EP2707882A1 - Nuclear reactor with device for injecting nanoparticles in the event of an accident - Google Patents

Nuclear reactor with device for injecting nanoparticles in the event of an accident

Info

Publication number
EP2707882A1
EP2707882A1 EP12720184.6A EP12720184A EP2707882A1 EP 2707882 A1 EP2707882 A1 EP 2707882A1 EP 12720184 A EP12720184 A EP 12720184A EP 2707882 A1 EP2707882 A1 EP 2707882A1
Authority
EP
European Patent Office
Prior art keywords
nanoparticles
agglomerates
reactor according
zno
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12720184.6A
Other languages
German (de)
French (fr)
Inventor
Mehdi Moussavi
Mickaël GUILLODO
Marylise CARON-CHARLES
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Areva SA
Original Assignee
Areva SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Areva SA filed Critical Areva SA
Publication of EP2707882A1 publication Critical patent/EP2707882A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • G21C15/182Emergency cooling arrangements; Removing shut-down heat comprising powered means, e.g. pumps
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C19/00Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
    • G21C19/28Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
    • G21C19/30Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
    • G21C19/307Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps specially adapted for liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S977/00Nanotechnology
    • Y10S977/902Specified use of nanostructure

Definitions

  • the present invention generally relates to nuclear reactors, in particular the dissipation of heat in such reactors during an accident of the LOCA type (loss of coolant accident).
  • the invention relates to a nuclear reactor of the type comprising:
  • a LOCA-type accident in a nuclear reactor typically corresponds to a leak occurring in the core cooling circuit, such that a portion of the primary coolant flows out of the cooling circuit and is collected at the bottom of the reactor. the reactor cavity.
  • the nuclear fuel assemblies are no longer adequately cooled, and the temperature in the reactor core increases. This increase in temperature can cause the heart to melt.
  • a LOCA type of accident corresponds, for example, to the rupture of the main steam line connecting the reactor vessel to the steam generator or the turbine, respectively.
  • the nanoparticles must disperse in the coolant and remain in suspension without sedimentation.
  • the invention aims to propose a nuclear reactor in which the injection of the nanoparticles makes it possible to increase the heat exchange in the cooling circuit of the core in an efficient and sustainable manner, in the event of a LOCA-type accident.
  • the invention relates to a nuclear reactor of the aforementioned type, characterized in that the nanoparticles comprise first nano particles of a first type having a first form factor of less than 2, and second nano particles of a second type different from the first type having a second form factor greater than 2, the nano particles comprising between 10% and 90% by weight of the first nanoparticles and between 90% and 10% by weight of the second nanoparticles.
  • the first nanoparticles having a lower form factor, are more resistant to thermal shocks and sediment less, because they have a higher uniformly distributed surface charge.
  • the second nanoparticles having a higher form factor, have a higher thermal conductivity in solution but sediment more quickly.
  • the coolant containing the mixture of the first and second nanoparticles has excellent thermal conductivity.
  • the nanoparticles hardly sediment, and the turbulence resulting from the circulation of the cooling fluid is enough to keep them in suspension.
  • the nuclear reactor is a PWR type reactor, or a BWR type reactor, or any other type of reactor in which the core is cooled by circulation of a heat transfer liquid.
  • This cooling fluid is typically water, but could be another coolant.
  • the nanoparticles are typically nano powders of metal oxides or diamonds.
  • Such nano particles are for example described in the article "Surface wettability change during pool boiling of nanofluids and its effect on critical heat flow” by Kim et al, published in International Journal of Heat and Mass Transfer, 50 (2007) 40105- 401 16; or else in the article “A feasabililty assessment of the use of nanofluids to enhance the in-vessel retention capability in light water reactors", by Buongiorno et al, published in Nuclear Engineering and Design 239 (2009) 941 -948 or in "Effects of nano particles deposition on surface wettability influencing boiling heat transfer in nanofluids” by Kim et al published in Applied Physics Letters 89, 153107 (2006).
  • the first nano particles are in a material identical to the material constituting the second nano particles.
  • the first nanoparticles and the second nano particles are in respective materials different from each other.
  • the first nanoparticles are in a mineral oxide, typically selected from Al 2 O 3 , ZnO, CeO 2 , or Fe 2 O 3 .
  • the second nanoparticles are also in a mineral oxide, typically selected from Al 2 O 3 , ZnO, CeO 2 or Fe 2 O 3 .
  • the first nanoparticles have a form factor of less than 2, preferably between 1 and 1.5, more preferably between 1 and 1.2.
  • form factor is meant here the ratio between the length of the nanoparticle and its width.
  • the length corresponds to the largest dimension of the nanoparticle, this dimension being taken along a longitudinal direction of the particle.
  • the width corresponds to the smallest dimension of the particle, taken in a plane perpendicular to the longitudinal direction.
  • the form factor is rigorously equal to 1.
  • the first nanoparticles are spherical or pseudospherical.
  • At least 50% of the first nanoparticles have a form factor of between 1 and 1.5, preferably at least 75% of the first nanoparticles, and even more preferably at least 90% of the first nanoparticles.
  • the second nanoparticles have a second form factor greater than 2.
  • the form factor is defined as before.
  • the second nanoparticles have a form factor of between 2 and 5, and more preferably of between 2 and 3.
  • the second nanoparticles are in the form of rods, each rod having an elongated shape according to a longitudinal direction.
  • the second nanoparticles typically have a form factor of between 2 and 5, preferably at least 75% of the second nanoparticles and more preferably at least 90% of the second nanoparticles.
  • the nanoparticles intended to be injected into the cooling fluid comprise between 10 and 90% by weight of the first nanoparticles, preferably between 30 and 70% by weight of the first nanoparticles, and even more preferably between 40 and 60% by weight.
  • first nano particles preferably between 10 and 90% by weight of the first nanoparticles.
  • the nanoparticles comprise between 90% and 10% by weight of second nanoparticles, preferably between 70% and 30% by weight of second nanoparticles, and even more preferably between 60% and 40% by weight of nanoparticles.
  • second nano particles For example, the nanoparticles comprise 50% by weight of first nanoparticles and 50% by weight of second nanoparticles.
  • the nanoparticles comprise only first nanoparticles and second nanoparticles, and do not comprise nanoparticles of another type.
  • the nanoparticles mainly have sizes of between 50 nanometers and 250 nanometers, before being agglomerated to each other as described below.
  • at least 75% of the nanoparticles have sizes of between 50 and 250 nanometers, and even more preferably 90% of the nanoparticles.
  • the nanoparticles have predominantly sizes of between 75 and 150 nanometers, and more preferably between 90 and 1 10 nanometers.
  • the size of a nanoparticle is the largest dimension of said nanoparticle.
  • each agglomerate is an assembly comprising a plurality of first nanoparticles and a plurality of second nano particles, integral with each other.
  • Each agglomerate is therefore a monolithic set of small size.
  • the agglomerates predominantly have sizes of between 150 nanometers and 400 nanometers. Preferably, at least 75% of the agglomerates have a size of between 150 and 400 nanometers, and even more preferably 90% of the agglomerates. Preferably, the majority of agglomerates have sizes of between 200 and 300 nanometers, and even more preferably between 200 and 250 nanometers.
  • the agglomerates have a general zigzag shape, as represented for example in FIG. 4 and in FIG. 7.
  • the agglomerate has a general broken line shape.
  • the agglomerate has a general shape that has several sections with respective inclinations different from each other. The sections are integral with each other.
  • the general zigzag shape, the size and the constitution of the agglomerates are different elements which each contribute to obtaining the desired properties once the nanoparticles have been dispersed in the cooling fluid.
  • the agglomerates are self-dispersing, i.e., mix substantially instantaneously with the coolant, to form a homogeneous suspension. Agglomerates sediment only slowly. The circulation of the cooling fluid in the cooling circuit, even in the case of LOCA, is sufficient to maintain almost all the agglomerates in suspension. Finally, when the agglomerates are dispersed in the cooling fluid, the heat dissipation in the cooling circuit increases very significantly.
  • thermal conductivity of a cooling liquid comprising water and 30% by weight of agglomerates is about 10 to 25% higher than the thermal conductivity of pure water.
  • the nanoparticles are injected into the cooling fluid with a mass content of between 10 and 50%, preferably between 20 and 40%, and being for example 30%.
  • the nanoparticles before injection are stored in solid form. They are also injected in solid form into the coolant in the event of an accident.
  • the device provided for the injection of the nanoparticles comprises a storage of said nanoparticles in solid form, and an injection member of the nanoparticles in solid form from the storage directly in the primary liquid.
  • the nanoparticle injection member comprises, for example, a device for dosing the quantity of nanoparticles to be injected, and a means for driving the nanoparticles from the dosing member into the cooling circuit. The entrainment of the nanoparticles is done for example by means of a compressed neutral gas.
  • the invention has been described above in the context of a LOCA-type accident, the nanoparticles being in this case injected into the fluid circulating directly in the reactor core.
  • nanoparticles can also be injected when other types of accidents occur, which hinder or prevent the cooling of the reactor core: rupture of a secondary circuit piping of a PWR type reactor or other, connecting the steam generator at the turbine; leak on the secondary cooling circuit; rupture of one or more steam generator tubes; blocking of control rods; etc.
  • the invention applies in all cases where it is necessary to increase the efficiency with which the thermal power released by the nuclear fuel assemblies is discharged out of the core.
  • the nanoparticles are preferably injected into the so-called primary cooling fluid, which circulates in the reactor core.
  • the primary cooling circuit and / or in the secondary cooling circuit, and / or in a possible tertiary cooling circuit of the reactor.
  • the secondary and tertiary circuits are circuits of cooling of the heart, since they help to evacuate the heat released in the heart.
