower salt concentrations.
- One exemplary medium stringency solution contains 2x SSC and 0.1 % SDS.
- a high stringency wash solution contains the equivalent (in ionic strength) of less than about 0.2x SSC, with a preferred stringent solution containing about 0.1 x SSC.
- the temperatures associated with various stringencies are the same as discussed above for "binding.”
- the washing solution also typically is replaced a number of times during washing. For example, typical high stringency washing conditions comprise washing twice for 30 minutes at 55" C and three times for 15 minutes at 60° C.
- subject of the present invention is an isolated nucleic acid sequence that encodes the antibody and antigen-binding fragments of the present invention.
- Another embodiment of the present invention is the aforementioned isolated nucleic acid sequence, which encodes the antibodies of the present invention, whereby the nucleic acid sequences are as given in table 5.
- the present invention includes nucleic acid molecules that hybridize to the molecules of set forth in Table 5 under high stringency binding and washing conditions, where such nucleic molecules encode an antibody or functional fragment thereof having properties as described herein.
- Preferred molecules are those that have at least 75% or 80% (preferably at least 85%, more preferably at least 90% and most preferably at least 95%) sequence identity with one of the DNA molecules described herein.
- the molecules block prolactin receptor mediated signalling.
- variants of DNA molecules provided herein can be constructed in several different ways. For example, they may be constructed as completely synthetic DNAs. Methods of efficiently synthesizing oligonucleotides in the range of 20 to about 150 nucleotides are widely available. See Ausubel ef al. , section 2.1 1 , Supplement 21 (1993). Overlapping oligonucleotides may be synthesized and assembled in a fashion first reported by Khorana ef al.. J. Mol. Biol. 72:209-217 (1971 ); see also Ausubel ef a/., supra, Section 8.2. Synthetic DNAs preferably are designed with convenient restriction sites engineered at the 5' and 3' ends of the gene to facilitate cloning into an appropriate vector.
- a method of generating variants is to start with one of the DNAs disclosed herein and then to conduct site-directed mutagenesis. See Ausubel et al., supra, chapter 8, Supplement 37 (1997).
- a target DNA is cloned into a single-stranded DNA bacteriophage vehicle.
- Single-stranded DNA is isolated and hybridized with an oligonucleotide containing the desired nucleotide alteration(s).
- the complementary strand is synthesized and the double stranded phage is introduced into a host.
- Some of the resulting progeny will contain the desired mutant, which can be confirmed using DNA sequencing.
- various methods are available that increase the probability that the progeny phage will be the desired mutant. These methods are well known to those in the field and kits are commercially available for generating such mutants.
- the present invention further provides recombinant DNA constructs comprising one or more of the nucleotide sequences of the present invention.
- the recombinant constructs of the present invention are used in connection with a vector, such as a plasmid, phagemid, phage or viral vector, into which a DNA molecule encoding an antibody of the invention is inserted.
- the encoded gene may be produced by techniques described in Sambrook ef al., 1989, and Ausubel ef al. , 1989.
- the DNA sequences may be chemically synthesized using, for example, synthesizers. See, for example, the techniques described in OLIGONUCLEOTIDE SYNTHESIS (1984. Gait, ed., IRL Press. Oxford), which is incorporated by reference herein in its entirety.
- the expert in the field is able to fuse DNA encoding the variable domains with gene fragments encoding constant regions of various human IgG isotypes or derivatives thereof, either mutated or non-mutated.
- Recombinant constructs of the invention are comprised with expression vectors that are capable of expressing the RNA and/or protein products of the encoded DNA(s).
- the vector may further comprise regulatory sequences, including a promoter operably linked to the open reading frame (ORF).
- the vector may further comprise a selectable marker sequence. Specific initiation and bacterial secretory signals also may be required for efficient translation of inserted target gene coding sequences.
- the present invention further provides host cells containing at least one of the DNAs of the present invention.
- the host cell can be virtually any cell for which expression vectors are available. It may be, for example, a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, and may be a prokaryotic cell, such as a bacterial cell.
- Introduction of the recombinant construct into the host cell can be effected by calcium phosphate transfection, DEAE, dextran mediated transfection, electroporation or phage infection.
- Useful expression vectors for bacterial use are constructed by inserting a structural DNA sequence encoding a desired protein together with suitable translation initiation and termination signals in operable reading phase with a functional promoter.
- the vector will comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector and, if desirable, to provide amplification within the host.
- Suitable prokaryotic hosts for transformation include E. coli, Bacillus subtilis. Salmonella typ imurium and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus.
- Bacterial vectors may be, for example, bacteriophage-, plasmid- or phagemid-based. These vectors can contain a selectable marker and bacterial origin of replication derived from commercially available plasmids typically containing elements of the well known cloning vector pBR322 (ATCC 37017). Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter is de-repressed/induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification.
- appropriate means e.g., temperature shift or chemical induction
- a number of expression vectors may be advantageously selected depending upon the use intended for the protein being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of antibodies or to screen peptide libraries, for example, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable.
- an object of the present invention is an expression vector comprising a nucleic acid sequence encoding for the novel antibodies of the present invention.
- Preferred regulatory sequences for mammalian host cell expression include viral elements that direct high levels of protein expression in mammalian cells, such as promoters and/or enhancers derived from cytomegalovirus (CMV) (such as the CMV promoter/enhancer), Simian Virus 40 (SV40) (such as the SV40 promoter/enhancer), adenovirus, (e.g., the adenovirus major late promoter (AdMLP)) and polyoma.
- CMV cytomegalovirus
- SV40 Simian Virus 40
- AdMLP adenovirus major late promoter
- the recombinant expression vectors can also include origins of replication and selectable markers (see e.g., U.S. 4,399,216, 4,634,665 and U.S. 5.179,017, by Axel et al.).
- Suitable selectable markers include genes that confer resistance to drugs such as G418, hygromycin or methotrexate, on a host cell into which the vector has been introduced.
- drugs such as G418, hygromycin or methotrexate
- the dihydrofolate reductase (DHFR) gene confers resistance to methotrexate
- the neo gene confers resistance to G418.
- Transfection of the expression vector into a host cell can be carried out using standard techniques such as electroporation, calcium-phosphate precipitation, and DEAE- dextran transfection.
- Suitable mammalian host cells for expressing the antibodies, antigen binding portions, or derivatives thereof provided herein include Chinese Hamster Ovary (CHO cells)
- DHFR selectable marker e.g., as described in R.
- the expression vector is designed such that the expressed protein is secreted into the culture medium in which the host cells are grown.
- the antibodies, antigen binding portions, or derivatives thereof can be recovered from the culture medium using standard protein purification methods.
- Antibodies of the invention or an antigen-binding fragment thereof can be recovered and purified from recombinant cell cultures by well-known methods including, but not limited to ammonium sulfate or ethanol precipitation, acid extraction, Protein A chromatography, Protein G chromatography, anion or cation exchange chromatography, phospho-cellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography.
- HPLC High performance liquid chromatography
- Antibodies of the present invention or antigen-binding fragment thereof include naturally purified products, products of chemical synthetic procedures, and products produced by recombinant techniques from a eukaryotic host, including, for example, yeast, higher plant, insect and mammalian cells. Depending upon the host employed in a recombinant production procedure, the antibody of the present invention can be glycosylated or can be non-glycosylated. Such methods are described in many standard laboratory manuals, such as Sambrook, supra, Sections 17.37-17.42; Ausubel, supra, Chapters 10, 12, 13, 16, 18 and 20.
- an object of the present invention are also host cells comprising the vector or a nucleic acid molecule, whereby the host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, and may be a prokaryotic cell, such as a bacterial cell.
- the host cell can be a higher eukaryotic host cell, such as a mammalian cell, a lower eukaryotic host cell, such as a yeast cell, and may be a prokaryotic cell, such as a bacterial cell.
- Another object of the present invention is a method of using the host cell to produce an antibody and antigen binding fragments, comprising culturing the host cell under suitable conditions and recovering said antibody.
- Another object of the present invention is the antibody as described in the present invention produced with the host cells of the present invention and purified to at least 95% homogeneity by weight. Endometriosis and adenomyosis (endometriosis interna)
- Endometriosis is a benign, estrogen-dependent, gynecological disorder that is characterized by the presence of endometrial tissue (glands and stroma) outside the uterine cavity. Endometriotic lesions are mainly found on the pelvic peritoneum, in the ovaries and the rectovaginal septum (Obstet. Gynecol. Clin. North. Am. 24:235-238, 1997). Endometriosis is often associated with infertility and pain symptoms such as dysmenorrhoea. In addition, many patients suffer from autoimmune diseases (Hum. Reprod. 17(19):2715-2724, 2002).
- Adenomyosis uteri also known as endometriosis interna describes a subform of endometriosis which is restricted to the uterus.
- endometrial glands invade the myometrium and the uterine wall.
- endometrial fragments are flushed by retrograde menstruation into the peritoneal cavity in both, patients and healthy women (Obstet. Gynecol. 64: 151 -154, 1984).
- GnRH Gonadotropin-releasing hormone
- Aromatase inhibitors inhibit the local production of estradiol by endometriotic implants, induce apoptosis and inhibit proliferation of ectopic endometriotic fragments.
- Selective estrogen receptor modulators have estrogen receptor antagonistic activity in normal endometrial and ectopic implants and thus lead to atrophy of implanted ectopic endometriotic tissue.
- Progesterone receptor agonists inhibit proliferation of normal and ectopic endometrial cells, induce differentiation and apoptosis.
- Combined oral contraceptives maintain the status quo, prevent progression of the disease, and induce atrophy of the ectopic and eutopic endometrium.
- GnRH analogues, SERMs, and aromatase inhibitors have severe side effects and lead to hot flushes and bone loss in young women suffering from endometriosis.
- Treatment with progesterone receptor agonists leads to ovulation inhibition, irregular menstrual bleeding followed by amenorrhoea, body weight gain and depression. Due to increased risk for venous thrombembolism, combined oral contraceptives are not indicated in women older than 35 years, smokers and individuals suffering from overweight. Surgical excision of lesions is prone to high recurrence rates.
- the antibody of the present invention interferes with PRLR-mediated signalling stimulated by pituitary- and locally-produced prolactin or due to activating PRLR mutations and are therefore more effective than dopamine-2- receptor agonists which interfere only with pituitary prolactin secretion.
- an object of the present invention is the antibody or antigen-binding fragments as described in the present invention as a medicament.
- PRL and the PRLR are expressed in the uterus and play a role in normal uterine physiology: PRL can act as a potent mitogen and has an immunomodulatory role. In the present invention it is shown that alterations in the PRL/PRLR system play a role in human endometriosis. An analysis of the expression of PRL and the PRLR in endometrium of healthy women and in endometrium and lesions of patients (see Example 4) by quantitative Taqman PGR is shown in Figures 1 and 2.
- the findings of the present invention generate for the first time experimental evidence that autocrine PRL signalling plays a fundamental role in the establishment, growth, and maintenance of endometriotic lesions.
- the PRLR antibody Mat3 was successfully tested in an animal model of endometriosis interna, i.e. adenomyosis uteri in mice (see Example 5).
- Adenomyosis is characterized by infiltrative growth of endometrial glands in the myometrial layer of the endometrium. It resembles an endometriosis form restricted to the uterus - the only form of endometriosis non-menstruating species can develop.
- Danazol which is effective in the clinical treatment of patients suffering from endometriosis is also effective in the treatment of adenomyosis uteri (Life Sciences 51 : 1 1 19-1 125, 1992).
