EP2705236B1 - Method for monitoring a passive pressure regulator valve - Google Patents

Method for monitoring a passive pressure regulator valve Download PDF

Info

Publication number
EP2705236B1
EP2705236B1 EP12715854.1A EP12715854A EP2705236B1 EP 2705236 B1 EP2705236 B1 EP 2705236B1 EP 12715854 A EP12715854 A EP 12715854A EP 2705236 B1 EP2705236 B1 EP 2705236B1
Authority
EP
European Patent Office
Prior art keywords
pressure
rail
rail pressure
limiting valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12715854.1A
Other languages
German (de)
French (fr)
Other versions
EP2705236A1 (en
Inventor
Armin DÖLKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MTU Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP2705236A1 publication Critical patent/EP2705236A1/en
Application granted granted Critical
Publication of EP2705236B1 publication Critical patent/EP2705236B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/221Safety or indicating devices for abnormal conditions relating to the failure of actuators or electrically driven elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3863Controlling the fuel pressure by controlling the flow out of the common rail, e.g. using pressure relief valves

Definitions

  • the invention relates to a method for monitoring a passive pressure relief valve, via which fuel is derived from the rail of a common rail system in the fuel tank, is changed in recognizing a defective rail pressure sensor from rail pressure control mode in an emergency operation, wherein in emergency mode Rail pressure is gradually increased until the response of the pressure relief valve.
  • the passive pressure relief valve is monitored for opening.
  • An open pressure relief valve is detected after a load shedding because the rail pressure exceeds a limit value, subsequently again a stationary state of the internal combustion engine is detected and, in addition, a characteristic variable of the rail pressure control loop deviates significantly from a reference value.
  • the characteristic variable of the rail pressure control loop is understood to mean the I component of the rail pressure regulator or, for example, a PWM signal for controlling the suction throttle.
  • a functional rail pressure sensor is absolutely necessary.
  • the DE 10 2006 040 441 B3 describes a method for monitoring a passive pressure relief valve after a load shedding.
  • a first step it is checked whether the rail pressure, starting from a stationary rail pressure, for example 1800 bar, has exceeded a first, higher limit value, for example 1850 bar.
  • a second step it is then checked whether the rail pressure, despite a temporary loading of the suction throttle in the closing direction, a second, even higher limit, for example, 1920 bar, exceeds. If both limits have been exceeded, the pressure limiting valve is set as open. Due to the dispersion of the pressure relief valves, however, the case may occur in practice that the Pressure relief valve is recognized by the evaluation program as open, but in fact this is still closed. The consequence is an operator error alarm and an erroneous follow-up action.
  • a functional rail pressure sensor is also essential in this process.
  • the invention is based on the object to recognize an open pressure relief valve in a generic common rail system even in case of failure of the rail pressure sensor.
  • the method consists in switching from control to emergency operation upon detection of a defective rail pressure sensor, wherein in the emergency mode the rail pressure is increased successively until the response of the pressure limiting valve. Since there is no information about the rail pressure in the event of a defective rail pressure sensor, the pressure limiting valve is then set as open if, in addition, the starting phase of the internal combustion engine is recognized to have ended after the change to emergency operation. After the pressure relief valve has been set open, its opening duration is monitored. The invention is therefore based on the finding that the operating time with the pressure relief valve open is decisive for the assessment of whether the pressure relief valve is still tight after a restart or already tends to leak.
  • a pressure-limiting valve with leakage causes a decreasing overall efficiency, since the fuel flows out of the rail unused into the fuel tank.
  • the simple parameterization and implementation of the method is advantageous.
  • the opening duration of the pressure relief valve set as open is monitored by setting a first time limit and a second time limit for further operation. After expiration of the first time limit, a yellow alarm is initiated to alert the operator. After expiration of the second time limit then a red alarm is initiated as a recommendation to replace the pressure relief valve. If the operator stops the engine, the current opening time is saved. Becomes Thereafter, after starting the internal combustion engine an open pressure relief valve again detected, the stored opening time is counted and monitored for exceeding the first and second time limit.
  • the FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system.
  • the common rail system comprises the following mechanical components: a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable intake throttle 4 for influencing the fuel volume flow flowing through it, a high-pressure pump 5 for conveying the fuel with pressure increase, a rail 6 for storing the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1.
  • the common rail system can also be designed with individual memories, in which case for example in the injector 7, a single memory 8 is integrated as an additional buffer volume.
  • a passive pressure relief valve 11 is provided which opens, for example, at a rail pressure of 2400 bar and abgrest the fuel from the rail 6 into the fuel tank 2 in the open state.
  • the operation of the internal combustion engine 1 is determined by an electronic control unit (ECU) 10.
  • the electronic control unit 10 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 10 from the input variables, the output variables.
  • the rail pressure pCR which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal FP for output specification by the operator, optionally the individual accumulator pressure pE and an input variable ON.
  • the further sensor signals are combined, for example the charge air pressure of an exhaust gas turbocharger.
  • FIG. 1 are shown as output variables of the electronic control unit 10 is a signal PWM for controlling the suction throttle 4, a signal ve for controlling the injectors 7 (start of injection / injection end) and an output variable OFF.
  • the output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1, for example for a control signal for activating a second exhaust gas turbocharger in a register charging.
  • the FIG. 2 shows a rail pressure control circuit 12 for regulating the rail pressure pCR.
  • the input variables of the rail pressure control circuit 12 are: a desired rail pressure pCR (SL), a target consumption VVb, the engine speed nMOT, a signal SD as a marking of a defective rail pressure sensor and a quantity E1.