  • FIG. 1 is a simplified schematic representation of a nuclear reactor according to the invention
  • FIG. 2 is a schematic representation of first nano particles of different types
  • FIG. 3 is a simplified schematic representation of second nano particles of different types
  • FIG. 4 is a simplified schematic representation of an agglomerate of nanoparticles.
  • FIGS. 5 to 7 illustrate successive steps in the process for producing agglomerates of nanoparticles.
  • the reactor 1 shown in FIG. 1 is a PWR type reactor.
  • the reactor 1 comprises a tank 10, in which are placed the nuclear fuel assemblies forming the core of the reactor, a cooling circuit 20 of the reactor core in which circulates a cooling fluid, a steam generator 30 inserted in the reactor circuit. cooling 20, a coolant circulation pump 40 also inserted into the cooling circuit, and a device 50 for injecting nano particles into the cooling fluid.
  • the steam generator 30 has a primary side in which circulates the cooling fluid of the core, and a secondary side in which circulates a secondary heat transfer fluid.
  • the core coolant transfers its heat to the secondary fluid through the steam generator 30.
  • the circulation pump 40 is placed downstream of the steam generator 30 in the direction of circulation of the cooling fluid.
  • the cooling circuit 20 comprises a hot leg 22 connecting a cooling fluid outlet 12 of the tank to a cooling fluid inlet 32 of the steam generator, an intermediate branch 24 connecting a cooling fluid outlet 34 of the steam generator at a suction inlet of the primary pump 40, and a cold branch 26 connecting a discharge outlet of the primary pump 40 to an inlet 14 of the primary liquid of the tank.
  • the cooling circuit 20 further comprises one or more pressurizers 70.
  • the device 50 intended for the injection of the nanoparticles comprises a storage 52 of said nanoparticles in solid form, and a device 54 for injecting the nanoparticles in solid form from the storage 52 directly into the cooling liquid.
  • the storage 52 is of any suitable type. It may comprise a tank under pressure of an inert gas in which the nanoparticles, a hopper, etc. are stored. The nanoparticles are in the form of agglomerates in the storage 52.
  • the injection member 54 typically comprises a nano-particle injecting device 56, a means 57 for driving the nanoparticles of the metering member 56 into the cooling circuit 20 and one or more transfer lines 58. nanoparticles, connecting the metering member 56 to the cooling circuit 20.
  • the metering member 56 has an inlet communicating with the storage 52.
  • a closure member interposed between the storage 52 and the inlet of the metering member 56, selectively allows communication or isolation of the storage 52 of the metering member 56.
  • the metering member can be of all types adapted.
  • the metering member 56 is for example a receptacle mounted on a weighing cell adapted to measure the mass of charged nanoparticles in the receptacle.
  • the means 57 for driving the nanoparticles from the metering member 56 into the primary circuit comprises, for example, a supply of a high-pressure inert gas connected to a gas inlet of the metering member 56.
  • a valve, or any other suitable means, selectively trigger or interrupt the supply of high pressure gas in the metering member 56.
  • the transfer lines 58 connect an output of the metering member 56 to one or more taps 59 of the cooling circuit 20. Valves placed on the lines 58 make it possible to selectively connect or isolate the metering member 56 of the cooling circuit 20.
  • the taps 59 are placed at selected points of the cooling circuit to allow a dispersion of nanoparticles as fast and efficient as possible in the coolant.
  • one of the taps 59 is placed immediately downstream of the outlet 12 of the tank.
  • Another stitching 59 may be placed on the cold branch 26, immediately upstream of the inlet 14 of the tank.
  • Another stitch 59 can be placed in the cold branch 26, away from the circulation pump 40 and away from the tank 10.
  • the device 50 is controlled by a computer not shown.
  • the computer To perform the injection of nanoparticles in the cooling circuit, the computer first controls the transfer of nanoparticles from the storage 52 up to the metering member 56, and then isolates the metering member 56 from the storage 52. It then triggers the supply of the metering member 56 to inert gas via the means 57, and the transfer of the nano particles from the metering member 56 into the primary circuit 20 via the lines 58.
  • the inert gas pressure supplied by the means 57 is greater than the coolant pressure in the primary circuit.
  • the first nano particles are spherical (example a) or quasi-spherical (example b). When they are almost spherical, they can have an ovoid shape. The first nanoparticles may still have an irregular shape, as illustrated in Example c of Figure 2.
  • the second nanoparticles have the shape of elongated rods in a longitudinal direction.
  • the rods have a substantially constant cross section perpendicular to the longitudinal direction.
  • the section is round, or rectangular, or any other shape.
  • the rod may have an irregular cross section in a plane perpendicular to its longitudinal direction.
  • the agglomerates each comprise a plurality of first nano-particles 82 and a plurality of second nano-particles 84 integral with each other.
  • the agglomerate has a general zigzag shape. By this is meant that the nano particles are arranged so as to constitute several branches oriented in respective directions different from each other.
  • the branches are connected to each other.
  • Each branch consists of first nanoparticles and / or second nanoparticles.
  • the branches are distinct from each other.
  • the different branches are referenced 86 in FIG.
  • Figures 5 to 7 illustrate different steps of a first method adapted to produce agglomerates from the first and second nanoparticles.
  • the rods 88 of polyvinyl alcohol (PVA) are mixed with the first and second nano particles 82 and 84.
  • the mixture is quenched at a temperature of at least about 180 ° C.
  • a metered amount of water is added to the mixture, the nanoparticles and the PVA rods are dispersed in water, and this dispersion is brought to the temperature of -180 ° C.
  • the nano particles 82 and 84 are then compressed at the interface of the ice crystals 90.
  • the PVA 88 sticks act as a plasticizer.
  • the agglomerates of nanoparticles are formed during the quenching step, due to the compression between the ice crystals.
  • the water is then removed by lyophilization, this step being carried out under cold conditions, at a temperature below 0 ° C.
  • the nanoparticles are dispersed in water. Most of the PVA is separated from the nanoparticles either at the vacuum lyophilization stage or at the final dispersion stage.
  • a second method will now be described. It is particularly suitable for producing agglomerates whose first and second particles are both ZnO.
  • the second method comprises the following steps.
  • Two colloidal sols are prepared, the colloidal sol of ZnO marketed by Nyacol under the reference Nyacol DP5370 and that marketed by Evonik under the reference: VP DISP ZnO 20 DW. Both soils are 35% by mass and contain crystallized nanoparticles. The major difference between them is the shape and size of the nanoparticles: spherical from 30 to 50 nm for Nyacol, and in the form of rods and elongated platelets for Evonik (diameter less than 50 nm, 500 to 750 nm in length).
  • Both soils are sold in stabilized form and must be washed to remove organic products and stabilizing salts (dialysis 5 days on a dialysis membrane of 14000 MWCO cellulose against 90 liters of water Dl).
  • the efficiency of the dialysis is measured by the measurements of the conductivity of the buffer water and the final ZnO titre is measured gravimetrically after heating at 1000 ° C. After washing, the ZnO mass titers are respectively 17%. for Nyacol and 14.5% for Evonik.
  • PVA (Fluka: 4-88) is added to 25 g of DI water. The mixture is stirred at room temperature until complete dissolution of the PVA.
  • the PVA solution is added at room temperature to a mixture of 22.2 g of the aqueous dialyzed ZnO Nyacol sol prepared in the preceding step (17% by mass ZnO) and 17.35 g of the aqueous sol of dialyzed ZnO Evonik prepared in the previous step (14.5% by weight in ZnO).
  • the reaction medium is milky white, very homogeneous without formation of precipitate.
  • the reaction medium is then added dropwise in liquid nitrogen (DEWAR 5 I), the diameter of the drops is about 5 mm.
  • the agglomerates obtained after quenching in liquid nitrogen are then filtered on a plastic Buchner. They are weighed and freeze-dried for 48 hours. Lyophilization usually lasts 48 hours. After 36 hours, the lyophilization is stopped and the agglomerates are weighed. They are then left to freeze dry for 12 hours, then they are reweighed. We consider that lyophilization is complete if the mass variation between 36 hours and 48 hours does not exceed 0.5 g per 100 g of material involved. The agglomerates are then conditioned under argon and stored at room temperature.
  • Second example agglomerates having 80% ZnO Nyacol + 20% ZnO Evonik, by mass.
  • PVA (Fluka: 4-88) is added to 25 g of DI water. The mixture is stirred at room temperature until complete dissolution of the PVA.
  • the PVA solution is added at ambient temperature to a mixture of 29.6 g of the aqueous dialyzed ZnO Nyacol sol prepared in the preceding step (17% by mass ZnO) and 8.67 g of the aqueous sol of dialyzed ZnO Evonik prepared in the previous step (14.5% by weight in ZnO).
  • the reaction medium is milky white, very homogeneous without formation of above.
  • the reaction medium is then added dropwise in liquid nitrogen (DEWAR 5 I), the diameter of the drops is about 5 mm.
  • the agglomerates obtained after quenching in liquid nitrogen are then filtered on a plastic Buchner. They are weighed and freeze-dried for 48 hours. Lyophilization usually lasts 48 hours. After 36 hours, the lyophilization is stopped and the agglomerates are weighed. They are then left to freeze dry for 12 hours, then they are reweighed. We consider that lyophilization is complete if the mass variation between 36 hours and 48 hours does not exceed 0.5 g per 100 g of material involved. The agglomerates are then conditioned under argon and stored at room temperature.
  • PVA (Fluka: 4-88) is added to 25 g of DI water. The mixture is stirred at room temperature until complete dissolution of the PVA.
  • the PVA solution is added at room temperature to a mixture of 33.3 g of the aqueous dialyzed ZnO Nyacol sol prepared in the preceding step (17% by mass ZnO) and 4.34 g of the aqueous sol of dialyzed ZnO Evonik prepared in the previous step (14.5% by weight in ZnO).
  • the reaction medium is milky white, very homogeneous, without formation of precipitate.
  • the reaction medium is then added dropwise in liquid nitrogen (DEWAR 5 I), the diameter of the drops is about 5 mm.
  • the agglomerates obtained after quenching in liquid nitrogen are then filtered on a plastic Buchner. They are weighed and freeze-dried for 48 hours. Lyophilization usually lasts 48 hours. After 36 hours, the lyophilization is stopped and the agglomerates are weighed. They are then left to freeze dry for 12 hours, then they are reweighed. We consider that the lyophilization is complete if the mass variation between 36 hours and 48 hours does not exceed 0.5 g per 100 g of material involved. The agglomerates are then conditioned under argon and stored at room temperature.