- danazol is an androgenic progestin and leads to severe androgenic side-effects in young women, which limits its use.
- the antibody of the present invention solves the problem for providing new treatments or prevention for endometriosis and exhibit lesser side effects than current standard therapies.
- Another aspect of the present invention is the use of the antibody Mat3 and antigen binding fragments as described in the present invention for the treatment or prevention of endometriosis and adenomyosis (endometriosis interna).
- Benign breast disease encompasses a variety of symptoms, such as fibrocystic breast disease, fibroadenoma, mastalgia, and macrocysts. 30 - 50% of premenopausal women suffer from fibrocystic breast disease (Epidemiol Rev 19:310-327, 1997). Depending on the women's age, benign breast disease can present with distinct phenotypes (J Mammary Gland Biol Neoplasia 10: 325-335, 2005): during the early reproductive phases (15 - 25 years) when lobular development in the normal breast takes place, benign breast disease results in fibroadenomas. Single giant fibroadenomas as well as multiple adenomas are observed.
- fibroadenomas are composed of stromal as well as epithelial cells and arise from lobules.
- the breast is subject to cyclical changes during each menstrual cycle.
- Diseased women present with cyclical mastalgia and several nodules in their breast.
- the normal breast involutes whereas in the diseased breast macrocysts and epithelial hyperplasia with and without atypia can be observed.
- Those forms of benign breast disease that are accompanied by enhanced epithelial cell proliferation have a higher risk for developing mammary carcinomas.
- This risk can be up to 1 1 % if cellular atypias are present in the proliferating cell fraction (Zentralbl Gynakol 1 19: 54-58, 1997). 25 % of women aged 60 - 80 years also suffer from benign breast disease, often estrogen replacement therapy or adiposity are the reasons for persisting benign breast disease after menopause (Am J Obstet Gynecol 154: 161 -179, 1986).
- fibrocystic breast disease The pathophysiology of fibrocystic breast disease is determined by estrogen predominance and progesterone deficiency that results in hyperproliferation of connective tissues (fibrosis) which is followed by facultative epithelial cell proliferation.
- the risk of breast cancer is elevated in patients exhibiting enhanced epithelial cell proliferation within the fibrocystic foci.
- Clinically fibrocystic breast disease presents with breast pain and breast tenderness. 70 % of the patients with fibrocystic breast disease suffer from either corpus luteum insufficiency or anovulation (Am J Obstet 154: 161 -179, 1986). Corpus luteum insufficiency results in reduced progesterone levels and estrogen predominance.
- Mastalgia (breast pain) affects about 70 % of women at some time in their reproductive lifespan. Breast pain may or may not be associated with other criteria of the premenstrual syndrome. It has been demonstrated that women suffering from mastalgia respond with an excess prolactin release after stimulation of the hypothalamic pituitary axis (Clin Endocrinol 23: 699-704, 1985).
- Bromocriptine as a dopamin agonist blocks only pituitary prolactin synthesis, but not local synthesis of prolactin in the mammary epithelial cells. It is therefore only effective in those forms of mastalgia and benign breast disease that rely on elevated systemic prolactin levels.
- Major side effects of bromocriptine are:
- Danazol is an androgenic progestin that via its antigonadotrophic activity counteracts the estrogen predominance observed in benign breast disease.
- Major side effects are: Menstrual irregularities, depression, acne, hirsutism, voice deepening, and hot flushes as well as weight gain.
- Tamoxifen is a selective estrogen receptor modulator with antiestrogenic activity in the breast and estrogenic activity in the uterus. Major side effects are:
- Progestins inhibit benign breast disease via suppression of the pituitary gonadal axis, ovulation inhibition and estrogen depletion. Estrogen depletion leads to menopausal symptoms such as bone loss and hot flushes. 5) Low dose combined oral contraceptives
- prolactin levels have been found to be increased in one third of women with benign breast disease. Since estrogens enhance pituitary prolactin secretion, the increase in serum prolactin levels has been thought to be a consequence of the predominance of estrogens in this disease. It has been reported that an activating PRLR mutation is often present in women suffering from multiple breast adenomas - resembling a subtype of fibrocystic breast disease (Paul Kelly, Breast Congress Turin, 2007 and Proc Natl Acad Sci 105: 14533-14538; 2008).
- Elevated prolactin signalling can be the consequence of:
- mice were transplanted with pituitary isog rafts under the kidney capsule as described in Example 6 (In: Methods in Mammary gland Biology and Breast Cancer Research, 101-107, 2000).
- a carcinogen such as DMBA has not been used; the mice were only grafted with pituitary glands in order to study the consequence of Mat3 antibody application on enhanced benign epithelial cell proliferation.
- systemic hyperprolactinemia caused enhanced epithelial cell proliferation in the mammary gland, and stimulated sidebranching and lobuloalveolar development in comparison to untreated virgin control mice.
- the neutralizing PRLR antibody Mat3 was tested in this Balb/c mouse model in comparison to an unspecific antibody with regard to its ability to: ⁇ block sidebranching and lobuloalveolar development
- Another aspect of the present invention is the use of the antibody Mat3 and antigen binding fragments as described in the present invention for treatment of benign breast disease and mastalgia in pre- and postmenopausal women.
- the progestogenic component mediates the contraceptive effect via negative feedback on the hypothalamic-pituitary-gonadal axis.
- the estrogenic component guarantees a good bleeding control and potentiates the gestagenic action via induction of the progesterone receptor in target cells.
- the locally released progestin renders the endometrium in an implantation- resistant state.
- the cervical mucos becomes almost impermeable for sperm cells.
- the progestin inhibits ovulation via negative feedback on the hypothalamic- pituitary-gonadal axis. In addition the permeability of the cervical mucus for sperm cells is reduced.
- VTE venous thromboembolism
- Intrauterine devices and implants containing progestins only can lead to dysfunctional uterine bleeding.
- Progestin only pills can cause irregular bleeding patterns, spotting, amenorrhea.
- Weight gain and reductions in bone mass density are further side effects.
- Vaginal rings can lead to vaginitis, leukorrhea or expulsion.
- PRLR-deficient mice have been generated a few years ago (Genes Dev 1 1 : 167-178, 1997). Interestingly, PRLR-deficient females, but not male mice, are completely sterile. PRLR females exhibited an arrest of egg development immediately after fertilization, i.e. they showed an arrest of preimplantation development whereas ovulation was normal. Only very few oocytes reached the blastocyst stage and were unable to implant in mutant females but developed to normal embryos in wildtype foster mothers after transplantation. The infertility phenotype of PRLR-deficient mice could be rescued until midterm pregnancy by progesterone supplementation.
- PRLR-mediated signalling plays an important role in the maintenance and function of the corpus luteum producing progesterone that is necessary to allow and maintain pregnancy.
- PRLR-deficient females, but not males exhibited a reduction in body weight associated with a reduction in abdominal fat mass and leptin levels.
- prolactin can prevent apoptosis of cultured human granulosa cells and thus maintains early corpus luteum function as it has been demonstrated in PRLR-deficient mice (Human Reprod. 18:2672-2677,2003).
- the antibodies can be used in smoking, overweight, and older women as well as in women suffering from lupus erythematodes (PRLR antibodies might even be beneficial for the treatment of lupus and the reduction of abdominal fat, i.e. PRLR-deficient mice had less abdominal fat).
- the PRLR antibodies do not elevate the VTE (venous thrombembolic) risk ⁇ in contrast to estrogens and progestins used in combined oral contraception, neutralization of PRLR-mediated signalling leads to inhibition of breast epithelial proliferation and in contrast to hormonal approaches for fertility control might even protect users from breast cancer.
- VTE venous thrombembolic
- Another object of the present invention is the use of the antibody Mat3 for female contraception with reduced side effects compared to standard treatments.
- Prolactin is the main hormone involved in lactation after child birth. This is evidenced by the phenotype of PRLR-deficient mice. Even heterozygous mice have severe lactational problems and are completely unable to nurse their offspring (Frontiers in Neuroendocrinology 22:140-145, 2001 ).
- bromocriptine is used to inhibit lactation after child birth.
- these compounds can provoke severe side effects such as nausea, vomiting, edema, hypotension, dizziness, hair loss, headache, and halluzinations.
- dopamine receptor agonists are not indicated in women suffering from cardiovascular disease and hypertension.
- a further disadvantage of bromocriptine is its short half life time requiring drug intake 4-6 times daily over a period of 14 days.
- Another object of the present invention is the use of the antibody Mat3 for inhibition of lactation. Benign prostate hyperplasia
- Benign prostate hyperplasia is the fourth most prevalent healthcare condition in older men. Prostate enlargement is an age-dependent progressive condition that affects more than 50% of men aged > 50 years of age. BPH is characterized by hyperplasia of prostatic stromal and epithelial cells, resulting in the formation of large discrete nodules in the periurethral region of the prostate which compresses the urethral canal. Thus, impairment of urine flow is one major consequence of BPH.
- Standard therapies for BPH encompass:
- a 1 -adrenergic receptor antagonists e.g. tamsulosin, alfuzosin, terazosin, doxazosin
- tamsulosin, alfuzosin, terazosin, doxazosin a 1 -adrenergic receptor antagonists
- 5i/.-reductase inhibitors prevent the formation of dihydrotestosterone, the active form of testosterone in the prostate, which is responsible for the enlargement of the prostate.
- Major side-effects are sexual dysfunction, such as erectile disorders and decreased libido.
- This surgical treatment is associated with high morbidity. Side-effects are bleeding, incontinence, stricture formation, loss of ejaculation, and bladder perforation.
- a stent is inserted into the prostatic part of the urethra to guarantee proper urine flow.
- Major side-effects are encrustation, urinary tract infection, and migration of the stent.
- stents have to be removed before any transurethral manipulation.
- PRL and the PRLR act in an autocrine/paracrine way (J. Clin. Invest. 99:618 pp,1997) within the prostate.
- Another aspect of the present invention is the use of the antibody Mat3 or antigen- binding fragments as described in the present invention for treatment of benign prostate hyperplasia.
- estradiol, or conjugated equine estrogens CEE
- progestins for example medroxyprogesterone acetate (MPA), progesterone, drospirenone, levonorgestrel
- MPA medroxyprogesterone acetate
- progesterone progesterone
- drospirenone levonorgestrel
- Progestins have to be added to inhibit estradiol-activated uterine epithelial cell proliferation.
- addition of progestins increases mammary epithelial cell proliferation. Since both, normal as well as cancerous mammary epithelial cells respond with proliferation towards combined estrogen plus progestin treatment, the relative risk of breast cancer was found to be increased after CEE plus MPA treatment (JAMA 233:321 -333;2002).
- the antibody of the present invention solves the problem for treating enhanced breast epithelial cell proliferation observed under combined hormone therapy.
- Another object of the present invention is the use of neutralizing PRLR antibody Mat3 or antigen-binding fragments in combined hormone therapy (i.e. estrogen + progestin therapy) to inhibit mammary epithelial cell proliferation.
- combined hormone therapy i.e. estrogen + progestin therapy
- Scalp hair growth in cycles the anagen phase is characterized by active hair growth; the catagen phase shows involution and is followed by the telogen phase (resting). The exogen phase (the release of the dead hair) coincides with the end of the telogen phase. Hair loss can be the consequence of disturbed hair growth in any phase.