  • the size E1 includes, for example, the basic PWM frequency, the battery voltage and the ohmic resistance of the intake throttle coil with supply line, which are included in the calculation of the PWM signal.
  • the output of the rail pressure control circuit 12 is the raw value of the rail pressure pCR. From the raw value of the rail pressure pCR, the actual rail pressure pCR (IST) is calculated by means of a filter 13.
  • a pressure regulator 14 calculates its control variable, which corresponds to a regulator volume flow VR with the physical unit liters / minute.
  • the calculated nominal consumption VVb is added to a summation point B.
  • the target consumption VVb is calculated as a function of a desired injection quantity and the engine speed.
  • the result of the addition at the summation point B corresponds to an unlimited volumetric flow Vu, which has a Limit 15 is limited depending on the engine speed nMOT.
  • the output of the limit 15 corresponds to a desired volume flow V (SL), which is the input variable of a pump characteristic 16.
  • the setpoint volume flow V (SL) is assigned a desired electric current i (SL).
  • the desired current i (SL) is an input variable of a function block 17.
  • the function block 17 contains the calculation of the PWM signal.
  • the output of the function block 17 corresponds to the actual volume flow V (IST), which is conveyed by the high-pressure pump in the rail 6.
  • the pressure level pCR in the rail is detected by the rail pressure sensor. Thus, the control loop 12 is closed.
  • the control mode switches to emergency mode.
  • emergency mode the rail pressure is increased successively until the response of the pressure relief valve.
  • the suction throttle is acted upon in the opening direction, whereby then the high-pressure pump can promote more fuel.
  • This is achieved by setting the setpoint current i (SL) as the drive signal of the suction throttle to an emergency stop value, for example zero ampere.
  • the PWM signal can be set as the drive signal of the suction throttle to a Notlaufwert, for example, zero percent.
  • the rail pressure is between the pressure value at idle, z. B. 900 bar, and the pressure value at full load, z. B. 700 bar. Since the rail pressure in emergency mode is always within this pressure range, a stable operating condition with a uniform engine performance is guaranteed.
  • the FIG. 3 shows in a timing diagram an opening operation of the pressure relief valve with monitoring of the opening time. Over time, the following are shown: the rail pressure pCR, the process variable SD for marking a defective rail pressure sensor, a process variable SDL for marking the intake throttle flow, a signal START engine start, a process variable DBV as a state identifier of the pressure relief valve, a process variable D1 for the yellow alarm, a Process variable D2 for the red alarm, a process variable engine is Mst for the detection of a stationary internal combustion engine and a signal RS as a reset signal.
  • the signal SD changes from the value 0 to the value 1.
  • the pressure relief valve is selectively opened, for example, by setting the solistrom of the suction throttle to the value 0 amperes.
  • the high-pressure pump delivers a larger volume flow into the rail, so that the rail pressure now rises after time t1.
  • the engine speed not shown, reaches the idle speed, d. H. the internal combustion engine leaves the starting phase. Accordingly, the signal START changes from the value 1 to the value 0.
  • the first time limit tLi1 may be, for example, 3 operating hours and the second time limit tLi2 may be, for example, 5 operating hours.
  • the first time limit tLi1 is reached.
  • the second time limit tLi2 is reached.
  • the current opening time is stored when the engine standstill is detected. If, after a restart of the internal combustion engine, an open pressure limiting valve is detected again at a later time, the stored opening time is counted further and monitored for limit violation. By this measure, the safety is increased by a pressure relief valve is detected with unwanted leakage.
  • the FIG. 4 shows a method in which the number of opening operations is monitored in addition to the opening time of the pressure relief valve.
  • the system and rail pressure sensor are error free.
  • two events are combined.
  • a defective rail pressure sensor is detected, ie the variable SD is set to the value 1.
  • SDL the suction throttle in the opening direction applied.
  • the start phase is completed.
  • the process variable START is reset.
  • the pressure relief valve is set as open.
  • the starting phase of the internal combustion engine is displayed again by setting the variable START to the value 1.
  • the internal combustion engine is repeatedly started and stopped again in the event of a further defective rail pressure sensor.
  • the pressure relief valve has opened nGELB times.
  • the variable D1 is consequently set to the value 1.
  • the pressure relief valve has opened nROT times.
  • the reset signal is now activated, the signal RS assumes the value 1. As a result both alarms are reset, ie the variables D1 and D2 are reset to the value 0. At the same time, the variable Z is reset to the value 0, so that the counting process can start again from the beginning.
  • FIG. 5 shows a program flowchart for monitoring the pressure relief valve in case of a defect of the rail pressure sensor.
  • S1 it is checked whether a defective rail pressure sensor has been detected. If this is not the case, query result S1: no, the program branches to normal operation. Otherwise, the value of the flag 3 is queried in S2.
  • the flag 3 is always set when the pressure relief valve is set as open.
  • FIG. 6 is the subroutine UP shown, over which the counter Z is checked.
  • the counter Z is incremented whenever an open pressure relief valve is detected.
  • nGELB a predeterminable number
  • query result S1 yes, at S2 the yellow alarm is initiated to warn the operator.
  • nROT a predeterminable number
  • a red alarm is initiated at S4. The red alarm indicates to the operator that the pressure relief valve should be replaced. After that, the subroutine is finished, it is in the main program of FIG. 5 returned and continued there at S5 the main program.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Überwachung eines passiven Druckbegrenzungsventils, über welches Kraftstoff aus dem Rail eines Common-Railsystems in den Kraftstofftank abgeleitet wird, bei dem mit Erkennen eines defekten Rail-Drucksensors vom Raildruck-Regelungsbetrieb in einen Notbetrieb gewechselt wird, wobei im Notbetrieb der Raildruck sukzessive bis zum Ansprechen des Druckbegrenzungsventils erhöht wird.The invention relates to a method for monitoring a passive pressure relief valve, via which fuel is derived from the rail of a common rail system in the fuel tank, is changed in recognizing a defective rail pressure sensor from rail pressure control mode in an emergency operation, wherein in emergency mode Rail pressure is gradually increased until the response of the pressure relief valve.