Abstract

The nuclear reactor comprises: - a core having nuclear fuel assemblies; - a core cooling circuit in which a coolant circulates; and - a device designed to inject nanoparticles into the coolant. The nanoparticles comprise first nanoparticles (82) of a first type having a first form factor lower than two and second nanoparticles (84) of a second type different from the first type and having a second form factor greater than two, the nanoparticles containing between 10 wt% and 90 wt% of the first nanoparticles (82) and between 90 wt% and 10 wt% of the second nanoparticles (84).

Description

Réacteur nucléaire avec dispositif d'injection de nano particules en cas d'accident Nuclear reactor with nano particle injection device in case of accident
La présente invention concerne en général les réacteurs nucléaires, notamment la dissipation de la chaleur dans de tels réacteurs lors d'un accident du type LOCA (loss of coolant accident). The present invention generally relates to nuclear reactors, in particular the dissipation of heat in such reactors during an accident of the LOCA type (loss of coolant accident).
Plus précisément, l'invention concerne un réacteur nucléaire du type comprenant : More specifically, the invention relates to a nuclear reactor of the type comprising:
- un cœur ayant des assemblages de combustible nucléaire ; a core having nuclear fuel assemblies;
- un circuit de refroidissement du cœur dans lequel circule un fluide de refroidissement ;  - A cooling circuit of the core in which circulates a cooling fluid;
- un dispositif prévu pour l'injection de nano particules dans le fluide de refroidissement.  - A device for injecting nano particles into the cooling fluid.
Un tel réacteur nucléaire est décrit dans US 2008 /0212733. Un accident de type LOCA dans un réacteur nucléaire correspond typiquement à une fuite se produisant dans le circuit de refroidissement du cœur, de telle sorte qu'une partie du fluide de refroidissement primaire s'écoule hors du circuit de refroidissement et est collecté en bas de la cavité du réacteur. De ce fait, les assemblages de combustible nucléaire ne sont plus refroidis de manière adéquate, et la température dans le cœur du réacteur augmente. Cette augmentation de température peut causer la fusion du cœur. Dans les réacteurs de type PWR et BWR, un accident du type LOCA correspond par exemple à la rupture de la ligne vapeur principale raccordant la cuve du réacteur au générateur de vapeur ou à la turbine, respectivement.  Such a nuclear reactor is described in US 2008/0212733. A LOCA-type accident in a nuclear reactor typically corresponds to a leak occurring in the core cooling circuit, such that a portion of the primary coolant flows out of the cooling circuit and is collected at the bottom of the reactor. the reactor cavity. As a result, the nuclear fuel assemblies are no longer adequately cooled, and the temperature in the reactor core increases. This increase in temperature can cause the heart to melt. In type PWR and BWR reactors, a LOCA type of accident corresponds, for example, to the rupture of the main steam line connecting the reactor vessel to the steam generator or the turbine, respectively.
Le document américain ci-dessus prévoit l'injection de nano particules dans le fluide de refroidissement primaire en cas de LOCA, en vue d'augmenter les échanges thermiques dans le circuit de refroidissement. Cette injection est réalisée dès que la perte de liquide de refroidissement est détectée.  The above US document provides for the injection of nanoparticles into the primary coolant in the case of LOCA, with a view to increasing the heat exchange in the cooling circuit. This injection is performed as soon as the loss of coolant is detected.
Pour augmenter de manière efficace les échanges thermiques dans le circuit de refroidissement du cœur, les nano particules doivent se disperser dans le liquide de refroidissement, et rester en suspension, sans sédimenter.  To effectively increase heat exchange in the core cooling circuit, the nanoparticles must disperse in the coolant and remain in suspension without sedimentation.
Dans ce contexte, l'invention vise à proposer un réacteur nucléaire dans lequel l'injection des nano particules permet d'augmenter les échanges thermiques dans le circuit de refroidissement du cœur de manière efficace et durable, en cas d'accident de type LOCA.  In this context, the invention aims to propose a nuclear reactor in which the injection of the nanoparticles makes it possible to increase the heat exchange in the cooling circuit of the core in an efficient and sustainable manner, in the event of a LOCA-type accident.
A cette fin, l'invention porte sur un réacteur nucléaire du type précité, caractérisé en ce que les nano particules comprennent des premières nano particules d'un premier type ayant un premier facteur de forme inférieur à 2, et des secondes nano particules d'un second type différent du premier type ayant un second facteur de forme supérieur à 2, les nano particules comprenant entre 10% et 90 % en poids des premières nano particules et entre 90% et 10% en poids des secondes nano particules . To this end, the invention relates to a nuclear reactor of the aforementioned type, characterized in that the nanoparticles comprise first nano particles of a first type having a first form factor of less than 2, and second nano particles of a second type different from the first type having a second form factor greater than 2, the nano particles comprising between 10% and 90% by weight of the first nanoparticles and between 90% and 10% by weight of the second nanoparticles.
Les premières nano particules, ayant un facteur de forme plus faible, résistent mieux à des chocs thermiques et sédimentent moins, du fait qu'elles ont une plus forte charge de surface uniformément répartie. Les secondes nano particules, ayant un facteur de forme plus élevé, ont une plus forte conductivité thermique en solution mais sédimentent plus rapidement. De manière surprenante, l'utilisation en mélange de nano particules des deux types permet de bénéficier des avantages des deux types de nano particules. Le fluide de refroidissement contenant le mélange des premières et secondes nano particules présente une conductivité thermique excellente. Les nano particules ne sédimentent pratiquement pas, et les turbulences résultant de la circulation du fluide de refroidissement suffisent à les maintenir en suspension.  The first nanoparticles, having a lower form factor, are more resistant to thermal shocks and sediment less, because they have a higher uniformly distributed surface charge. The second nanoparticles, having a higher form factor, have a higher thermal conductivity in solution but sediment more quickly. Surprisingly, the mixed use of nanoparticles of both types makes it possible to benefit from the advantages of the two types of nanoparticles. The coolant containing the mixture of the first and second nanoparticles has excellent thermal conductivity. The nanoparticles hardly sediment, and the turbulence resulting from the circulation of the cooling fluid is enough to keep them in suspension.
Le réacteur nucléaire est un réacteur de type PWR, ou un réacteur de type BWR, ou tout autre type de réacteur dans lequel le cœur est refroidi par circulation d'un liquide caloporteur. Ce fluide de refroidissement est typiquement de l'eau, mais pourrait être un autre liquide caloporteur.  The nuclear reactor is a PWR type reactor, or a BWR type reactor, or any other type of reactor in which the core is cooled by circulation of a heat transfer liquid. This cooling fluid is typically water, but could be another coolant.
Les nano particules sont typiquement des nano poudres d'oxydes métalliques ou de diamant.  The nanoparticles are typically nano powders of metal oxides or diamonds.
De telles nano particules sont par exemple décrites dans l'article «Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux» de Kim et al, publié dans International Journal of Heat and Mass Transfer, 50 (2007) 40105- 401 16 ; ou encore dans l'article « A feasabililty assessment of the use of nanofluids to enhance the in-vessel rétention capability in light water reactors », de Buongiorno et al, publié dans Nuclear Engineering and Design 239 (2009) 941 -948 ou encore dans l'article "Effects of nano particules déposition on surface wettability influencing boiling heat transfer in nanofluids " de Kim et al publié dans Applied Physics Letters 89, 153107 (2006).  Such nano particles are for example described in the article "Surface wettability change during pool boiling of nanofluids and its effect on critical heat flow" by Kim et al, published in International Journal of Heat and Mass Transfer, 50 (2007) 40105- 401 16; or else in the article "A feasabililty assessment of the use of nanofluids to enhance the in-vessel retention capability in light water reactors", by Buongiorno et al, published in Nuclear Engineering and Design 239 (2009) 941 -948 or in "Effects of nano particles deposition on surface wettability influencing boiling heat transfer in nanofluids" by Kim et al published in Applied Physics Letters 89, 153107 (2006).
Les premières nano particules sont en un matériau identique au matériau constituant les secondes nano particules. En variante, les premières nano particules et les secondes nano particules sont dans des matériaux respectifs différents l'un de l'autre.  The first nano particles are in a material identical to the material constituting the second nano particles. Alternatively, the first nanoparticles and the second nano particles are in respective materials different from each other.
De préférence, les premières nano particules sont en un oxyde minéral, typiquement choisi parmi Al203, ZnO, Ce02, ou Fe203. Les secondes nano particules sont également en un oxyde minéral, typiquement choisi parmi Al203, ZnO, Ce02 ou Fe203. Preferably, the first nanoparticles are in a mineral oxide, typically selected from Al 2 O 3 , ZnO, CeO 2 , or Fe 2 O 3 . The second nanoparticles are also in a mineral oxide, typically selected from Al 2 O 3 , ZnO, CeO 2 or Fe 2 O 3 .