- Telogen hair loss can have many triggers (physiological and emotional stress, medical conditions, iron and zinc deficiency), importantly androgenic alopecia in its early stages shows telogen hair shedding (Cleveland clinic journal of medicine 2009;76:361-367). Anagen hair loss is often the consequence of radiation or chemotherapy.
- Minoxidil and Finasteride are used for the treatment of androgenetic hair loss, whereas glucocorticoids are used for alopecia areata. In general, all of these treatments have side-effects (finasteride: libido loss and impotence in men, glucocorticoids: diabetes, weight gain, osteoporosis), and the problem of treating hair loss has not been completely solved.
- the antibody of the present invention solves the problem for providing new treatments for hyper- and normoprolactinemic hair loss in women and men.
- a further aspect of the present invention is to employ the antibody Mat3 or antigen-binding fragments for the treatment or prevention of hyper- and normoprolactinemic hair loss.
- Another aspect of the present invention is the use of the antibody Mat3 or antigen- binding fragments as described in the present invention for treatment or prevention of antiestrogen-resistant breast cancer.
- the target antigen human "PRLR” as used herein refers to a human polypeptide having substantially the same amino acid sequence in its extracellular domain as the amino acid positions 1 to 210 of SEQ ID NO. 12 and naturally occurring allelic and/or splice variants thereof.
- ECD of PRLR refers to the extracellular portion of PRLR represented by the aforementioned amino acids.
- the target human PRLR also encompasses mutated versions of the receptor, such as the activating mutation I 146L described by Paul Kelly (Proc Natl Acad Sci U S A.105 (38): 14533- 14538, 2008; and oral communication Turin, 2007).
- PRLR target antigen monkey
- ECD of PRLR refers to the extracellular portion of PRLR represented by the aforementioned amino acids.
- the target antigen murine or mouse “PRLR” as used herein refers to a murine polypeptide having substantially the same amino acid sequence in its extracellular domain as the amino acid positions 1 to 210 of SEQ ID NO. 13 and naturally occurring allelic and/or splice variants thereof.
- ECD of PRLR refers to the extracellular portion of PRLR represented by the aforementioned amino acids.
- therapeutically effective amount is meant to refer to an amount of therapeutic or prophylactic antibody that would be appropriate to elicit the desired therapeutic or prophylactic effect or response, including alleviating some or all of such symptoms of disease or reducing the predisposition to the disease, when administered in accordance with the desired treatment regimen.
- an antibody “binds specifically to,” is “specific to/for” or “specifically recognizes” an antigen (here, PRLR) if such an antibody is able to discriminate between such antigen and one or more reference antigen(s), since binding specificity is not an absolute, but a relative property.
- PRLR antigen binding
- “specific binding” is referring to the ability of the antibody to discriminate between the antigen of interest and an unrelated antigen, as determined, for example, in accordance with one of the following methods. Such methods comprise, but are not limited to Western blots, ELISA-, RIA-, ECL-, IRMA-tests and peptide scans.
- a standard ELISA assay can be carried out.
- the scoring may be carried out by standard color development (e.g. secondary antibody with horseradish peroxide and tetramethyl benzidine with hydrogenperoxide).
- the reaction in certain wells is scored by the optical density, for example, at 450 nm.
- Typical background (-negative reaction) may be 0.1 OD; typical positive reaction may be 1 OD. This means the difference positive/negative can be more than 10-fold.
- determination of binding specificity is performed by using not a single reference antigen, but a set of about three to five unrelated antigens, such as milk powder, BSA, transferrin or the like.
- binding also may refer to the ability of an antibody to discriminate between the target antigen and one or more closely related antigen(s), which are used as reference points. Additionally, “specific binding” may relate to the ability of an antibody to discriminate between different parts of its target antigen, e.g. different domains, subdomains or regions of PRLR, such as epitopes in the N-terminal or in the C-terminal region of the ECD of PRLR, or between one or more key amino acid residues or stretches of amino acid residues of the ECD of PRLR.
- the term “immunospecific” or “specifically binding” means, that the antibody binds to PRLR or its ECD with an affinity KD of lower than or equal to 10 6 M (monovalent affinity).
- the term “high affinity” means, that the antibody binds to PRLR or its ECD with an affinity (KD) of lower than or equal to 10 7 M (monovalent affinity).
- the antibody may have substantially greater affinity for the target antigen compared to other unrelated molecules.
- the antibody may also have substantially greater affinity for the target antigen compared to homologs, e.g. at least 1 .5-fold, 2-fold, 5-fold 10-fold, 100-fold, 10 Mold, 10 Mold, 10 Mold, 10 Mold or greater relative affinity for the target antigen.
- affinities may be readily determined using conventional techniques, such as by equilibrium dialysis; by using the BIAcore 2000 instrument, using general procedures outlined by the manufacturer; by radioimmunoassay using radiolabeled target antigen; or by another method known to the skilled artisan.
- the affinity data may be analyzed, for example, by the method of Scatchard et al. , Ann N.Y. Acad. ScL, 51 : 660 (1949).
- antibodies antagonize prolactin mediated signalling is meant to refer to a blockade of prolactin receptor activation by the antibodies of the present invention which leads to a complete inhibition of prolactin receptor mediated signalling.
- antibodies compete for binding is meant to refer to a competition between one antibody and a second ligand for binding to the prolactin receptor.
- antibody is used in the broadest sense and includes fully assembled antibodies, monoclonal antibodies, polyclonal antibodies, multispecific antibodies (e.g., bispecific antibodies), antibody fragments that can bind the antigen (e.g., Fab', F'(ab)2, Fv, single chain antibodies, diabodies), camel bodies and recombinant peptides comprising the forgoing as long as they exhibit the desired biological activity.
- Antibodies may carry different constant domains (Fc domains) on their heavy chain preferably derived from lgG1 , lgG2, or lgG4 isotypes (see below). Mutations for modification of effector functions may be introduced.
- aglycosylation of lgG1 may be achieved by mutating asparagine to alanine or asparagine to glutamine at amino acid position 297, which has been reported to abolish antibody-derived cell-mediated cytotoxicity (ADCC) (Sazinsky et al., Proc. Nat. Acad. Sci. 105 (51 ): 20169, 2008: Simmons et al., J.
- ADCC antibody-derived cell-mediated cytotoxicity
- the tendency of human lgG2 molecules to form heterogeneous covalent dimers may be circumvented by exchanging one of the cysteines at position 127, 232 and 233 to serine (Allen et al., Biochemistry, 2009, 48 (17), pp 3755-3766).
- An alternative format with reduced effector function may be the lgG2m4 format, derived from lgG2 carrying four lgG4-specific amino acid residue changes (An et al., mAbs 1 (6), 2009).
- Antibody fragments may be produced by recombinant DNA techniques or by enzymatic or chemical cleavage of intact antibodies and are described further below.
- Nonlimiting examples of monoclonal antibodies include murine, chimeric, humanized, human, and Human EngineeredTM immunoglobulins, antibodies, chimeric fusion proteins having sequences derived from immunoglobulins, or muteins or derivatives thereof, each described further below. Multimers or aggregates of intact molecules and/or fragments, including chemically derivatized antibodies, are contemplated.
- the term "monoclonal antibody” as used herein refers to an antibody obtained from a population of substantially homogeneous antibodies, i.e., the individual antibodies comprising the population are identical except for possible naturally occurring mutations that may be present in minor amounts. Monoclonal antibodies are highly specific, being directed against a single antigenic site. Furthermore, in contrast to conventional (polyclonal) antibody preparations that typically include different antibodies directed against different determinants (epitopes), each monoclonal antibody is directed against a single determinant on the antigen. In addition to their specificity, the monoclonal antibodies are advantageous in that they are synthesized by the homogeneous culture, uncontaminated by other immunoglobulins with different specificities and characteristics.
- the modifier "monoclonal” indicates the character of the antibody as being obtained from a substantially homogeneous population of antibodies, and is not to be construed as requiring production of the antibody by any particular method.
- the monoclonal antibodies to be used may be made by the hybridoma method first described by Kohler et al.. Nature, 256: 495 [1975, or may be made by recombinant DNA methods (see, e.g.. U.S. Patent No. 4.816,567).
- the “monoclonal antibodies” may also be recombinant, chimeric, humanized, human, Human EngineeredTM, or antibody fragments, for example.
- immunoglobulin or “native antibody” is a tetrameric glycoprotein.
- each tetramer is composed of two identical pairs of polypeptide chains, each pair having one "light” (about 25 kDa) and one "heavy” chain (about 50-70 kDa).
- the amino-terminal portion of each chain includes a "variable” region of about 100 to 1 10 or more amino acids primarily responsible for antigen recognition.
- the carboxy- terminal portion of each chain defines a constant region primarily responsible for effector function.
- Immunoglobulins can be assigned to different classes depending on the amino acid sequence of the constant domain of their heavy chains.
- Heavy chains are classified as mu ( ⁇ ), delta ( ⁇ ), gamma ( ⁇ ), alpha (a), and epsilon ( ⁇ ), and define the antibody's isotype as IgM, IgD. IgG. IgA. and IgE. respectively.
- Several of these may be further divided into subclasses or isotypes, e.g. lgG1 , lgG2, lgG3, lgG4, IgAI and lgA2.
- Different isotypes have different effector functions; for example, lgG1 and lgG3 isotypes often have ADCC activity.
- Human light chains are classified as kappa (K) and lambda ( ⁇ ) light chains.
- variable and constant regions are joined by a "J" region of about 12 or more amino acids, with the heavy chain also including a "D” region of about 10 more amino acids.
- a “functional fragment” or "antigen-binding antibody fragment” of an antibody/immunoglobulin hereby is defined as a fragment of an antibody/immunoglobulin (e.g., a variable region of an IgG) that retains the antigen- binding region.
- An "antigen-binding region" of an antibody typically is found in one or more hypervariable region(s) of an antibody, i.e., the CDR-1 , -2, and/or -3 regions; however, the variable "framework” regions can also play an important role in antigen binding, such as by providing a scaffold for the CDRs.
- the "antigen-binding region” comprises at least amino acid residues 4 to 103 of the variable light (VL) chain and 5 to 109 of the variable heavy (VH) chain, more preferably amino acid residues 3 to 107 of VL and 4 to 1 1 1 of VH, and particularly preferred are the complete VL and VH chains [amino acid positions 1 to 109 of VL and 1 to 1 13 of VH, while numbering of amino acid positions occurs according to the Kabat database (Johnson and Wu, Nucleic Acids Res., 2000, 28, 214-218)].
- a preferred class of immunoglobulins for use in the present invention is IgG.
- hypervariable region refers to the amino acid residues of the variable domains VH and VL of an antibody or functional fragment which are responsible for antigen-binding.
- the hypervariable region comprises amino acid residues from a "complementarity determining region" or CDR [i.e., residues 24-34 (LCDR1 ), 50 - 56 (LCDR2) and 88 - 97 (LCDR3) in the light chain variable domain and 29 - 36 (HCDR1 ), 48 - 66 (HCDR2) and 93 - 102 (HCDR3) in the heavy chain variable domain as described in Fig.
- Nonlimiting examples of antibody fragments include Fab. Fab'. F(ab')2. Fv. domain antibody (dAb). complementarity determining region (CDR) fragments, single-chain antibodies (scFv).