Bei dem aus der DE 10 2006 049 266 B3 bekannten Verfahren wird das passive Druckbegrenzungsventil auf ein Öffnen überwacht. Ein geöffnetes Druckbegrenzungsventil wird nach einem Lastabwurf daran erkannt, dass der Raildruck einen Grenzwert übersteigt, nachfolgend wieder ein stationärer Zustand der Brennkraftmaschine erkannt wird und ergänzend eine Kenngröße des Raildruck-Regelkreises signifikant von einem Referenzwert abweicht. Unter Kenngröße des Raildruck-Regelkreises sind der I-Anteil des Raildruckreglers oder zum Beispiel ein PWM-Signal zur Ansteuerung der Saugdrossel zu verstehen. Für das dargestellte Verfahren ist ein funktionsfähiger Rail-Drucksensor zwingend erforderlich.In the from the DE 10 2006 049 266 B3 known methods, the passive pressure relief valve is monitored for opening. An open pressure relief valve is detected after a load shedding because the rail pressure exceeds a limit value, subsequently again a stationary state of the internal combustion engine is detected and, in addition, a characteristic variable of the rail pressure control loop deviates significantly from a reference value. The characteristic variable of the rail pressure control loop is understood to mean the I component of the rail pressure regulator or, for example, a PWM signal for controlling the suction throttle. For the illustrated method, a functional rail pressure sensor is absolutely necessary.