Les premières nano particules ont un facteur de forme inférieur à 2, de préférence compris entre 1 et 1 ,5, encore de préférence compris entre 1 et 1 ,2. On entend ici par facteur de forme le rapport entre la longueur de la nano particule et sa largeur. La longueur correspond à la plus grande dimension de la nano particule, cette dimension étant prise selon une direction longitudinale de la particule. La largeur correspond à la plus petite dimension de la particule, prise dans un plan perpendiculaire à la direction longitudinale. The first nanoparticles have a form factor of less than 2, preferably between 1 and 1.5, more preferably between 1 and 1.2. By form factor is meant here the ratio between the length of the nanoparticle and its width. The length corresponds to the largest dimension of the nanoparticle, this dimension being taken along a longitudinal direction of the particle. The width corresponds to the smallest dimension of the particle, taken in a plane perpendicular to the longitudinal direction.
Ainsi, pour une sphère, le facteur de forme est rigoureusement égal à 1 . De préférence, les premières nano particules sont sphériques ou pseudo sphériques.  Thus, for a sphere, the form factor is rigorously equal to 1. Preferably, the first nanoparticles are spherical or pseudospherical.
Typiquement, au moins 50% des premières nano particules ont un facteur de forme compris entre 1 et 1 ,5, de préférence au moins 75% des premières nano particules, et encore de préférence au moins 90% des premières nano particules.  Typically, at least 50% of the first nanoparticles have a form factor of between 1 and 1.5, preferably at least 75% of the first nanoparticles, and even more preferably at least 90% of the first nanoparticles.
Les secondes nano particules ont un second facteur de forme supérieur à 2. Le facteur de forme est défini comme précédemment.  The second nanoparticles have a second form factor greater than 2. The form factor is defined as before.
De préférence, les secondes nano particules ont un facteur de forme compris entre 2 et 5, et encore de préférence compris entre 2 et 3. Par exemple, les secondes nano particules se présentent sous la forme de bâtonnet, chaque bâtonnet ayant une forme allongée suivant une direction longitudinale.  Preferably, the second nanoparticles have a form factor of between 2 and 5, and more preferably of between 2 and 3. For example, the second nanoparticles are in the form of rods, each rod having an elongated shape according to a longitudinal direction.
Typiquement, au moins la moitié des secondes nano particules ont un facteur de forme compris entre 2 et 5, de préférence au moins 75% des secondes nano particules et encore de préférence au moins 90% des secondes nano particules.  Typically, at least half of the second nanoparticles have a form factor of between 2 and 5, preferably at least 75% of the second nanoparticles and more preferably at least 90% of the second nanoparticles.
Les nano particules prévues pour être injectées dans le fluide de refroidissement comprennent entre 10 et 90 % en poids de premières nano particules, de préférence entre 30 et 70% en poids des premières nano particules, et encore de préférence entre 40 et 60% en poids de premières nano particules. A l'inverse, les nano particules comprennent entre 90% et 10% en poids de secondes nano particules, de préférence entre 70% et 30% en poids de secondes nano particules, et encore de préférence entre 60% et 40% en poids de secondes nano particules. Par exemple, les nano particules comportent 50% en poids de premières nano particules et 50% en poids de secondes nano particules.  The nanoparticles intended to be injected into the cooling fluid comprise between 10 and 90% by weight of the first nanoparticles, preferably between 30 and 70% by weight of the first nanoparticles, and even more preferably between 40 and 60% by weight. first nano particles. In contrast, the nanoparticles comprise between 90% and 10% by weight of second nanoparticles, preferably between 70% and 30% by weight of second nanoparticles, and even more preferably between 60% and 40% by weight of nanoparticles. second nano particles. For example, the nanoparticles comprise 50% by weight of first nanoparticles and 50% by weight of second nanoparticles.
Typiquement, les nano particules comprennent seulement des premières nano particules et des secondes nano particules, et ne comportent pas de nano particules d'un autre type.  Typically, the nanoparticles comprise only first nanoparticles and second nanoparticles, and do not comprise nanoparticles of another type.
Les nano particules présentent majoritairement des tailles comprises entre 50 nanomètres et 250 nanomètres, avant d'être agglomérées les unes aux autres comme décrit plus loin. De préférence, au moins 75% des nano particules présentent des tailles comprises entre 50 et 250 nanomètres, et encore de préférence 90% des nano particules. De préférence, les nano particules présentent majoritairement des tailles comprises entre 75 et 150 nanomètres, et encore de préférence comprises entre 90 et 1 10 nanomètres. The nanoparticles mainly have sizes of between 50 nanometers and 250 nanometers, before being agglomerated to each other as described below. Preferably, at least 75% of the nanoparticles have sizes of between 50 and 250 nanometers, and even more preferably 90% of the nanoparticles. Preferably, the nanoparticles have predominantly sizes of between 75 and 150 nanometers, and more preferably between 90 and 1 10 nanometers.
On entend ici par taille d'une nano particule la plus grande dimension de ladite nano particule.  Here, the size of a nanoparticle is the largest dimension of said nanoparticle.
Les nano particules, avant injection, se présentent sous la forme d'agglomérats, chaque agglomérat comportant à la fois des premières nano particules et des secondes nano particules. Ainsi, chaque agglomérat est un ensemble comportant une pluralité de premières nano particule et une pluralité de secondes nano particule, solidaires les unes des autres. Chaque agglomérat est donc un ensemble monolithique de petite taille. Après injection des nano particules dans le fluide de refroidissement, les agglomérats se dispersent et forment une suspension. Les agglomérats, au sein du fluide de refroidissement, restent d'une pièce, les nano particules constituant chaque agglomérat restant normalement solidaires les unes des autres. Les agglomérats peuvent se briser en revanche sous l'effet des chocs, après une certaine durée de circulation dans le fluide de refroidissement.  The nanoparticles, before injection, are in the form of agglomerates, each agglomerate comprising both first nanoparticles and second nanoparticles. Thus, each agglomerate is an assembly comprising a plurality of first nanoparticles and a plurality of second nano particles, integral with each other. Each agglomerate is therefore a monolithic set of small size. After injection of the nanoparticles into the cooling fluid, the agglomerates are dispersed and form a suspension. Agglomerates, within the cooling fluid, remain in one piece, the nanoparticles constituting each agglomerate remaining normally integral with each other. The agglomerates can break on the other hand under the effect of shocks, after a certain period of circulation in the cooling fluid.
Les agglomérats présentent majoritairement des tailles comprises entre 150 nanomètres et 400 nanomètres. De préférence, au moins 75% des agglomérats présentent une taille comprise entre 150 et 400 nanomètres, et encore de préférence 90% des agglomérats. De préférence, la majorité des agglomérats présente des tailles comprises entre 200 et 300 nanomètres, et encore de préférence entre 200 et 250 nanomètres.  The agglomerates predominantly have sizes of between 150 nanometers and 400 nanometers. Preferably, at least 75% of the agglomerates have a size of between 150 and 400 nanometers, and even more preferably 90% of the agglomerates. Preferably, the majority of agglomerates have sizes of between 200 and 300 nanometers, and even more preferably between 200 and 250 nanometers.
Les agglomérats présentent une forme générale en zigzag, comme représenté par exemple sur la figure 4 et sur la figure 7. On entend par là que l'agglomérat a une forme générale de ligne brisée. En d'autres termes, l'agglomérat présente une forme générale qui comporte plusieurs tronçons ayant des inclinaisons respectives différentes les unes des autres. Les tronçons sont solidaires les uns des autres.  The agglomerates have a general zigzag shape, as represented for example in FIG. 4 and in FIG. 7. By this is meant that the agglomerate has a general broken line shape. In other words, the agglomerate has a general shape that has several sections with respective inclinations different from each other. The sections are integral with each other.
La forme générale en zigzag, la taille et la constitution des agglomérats sont différents éléments qui contribuent chacun à l'obtention des propriétés recherchées une fois les nano particules dispersées dans le fluide de refroidissement. Les agglomérats sont auto dispersant, c'est à dire se mélangent de manière pratiquement instantanée au liquide de refroidissement, pour former une suspension homogène. Les agglomérats ne sédimentent que lentement. La circulation du fluide de refroidissement dans le circuit de refroidissement, même en cas de LOCA, suffit à maintenir la quasi totalité des agglomérats en suspension. Enfin, quand les agglomérats sont dispersés dans le fluide de refroidissement, la dissipation thermique dans le circuit de refroidissement augmente de manière très significative. On entend par là que la puissance thermique dégagée par les assemblages de combustible nucléaire est mieux transférée au fluide de refroidissement, les assemblages étant ainsi maintenus à une température plus basse. De même, le fluide de refroidissement cède plus facilement son énergie thermique, et est maintenu à une température modérée. La conductivité thermique d'un liquide de refroidissement comportant de l'eau et 30% en masse d'agglomérats est supérieure d'environ 10 à 25% à la conductivité thermique de l'eau pure. The general zigzag shape, the size and the constitution of the agglomerates are different elements which each contribute to obtaining the desired properties once the nanoparticles have been dispersed in the cooling fluid. The agglomerates are self-dispersing, i.e., mix substantially instantaneously with the coolant, to form a homogeneous suspension. Agglomerates sediment only slowly. The circulation of the cooling fluid in the cooling circuit, even in the case of LOCA, is sufficient to maintain almost all the agglomerates in suspension. Finally, when the agglomerates are dispersed in the cooling fluid, the heat dissipation in the cooling circuit increases very significantly. By this is meant that the thermal power released by the nuclear fuel assemblies is better transferred to the cooling fluid, the assemblies thus being maintained at a lower temperature. Likewise, the coolant yields more readily its thermal energy, and is kept at a moderate temperature. The thermal conductivity of a cooling liquid comprising water and 30% by weight of agglomerates is about 10 to 25% higher than the thermal conductivity of pure water.