- single chain antibody fragments diabodies. triabodies, tetra bodies, minibodies, linear antibodies (Zapata et al., Protein Eng..8 (10): 1057-1062 (1995)); chelating recombinant antibodies, tri bodies or bibodies, intra bodies, nanobodies, small modular immunopharmaceuticals (SMIPs), an antigen-binding-domain immunoglobulin fusion protein, a camel ized antibody, a VHH containing antibody, or muteins or derivatives thereof, and polypeptides that contain at least a portion of an immunoglobulin that is sufficient to confer specific antigen binding to the polypeptide, such as a CDR sequence, as long as the antibody retains the desired biological activity; and muitispecific antibodies formed from antibody fragments (C.
- Fv F(ab')2 fragment
- An "Fv” fragment is the minimum antibody fragment that contains a complete antigen recognition and binding site. This region consists of a dimer of one heavy- and one light-chain variable domain in tight, non-covalent association. It is in this configuration that the three CDRs of each variable domain interact to define an antigen binding site on the surface of the VH-VL dimer. Collectively, the six CDRs confer antigen-binding specificity to the antibody. However, even a single variable domain (or half of an Fv comprising only three CDRs specific for an antigen) has the ability to recognize and bind antigen. "Single-chain Fv” or “sFv” or “scFv” antibody fragments comprise the VH and VL domains of antibody, wherein these domains are present in a single polypeptide chain.
- the Fv polypeptide further comprises a polypeptide linker between the VH and VL domains that enables the Fv to form the desired structure for antigen binding.
- a polypeptide linker between the VH and VL domains that enables the Fv to form the desired structure for antigen binding.
- the Fab fragment also contains the constant domain of the light chain and the first constant domain (CH1 ) of the heavy chain. Fab fragments differ from Fab' fragments by the addition of a few residues at the carboxy terminus of the heavy chain CH1 domain including one or more cysteines from the antibody hinge region.
- Fab'-SH is the designation herein for Fab' in which the cysteine residue(s) of the constant domains bear a free thiol group.
- F(ab')2 antibody fragments originally were produced as pairs of Fab' fragments which have hinge cysteines between them. "Framework" or FR residues are those variable domain residues other than the hypervariable region residues.
- constant region refers to the portion of the antibody molecule that confers effector functions.
- mutein or “variant” can be used interchangeably and refers to the polypeptide sequence of an antibody that contains at least one amino acid substitution, deletion, or insertion in the variable region or the portion equivalent to the variable region, provided that the mutein or variant retains the desired binding affinity or biological activity.
- Muteins may be substantially homologous or substantially identical to the parent antibody.
- derivative refers to antibodies covalently modified by such techniques as ubiquitination, conjugation to therapeutic or diagnostic agents, labeling (e.g., with radionuclides or various enzymes), covalent polymer attachment such as pegylation (derivatization with polyethylene glycol) and insertion or substitution by chemical synthesis of non-natural amino acids.
- a "human” antibody or functional human antibody fragment is hereby defined as one that is not chimeric or “humanized” and not from (either in whole or in part) a non- human species.
- a human antibody or functional antibody fragment can be derived from a human or can be a synthetic human antibody.
- a "synthetic human antibody” is defined herein as an antibody having a sequence derived, in whole or in part, in silico from synthetic sequences that are based on the analysis of known human antibody sequences. In silico design of a human antibody sequence or fragment thereof can be achieved, for example, by analyzing a database of human antibody or antibody fragment sequences and devising a polypeptide sequence utilizing the data obtained therefrom.
- human antibody or functional antibody fragment is one that is encoded by a nucleic acid isolated from a library of antibody sequences of human origin (i.e., such library being based on antibodies taken from a human natural source).
- human antibodies include n-CoDeR-based antibodies as described by Carisson and Soderlind Exp. Rev. Mol. Diagn. 1 (1 ), 102-108 (2001 ), Soderlin et al. Nat. Biotech. 18, 852-856 (2000) and U.S. Patent No. 6,989,250.
- a “humanized antibody” or functional humanized antibody fragment is defined herein as one that is (i) derived from a non-human source (e.g., a transgenic mouse which bears a heterologous immune system), which antibody is based on a human germline sequence: or (ii) CDR-g rafted, wherein the CDRs of the variable domain are from a non-human origin, while one or more frameworks of the variable domain are of human origin and the constant domain (if any) is of human origin.
- a non-human source e.g., a transgenic mouse which bears a heterologous immune system
- CDR-g rafted wherein the CDRs of the variable domain are from a non-human origin, while one or more frameworks of the variable domain are of human origin and the constant domain (if any) is of human origin.
- chimeric antibody refers to an antibody containing sequence derived from two different antibodies (see, e.g., U.S. Patent No. 4,816,567) which typically originate from different species. Most typically, chimeric antibodies comprise human and murine antibody fragments, generally human constant and mouse variable regions.
- An antibody of the invention may be derived from a recombinant antibody gene library.
- the development of technologies for making repertoires of recombinant human antibody genes, and the display of the encoded antibody fragments on the surface of filamentous bacteriophage, has provided a recombinant means for directly making and selecting human antibodies, which also can be applied to humanized, chimeric, murine or mutein antibodies.
- the antibodies produced by phage technology are produced as antigen binding fragments - usually Fv or Fab fragments - in bacteria and thus lack effector functions. Effector functions can be introduced by one of two strategies: The fragments can be engineered either into complete antibodies for expression in mammalian cells, or into bispecific antibody fragments with a second binding site capable of triggering an effector function.
- the Fd fragment (VH-CH1 ) and light chain (VL-CL) of antibodies are separately cloned by PGR and recombined randomly in combinatorial phage display libraries, which can then be selected for binding to a particular antigen.
- the Fab fragments are expressed on the phage surface, i.e., physically linked to the genes that encode them.
- selection of Fab by antigen binding co-selects for the Fab encoding sequences which can be amplified subsequently.
- a procedure termed panning Fab specific for the antigen are enriched and finally isolated.
- Such libraries may be built on a single master framework, into which diverse in vivo-formed (i. e. human-derived) CDRs are allowed to recombine as described by Carlsson and Soderlind Exp. Rev. Mol. Diagn. 1 (1 ), 102-108 (2001 ), Soderlin et al. Nat. Biotech. 18, 852-856 (2000) and U.S. Patent No. 6.989,250.
- an antibody library may be based on amino acid sequences that have been designed in silico and encoded by nucleic acids that are synthetically created.
- an antibody of this invention may come from animals.
- Such an antibody may be humanized or Human Engineered summarized in WO08/022295 (Novartis); such an antibody may come from transgenic animals [see also WO08/022295 (Novartis)].
- different 'forms' of antigen are hereby defined as different protein molecules resulting from different translational and posttranslational modifications, such as, but not limited to, differences in splicing of the primary prolactin receptor transcript, differences in glycosylation, and differences in posttranslational proteolytic cleavage.
- the term 'epitope' includes any protein determinant capable of specific binding to an immunoglobulin or T-cell receptor. Epitopic determinants usually consist of chemically active surface groupings of molecules such as amino acids or sugar side chains and usually have specific three dimensional structural characteristics, as well as specific charge characteristics.
- Two antibodies are said to 'bind the same epitope' if one antibody is shown to compete with the second antibody in a competitive binding assay, by any of the methods well known to those of skill in the art, and all amino acids of the epitope are bound by the two antibodies.
- the term 'maturated antibodies' or 'maturated antigen-binding fragments' such as maturated Fab variants includes derivatives of an antibody or antibody fragment exhibiting stronger binding - i. e. binding with increased affinity - to a given antigen such as the extracellular domain of the PRLR. Maturation is the process of identifying a small number of mutations within the six CDRs of an antibody or antibody fragment leading to this affinity increase.
- the maturation process is the combination of molecular biology methods for introduction of mutations into the antibody and screening for identifying the improved binders.
- Therapeutic methods involve administering to a subject in need of treatment a therapeutically effective amount of an antibody contemplated by the invention.
- a "therapeutically effective" amount hereby is defined as the amount of an antibody that is of sufficient quantity to block proliferation of PRLR-positive cells in a treated area of a subject either as a single dose or according to a multiple dose regimen, alone or in combination with other agents, which leads to the alleviation of an adverse condition, yet which amount is toxicologically tolerable.
- the subject may be a human or non- human animal (e.g. , rabbit, rat, mouse, monkey or other lower-order primate).
- An antibody of the invention might be co-administered with known medicaments, and in some instances the antibody might itself be modified.
- an antibody could be conjugated to an immunotoxin or radioisotope to potentially further increase efficacy.
- inventive antibodies can be used as a therapeutic or a diagnostic tool in a variety of situations where PRLR is undesirably highly expressed.
- Disorders and conditions particularly suitable for treatment with an antibody of the inventions are endometriosis, adenomyosis. non-hormonal female fertility contraception, benign breast disease and mastalgia, lactation inhibition, benign prostate hyperplasia, fibroids, hyper- and normoprolactinemic hair loss, and cotreatment in combined hormone therapy to inhibit mammary epithelial cell proliferation.
- compositions for use in accordance with the present invention may be formulated in a conventional manner using one or more physiologically acceptable carriers or excipients.
- An antibody of the invention can be administered by any suitable means, which can vary, depending on the type of disorder being treated. Possible administration routes include parenteral (e.g., intramuscular, intravenous, intraarterial, intraperitoneal, or subcutaneous), intrapulmonary and intranasal, and, if desired for local immunosuppressive treatment, intralesional administration.
- an antibody of the invention might be administered by pulse infusion, with, e.g., declining doses of the antibody.
- the dosing is given by injections, most preferably intravenous or subcutaneous injections, depending in part on whether the administration is brief or chronic.
- the amount to be administered will depend on a variety of factors such as the clinical symptoms, weight of the individual, whether other drugs are administered. The skilled artisan will recognize that the route of administration will vary depending on the disorder or condition to be treated.
- determining a therapeutically effective amount of the novel polypeptide largely will depend on particular patient characteristics, route of administration, and the nature of the disorder being treated. General guidance can be found, for example, in the publications of the International Conference on Harmonisation and in REMINGTON'S PHARMACEUTICAL SCIENCES, chapters 27 and 28, pp. 484-528 (18th ed., Alfonso R. Gennaro, Ed., Easton, Pa.: Mack Pub. Co., 1990). More specifically, determining a therapeutically effective amount will depend on such factors as toxicity and efficacy of the medicament. Toxicity may be determined using methods well known in the art and found in the foregoing references. Efficacy may be determined utilizing the same guidance in conjunction with the methods described below in the Examples. Pharmaceutical Compositions and Administration
- the present invention also relates to pharmaceutical compositions which may comprise PRLR antibodies, alone or in combination with at least one other agent, such as stabilizing compound, which may be administered in any sterile, biocompatible pharmaceutical carrier, including, but not limited to, saline, buffered saline, dextrose, and water. Any of these molecules can be administered to a patient alone, or in combination with other agents, drugs or hormones, in pharmaceutical compositions where it is mixed with excipient(s) or pharmaceutically acceptable carriers.
- the pharmaceutically acceptable carrier is pharmaceutically inert.
- the present invention also relates to the administration of pharmaceutical compositions. Such administration is accomplished parenterally.
- Methods of parenteral delivery include topical, intra-arterial (directly to the tumor), intramuscular, subcutaneous, intramedullary, intrathecal, intraventricular, intravenous, intraperitoneal, intrauterine or intranasal administration.
- these pharmaceutical compositions may contain suitable pharmaceutically acceptable carriers comprising excipients and auxilliaries which facilitate processing of the active compounds into preparations which can be used pharmaceutically. Further details on techniques for formulation and administration may be found in the latest edition of Remington's Pharmaceutical Sciences (Ed. Maack Publishing Co, Easton, Pa.).