Auch die DE 10 2006 040 441 B3 beschreibt ein Verfahren zur Überwachung eines passiven Druckbegrenzungsventils nach einem Lastabwurf. In einem ersten Schritt wird geprüft, ob der Raildruck, ausgehend von einem stationären Raildruck, zum Beispiel 1800 bar, einen ersten, höheren Grenzwert, zum Beispiel 1850 bar, überschritten hat. In einem zweiten Schritt wird dann geprüft, ob der Raildruck, trotz einer temporären Beaufschlagung der Saugdrossel in Schließrichtung, einen zweiten, noch höheren Grenzwert, zum Beispiel 1920 bar, übersteigt. Wurden beide Grenzwerte überschritten, so wird das Druckbegrenzungsventil als geöffnet gesetzt. Aufgrund der Streuung der Druckbegrenzungsventile kann in der Praxis jedoch der Fall eintreten, dass das Druckbegrenzungsventil vom Auswerteprogramm zwar als geöffnet erkannt wird, tatsächlich aber dieses noch geschlossen ist. Die Konsequenz ist ein Bedienerfehlalarm und eine irrtümliche Nachfolgereaktion. Ein funktionsfähiger Rail-Drucksensor ist auch bei diesem Verfahren zwingend erforderlich.Also the DE 10 2006 040 441 B3 describes a method for monitoring a passive pressure relief valve after a load shedding. In a first step, it is checked whether the rail pressure, starting from a stationary rail pressure, for example 1800 bar, has exceeded a first, higher limit value, for example 1850 bar. In a second step, it is then checked whether the rail pressure, despite a temporary loading of the suction throttle in the closing direction, a second, even higher limit, for example, 1920 bar, exceeds. If both limits have been exceeded, the pressure limiting valve is set as open. Due to the dispersion of the pressure relief valves, however, the case may occur in practice that the Pressure relief valve is recognized by the evaluation program as open, but in fact this is still closed. The consequence is an operator error alarm and an erroneous follow-up action. A functional rail pressure sensor is also essential in this process.

Der Erfindung liegt die Aufgabe zu Grunde, bei einem gattungsgemäßen Common-Railsystem auch bei Ausfall des Rail-Drucksensors ein geöffnetes Druckbegrenzungsventil zu erkennen.The invention is based on the object to recognize an open pressure relief valve in a generic common rail system even in case of failure of the rail pressure sensor.

Die Aufgabe wird durch den Anspruch 1 gelöst. In den Unteransprüchen sind die Ausgestaltungen dargestellt.The object is solved by the claim 1. In the dependent claims, the embodiments are shown.

Das Verfahren besteht darin, dass mit Erkennen eines defekten Rail-Drucksensors vom Regelungs- in einen Notbetrieb gewechselt wird, wobei im Notbetrieb der Raildruck sukzessive bis zum Ansprechen des Druckbegrenzungsventils erhöht wird. Da bei defektem Rail-Drucksensor keine Informationen mehr über den Raildruck vorliegen, wird das Druckbegrenzungsventil dann als geöffnet gesetzt, wenn nach dem Wechsel in den Notbetrieb zusätzlich die Startphase der Brennkraftmaschine als beendet erkannt wird. Nachdem das Druckbegrenzungsventil als geöffnet gesetzt wurde, wird dessen Öffnungsdauer überwacht. Der Erfindung liegt also die Erkenntnis zugrunde, dass die Betriebsdauer bei geöffnetem Druckbegrenzungsventil entscheidend ist für die Beurteilung, ob das Druckbegrenzungsventil nach einem Neustart noch dicht ist oder bereits zur Leckage neigt. Bekanntermaßen verursacht ein Druckbegrenzungsventil mit Leckage einen sich verringernden Gesamtwirkungsgrad, da der Kraftstoff ungenutzt aus dem Rail in den Kraftstofftank abfließt. Bei der Erfindung ist von Vorteil, dass neben einem stabilen Betriebszustand im Notbetrieb auch eine sichere Fehlereingrenzung hinsichtlich einer unerwünschten Leckage möglich ist. Insgesamt ist die einfache Parametrierung und Implementierung des Verfahrens von Vorteil.The method consists in switching from control to emergency operation upon detection of a defective rail pressure sensor, wherein in the emergency mode the rail pressure is increased successively until the response of the pressure limiting valve. Since there is no information about the rail pressure in the event of a defective rail pressure sensor, the pressure limiting valve is then set as open if, in addition, the starting phase of the internal combustion engine is recognized to have ended after the change to emergency operation. After the pressure relief valve has been set open, its opening duration is monitored. The invention is therefore based on the finding that the operating time with the pressure relief valve open is decisive for the assessment of whether the pressure relief valve is still tight after a restart or already tends to leak. As is known, a pressure-limiting valve with leakage causes a decreasing overall efficiency, since the fuel flows out of the rail unused into the fuel tank. In the invention, it is advantageous that, in addition to a stable operating state in emergency operation, a secure limitation of the fault with regard to undesired leakage is also possible. Overall, the simple parameterization and implementation of the method is advantageous.