De préférence, les nano particules sont injectées dans le fluide de refroidissement avec un titre massique compris entre 10 et 50%, de préférence entre 20 et 40%, et valant par exemple 30%.  Preferably, the nanoparticles are injected into the cooling fluid with a mass content of between 10 and 50%, preferably between 20 and 40%, and being for example 30%.
Selon un autre aspect de l'invention, les nano particules avant injection sont stockées sous forme solide. Elles sont également injectées sous forme solide dans le liquide de refroidissement en cas d'accident. Ainsi, le dispositif prévu pour l'injection des nano particules comprend un stockage desdites nano particules sous forme solide, et un organe d'injection des nano particules sous forme solide à partir du stockage directement dans le liquide primaire. L'organe d'injection des nano particules comprend par exemple un organe de dosage de la quantité de nano particules à injecter, et un moyen d'entraînement des nano particules depuis l'organe de dosage jusque dans le circuit de refroidissement. L'entraînement des nano particules se fait par exemple au moyen d'un gaz neutre comprimé.  According to another aspect of the invention, the nanoparticles before injection are stored in solid form. They are also injected in solid form into the coolant in the event of an accident. Thus, the device provided for the injection of the nanoparticles comprises a storage of said nanoparticles in solid form, and an injection member of the nanoparticles in solid form from the storage directly in the primary liquid. The nanoparticle injection member comprises, for example, a device for dosing the quantity of nanoparticles to be injected, and a means for driving the nanoparticles from the dosing member into the cooling circuit. The entrainment of the nanoparticles is done for example by means of a compressed neutral gas.
L'invention a été décrite ci-dessus dans le cadre d'un accident de type LOCA, les nano particules étant dans ce cas injectées dans le fluide circulant directement dans le cœur du réacteur. Toutefois, les nano particules peuvent également être injectées quand d'autres types d'accidents surviennent, qui gênent ou empêchent le refroidissement du cœur du réacteur : rupture d'une tuyauterie du circuit de refroidissement secondaire d'un réacteur type PWR ou autre, raccordant le générateur de vapeur à la turbine ; fuite sur le circuit de refroidissement secondaire ; rupture d'un ou plusieurs tubes de générateur de vapeur ; blocage des barres de contrôle ; etc ... En d'autres termes, l'invention s'applique dans tous les cas où il est nécessaire d'augmenter l'efficacité avec laquelle la puissance thermique dégagée par les assemblages de combustible nucléaire est évacuée hors du cœur.  The invention has been described above in the context of a LOCA-type accident, the nanoparticles being in this case injected into the fluid circulating directly in the reactor core. However, nanoparticles can also be injected when other types of accidents occur, which hinder or prevent the cooling of the reactor core: rupture of a secondary circuit piping of a PWR type reactor or other, connecting the steam generator at the turbine; leak on the secondary cooling circuit; rupture of one or more steam generator tubes; blocking of control rods; etc. In other words, the invention applies in all cases where it is necessary to increase the efficiency with which the thermal power released by the nuclear fuel assemblies is discharged out of the core.
Les nano particules sont de préférence injectées dans le fluide de refroidissement dit primaire, qui circule dans le cœur du réacteur. Il est toutefois possible de prévoir un dispositif adapté pour l'injection dans le circuit de refroidissement primaire, et/ou dans le circuit de refroidissement secondaire, et/ou dans un éventuel circuit de refroidissement tertiaire du réacteur. Les circuits secondaire et tertiaire sont des circuits de refroidissement du cœur, puisqu'ils contribuent à évacuer la chaleur dégagée dans le cœur. The nanoparticles are preferably injected into the so-called primary cooling fluid, which circulates in the reactor core. However, it is possible to provide a suitable device for injection in the primary cooling circuit, and / or in the secondary cooling circuit, and / or in a possible tertiary cooling circuit of the reactor. The secondary and tertiary circuits are circuits of cooling of the heart, since they help to evacuate the heat released in the heart.
D'autres caractéristiques et avantages à l'invention ressortiront de la description détaillée qui en est donnée ci-dessous, à titre indicatif et nullement limitatif, en référence aux figures annexées, parmi lesquelles :  Other features and advantages of the invention will emerge from the detailed description given below, for information only and in no way limitative, with reference to the appended figures, among which:
- la figure 1 est une représentation schématique simplifiée d'un réacteur nucléaire conforme à l'invention ;  FIG. 1 is a simplified schematic representation of a nuclear reactor according to the invention;
- la figure 2 est une représentation schématique de premières nano particules de différents types ;  FIG. 2 is a schematic representation of first nano particles of different types;
- la figure 3 est une représentation schématique simplifiée de secondes nano particules de différents types ;  FIG. 3 is a simplified schematic representation of second nano particles of different types;
- la figure 4 est une représentation schématique simplifiée d'un agglomérat de nano particules ; et  FIG. 4 is a simplified schematic representation of an agglomerate of nanoparticles; and
- les figures 5 à 7 illustrent des étapes successives du procédé de production des agglomérats de nano particules.  FIGS. 5 to 7 illustrate successive steps in the process for producing agglomerates of nanoparticles.
Le réacteur 1 représenté sur la figure 1 est un réacteur de type PWR. Le réacteur 1 comporte une cuve 10, dans laquelle sont placées les assemblages de combustible nucléaire formant le cœur du réacteur, un circuit 20 de refroidissement du cœur du réacteur dans lequel circule un fluide de refroidissement, un générateur de vapeur 30 intercalé dans le circuit de refroidissement 20, une pompe 40 de circulation du liquide de refroidissement intercalée elle aussi dans le circuit de refroidissement, et un dispositif 50 prévu pour l'injection de nano particules dans le fluide de refroidissement.  The reactor 1 shown in FIG. 1 is a PWR type reactor. The reactor 1 comprises a tank 10, in which are placed the nuclear fuel assemblies forming the core of the reactor, a cooling circuit 20 of the reactor core in which circulates a cooling fluid, a steam generator 30 inserted in the reactor circuit. cooling 20, a coolant circulation pump 40 also inserted into the cooling circuit, and a device 50 for injecting nano particles into the cooling fluid.
Le générateur de vapeur 30 comporte un côté primaire dans lequel circule le fluide de refroidissement du cœur, et un côté secondaire dans lequel circule un fluide caloporteur secondaire. Le fluide de refroidissement du cœur cède sa chaleur au fluide secondaire en traversant le générateur de vapeur 30.  The steam generator 30 has a primary side in which circulates the cooling fluid of the core, and a secondary side in which circulates a secondary heat transfer fluid. The core coolant transfers its heat to the secondary fluid through the steam generator 30.
La pompe de circulation 40 est placée en aval du générateur de vapeur 30 suivant le sens de circulation du fluide de refroidissement. Le circuit de refroidissement 20 comporte une branche chaude 22 raccordant une sortie de fluide de refroidissement 12 de la cuve à une entrée de fluide de refroidissement 32 du générateur de vapeur, une branche intermédiaire 24 raccordant une sortie de fluide de refroidissement 34 du générateur de vapeur à une entrée d'aspiration de la pompe primaire 40, et une branche froide 26 raccordant une sortie de refoulement de la pompe primaire 40 à une entrée 14 de liquide primaire de la cuve. Le circuit de refroidissement 20 comporte en outre un ou plusieurs pressuriseurs 70. Le dispositif 50 prévu pour l'injection des nano particules comporte un stockage 52 desdites nano particules sous forme solide, et un organe 54 d'injection des nano particules sous forme solide à partir du stockage 52 directement dans le liquide de refroidissement. Le stockage 52 est de tout type adapté. Il peut comporter un réservoir sous pression d'un gaz inerte dans lequel sont stockées les nano particules, une trémie etc. Les nano particules sont sous la forme d'agglomérats dans le stockage 52. The circulation pump 40 is placed downstream of the steam generator 30 in the direction of circulation of the cooling fluid. The cooling circuit 20 comprises a hot leg 22 connecting a cooling fluid outlet 12 of the tank to a cooling fluid inlet 32 of the steam generator, an intermediate branch 24 connecting a cooling fluid outlet 34 of the steam generator at a suction inlet of the primary pump 40, and a cold branch 26 connecting a discharge outlet of the primary pump 40 to an inlet 14 of the primary liquid of the tank. The cooling circuit 20 further comprises one or more pressurizers 70. The device 50 intended for the injection of the nanoparticles comprises a storage 52 of said nanoparticles in solid form, and a device 54 for injecting the nanoparticles in solid form from the storage 52 directly into the cooling liquid. The storage 52 is of any suitable type. It may comprise a tank under pressure of an inert gas in which the nanoparticles, a hopper, etc. are stored. The nanoparticles are in the form of agglomerates in the storage 52.