- compositions for parenteral administration include aqueous solutions of active compounds.
- the pharmaceutical compositions of the invention may be formulated in aqueous solutions, preferably in physiologically compatible buffers such as Hank's solution, Ringer's solution, or physiologically buffered saline.
- Aqueous injection suspensions may contain substances that increase viscosity of the suspension, such as sodium carboxymethyl cellulose, sorbitol, or dextran.
- suspensions of the active compounds may be prepared as appropriate oily injection suspensions.
- Suitable lipophilic solvents or vehicles include fatty oils such as sesame oil, or synthetic fatty acid esters, such as ethyl oleate or triglycerides, or liposomes.
- the suspension may also contain suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- suitable stabilizers or agents which increase the solubility of the compounds to allow for the preparation of highly concentrated solutions.
- penetrants appropriate to the particular barrier to be permeated are used in the formulation. Such penetrants are generally known in the art.
- the parenteral administration also comprises methods of parenteral delivery which also include intra-arterial, intramuscular, subcutaneous, intramedullary, intrathecal, and intraventricular, intravenous, intraperitoneal, intrauterine, vaginal, or intranasal administration.
- the invention further relates to pharmaceutical packs and kits comprising one or more containers filled with one or more of the ingredients of the aforementioned compositions of the invention.
- Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, reflecting approval by the agency of the manufacture, use or sale of the product for human administration.
- kits may contain DNA sequences encoding the antibodies of the invention.
- the DNA sequences encoding these antibodies are provided in a plasmid suitable for transfection into and expression by a host cell.
- the plasmid may contain a promoter (often an inducible promoter) to regulate expression of the DNA in the host cell.
- the plasmid may also contain appropriate restriction sites to facilitate the insertion of other DNA sequences into the plasmid to produce various antibodies.
- the plasmids may also contain numerous other elements to facilitate cloning and expression of the encoded proteins. Such elements are well known to those of skill in the art and include, for example, selectable markers, initiation codons, termination codons, and the like.
- compositions of the present invention may be manufactured in a manner that is known in the art, e.g., by means of conventional mixing, dissolving, granulating, dragee-making, levigating, emulsifying, encapsulating, entrapping or lyophilizing processes.
- the pharmaceutical composition may be provided as a lyophilized powder in 1 m -50 mM histidine, 0.1 % - 2% sucrose, 2% - 7% mannitol at a pH range of 4.5 to 5.5 that is combined with buffer prior to use.
- compositions comprising a compound of the invention formulated in an acceptable carrier
- they can be placed in an appropriate container and labeled for treatment of an indicated condition.
- labeling would include amount, frequency and method of administration.
- compositions suitable for use in the present invention include compositions wherein the active ingredients are contained in an effective amount to achieve the intended purpose, i.e. treatment of a particular disease state characterized by PRLR expression.
- an effective dose is well within the capability of those skilled in the art.
- the therapeutically effective dose can be estimated initially either in cell culture assays, e.g., lymphoma cells, or in animal models, usually mice, rats, rabbits, dogs, pigs or monkeys. The animal model is also used to achieve a desirable concentration range and route of administration. Such information can then be used to determine useful doses and routes for administration in humans.
- a therapeutically effective dose refers to that amount of protein or its antibodies, antagonists, or inhibitors that ameliorate the symptoms or condition.
- Therapeutic efficacy and toxicity of such compounds can be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., ED 5 o (the dose therapeutically effective in 50% of the population) and LD 5 o (the dose lethal to 50% of the population).
- the dose ratio between therapeutic and toxic effects is the therapeutic index, and it can be expressed as the ratio, ED 5 o/LD 5 o.
- Pharmaceutical compositions that exhibit large therapeutic indices are preferred.
- the data obtained from cell culture assays and animal studies are used in formulating a range of dosage for human use.
- the dosage of such compounds lies preferably within a range of circulating concentrations what include the ED50 with little or no toxicity. The dosage varies within this range depending upon the dosage form employed, sensitivity of the patient, and the route of administration.
- the exact dosage is chosen by the individual physician in view of the patient to be treated. Dosage and administration are adjusted to provide sufficient levels of the active moiety or to maintain the desired effect. Additional factors that may be taken into account include the severity of the disease state, eg, size and location of endometriotic lesions; age, weight and gender of the patient; diet, time and frequency of administration, drug combination(s), reaction sensitivities, and tolerance/response to therapy. Long acting pharmaceutical compositions might be administered every 3 to 4 days, every week, or once every two weeks, or once within a month depending on half- life and clearance rate of the particular formulation.
- Normal dosage amounts may vary from 0.1 to 100,000 micrograms, up to a total dose of about 2 g, depending upon the route of administration.
- Guidance as to particular dosages and methods of delivery is provided in the literature. See US. 4,657,760; US 5,206.344; or US 5,225,212.
- Those skilled in the art will employ different formulations for polynucleotides than for proteins or their inhibitors.
- delivery of polynucleotides or polypeptides will be specific to particular cells, conditions, locations, etc.
- Preferred specific activities for for a radiolabeled antibody may range from 0.1 to 10 mCi/mg of protein (Riva et al., Clin. Cancer Res.
- Figure 1 Expression of prolactin-mRNA (PRL-mRNA) (analyzed by real -time TaqMan PGR analysis) in human endometrium and lesions (ectopic tissue) from healthy women and women suffering from endometriosis.
- PRL-mRNA prolactin-mRNA
- FIG. 1 Expression of prolactin receptor-mRNA (PRLR-mRNA) (analyzed by real-time TaqMan PGR analysis) in human endometrium and lesions (ectopic tissue) from healthy women and women suffering from endometriosis.
- PRLR-mRNA prolactin receptor-mRNA
- Figure 3A Neutralizing prolactin receptor antibody Mat3 inhibited sidebranching in mammary glands of mice which have been employed in a hyperprolactinemic surrogate model of benign breast disease.
- the unspecific antibody had no effect. Healthy normoprolactinemic mice (no pituitary) showed reduced sidebranching, whereas pituitary transplantation (hyperprolactinemia) enhanced sidebranching and lobuloalveolar development.
- the specific antibody Mat3 antagonized the effects of hyperprolactinemia.
- Figure 3B The neutralizing prolactin receptor antibody Mat3 inhibited the induction of the prolactin target gene elf 5 in mammary glands of mice in a hyperprolactinemic surrogate model of benign breast disease.
- the unspecific antibody had no effect. Healthy, normoprolactinemic mice (no pituitary) showed reduced elf 5 expression in the mammary gland, whereas pituitary transplantation (hyperprolactinemia) strongly stimulated elf 5 gene expression.
- the specific antibody Mat3 but not the unspecific control antibody antagonized the effects of hyperprolactinemia.
- Figure 4 Kabat Numbering of framework amino acid positions according to Johnson and Wu (Nucleic Acids Res. 2000, 28, 214-218).
- Figure 5A FACS analysis results with the anti-PRLR antibody HE06642. Binding of the antibody was determined at a fixed concentration on HEK293 cells expressing the human and mouse PRLR in comparison to the parental cell line not expressing PRLR.
- Y-axis #, Median Fluorescence Intensity at 0.37 pg/ml HE06642 as lgG1 molecule.
- Figure 5B FACS analysis results with the anti-PRLR antibody Mat3.
- Binding of the antibody was determined at a series of different concentrations on HEK293 cells expressing the human PRLR and Ba/F cells expressing the rhesus PRLR in comparison to a cell line (HEK293) not expressing PRLR. Maximal signal intensities at highest antibody concentrations depend on the number of PRLRs expressed on the cell surfaces, i.e. HEK293 and Ba/F cells do not carry the same number of PRLRs on their surface.
- Y-axis #, Median Fluorescence Intensity
- X-axis °, different concentrations in g/ml of the antibody Mat3 as lgG2 molecule
- 2 (triangles) Ba/F with rhesus monkey PRLR
- 3 (squares) HEK293 without PRLR.
- Figure 6A Alignment of the sequence region of the Mat3-VL domain with the most similar human V segment identified in VBASE2 (Mat3-VL is 90% identical to germline sequence humlGLV056).
- Figure 6B Alignment of the sequence region of the Mat3-VH domain with the most similar human V segment identified in VBASE2 (Mat3-VH is 90% identical to germline sequence humlGHV313).
- Figure 6C Alignment of the sequence region of the HE06642-VL domain with the most similar human V segment identified in VBASE2 (HE06642-VL is 80% identical to germline sequence humlGKV083).
- Figure 6D Alignment of the sequence region of the HE06642-VH domain with the most similar human V segment identified in VBASE2 (HE06642-VH is 89% identical to germline sequence humlGHV313).
- FIG. 7 ELISA-based binding tests of a maturated Fab variant
- Fab-containing E coli supernatants were tested for binding to the immobilized extracellular domain of the human PRLR.
- the figure illustrates the binding of the Fab variants as a bar diagram.
- the signal intensities (extinction) are given on the y-axes (#), the names of the Fab variants (*) on the x-axes.
- Elevated signal intensity of the maturated Fab variant 005-C04-20-2 compared to the non-maturated Fab of the parental antibody 005-C04 demonstrate better PRLR-binding of 005-C04-20-2 compared to 005-C04.
- the "variant" pET28 represents a supernatant of an E. coli strain carrying the Fab-expression plasmid pET28a (Novagen. EMD Chemicals Group. Merck. Darmstadt, Germany) which does not express any Fab.
- Figure 8 Barplot representation of Pepscan ELISA results.
- Each plotted value represents the average value obtained for 54 peptides with S.E.M (standard error of mean).
- the black bars represent the relative binding strength of antibody HE06642.
- the white bars represent the relative binding strength of antibody Mat3. The data was normalized to average over the entire 2916 peptide dataset and corrected for background signal.
- Figure 8A shows the ELISA results for a subset of peptides ranging from amino acids 103-PDPPLELAVEVKQPE-117 indicated as '1 17' on the X-axis to 127- WSPPTLIDLKTGWFT-141 (indicated as '141 '). I. e. these peptides, which were shifted by three amino acids along the ECD amino acid sequence, cover the region from amino acid position 103 to 141 of the ECD of human PRLR.
- these peptides which were shifted by three amino acids along the ECD amino acid sequence, cover the region from amino acid position 139 to 177 of the ECD of human PRLR.
- the strongest differences observed within this dataset are for peptide 148-LKPEKAAEWEIHFAG-162 (indicated as '162') with a significance p-value of 6x10 26 , and for peptide 160- FAGQQTEFKILSLHP-174 (indicated as '174') with a significance p-value of 8x10 8 .
- Figure 10 Inhibition of prolactin-induced proliferation of BaF3 cells (monoclonal cells stably transfected with the murine prolactin receptor) by neutralizing prolactin receptor antibodies and unspecific control antibodies.
- Figure 11A and B Inhibition of prolactin-induced proliferation of BaF3 cells (monoclonal cells stably transfected with the rhesus prolactin receptor) by neutralizing prolactin receptor antibodies and unspecific control antibodies.
- Figure 13A and B Inhibition of luciferase reporter gene activity in HEK293 cells stably transfected with the human and murine PRLR.
- the human PRLR- dependent activity is plotted against the antibody concentrations
- Figure 13B show3 ⁇ 4 Jhe ⁇ PRLR-dependent actiyjty ⁇ ⁇ Tj ⁇ activity is given as percentage of the maximal luciferase activity obtained without addition of any antibody.