Überwacht wird die Öffnungsdauer des als geöffnet gesetzten Druckbegrenzungsventils, indem ein erstes Zeitlimit und ein zweites Zeitlimit für den Weiterbetrieb festgelegt werden. Nach Ablauf des ersten Zeitlimits wird ein Gelbalarm zur Warnung des Betreibers initiiert. Nach Ablauf des zweiten Zeitlimits wird dann ein Rotalarm als Empfehlung zum Tausch des Druckbegrenzungsventils initiiert. Wird vom Betreiber die Brennkraftmaschine abgestellt, so wird die aktuelle Öffnungszeit gespeichert. Wird danach nach dem Starten der Brennkraftmaschine erneut ein offenes Druckbegrenzungsventil erkannt, so wird die gespeicherte Öffnungszeit weitergezählt und auf Überschreiten des ersten und zweiten Zeitlimits überwacht.The opening duration of the pressure relief valve set as open is monitored by setting a first time limit and a second time limit for further operation. After expiration of the first time limit, a yellow alarm is initiated to alert the operator. After expiration of the second time limit then a red alarm is initiated as a recommendation to replace the pressure relief valve. If the operator stops the engine, the current opening time is saved. Becomes Thereafter, after starting the internal combustion engine an open pressure relief valve again detected, the stored opening time is counted and monitored for exceeding the first and second time limit.

Neben der Überwachungsdauer wird in Ergänzung auch die Häufigkeit der Öffnungsvorgänge erfasst. So wird bei einer ersten Anzahl von Öffnungsvorgängen ein Gelbalarm initiiert und wird bei einer zweiten Anzahl von Öffnungsvorgängen ein Rotalarm initiiert. Dieser Lösung liegt also die Erkenntnis zugrunde, dass auch die Anzahl der Öffnungsvorgänge entscheidend für die Beurteilung ist, ob das Druckbegrenzungsventil nach einem Neustart noch dicht ist oder bereits zur Leckage neigt.In addition to the duration of monitoring, the frequency of opening operations is also recorded in addition. Thus, a yellow alarm is initiated at a first number of opening operations and a red alarm is initiated at a second number of opening operations. This solution is therefore based on the knowledge that the number of opening operations is crucial for the assessment of whether the pressure relief valve is still tight after a restart or already tends to leak.

In den Figuren ist ein bevorzugtes Ausführungsbeispiel dargestellt. Es zeigen:

Figur 1
ein Systemschaubild,
Figur 2
einen Raildruck-Regelkreis,
Figur 3
ein erstes Zeitdiagramm,
Figur 4
ein zweites Zeitdiagramm mit mehreren Öffnungsvorgängen,
Figur 5
einen Programmablaufplan und
Figur 6
ein Unterprogramm.
In the figures, a preferred embodiment is shown. Show it:
FIG. 1
a system diagram,
FIG. 2
a rail pressure control loop,
FIG. 3
a first timing diagram,
FIG. 4
a second time diagram with several opening operations,
FIG. 5
a program schedule and
FIG. 6
a subroutine.

Die Figur 1 zeigt ein Systemschaubild einer elektronisch gesteuerten Brennkraftmaschine 1 mit einem Common-Railsystem. Das Common-Railsystem umfasst folgende mechanische Komponenten: eine Niederdruckpumpe 3 zur Förderung von Kraftstoff aus einem Kraftstofftank 2, eine veränderbare Saugdrossel 4 zur Beeinflussung des durchströmenden Kraftstoff-Volumenstroms, eine Hochdruckpumpe 5 zur Förderung des Kraftstoffs unter Druckerhöhung, ein Rail 6 zum Speichern des Kraftstoffs und Injektoren 7 zum Einspritzen des Kraftstoffs in die Brennräume der Brennkraftmaschine 1. Optional kann das Common-Railsystem auch mit Einzelspeichern ausgeführt sein, wobei dann zum Beispiel im Injektor 7 ein Einzelspeicher 8 als zusätzliches Puffervolumen integriert ist. Als Schutz vor einem unzulässig hohen Druckniveau im Rail 6 ist ein passives Druckbegrenzungsventil 11 vorgesehen, welches zum Beispiel bei einem Raildruck von 2400 bar öffnet und im geöffneten Zustand den Kraftstoff aus dem Rail 6 in den Kraftstofftank 2 absteuert.The FIG. 1 shows a system diagram of an electronically controlled internal combustion engine 1 with a common rail system. The common rail system comprises the following mechanical components: a low-pressure pump 3 for conveying fuel from a fuel tank 2, a variable intake throttle 4 for influencing the fuel volume flow flowing through it, a high-pressure pump 5 for conveying the fuel with pressure increase, a rail 6 for storing the fuel and injectors 7 for injecting the fuel into the combustion chambers of the internal combustion engine 1. Optionally, the common rail system can also be designed with individual memories, in which case for example in the injector 7, a single memory 8 is integrated as an additional buffer volume. As a protection against an inadmissibly high pressure level in the rail 6, a passive pressure relief valve 11 is provided which opens, for example, at a rail pressure of 2400 bar and absteuert the fuel from the rail 6 into the fuel tank 2 in the open state.