L'organe d'injection 54 comporte typiquement un organe de dosage des nano particules à injecter 56, un moyen 57 pour entraîner les nano particules de l'organe de dosage 56 jusque dans le circuit de refroidissement 20 et une ou plusieurs lignes 58 de transfert des nano particules, raccordant l'organe de dosage 56 au circuit de refroidissement 20.  The injection member 54 typically comprises a nano-particle injecting device 56, a means 57 for driving the nanoparticles of the metering member 56 into the cooling circuit 20 and one or more transfer lines 58. nanoparticles, connecting the metering member 56 to the cooling circuit 20.
L'organe de dosage 56 présente une entrée communiquant avec le stockage 52. Un organe d'obturation, intercalé entre le stockage 52 et l'entrée de l'organe de dosage 56, permet sélectivement de mettre en communication ou d'isoler le stockage 52 de l'organe de dosage 56. L'organe de dosage peut être de tous types adaptés. L'organe de dosage 56 est par exemple un réceptacle monté sur une cellule de pesée adaptée pour mesurer la masse de nano particules chargées dans le réceptacle.  The metering member 56 has an inlet communicating with the storage 52. A closure member, interposed between the storage 52 and the inlet of the metering member 56, selectively allows communication or isolation of the storage 52 of the metering member 56. The metering member can be of all types adapted. The metering member 56 is for example a receptacle mounted on a weighing cell adapted to measure the mass of charged nanoparticles in the receptacle.
Le moyen 57 pour entraîner les nano particules depuis l'organe de dosage 56 jusque dans le circuit primaire comporte par exemple une alimentation en un gaz inerte à haute pression, raccordée à une entrée de gaz de l'organe de dosage 56. Une vanne, ou tout autre moyen adapté, permet de sélectivement déclencher ou d'interrompre l'alimentation de gaz à haute pression dans l'organe de dosage 56. Les lignes de transfert 58 raccordent une sortie de l'organe de dosage 56 à un ou plusieurs piquages 59 du circuit de refroidissement 20. Des vannes placées sur les lignes 58 permettent de sélectivement mettre en communication ou isoler l'organe de dosage 56 du circuit de refroidissement 20.  The means 57 for driving the nanoparticles from the metering member 56 into the primary circuit comprises, for example, a supply of a high-pressure inert gas connected to a gas inlet of the metering member 56. A valve, or any other suitable means, selectively trigger or interrupt the supply of high pressure gas in the metering member 56. The transfer lines 58 connect an output of the metering member 56 to one or more taps 59 of the cooling circuit 20. Valves placed on the lines 58 make it possible to selectively connect or isolate the metering member 56 of the cooling circuit 20.
Les piquages 59 sont placés en des points du circuit de refroidissement choisis pour permettre une dispersion des nano particules aussi rapide et efficace que possible dans le fluide de refroidissement. Par exemple, un des piquages 59 est placé immédiatement en aval de la sortie 12 de la cuve. Un autre piquage 59 peut être placé sur la branche froide 26, immédiatement en amont de l'entrée 14 de la cuve. Un autre piquage 59 peut être placé dans la branche froide 26, à distance de la pompe de circulation 40 et à distance de la cuve 10.  The taps 59 are placed at selected points of the cooling circuit to allow a dispersion of nanoparticles as fast and efficient as possible in the coolant. For example, one of the taps 59 is placed immediately downstream of the outlet 12 of the tank. Another stitching 59 may be placed on the cold branch 26, immediately upstream of the inlet 14 of the tank. Another stitch 59 can be placed in the cold branch 26, away from the circulation pump 40 and away from the tank 10.
Le dispositif 50 est piloté par un calculateur non représenté.  The device 50 is controlled by a computer not shown.
Pour réaliser l'injection de nano particules dans le circuit de refroidissement, le calculateur commande d'abord le transfert de nano particules depuis le stockage 52 jusque dans l'organe de dosage 56, puis isole l'organe de dosage 56 du stockage 52. Il déclenche ensuite l'alimentation de l'organe de dosage 56 en gaz inerte par l'intermédiaire du moyen 57, et le transfert des nano particules depuis l'organe de dosage 56 jusque dans le circuit primaire 20 via les lignes 58. La pression de gaz inerte fournie par le moyen 57 est supérieure à la pression de liquide de refroidissement dans le circuit primaire. To perform the injection of nanoparticles in the cooling circuit, the computer first controls the transfer of nanoparticles from the storage 52 up to the metering member 56, and then isolates the metering member 56 from the storage 52. It then triggers the supply of the metering member 56 to inert gas via the means 57, and the transfer of the nano particles from the metering member 56 into the primary circuit 20 via the lines 58. The inert gas pressure supplied by the means 57 is greater than the coolant pressure in the primary circuit.
Comme illustré sur la figure 2, les premières nano particules sont sphériques (exemple a) ou quasi sphériques (exemple b). Quand elles sont quasi sphériques, elles peuvent avoir une forme ovoïde. Les premières nano particules peuvent encore avoir une forme irrégulière, comme illustré sur l'exemple c de la figure 2.  As illustrated in FIG. 2, the first nano particles are spherical (example a) or quasi-spherical (example b). When they are almost spherical, they can have an ovoid shape. The first nanoparticles may still have an irregular shape, as illustrated in Example c of Figure 2.
Comme visible sur la figure 3, les secondes nano particules présentent la forme de bâtonnets allongés suivant une direction longitudinale. Sur l'exemple a, les bâtonnets présentent une section transversale sensiblement constante perpendiculairement à la direction longitudinale. Par exemple, la section est ronde, ou rectangulaire, ou de toute autre forme. Sur l'exemple b de la figure 3, le bâtonnet peut avoir une section transversale irrégulière dans un plan perpendiculaire à sa direction longitudinale.  As can be seen in FIG. 3, the second nanoparticles have the shape of elongated rods in a longitudinal direction. In example a, the rods have a substantially constant cross section perpendicular to the longitudinal direction. For example, the section is round, or rectangular, or any other shape. In example b of Figure 3, the rod may have an irregular cross section in a plane perpendicular to its longitudinal direction.
Comme représenté schématiquement sur la figure 4, les agglomérats comportent chacun une pluralité de premières nano particules 82 et une pluralité de secondes nano particules 84 solidaires les unes des autres. L'agglomérat présente une forme générale en zigzag. On entend par là que les nano particules sont disposées de manière à constituer plusieurs branches orientées suivant des directions respectives différentes les unes des autres. Les branches sont raccordées les unes aux autres. Chaque branche est constituée de premières nano particules et /ou de secondes nano particules. Les branches sont distinctes les unes des autres.  As shown diagrammatically in FIG. 4, the agglomerates each comprise a plurality of first nano-particles 82 and a plurality of second nano-particles 84 integral with each other. The agglomerate has a general zigzag shape. By this is meant that the nano particles are arranged so as to constitute several branches oriented in respective directions different from each other. The branches are connected to each other. Each branch consists of first nanoparticles and / or second nanoparticles. The branches are distinct from each other.
Les différentes branches sont référencées 86 sur la figure 4.  The different branches are referenced 86 in FIG.
Les figures 5 à 7 illustrent différentes étapes d'un premier procédé adapté pour produire des agglomérats à partir des premières et secondes nano particules. A la première étape, représentée sur la figure 5, on mélange les bâtonnets 88 d'alcool polyvinylique (PVA) aux premières et secondes nano particules 82 et 84.  Figures 5 to 7 illustrate different steps of a first method adapted to produce agglomerates from the first and second nanoparticles. In the first step, shown in FIG. 5, the rods 88 of polyvinyl alcohol (PVA) are mixed with the first and second nano particles 82 and 84.
A la seconde étape, représentée sur la figure 6, on effectue une trempe du mélange à une température de moins 180 0 C environ. Pour ce faire, on ajoute une quantité dosée d'eau au mélange, on disperse les nano particules et les bâtonnets de PVA dans l'eau, et on porte cette dispersion à la température de -180° C. Les nano particules 82 et 84 sont alors comprimées à l'interface des cristaux de glace 90. Les bâtonnets de PVA 88 jouent le rôle de plastifiant. Les agglomérats de nano particules sont formés lors de l'étape de trempe, du fait de la compression entre les cristaux de glace. L'eau est ensuite évacuée par lyophilisation, cette étape étant effectuée à froid, à une température inférieure à 0° C. Enfin, après la fin de l'étape de lyophilisation, les nano particules sont dispersées dans de l'eau. La plus grande partie du PVA est séparée des nano particules soit à l'étape de lyophilisation sous vide, soit lors de l'étape finale de dispersion. In the second step, shown in FIG. 6, the mixture is quenched at a temperature of at least about 180 ° C. To do this, a metered amount of water is added to the mixture, the nanoparticles and the PVA rods are dispersed in water, and this dispersion is brought to the temperature of -180 ° C. The nano particles 82 and 84 are then compressed at the interface of the ice crystals 90. The PVA 88 sticks act as a plasticizer. The agglomerates of nanoparticles are formed during the quenching step, due to the compression between the ice crystals. The water is then removed by lyophilization, this step being carried out under cold conditions, at a temperature below 0 ° C. Finally, after the end of the lyophilization step, the nanoparticles are dispersed in water. Most of the PVA is separated from the nanoparticles either at the vacuum lyophilization stage or at the final dispersion stage.