- Figure 14 Cell binding of neutralizing PRLR antibodies on cells expressing PRLR from human, mouse and monkey using flow cytometry. The median fluorescent signal intensity is plotted against the antibody concentration. The following lgG1 antibodies were applied: Mat3 (closed circles), HE06.642 (open squares), unspecific isotype control antibody (open triangles).
- Seq ID NO:2 represents amino acid sequence of VL, Mat3
- Seq ID NO:3 represents nucleic acid sequence VH. Mat3
- Seq ID NO:4 represents nucleic acid sequence VL, Mat3
- Seq ID NO:5 represents amino acid sequence of HCDR1 , Mat3
- Seq ID NO:6 represents nucleic acid sequence HCDR2, Mat3
- Seq ID NO:7 represents nucleic acid sequence HCDR3, Mat3
- Seq ID NO:8 represents nucleic acid sequence LCDR1 , Mat3
- Seq ID NO:9 represents nucleic acid sequence LCDR2, Mat3
- Seq ID NO: 10 represents nucleic acid sequence LCDR3, Mat3
- Seq ID NO: 1 1 represents amino acid sequence of extracellular domain of cynomolgus and rhesus monkey PRLR fused to Fc-His
- Seq ID NO:12 represents human ECD_PRLR, amino acid position 1 - 210, S1 domain 1-100 (S1 domain construct 1-102),S2 domain 101-210
- Seq ID NO: 13 represents murine ECD_PRLR, amino acid position 1 - 210
- Seq ID NO: 14 represents amino acid sequence of VH, HE06642, Novartis (WO2008/22295)
- Seq ID NO: 15 represents amino acid sequence of VL, HE06642, Novartis (WO2008/22295)
- Seq ID NO: 16 represents nucleic acid sequence VH, HE06642, Novartis (WO2008/22295)
- Seq ID NO: 17 represents nucleic acid sequence VL, HE06642, Novartis (WO2008/22295)
- the cells were stably transfected with human PRLR and were routinely cultured in RPMI containing 2 mM glutamine in the presence of 10% FCS and 10 ng/ml of human prolactin. After six hours of starvation in prolactin-free medium containing 1 % FCS, cells were seeded into 96- well plates at a density of 25000 cells per well. Cells were stimulated with 35 ng/ml prolactin and coincubated with increasing doses of neutralizing PRLR antibodies for two days.
- the cells were stably transfected with the murine PRLR and were routinely cultured in RPMI containing 2 mM glutamine in the presence of 10% FCS and 10 ng/ml of human prolactin. After six hours of starvation in prolactin-free medium containing 1 % FCS, cells were seeded into 96- well plates at a density of 20000 cells per well. Cells were stimulated with 50 ng/ml prolactin and coincubated with increasing doses of neutralizing PRLR antibodies for three days.
- the cells were stably transfected with the rhesus PRLR and were routinely cultured in RP I containing 2 mM glutamine in the presence of 10% FCS and 10 ng/ml of human prolactin. After six hours of starvation in prolactin-free medium containing 1 % FCS, cells were seeded into 96- well plates at a density of 25000 cells per well. Cells were stimulated with 100 ng/mlactin and coincubated with increasing doses of neutralizing PRLR antibodies for two days.
- Real-timeTaqman PCR analysis was performed using the ABI Prism 7700 Sequence Detector System according to the manufacturer's instructions (PE Applied Biosystems) and as described Endocrinolgy 2008, 149 (8): 3952-3959) and known by the expert in the field. Relative expression levels of PRL and the PRLR were normalized to the expression of cyclophyllin. We analyzed the expression of PRL and the PRLR in the endometrium from healthy women and in endometrium and endometriotic lesions from patients by using quantitative real-time Taqman PCR analysis. The expression of prolactin and its receptor was clearly upregulated in endometriotic lesions compared to healthy endometrium or endometrium derived from patients.
- Grade 1 the inner layer of the myometrium looses its concentric orientation
- Grade 2 endometrial glands invading the inner layer of the myometrium
- Grade 3 endometrial glands between the inner and outer layer of the uterine
- Grade 4 endometrial glands invading the outer layer of the uterine myometrium
- Grade 5 endometrial glands outside of the outer layer of the uterine myometrium
- the experiment comprised the following experimental groups:
- Neutralizing PRLR antibody Mat3 is suitable for the treatment of benign breast disease.
- An activating PRLR mutation or local or systemic hyperprolactinemia can provoke benign breast disease. Therefore, a hyperprolactinemic mouse model with enhanced proliferation in the mammary gland (hallmark of the most severe forms of benign breast disease) was employed.
- Antibody doses were 30 mg/kg.
- Experimental group size was 8 animals.
- the experiment comprised the following experimental groups: 1 . Animals without pituitary transplantation, i.e. normoprolactinemic mice
- mice Animals with pituitary transplantation, i.e. hyperprolactinemic mice
- Antibody Mat3 is therefore suitable to treat benign breast disease.
- Example 7
- the target used for the library panning was the soluble extracellular domain (ECD) of the human and mouse prolactin receptor, respectively, represented by the amino acids 1-210, of SEQ ID NOs. 12 and 13.
- .Alternative targets were the ECD of PRLR C-terminally linked to six histidines or to a human lgG1-Fc domain via the linker with the amino acid sequence "isoleucine-glutamate-glycine- arginine-methionine-aspartate".
- phage display library was incubated with 50 pmols of the biotinylated ECD at room temperature for 1 hr and the complex formed was then captured using 100 ⁇ of Streptavidin beads suspension (Dynabeads ® M-280 Streptavidin, Invitrogen). Non specific phages were removed by washing the beads with wash buffer (PBS + 5% Milk,).
- Bound phages were eluted with 0.5 ml of 100 nM Triethylamine (TEA,) and immediately neutralized by addition of an equal volume of IM TRIS-CI pH 7.4. Eluted phage pool was used to infect TG1 E coli cells growing in logarithmic phase, and phagemid was rescued as described (Methods Mol Biol. 248:161-76, 2004),. Selection was repeated for a total of three rounds. Single colonies obtained from TG1 cells infected with eluted phage from the third round of panning were screened for binding activity in an ELISA assay. Briefly, single colonies obtained from the TG1 cell infected with eluted phage were used to inoculate media in 96-well plates.
- TAA Triethylamine
- Antibody affinity maturation is a two step process where saturation mutagenesis and well-based high throughput screening are combined to identify a small number of mutations resulting in affinity increases.
- positional diversification of wild-type antibody is introduced by site-directed mutagenesis using NNK-trinucleotide cassettes (whereby N represents a 25% mix each of adenine, thymine, guanine, and cytosine nucleotides and K represents a 50% mix each of thymine and guanine nucleotides) according to BMC Biotechnology 7: 65, 2007.
- N represents a 25% mix each of adenine, thymine, guanine, and cytosine nucleotides
- K represents a 50% mix each of thymine and guanine nucleotides
- the antibody HE06642 was diluted to 2-fold final concentration in FACS buffer and added to appropriate sample wells (50 ⁇ / well).
- 50 ⁇ FACS buffer was added to appropriate wells.
- 50 ⁇ of cell suspension was added to each sample well. Samples were incubated at 4°C for one hour, washed twice with cold FACS buffer and resuspended in FACS buffer containing PE-conjugated goat anti-human IgG at a 1 :100 dilution.
- FACS buffer 50 ⁇ FACS buffer was added to appropriate wells. 50 ⁇ of cell suspension was added to each sample well. Samples were incubated at 4°C for one hour, washed twice with cold FACS buffer and resuspended in FACS buffer containing PE-conjugated goat anti-human IgG at a 1 :100 dilution. Following a 30 min incubation at 4°C, cells were washed twice with cold FACS buffer, resuspended in FACS buffer containing 1 mg/ml propidium iodide (Invitrogen, San Diego, CA) and analyzed by flow cytometry.
- FACS buffer 1 mg/ml propidium iodide
- the antibody Mat3 binds to the human PRLR as well as to the monkey PRLR. Maximal signal intensities at highest antibody concentrations depend on the number of PRLR expressed on the cell surfaces, i.e. HEK293 and Ba/F cells do not carry the same number of PRLRs on their surface.
- the EC50 values were calculated based on the dose response curves illustrated in Figure 5B, in order to derive a measurement value for binding strength of Mat3 on cells (Table 2).
- the cell-based binding potency of Mat3 was 0.53 nM on HEK293 cells with human PRLR and 2.94 nM on Ba/F cells with monkey PRLR.
- Binding affinities of antibody Mat3 were determined by surface plasmon resonance analysis on a Biacore T100 instrument (GE Healthcare Biacore, Inc.). Antibodies were immobilized onto a CMS sensor chip through an indirect capturing reagent, anti-human IgG Fc. Reagents from the "Human Antibody Capture Kit” (BR-1008-39, GE Healthcare Biacore, Inc.) were used as described by the manufacturer. Approximately 5000 RU monoclonal mouse anti-human IgG (Fc) antibody were immobilized per cell. Antibody Mat3 was injected at a concentration of 5pg/ml at ⁇ ⁇ /min for 10 sec to reach a capturing level of approximately 200 to 600 RU.
- Sensograms were generated after in-line reference cell correction followed by buffer sample subtraction.
- the side-chains of multiple cysteines in the peptides were coupled to one or two CLIPS templates.
- a 0.5 mM solution of the T2 CLIPS template 1 ,3-bis (bromomethyl) benzene was dissolved in ammonium bicarbonate (20 mM, pH 7.9)/acetonitrile (1 : 1 (v/v). This solution was added onto the peptide arrays.
- the CLIPS template bound to side-chains of two cysteines as present in the solid-phase bound peptides of the peptide-arrays (455 wells plate with 3 ul wells). The peptide arrays were gently shaken in the solution for 30 to 60 minutes while completely covered in solution.
- the binding of antibody Mat3 and of antibody HE06642 to each peptide was tested in a PEPSCAN-based ELISA (Slootstra et al., 1996, Molecular Diversity 1 : 87-96).
- the peptide arrays were pre-incubated with 5% to 100%-binding buffer (1 hr, 20°C).
- the binding buffer was composed of 1 % Tween-80, 4% horse-serum, 5% Ovalbumin (w/v) and was diluted with PBS. After washing the peptide arrays were incubated with primary antibody solution (1 to 5 ng/ml) in PBS containing 1 % Tween-80 (overnight at 4°C).
- the peptide arrays were incubated with a 1/1000 dilution in 100% binding buffer of an antibody peroxidase conjugate for one hour at 25°C (anti-human, humpo). After washing, the peroxidase substrate 2,2'-azino-di-3-ethylbenzthiazoline sulfonate (ABTS) and 2 microliters/milliliter of 3 percent H 2 O 2 were added. After one hour, the color development was measured. The color development was quantified with a charge coupled device (CCD) - camera and an image processing system.
- CCD charge coupled device
- the raw data were optical values obtained by a CCD-camera. The values ranged from 0 to 3000 mAU, similar to a standard 96-well plate ELISA-reader. The results were quantified and stored into the Pepiab database. The binding values were extracted for analysis. Occasionally a well contained an air-bubble resulting in a false-positive value, the cards were manually inspected and any values caused by an air-bubble were scored as 0. d) Data analysis and representation:
- a heat map is a graphical representation of data where the empirical values from experimental data are organized in a two-dimensional map, and are then represented as colors (Brinton, 1914, Graphic Methods for Presenting Facts, New York: The Engineering Magazine Company; Gower and Digby, 1981 , ), "Expressing complex relationships in two dimensions” in Interpreting Multivariate Data, ed. Barnett, V., Chichester, UK: John Wiley & Sons, pp. 83-1 18.).