Die Betriebsweise der Brennkraftmaschine 1 wird durch ein elektronisches Steuergerät (ECU) 10 bestimmt. Das elektronische Steuergerät 10 beinhaltet die üblichen Bestandteile eines Mikrocomputersystems, beispielsweise einen Mikroprozessor, I/O-Bausteine, Puffer und Speicherbausteine (EEPROM, RAM). In den Speicherbausteinen sind die für den Betrieb der Brennkraftmaschine 1 relevanten Betriebsdaten in Kennfeldern/Kennlinien appliziert. Über diese berechnet das elektronische Steuergerät 10 aus den Eingangsgrößen die Ausgangsgrößen. In der Figur 1 sind exemplarisch folgende Eingangsgrößen dargestellt: der Raildruck pCR, der mittels eines Rail-Drucksensors 9 gemessen wird, eine Motordrehzahl nMOT, ein Signal FP zur Leistungsvorgabe durch den Betreiber, optional der Einzelspeicherdruck pE und eine Eingangsgröße EIN. Unter der Eingangsgröße EIN sind die weiteren Sensorsignale zusammengefasst, beispielsweise der Ladeluftdruck eines Abgasturboladers. In Figur 1 sind als Ausgangsgrößen des elektronischen Steuergeräts 10 ein Signal PWM zur Ansteuerung der Saugdrossel 4, ein Signal ve zur Ansteuerung der Injektoren 7 (Spritzbeginn/Spritzende) und eine Ausgangsgröße AUS dargestellt. Die Ausgangsgröße AUS steht stellvertretend für die weiteren Stellsignale zur Steuerung und Regelung der Brennkraftmaschine 1, beispielsweise für ein Stellsignal zur Aktivierung eines zweiten Abgasturboladers bei einer Registeraufladung.The operation of the internal combustion engine 1 is determined by an electronic control unit (ECU) 10. The electronic control unit 10 includes the usual components of a microcomputer system, such as a microprocessor, I / O devices, buffers and memory devices (EEPROM, RAM). In the memory modules relevant for the operation of the internal combustion engine 1 operating data in maps / curves are applied. About this calculates the electronic control unit 10 from the input variables, the output variables. In the FIG. 1 the following input variables are shown by way of example: the rail pressure pCR, which is measured by means of a rail pressure sensor 9, an engine speed nMOT, a signal FP for output specification by the operator, optionally the individual accumulator pressure pE and an input variable ON. Under the input quantity ON, the further sensor signals are combined, for example the charge air pressure of an exhaust gas turbocharger. In FIG. 1 are shown as output variables of the electronic control unit 10 is a signal PWM for controlling the suction throttle 4, a signal ve for controlling the injectors 7 (start of injection / injection end) and an output variable OFF. The output variable OFF is representative of the further control signals for controlling and regulating the internal combustion engine 1, for example for a control signal for activating a second exhaust gas turbocharger in a register charging.