Un second procédé va maintenant être décrit. Il est adapté notamment à la production d'agglomérats dont les premières et secondes particules sont les unes et les autres en ZnO.  A second method will now be described. It is particularly suitable for producing agglomerates whose first and second particles are both ZnO.
Le second procédé comprend les étapes suivantes.  The second method comprises the following steps.
1 °) Préparation de sols colloïdaux de nano-particules d'oxydes de zinc  1 °) Preparation of colloidal sols of nano-particles of zinc oxides
Deux sols colloïdaux sont préparés, le sol colloïdal de ZnO commercialisé par Nyacol sous la référence Nyacol DP5370 et celui commercialisé par Evonik sous la référence : VP DISP ZnO 20 DW. Les deux sols sont à 35% massique et contiennent des nanoparticules cristallisées. La différence majeure entre eux est la forme et la dimension des nanoparticules : sphériques de 30 à 50 nm pour Nyacol, et sous forme de bâtonnets et de plaquettes allongées pour Evonik (diamètre inférieure à 50 nm, 500 à 750 nm de longueur). Les deux sols sont vendus sous forme stabilisés et doivent être lavés pour retirer les produits organiques et les sels de stabilisation (dialyse 5 jours sur une membrane de dialyse de 14000 MWCO en cellulose contre 90 litres d'eau Dl). L'efficacité de la dialyse est mesurée par les mesures de la conductivité de l'eau du tampon et le titre final en ZnO est mesuré par gravimétrie après chauffage à 1000° C. Après lavage, les titres massiques en ZnO sont respectivement de 17% pour le Nyacol et de 14,5% pour l'Evonik.  Two colloidal sols are prepared, the colloidal sol of ZnO marketed by Nyacol under the reference Nyacol DP5370 and that marketed by Evonik under the reference: VP DISP ZnO 20 DW. Both soils are 35% by mass and contain crystallized nanoparticles. The major difference between them is the shape and size of the nanoparticles: spherical from 30 to 50 nm for Nyacol, and in the form of rods and elongated platelets for Evonik (diameter less than 50 nm, 500 to 750 nm in length). Both soils are sold in stabilized form and must be washed to remove organic products and stabilizing salts (dialysis 5 days on a dialysis membrane of 14000 MWCO cellulose against 90 liters of water Dl). The efficiency of the dialysis is measured by the measurements of the conductivity of the buffer water and the final ZnO titre is measured gravimetrically after heating at 1000 ° C. After washing, the ZnO mass titers are respectively 17%. for Nyacol and 14.5% for Evonik.
2°) Préparation d'agglomérats  2 °) Preparation of agglomerates
Premier exemple : agglomérats ayant 60% ZnO Nyacol + 40% ZnO Evonik, en masse.  First example: agglomerates having 60% ZnO Nyacol + 40% ZnO Evonik, by mass.
On ajoute 0,92 g de PVA (Fluka : 4-88) à 25 g d'eau Dl. Le mélange est agité à température ambiante jusqu'à dissolution totale du PVA. La solution de PVA est ajoutée à température ambiante à un mélange de 22,2 g du sol aqueux de ZnO Nyacol dialysé préparé à l'étape précédente (17% massique en ZnO) et 17,35 g du sol aqueux de ZnO Evonik dialysé préparé à l'étape précédente (14,5% massique en ZnO). Le milieu réactionnel est blanc laiteux, très homogène sans formation de précipité.  0.92 g of PVA (Fluka: 4-88) is added to 25 g of DI water. The mixture is stirred at room temperature until complete dissolution of the PVA. The PVA solution is added at room temperature to a mixture of 22.2 g of the aqueous dialyzed ZnO Nyacol sol prepared in the preceding step (17% by mass ZnO) and 17.35 g of the aqueous sol of dialyzed ZnO Evonik prepared in the previous step (14.5% by weight in ZnO). The reaction medium is milky white, very homogeneous without formation of precipitate.
Le milieu réactionnel est alors ajouté goutte-à-goutte dans de l'azote liquide (DEWAR 5 I), le diamètre des gouttes est d'environ 5 mm. Les agglomérats obtenus après trempe dans l'azote liquide sont alors filtrés sur un Buchner en plastique. Ils sont pesés et mis à lyophiliser pendant 48 heures. La lyophilisation dure en général 48 heures. Après 36 heures, on arrête la lyophilisation et on pèse les agglomérats. Ils sont remis alors à lyophiliser pendant 12 heures, puis ils sont repesés. Nous considérons que la lyophilisation est terminée si la variation de masse entre 36 heures et 48 heures n'excède pas 0,5 g pour 100 g de matière engagée. Les agglomérats sont alors conditionnés sous argon et conservés à température ambiante. The reaction medium is then added dropwise in liquid nitrogen (DEWAR 5 I), the diameter of the drops is about 5 mm. The agglomerates obtained after quenching in liquid nitrogen are then filtered on a plastic Buchner. They are weighed and freeze-dried for 48 hours. Lyophilization usually lasts 48 hours. After 36 hours, the lyophilization is stopped and the agglomerates are weighed. They are then left to freeze dry for 12 hours, then they are reweighed. We consider that lyophilization is complete if the mass variation between 36 hours and 48 hours does not exceed 0.5 g per 100 g of material involved. The agglomerates are then conditioned under argon and stored at room temperature.
Second exemple : agglomérats ayant 80% ZnO Nyacol + 20% ZnO Evonik, en masse.  Second example: agglomerates having 80% ZnO Nyacol + 20% ZnO Evonik, by mass.
On ajoute 0,92 g de PVA (Fluka : 4-88) à 25g d'eau Dl. Le mélange est agité à température ambiante jusqu'à dissolution totale du PVA. La solution de PVA est ajoutée à température ambiante à un mélange de 29,6 g du sol aqueux de ZnO Nyacol dialysé préparé à l'étape précédente (17% massique en ZnO) et 8,67 g du sol aqueux de ZnO Evonik dialysé préparé à l'étape précédente (14,5% massique en ZnO). Le milieu réactionnel est blanc laiteux, très homogène sans formation de précité.  0.92 g of PVA (Fluka: 4-88) is added to 25 g of DI water. The mixture is stirred at room temperature until complete dissolution of the PVA. The PVA solution is added at ambient temperature to a mixture of 29.6 g of the aqueous dialyzed ZnO Nyacol sol prepared in the preceding step (17% by mass ZnO) and 8.67 g of the aqueous sol of dialyzed ZnO Evonik prepared in the previous step (14.5% by weight in ZnO). The reaction medium is milky white, very homogeneous without formation of above.
Le milieu réactionnel est alors ajouté goutte-à-goutte dans de l'azote liquide (DEWAR 5 I), le diamètre des gouttes est d'environ 5 mm. Les agglomérats obtenus après trempe dans l'azote liquide sont alors filtrés sur un Buchner en plastique. Ils sont pesés et mis à lyophiliser pendant 48 heures. La lyophilisation dure en général 48 heures. Après 36 heures, on arrête la lyophilisation et on pèse les agglomérats. Ils sont remis alors à lyophiliser pendant 12 heures, puis ils sont repesés. Nous considérons que la lyophilisation est terminée si la variation de masse entre 36 heures et 48 heures n'excède pas 0,5 g pour 100 g de matière engagée. Les agglomérats sont alors conditionnés sous argon et conservés à température ambiante.  The reaction medium is then added dropwise in liquid nitrogen (DEWAR 5 I), the diameter of the drops is about 5 mm. The agglomerates obtained after quenching in liquid nitrogen are then filtered on a plastic Buchner. They are weighed and freeze-dried for 48 hours. Lyophilization usually lasts 48 hours. After 36 hours, the lyophilization is stopped and the agglomerates are weighed. They are then left to freeze dry for 12 hours, then they are reweighed. We consider that lyophilization is complete if the mass variation between 36 hours and 48 hours does not exceed 0.5 g per 100 g of material involved. The agglomerates are then conditioned under argon and stored at room temperature.
Troisième exemple : agglomérats ayant 90% ZnO Nyacol + 10% ZnO Evonik, en masse.  Third example: agglomerates having 90% ZnO Nyacol + 10% ZnO Evonik, by mass.
On ajoute 0,92 g de PVA (Fluka : 4-88) à 25 g d'eau Dl. Le mélange est agité à température ambiante jusqu'à dissolution totale du PVA. La solution de PVA est ajoutée à température ambiante à un mélange de 33,3 g du sol aqueux de ZnO Nyacol dialysé préparé à l'étape précédente (17% massique en ZnO) et 4,34 g du sol aqueux de ZnO Evonik dialysé préparé à l'étape précédente (14,5% massique en ZnO). Le milieu réactionnel est blanc laiteux, très homogène, sans formation de précipité. Le milieu réactionnel est alors ajouté goutte-à-goutte dans de l'azote liquide (DEWAR 5 I), le diamètre des gouttes est d'environ 5 mm. Les agglomérats obtenus après trempe dans l'azote liquide sont alors filtrés sur un Buchner en plastique. Ils sont pesés et mis à lyophiliser pendant 48 heures. La lyophilisation dure en général 48 heures. Après 36 heures, on arrête la lyophilisation et on pèse les agglomérats. Ils sont remis alors à lyophiliser pendant 12 heures, puis ils sont repesés. Nous considérons que la lyophilisation est terminée si la variation de masse entre 36 heures et 48 heures n'excède pas 0,5 g pour 100 g de matière engagée. Les agglomérats sont alors conditionnés sous argon et conservés à température ambiante. 0.92 g of PVA (Fluka: 4-88) is added to 25 g of DI water. The mixture is stirred at room temperature until complete dissolution of the PVA. The PVA solution is added at room temperature to a mixture of 33.3 g of the aqueous dialyzed ZnO Nyacol sol prepared in the preceding step (17% by mass ZnO) and 4.34 g of the aqueous sol of dialyzed ZnO Evonik prepared in the previous step (14.5% by weight in ZnO). The reaction medium is milky white, very homogeneous, without formation of precipitate. The reaction medium is then added dropwise in liquid nitrogen (DEWAR 5 I), the diameter of the drops is about 5 mm. The agglomerates obtained after quenching in liquid nitrogen are then filtered on a plastic Buchner. They are weighed and freeze-dried for 48 hours. Lyophilization usually lasts 48 hours. After 36 hours, the lyophilization is stopped and the agglomerates are weighed. They are then left to freeze dry for 12 hours, then they are reweighed. We consider that the lyophilization is complete if the mass variation between 36 hours and 48 hours does not exceed 0.5 g per 100 g of material involved. The agglomerates are then conditioned under argon and stored at room temperature.