- CLIPS peptides such a two-dimensional map could be derived from the independent sequences of the first loop and the second loop.
- the 2916 CLIPS peptides had sequences that were effectively permutations of 54 unique sub-sequences, combined in two sequential CLIPS loops.
- the observed Pepscan ELISA data could be plotted in a 54x54 matrix, where each X coordinate was the amino acid sequence of the first loop, and each Y coordinate was the amino acid sequence of the second loop.
- the Pepscan ELISA value was placed that is derived from the peptide with sequence X+Y.
- Pepscan ELISA values were replaced with colors from a continuous gradient. In this case, extremely low values were colored green, extremely high values were colored red, and average values were colored black.
- Figure 8A shows the ELISA results for a subset of peptides ranging from amino acids 103-PDPPLELAVEVKQPE-117 indicated as '1 17' on the X-axis to 127- WSPPTLIDLKTGWFT-141 (indicated as '141 '). I. e. these peptides, which were shifted by three amino acids along the ECD amino acid sequence, cover the region from amino acid position 103 to 141 of the ECD of human PRLR.
- Figure 8B shows the ELISA results for a subset of peptides ranging from 139- WFTLLYEIRLKPEKA-153 (indicated as '153' on the X-axis) to 163- QQTEFKILSLHPGQK-177 (indicated as '177'). I. e. these peptides, which were shifted by three amino acids along the ECD amino acid sequence, cover the region from amino acid position 139 to 177 of the ECD of human PRLR.
- HEK293 cells stably transfected with the murine PRLR were transiently transfected with a luciferase reporter gene under the control of LHREs (lactogenic hormone response elements) . Afterwards, cells were seeded at a density of 20000 cells per well (80 ⁇ ) on a 96-well plate in DMEM High Glucose medium with 4,5g/L glucose, 2mM Glutamax, 0.5% FCS, and 1 % Penicillin/Streptomycin.
- Binding affinities of antibodies Mat3 and HE06642 were determined by surface plasmon resonance analysis on a Biacore T100 instrument (GE Healthcare Biacore, Inc.) in parallel. Antibodies were immobilized onto a CMS sensor chip through an indirect capturing reagent, anti-human IgG Fc. Reagents from the "Human Antibody Capture Kit” (BR-1008-39, GE Healthcare Biacore, Inc.) were used as described by the manufacturer. Approximately 5000 RU monoclonal mouse anti-human IgG (Fc) antibody were immobilized per cell. Each test antibody was injected at a concentration of 5pg/ml at ⁇ ⁇ /min for 10 sec to reach a capturing level of approximately 200 to 600 RU.
- Sensograms were generated after in-line reference cell correction followed by buffer sample subtraction.
- Table 7 Monovalent dissociation constants and dissociation rates of purified extracellular domains of human, monkey and murine PRLR (expressed in HEK293 cells) determined for Mat3 and HE06.642 by surface plasmon resonance
- K D (human PRLR) 2.6x10 9 M
- K D (monkey PRLR) 38.9 x 10 9 M
- K D (murine PRLR) 2.7 x 10 9 M.
- Mat3 exhibits improved affinities to monkey and murine PRLR compared to HE06.642.
- the improved cell binding and antiproliferative activity of Mat3 on human PRLR is not reflected by improved affinity to hPRLR compared to HE06.642.
- HE06.642 does not bind cells or inhibits proliferation of cells expressing the murine PRLR ( Figure 10 and 14, Table 8).
- Mat3 blocks cell proliferation in nanomolar to subnanomolar scale in all three species.
- the soluble ECD-PRLR (SEQ ID NO: 12) was captured on the surface via the immobilized test antibodies Mat3 and HE06642, therefore, the epitope of the capture antibody was blocked for all bound ECD-PRLR molecules. Human PRL was immediately passed over the surface to bind to the immobilized ECD-PRLR. This way, it could be measured whether PRL bound the ECD-PRLR, although the ECD is captured by the test antibody.
- a cell binding study was performed with antibody Mat3 and HE06642 as well as a choleratoxin-specific isotype control, all being in lgG1 format.
- the tested cell lines were HEK293 cells stably expressing human and mouse PRLR, respectively, the human breast cancer cell line T47D as well as the Ba/F cell lines expressing human, mouse and rhesus monkey PRLR.
- the cell binding was determined by flow cytometry on the above mentioned cells. The cells were harvested, centrifuged and resuspended at approximately 2x10 6 cells/ml in 1 xPBS containing 3% FBS and 0.05 % sodium azide (FACS buffer).
- test antibody was diluted to 2-fold final concentration in FACS buffer and added to appropriate sample wells (50 ⁇ / well).
- 50 ⁇ FACS buffer was added to appropriate wells.
- 50 ⁇ of cell suspension was added to each sample well. Samples were incubated at 4°C for one hour, washed twice with cold FACS buffer and resuspended in FACS buffer containing PE-conjugated goat anti-human IgG at a 1 :100 dilution.
- Table 8 Cell binding potency of neutralizing PRLR antibodies Mat3 and He06.642 in lgG1 format on cells expressing PRLR from human, mouse and monkey deduced from flow cytometry
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Endocrinology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Epidemiology (AREA)
- Neurology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Mycology (AREA)
- Diabetes (AREA)
- Reproductive Health (AREA)
- Cell Biology (AREA)
- Urology & Nephrology (AREA)
- Dermatology (AREA)
- Gynecology & Obstetrics (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
Description
Claims
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL12729030T PL2714740T3 (en) | 2011-06-03 | 2012-05-31 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
SI201230553A SI2714740T1 (en) | 2011-06-03 | 2012-05-31 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
RS20160322A RS54727B1 (en) | 2011-06-03 | 2012-05-31 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
MEP-2016-91A ME02659B (en) | 2011-06-03 | 2012-05-31 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
EP12729030.2A EP2714740B1 (en) | 2011-06-03 | 2012-05-31 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
HRP20160506TT HRP20160506T1 (en) | 2011-06-03 | 2016-05-12 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
CY20161100549T CY1117660T1 (en) | 2011-06-03 | 2016-06-17 | PROTECTIVE MAT3 RELAXING ANTIBIOTIC RECEPTORS AND THEIR THERAPEUTIC USE |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11168644A EP2530089A1 (en) | 2011-06-03 | 2011-06-03 | Neutralising prolactin receptor antibody Mat3 and its therapeutical use |
PCT/EP2012/060078 WO2012163932A1 (en) | 2011-06-03 | 2012-05-31 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
EP12729030.2A EP2714740B1 (en) | 2011-06-03 | 2012-05-31 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2714740A1 true EP2714740A1 (en) | 2014-04-09 |
EP2714740B1 EP2714740B1 (en) | 2016-03-30 |
Family
ID=46331236
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11168644A Withdrawn EP2530089A1 (en) | 2011-06-03 | 2011-06-03 | Neutralising prolactin receptor antibody Mat3 and its therapeutical use |
EP12729030.2A Active EP2714740B1 (en) | 2011-06-03 | 2012-05-31 | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11168644A Withdrawn EP2530089A1 (en) | 2011-06-03 | 2011-06-03 | Neutralising prolactin receptor antibody Mat3 and its therapeutical use |
Country Status (37)
Country | Link |
---|---|
US (2) | US9353186B2 (en) |
EP (2) | EP2530089A1 (en) |
JP (1) | JP5859641B2 (en) |
KR (1) | KR101920521B1 (en) |
CN (1) | CN103764679B (en) |
AP (1) | AP2013007266A0 (en) |
AR (1) | AR086631A1 (en) |
AU (1) | AU2012264765B2 (en) |
BR (1) | BR112013030995B1 (en) |
CA (1) | CA2837736C (en) |
CL (1) | CL2013003459A1 (en) |
CO (1) | CO6852025A2 (en) |
CR (1) | CR20130632A (en) |
CU (1) | CU20130163A7 (en) |
CY (1) | CY1117660T1 (en) |
DK (1) | DK2714740T3 (en) |
DO (1) | DOP2013000285A (en) |
EA (1) | EA029316B1 (en) |
EC (1) | ECSP13013063A (en) |
ES (1) | ES2572215T3 (en) |
HK (1) | HK1195081A1 (en) |
HR (1) | HRP20160506T1 (en) |
HU (1) | HUE028775T2 (en) |
IL (1) | IL229504B (en) |
MA (1) | MA35237B1 (en) |
ME (1) | ME02659B (en) |
MX (1) | MX343683B (en) |
PE (1) | PE20141158A1 (en) |
PL (1) | PL2714740T3 (en) |
RS (1) | RS54727B1 (en) |
SG (1) | SG195060A1 (en) |
SI (1) | SI2714740T1 (en) |
TN (1) | TN2013000501A1 (en) |
TW (1) | TWI548649B (en) |
UY (1) | UY34116A (en) |
WO (1) | WO2012163932A1 (en) |
ZA (1) | ZA201309683B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EA036225B1 (en) | 2012-03-14 | 2020-10-15 | Ридженерон Фармасьютикалз, Инк. | Multispecific antigen-binding molecules and uses thereof |
PT2935331T (en) * | 2012-12-24 | 2018-06-04 | Abbvie Inc | Prolactin receptor binding proteins and uses thereof |
TWI641620B (en) * | 2013-08-21 | 2018-11-21 | 再生元醫藥公司 | Anti-prlr antibodies and uses thereof |
US9545451B2 (en) | 2013-08-21 | 2017-01-17 | Regeneron Pharmaceuticals, Inc. | Anti-PRLR antibodies and methods for killing PRLR-expressing cells |
MX2017017117A (en) | 2015-07-06 | 2018-03-06 | Regeneron Pharma | Multispecific antigen-binding molecules and uses thereof. |
EP3448891A1 (en) | 2016-04-28 | 2019-03-06 | Regeneron Pharmaceuticals, Inc. | Methods of making multispecific antigen-binding molecules |
KR20190091290A (en) | 2016-11-29 | 2019-08-05 | 리제너론 파아마슈티컬스, 인크. | How to Treat PrLr Positive Breast Cancer |
TW201836647A (en) | 2017-04-06 | 2018-10-16 | 美商艾伯維有限公司 | Anti-prlr antibody-drug conjugates (adc) and uses thereof |
BR112020000378A2 (en) | 2017-07-10 | 2020-07-21 | Bayer Pharma Aktiengesellschaft | prolactin receptor antibody for male and female standard hair loss |
BR112020002636A2 (en) * | 2017-08-10 | 2020-07-28 | Grifols Diagnostic Solutions Inc. | compositions, methods and / or kits comprising a recombinant extracellular domain of human cd38 |
CA3090519A1 (en) | 2018-02-07 | 2019-08-15 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for therapeutic protein delivery |
UY39610A (en) | 2021-01-20 | 2022-08-31 | Abbvie Inc | ANTI-EGFR ANTIBODY-DRUG CONJUGATES |
EP4428150A1 (en) | 2023-03-07 | 2024-09-11 | Peptide Logic LLC | Antibody or antigen-binding fragment thereof |
CN116655791B (en) * | 2023-05-06 | 2023-11-07 | 浙江触奇生物科技有限公司 | Nanometer antibody for resisting prolactin receptor, recombinant vector, recombinant bacterium and application |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4657760A (en) | 1979-03-20 | 1987-04-14 | Ortho Pharmaceutical Corporation | Methods and compositions using monoclonal antibody to human T cells |
US4634665A (en) | 1980-02-25 | 1987-01-06 | The Trustees Of Columbia University In The City Of New York | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US5179017A (en) | 1980-02-25 | 1993-01-12 | The Trustees Of Columbia University In The City Of New York | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US4399216A (en) | 1980-02-25 | 1983-08-16 | The Trustees Of Columbia University | Processes for inserting DNA into eucaryotic cells and for producing proteinaceous materials |
US4510245A (en) | 1982-11-18 | 1985-04-09 | Chiron Corporation | Adenovirus promoter system |
US4816567A (en) | 1983-04-08 | 1989-03-28 | Genentech, Inc. | Recombinant immunoglobin preparations |
US5168062A (en) | 1985-01-30 | 1992-12-01 | University Of Iowa Research Foundation | Transfer vectors and microorganisms containing human cytomegalovirus immediate-early promoter-regulatory DNA sequence |