Die Figur 2 zeigt einen Raildruck-Regelkreis 12 zur Regelung des Raildrucks pCR. Die Eingangsgrößen des Raildruck-Regelkreises 12 sind: ein Soll-Raildruck pCR(SL), ein Soll-Verbrauch VVb, die Motordrehzahl nMOT, ein Signal SD als Kennzeichnung eines defekten Rail-Drucksensors und eine Größe E1. Unter der Größe E1 sind beispielsweise die PWM-Grundfrequenz, die Batteriespannung und der ohmsche Widerstand der Saugdrosselspule mit Zuleitung zusammengefasst, welche in die Berechnung des PWM-Signals mit eingehen. Die Ausgangsgröße des Raildruck-Regelkreises 12 ist der Rohwert des Raildrucks pCR. Aus dem Rohwert des Raildrucks pCR wird mittels eines Filters 13 der Ist-Raildruck pCR(IST) berechnet. Dieser wird dann mit dem Soll-Raildruck pCR(SL) an einem Summationspunkt A verglichen, woraus eine Regelabweichung ep resultiert. Aus der Regelabweichung ep berechnet ein Druckregler 14 seine Stellgröße, welche einem Regler-Volumenstrom VR mit der physikalischen Einheit Liter/Minute entspricht. Zum Regler-Volumenstrom VR wird an einem Summationspunkt B der berechnete Soll-Verbrauch VVb addiert. Berechnet wird der Soll-Verbrauch VVb in Abhängigkeit einer Soll-Einspritzmenge und der Motordrehzahl. Das Ergebnis der Addition am Summationspunkt B entspricht einem unbegrenzten Volumenstrom Vu, welcher über eine Begrenzung 15 in Abhängigkeit der Motordrehzahl nMOT limitiert wird. Die Ausgangsgröße der Begrenzung 15 entspricht einem Soll-Volumenstrom V(SL), der die Eingangsgröße einer Pumpen-Kennlinie 16 ist. Über die Pumpen-Kennlinie 16 wird dem Soll-Volumenstrom V(SL) ein elektrischer Soll-Strom i(SL) zugeordnet. Der Soll-Strom i(SL) ist eine Eingangsgröße eines Funktionsblocks 17. Im Funktionsblock 17 ist die Berechnung des PWM-Signals enthalten. Die Ausgangsgröße des Funktionsblocks 17 entspricht dem Ist-Volumenstrom V(IST), welcher von der Hochdruckpumpe in das Rail 6 gefördert wird. Das Druckniveau pCR im Rail wird vom Rail-Drucksensor erfasst. Damit ist der Regelkreis 12 geschlossen.The FIG. 2 shows a rail pressure control circuit 12 for regulating the rail pressure pCR. The input variables of the rail pressure control circuit 12 are: a desired rail pressure pCR (SL), a target consumption VVb, the engine speed nMOT, a signal SD as a marking of a defective rail pressure sensor and a quantity E1. The size E1 includes, for example, the basic PWM frequency, the battery voltage and the ohmic resistance of the intake throttle coil with supply line, which are included in the calculation of the PWM signal. The output of the rail pressure control circuit 12 is the raw value of the rail pressure pCR. From the raw value of the rail pressure pCR, the actual rail pressure pCR (IST) is calculated by means of a filter 13. This is then compared with the desired rail pressure pCR (SL) at a summation point A, resulting in a control deviation ep. From the control deviation ep, a pressure regulator 14 calculates its control variable, which corresponds to a regulator volume flow VR with the physical unit liters / minute. For the regulator volume flow VR, the calculated nominal consumption VVb is added to a summation point B. The target consumption VVb is calculated as a function of a desired injection quantity and the engine speed. The result of the addition at the summation point B corresponds to an unlimited volumetric flow Vu, which has a Limit 15 is limited depending on the engine speed nMOT. The output of the limit 15 corresponds to a desired volume flow V (SL), which is the input variable of a pump characteristic 16. Via the pump characteristic curve 16, the setpoint volume flow V (SL) is assigned a desired electric current i (SL). The desired current i (SL) is an input variable of a function block 17. The function block 17 contains the calculation of the PWM signal. The output of the function block 17 corresponds to the actual volume flow V (IST), which is conveyed by the high-pressure pump in the rail 6. The pressure level pCR in the rail is detected by the rail pressure sensor. Thus, the control loop 12 is closed.

Wird nun ein defekter Rail-Drucksensor erkannt (SD=1), so wird vom Regelungs- in einen Notbetrieb gewechselt. Im Notbetrieb wird der Raildruck sukzessive bis zum Ansprechen des Druckbegrenzungsventils erhöht. Hierzu wird die Saugdrossel in Öffnungsrichtung beaufschlagt, wodurch dann die Hochdruckpumpe mehr Kraftstoff fördern kann. Erreicht wird dies, indem der Soll-Strom i(SL) als Ansteuersignal der Saugdrossel auf eine Notlaufwert gesetzt wird, zum Beispiel Null Ampere. Alternativ kann das PWM-Signal als Ansteuersignal der Saugdrossel auf einen Notlaufwert, zum Beispiel Null Prozent, gesetzt werden. Ebenso kann von einer Pumpen-Kennlinie im Normalbetrieb auf eine Grenzkurve im Notbetrieb umgeschaltet werden. Bei geöffnetem Druckbegrenzungsventil liegt der Raildruck zwischen dem Druckwert bei Leerlauf, z. B. 900 bar, und dem Druckwert bei Volllast, z. B. 700 bar. Da der Raildruck im Notbetrieb stets innerhalb dieses Druckbereichs liegt, ist ein stabiler Betriebszustand mit einer einheitlichen Motorleistung gewährleistet.If a defective rail pressure sensor is now detected (SD = 1), the control mode switches to emergency mode. In emergency mode, the rail pressure is increased successively until the response of the pressure relief valve. For this purpose, the suction throttle is acted upon in the opening direction, whereby then the high-pressure pump can promote more fuel. This is achieved by setting the setpoint current i (SL) as the drive signal of the suction throttle to an emergency stop value, for example zero ampere. Alternatively, the PWM signal can be set as the drive signal of the suction throttle to a Notlaufwert, for example, zero percent. Likewise, it is possible to switch over from a pump characteristic curve in normal operation to a limit curve during emergency operation. When the pressure relief valve is open, the rail pressure is between the pressure value at idle, z. B. 900 bar, and the pressure value at full load, z. B. 700 bar. Since the rail pressure in emergency mode is always within this pressure range, a stable operating condition with a uniform engine performance is guaranteed.