Claims

REVENDICATIONS
1 . Réacteur nucléaire comprenant :  1. Nuclear reactor comprising:
- un cœur ayant des assemblages de combustible nucléaire ;  a core having nuclear fuel assemblies;
- un circuit (20) de refroidissement du cœur dans lequel circule un fluide de refroidissement;  a circuit (20) for cooling the core in which a cooling fluid circulates;
- un dispositif (50) prévu pour l'injection de nanoparticules dans le fluide de refroidissement;  a device (50) provided for the injection of nanoparticles into the cooling fluid;
caractérisé en ce que les nanoparticules comprennent des premières nanoparticules (82) d'un premier type ayant un premier facteur de forme inférieur à deux, et des secondes nanoparticules (84) d'un second type différent du premier type ayant un second facteur de forme supérieur à deux, les nanoparticules comprenant entre 10% et 90% en poids des premières nanoparticules (82) et entre 90% et 10% en poids des secondes nanoparticules (84).  characterized in that the nanoparticles comprise first nanoparticles (82) of a first type having a first form factor of less than two, and second nanoparticles (84) of a second type different from the first type having a second form factor greater than two, the nanoparticles comprising between 10% and 90% by weight of the first nanoparticles (82) and between 90% and 10% by weight of the second nanoparticles (84).
2. Réacteur selon la revendication 1 , caractérisé en ce que le dispositif (50) prévu pour l'injection de nanoparticules comprend un stockage (52) desdites nanoparticules sous forme solide, et un organe (54) d'injection des nanoparticules sous forme solide à partir du stockage (52) directement dans le liquide de refroidissement.  2. Reactor according to claim 1, characterized in that the device (50) provided for the injection of nanoparticles comprises a storage (52) of said nanoparticles in solid form, and a body (54) for injecting the nanoparticles in solid form. from the storage (52) directly into the coolant.
3. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanoparticules, avant injection, sont sous la forme d'agglomérats (80), chaque agglomérat (80) comportant des premières nanoparticules (82) et des secondes nanoparticules (84).  3. Reactor according to any one of the preceding claims, characterized in that the nanoparticles, before injection, are in the form of agglomerates (80), each agglomerate (80) comprising first nanoparticles (82) and second nanoparticles ( 84).
4. Réacteur selon la revendication 3, caractérisé en ce que les agglomérats (80) présentent majoritairement des tailles comprises entre 150 nm et 400 nm.  4. Reactor according to claim 3, characterized in that the agglomerates (80) have predominantly sizes between 150 nm and 400 nm.
5. Réacteur selon l'une quelconque des revendications 3 ou 4, caractérisé en ce que les agglomérats (80) présentent une forme générale en zig-zag.  5. Reactor according to any one of claims 3 or 4, characterized in that the agglomerates (80) have a general zig-zag shape.
6. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les premières nanoparticules (82) ont un facteur de forme compris entre 1 et 1 ,5.  6. Reactor according to any one of the preceding claims, characterized in that the first nanoparticles (82) have a form factor of between 1 and 1.5.
7. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les premières nanoparticules (82) sont en un oxyde minéral, typiquement choisi parmi Al203, ZnO, Ce02 ou Fe203. 7. Reactor according to any one of the preceding claims, characterized in that the first nanoparticles (82) are in a mineral oxide, typically selected from Al 2 0 3 , ZnO, Ce0 2 or Fe 2 0 3 .
8. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les secondes nanoparticules (84) ont un facteur de forme compris entre 2 et 5.  8. Reactor according to any one of the preceding claims, characterized in that the second nanoparticles (84) have a form factor of between 2 and 5.
9. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les secondes nanoparticules (84) sont en un oxyde minéral, typiquement choisi parmi Al203, ZnO, Ce02 ou Fe203. 9. Reactor according to any one of the preceding claims, characterized in that the second nanoparticles (84) are in a mineral oxide, typically selected from Al 2 0 3 , ZnO, Ce0 2 or Fe 2 0 3 .
10. Réacteur selon l'une quelconque des revendications précédentes, caractérisé en ce que les nanoparticules présentent majoritairement des tailles comprises entre 50 nm et 250 nm, avant agglomération. 10. Reactor according to any one of the preceding claims, characterized in that the nanoparticles have predominantly sizes between 50 nm and 250 nm, before agglomeration.
EP12720184.6A 2011-05-11 2012-05-10 Nuclear reactor with device for injecting nanoparticles in the event of an accident Withdrawn EP2707882A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1154072A FR2975215B1 (en) 2011-05-11 2011-05-11 NUCLEAR REACTOR WITH INJECTION DEVICE OF NANO PARTICLES IN CASE OF ACCIDENT
PCT/EP2012/058679 WO2012152883A1 (en) 2011-05-11 2012-05-10 Nuclear reactor with device for injecting nanoparticles in the event of an accident

Publications (1)

Publication Number Publication Date
EP2707882A1 true EP2707882A1 (en) 2014-03-19

Family

ID=46052763

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12720184.6A Withdrawn EP2707882A1 (en) 2011-05-11 2012-05-10 Nuclear reactor with device for injecting nanoparticles in the event of an accident

Country Status (7)

Country Link
US (1) US20140079172A1 (en)
EP (1) EP2707882A1 (en)
JP (1) JP2014514584A (en)
KR (1) KR20140059759A (en)
CN (1) CN103620692A (en)
FR (1) FR2975215B1 (en)
WO (1) WO2012152883A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116013559B (en) * 2023-01-29 2024-01-12 上海核工程研究设计院股份有限公司 Nanofluid premixing injection system and injection method for nuclear power plant

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2631484B1 (en) * 1988-05-13 1992-08-21 Framatome Sa NUCLEAR REACTOR WITH EMERGENCY COOLING WATER INJECTION DEVICE
DE58906300D1 (en) * 1988-09-30 1994-01-13 Siemens Ag Heating reactor system with a post-heat removal circuit and use of the latter for boiling water and pressurized water nuclear reactors.
JP2909247B2 (en) * 1991-04-26 1999-06-23 三菱重工業株式会社 Accumulator
DE10065671A1 (en) * 2000-12-30 2002-07-18 Arnold Grimm Production of dispersions of nanoparticles for increasing the heat transport of heat-transfer fluids comprises using block polymers to inhibit sedimentation of the nanoparticles
US6793883B2 (en) * 2001-07-05 2004-09-21 General Electric Company Application of catalytic nanoparticles to high temperature water systems to reduce stress corrosion cracking
JP2003215289A (en) * 2002-01-18 2003-07-30 Hitachi Ltd Atomic power plant comprising neutral-substance injection system
US6724854B1 (en) * 2003-06-16 2004-04-20 General Electric Company Process to mitigate stress corrosion cracking of structural materials in high temperature water
WO2006087809A1 (en) * 2005-02-18 2006-08-24 Shishiai-Kabushikigaisha Liquid heat carrier composition
FR2893263B1 (en) * 2005-11-14 2013-05-03 Inst Francais Du Petrole PROCESS FOR THE SYNTHESIS OF A CATALYST BASED ON ANISOTROPIC METAL NANOPARTICLES BY MICELLAR.
WO2008005590A2 (en) * 2006-02-22 2008-01-10 University Of Florida Research Foundation, Inc. Nuclear reactor having efficient and highly stable thermal transfer fluid
US8976920B2 (en) * 2007-03-02 2015-03-10 Areva Np Nuclear power plant using nanoparticles in emergency systems and related method
US8160197B2 (en) * 2007-03-06 2012-04-17 Areva Np Nuclear power plant using nanoparticies in closed circuits of emergency systems and related method
US20080219395A1 (en) * 2007-03-06 2008-09-11 Areva Np Nuclear power plant using nanoparticles in emergency situations and related method
JP2009257918A (en) * 2008-04-16 2009-11-05 Toshiba Corp Cooling device for molten corium
US8435485B2 (en) * 2008-10-28 2013-05-07 Sakai Chemical Industry Co., Ltd. Method for producing zinc oxide using ammonium bromide, exoergic filler, resin composition, exoergic grease and exoergic coating composition comprising the zinc oxide
US20100129639A1 (en) * 2008-11-25 2010-05-27 General Electric Company Surface having a nanoporous coating, methods of manufacture thereof and articles comprising the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012152883A1 *

Also Published As

Publication number Publication date
FR2975215A1 (en) 2012-11-16
KR20140059759A (en) 2014-05-16
FR2975215B1 (en) 2013-05-10
US20140079172A1 (en) 2014-03-20
CN103620692A (en) 2014-03-05
JP2014514584A (en) 2014-06-19
WO2012152883A1 (en) 2012-11-15

Similar Documents

Publication Publication Date Title
EP2122636B1 (en) Nuclear power plant using nanoparticles in emergency systems and related method
EP1913600B1 (en) Macrostructured plate fuel element
Was et al. Corrosion and stress corrosion cracking in supercritical water
US20080219395A1 (en) Nuclear power plant using nanoparticles in emergency situations and related method
JP5118576B2 (en) Operation method of nuclear power plant
FR2980031A1 (en) PASSIVE COOLING APPARATUS FOR EXTENDED FUEL POOL
FR2966639A1 (en) METHOD FOR CONTROLLING SOLUBILITY OF ADDITIVES ON AND NEAR GRAIN JOINTS AND PROCESS FOR PRODUCING NUCLEAR FUEL PELLETS
CN107274936B (en) A kind of fast preparation method of the enhanced uranium dioxide nuclear fuel of beryllium oxide
WO2019073172A1 (en) Device and method for cryogenic grinding with grinding media in the form of solidified cryogenic gas
FR2983336A1 (en) (EN) ASSEMBLY AND METHOD FOR WATER INJECTION OF A NEUTRON ABSORBER COMPONENT FOR COOLING A CORE OF A NUCLEAR REACTOR IN A CRISIS SITUATION.
CN101720488A (en) Nuclear power plant using nanoparticles in closed circuits of emergency systems and related method
EP2707882A1 (en) Nuclear reactor with device for injecting nanoparticles in the event of an accident
FR3085532A1 (en) Cooling device for molten core material
US6813329B1 (en) Crud-resistant nuclear fuel cladding
CN104183285B (en) Cooling system outside a kind of reactor pressure vessel
Kim et al. Improved irradiation performance of uranium-molybdenum/aluminum dispersion fuel by silicon addition in aluminum
Wang et al. Mechanical property improvement of B4C ceramic hollow microspheres by doping carbon nanotubes at low-temperature
Bang et al. Rod-type quench performance of nanofluids towards developments of advanced PWR nanofluids-engineered safety features
CN206045921U (en) A kind of system for preparing supercritical carbon dioxide mixed working fluid
Vatulin et al. Radiation resistance of high-density uranium—molybdenum dispersion fuel for nuclear research reactors
WO2019073171A1 (en) Device and method for cryogenic grinding with confluent jets
EP2448866B1 (en) Coolant
Zhong et al. Densification kinetics and sintering behavior of UO2 and 0.5 wt.% MnO‐doped UO2
CN116101973A (en) Graphene nano solid hydrogen storage material and manufacturing process thereof
Jeong et al. UO $ _3 $ Intermediate Particle Preparation Using the Sol-Gel Process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131018

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141021

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20161201