US5206344A (en) | 1985-06-26 | 1993-04-27 | Cetus Oncology Corporation | Interleukin-2 muteins and polymer conjugation thereof |
US4968615A (en) | 1985-12-18 | 1990-11-06 | Ciba-Geigy Corporation | Deoxyribonucleic acid segment from a virus |
US5225212A (en) | 1989-10-20 | 1993-07-06 | Liposome Technology, Inc. | Microreservoir liposome composition and method |
CA2103887C (en) | 1991-12-13 | 2005-08-30 | Gary M. Studnicka | Methods and materials for preparation of modified antibody variable domains and therapeutic uses thereof |
CA2229043C (en) | 1995-08-18 | 2016-06-07 | Morphosys Gesellschaft Fur Proteinoptimierung Mbh | Protein/(poly)peptide libraries |
GB9701425D0 (en) | 1997-01-24 | 1997-03-12 | Bioinvent Int Ab | A method for in vitro molecular evolution of protein function |
WO2003008583A2 (en) | 2001-03-02 | 2003-01-30 | Sagres Discovery | Novel compositions and methods for cancer |
US7705120B2 (en) | 2001-06-21 | 2010-04-27 | Millennium Pharmaceuticals, Inc. | Compositions, kits, and methods for identification, assessment, prevention, and therapy of breast cancer |
EP1325930A1 (en) * | 2002-01-08 | 2003-07-09 | Institut National De La Sante Et De La Recherche Medicale (Inserm) | Mammal prolactin variants |
JP2008535853A (en) | 2005-04-07 | 2008-09-04 | ノバルティス ヴァクシンズ アンド ダイアグノスティクス インコーポレイテッド | Cancer-related genes |
US7422899B2 (en) | 2005-10-05 | 2008-09-09 | Biogen Idec Ma Inc. | Antibodies to the human prolactin receptor |
TWI454480B (en) | 2006-08-18 | 2014-10-01 | Novartis Ag | Prlr-specific antibody and uses thereof |
EP2332995A1 (en) * | 2009-12-10 | 2011-06-15 | Bayer Schering Pharma Aktiengesellschaft | Neutralizing prolactin receptor antibodies and their therapeutic use |
-
2011
- 2011-06-03 EP EP11168644A patent/EP2530089A1/en not_active Withdrawn
-
2012
- 2012-05-31 MX MX2013014174A patent/MX343683B/en active IP Right Grant
- 2012-05-31 AU AU2012264765A patent/AU2012264765B2/en active Active
- 2012-05-31 SG SG2013085816A patent/SG195060A1/en unknown
- 2012-05-31 WO PCT/EP2012/060078 patent/WO2012163932A1/en active Application Filing
- 2012-05-31 ME MEP-2016-91A patent/ME02659B/en unknown
- 2012-05-31 CN CN201280038107.4A patent/CN103764679B/en active Active
- 2012-05-31 EP EP12729030.2A patent/EP2714740B1/en active Active
- 2012-05-31 CA CA2837736A patent/CA2837736C/en active Active
- 2012-05-31 SI SI201230553A patent/SI2714740T1/en unknown
- 2012-05-31 PE PE2013002749A patent/PE20141158A1/en active IP Right Grant
- 2012-05-31 ES ES12729030T patent/ES2572215T3/en active Active
- 2012-05-31 US US14/123,517 patent/US9353186B2/en active Active
- 2012-05-31 KR KR1020137034848A patent/KR101920521B1/en active IP Right Grant
- 2012-05-31 DK DK12729030.2T patent/DK2714740T3/en active
- 2012-05-31 HU HUE12729030A patent/HUE028775T2/en unknown
- 2012-05-31 JP JP2014513160A patent/JP5859641B2/en active Active
- 2012-05-31 EA EA201301356A patent/EA029316B1/en not_active IP Right Cessation
- 2012-05-31 RS RS20160322A patent/RS54727B1/en unknown
- 2012-05-31 PL PL12729030T patent/PL2714740T3/en unknown
- 2012-05-31 BR BR112013030995-4A patent/BR112013030995B1/en active IP Right Grant
- 2012-05-31 AP AP2013007266A patent/AP2013007266A0/en unknown
- 2012-06-01 TW TW101119849A patent/TWI548649B/en active
- 2012-06-01 UY UY0001034116A patent/UY34116A/en not_active Application Discontinuation
- 2012-06-01 AR ARP120101933A patent/AR086631A1/en active Pending
-
2013
- 2013-11-19 IL IL229504A patent/IL229504B/en active IP Right Grant
- 2013-12-02 MA MA36513A patent/MA35237B1/en unknown
- 2013-12-02 TN TNP2013000501A patent/TN2013000501A1/en unknown
- 2013-12-03 CO CO13283823A patent/CO6852025A2/en not_active Application Discontinuation
- 2013-12-03 CR CR20130632A patent/CR20130632A/en unknown
- 2013-12-03 DO DO2013000285A patent/DOP2013000285A/en unknown
- 2013-12-03 CU CU2013000163A patent/CU20130163A7/en unknown
- 2013-12-03 CL CL2013003459A patent/CL2013003459A1/en unknown
- 2013-12-03 EC ECSP13013063 patent/ECSP13013063A/en unknown
- 2013-12-20 ZA ZA2013/09683A patent/ZA201309683B/en unknown
-
2014
- 2014-08-18 HK HK14108441.2A patent/HK1195081A1/en unknown
-
2016
- 2016-04-28 US US15/140,629 patent/US9777063B2/en active Active
- 2016-05-12 HR HRP20160506TT patent/HRP20160506T1/en unknown
- 2016-06-17 CY CY20161100549T patent/CY1117660T1/en unknown
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9777063B2 (en) | Neutralizing prolactin receptor antibody Mat3 and its therapeutic use | |
AU2010330161B2 (en) | Neutralizing prolactin receptor antibodies and their therapeutic use | |
NZ618316B2 (en) | Neutralizing prolactin receptor antibody mat3 and its therapeutic use |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140103 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17Q | First examination report despatched |
Effective date: 20141008 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20151026 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 785320 Country of ref document: AT Kind code of ref document: T Effective date: 20160415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: TUEP Ref document number: P20160506 Country of ref document: HR Ref country code: DE Ref legal event code: R096 Ref document number: 602012016288 Country of ref document: DE Ref country code: RO Ref legal event code: EPE |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 20160513 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 Effective date: 20160523 Ref country code: ES Ref legal event code: FG2A Ref document number: 2572215 Country of ref document: ES Kind code of ref document: T3 Effective date: 20160530 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: T1PR Ref document number: P20160506 Country of ref document: HR |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: FG4A Ref document number: E011952 Country of ref document: EE Effective date: 20160513 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: T2 Effective date: 20160330 |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 21256 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160330 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012016288 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E028775 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20160401427 Country of ref document: GR Effective date: 20160906 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: RU Effective date: 20170329 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: D7 Effective date: 20170724 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: UEP Ref document number: 785320 Country of ref document: AT Kind code of ref document: T Effective date: 20160330 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20160506 Country of ref document: HR Payment date: 20190502 Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20160506 Country of ref document: HR Payment date: 20200515 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20160506 Country of ref document: HR Payment date: 20210524 Year of fee payment: 10 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20160506 Country of ref document: HR Payment date: 20220527 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20160506 Country of ref document: HR Payment date: 20230523 Year of fee payment: 12 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230507 |
|
REG | Reference to a national code |
Ref country code: NO Ref legal event code: CHAD Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CY Payment date: 20230524 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: LU Ref legal event code: HC Owner name: BAYER INTELLECTUAL PROPERTY GMBH; DE Free format text: FORMER OWNER: BAYER INTELLECTUAL PROPERTY GMBH Effective date: 20230710 |
|
REG | Reference to a national code |
Ref country code: EE Ref legal event code: HE1A Ref document number: E011952 Country of ref document: EE |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: TC4A Ref document number: E 21256 Country of ref document: SK Owner name: BAYER INTELLECTUAL PROPERTY GMBH, MONHEIM AM R, DE Effective date: 20230726 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: PNAN Ref document number: P20160506 Country of ref document: HR Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: PD Owner name: BAYER INTELLECTUAL PROPERTY GMBH; DE Free format text: DETAILS ASSIGNMENT: CHANGE OF OWNER(S), OTHER; FORMER OWNER NAME: BAYER INTELLECTUAL PROPERTY GMBH Effective date: 20230810 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: HC9C Owner name: BAYER INTELLECTUAL PROPERTY GMBH, DE Free format text: FORMER OWNER(S): BAYER INTELLECTUAL PROPERTY GMBH, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AL Payment date: 20230517 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MK Payment date: 20230426 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: SI Ref legal event code: SP73 Owner name: BAYER INTELLECTUAL PROPERTY GMBH; DE Effective date: 20240130 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240426 Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: HR Ref legal event code: ODRP Ref document number: P20160506 Country of ref document: HR Payment date: 20240429 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240513 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IS Payment date: 20240423 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20240423 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240418 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LT Payment date: 20240503 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240416 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20240426 Year of fee payment: 13 Ref country code: DK Payment date: 20240515 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20240426 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240602 Year of fee payment: 13 Ref country code: HR Payment date: 20240429 Year of fee payment: 13 Ref country code: RS Payment date: 20240425 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240611 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20240516 Year of fee payment: 13 Ref country code: AT Payment date: 20240425 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SK Payment date: 20240424 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: RO Payment date: 20240513 Year of fee payment: 13 Ref country code: NO Payment date: 20240508 Year of fee payment: 13 Ref country code: IT Payment date: 20240426 Year of fee payment: 13 Ref country code: FR Payment date: 20240422 Year of fee payment: 13 Ref country code: FI Payment date: 20240514 Year of fee payment: 13 Ref country code: EE Payment date: 20240424 Year of fee payment: 13 Ref country code: BG Payment date: 20240430 Year of fee payment: 13 Ref country code: SI Payment date: 20240425 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20240429 Year of fee payment: 13 Ref country code: PT Payment date: 20240515 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240520 Year of fee payment: 13 Ref country code: SE Payment date: 20240429 Year of fee payment: 13 Ref country code: MT Payment date: 20240516 Year of fee payment: 13 Ref country code: LV Payment date: 20240419 Year of fee payment: 13 Ref country code: HU Payment date: 20240515 Year of fee payment: 13 Ref country code: BE Payment date: 20240422 Year of fee payment: 13 |