Die Figur 3 zeigt in einem Zeitdiagramm einen Öffnungsvorgang des Druckbegrenzungsventils mit Überwachung der Öffnungszeit. Über der Zeit sind dargestellt: der Raildruck pCR, die Prozessvariable SD zur Kennzeichnung eines defekten Rail-Drucksensors, eine Prozessvariable SDL zur Kennzeichnung des Saugdrosselstroms, ein Signal Motorstart START, eine Prozessvariable DBV als Zustandskennung des Druckbegrenzungsventils, eine Prozessvariable D1 für den Gelbalarm, eine Prozessvariable D2 für den Rotalarm, eine Prozessvariable Motor steht Mst für die Erkennung einer stehenden Brennkraftmaschine und ein Signal RS als Rücksetzsignal.The FIG. 3 shows in a timing diagram an opening operation of the pressure relief valve with monitoring of the opening time. Over time, the following are shown: the rail pressure pCR, the process variable SD for marking a defective rail pressure sensor, a process variable SDL for marking the intake throttle flow, a signal START engine start, a process variable DBV as a state identifier of the pressure relief valve, a process variable D1 for the yellow alarm, a Process variable D2 for the red alarm, a process variable engine is Mst for the detection of a stationary internal combustion engine and a signal RS as a reset signal.

Zum Zeitpunkt t0 sind das System und der Rail-Drucksensor fehlerfrei. Damit hat die Prozessvariable SD den Wert SD=0. Der Raildruck beträgt pCR=1000 bar. Der Startvorgang ist noch nicht beendet, sodass die Prozessvariable START=1 ist. Zum Zeitpunkt t1 wird der Ausfall des Rail-Drucksensors detektiert, das Signal SD wechselt vom Wert 0 auf den Wert 1. Mit Erkennen eines defekten Rail-Drucksensors wird vom Regelungs- in den Notbetrieb gewechselt. Im Notbetrieb wird das Druckbegrenzungsventil gezielt geöffnet, indem zum Beispiel der Solistrom der Saugdrossel auf den Wert 0 Ampere gesetzt wird. Die Prozessvariable SDL wechselt vom Wert 1 auf den Wert SDL=0. Aufgrund der vollständig geöffneten Saugdrossel fördert die Hochdruckpumpe einen größeren Volumenstrom in das Rail, sodass der Raildruck nach dem Zeitpunkt t1 nun ansteigt. Zum Zeitpunkt t2 erreicht die nicht dargestellte Motordrehzahl die Leerlaufdrehzahl, d. h. die Brennkraftmaschine verlässt die Startphase. Entsprechend wechselt das Signal START vom Wert 1 auf den Wert 0.At time t0, the system and rail pressure sensor are error free. Thus, the process variable SD has the value SD = 0. The rail pressure is pCR = 1000 bar. The boot process is not finished yet, so the process variable START = 1. At the time t1, the failure of the rail pressure sensor is detected, the signal SD changes from the value 0 to the value 1. With detection of a defective rail pressure sensor is changed from the control to the emergency operation. In emergency operation, the pressure relief valve is selectively opened, for example, by setting the solistrom of the suction throttle to the value 0 amperes. The process variable SDL changes from the value 1 to the value SDL = 0. Due to the fully opened intake throttle, the high-pressure pump delivers a larger volume flow into the rail, so that the rail pressure now rises after time t1. At time t2, the engine speed, not shown, reaches the idle speed, d. H. the internal combustion engine leaves the starting phase. Accordingly, the signal START changes from the value 1 to the value 0.

Da der Raildruck nicht mehr gemessen werden kann, kann daher auch nicht exakt bestimmt werden, wann das Druckbegrenzungsventil öffnet. Aus diesem Grund wird derjenige Zeitpunkt als Öffnungszeitpunkt angenommen, bei dem sowohl ein defekter Rail-Drucksensor erkannt wurde, hier: Zeitpunkt t1, als auch gleichzeitig die Startphase der Brennkraftmaschine beendet ist. Dies ist der Zeitpunkt t2. Daher wird zum Zeitpunkt t2 das Druckbegrenzungsventil als geöffnet gesetzt. Das Signal DBV wechselt nun vom Wert 0 auf den Wert DBV=1. Vom Zeitpunkt t2 an wird die Öffnungszeit des Druckbegrenzungsventils auf Überschreiten eines ersten Zeitlimits tLi1 und eines zweiten Zeitlimits tLi2 überwacht. Im praktischen Betrieb kann das erste Zeitlimit tLi1 zum Beispiel 3 Betriebsstunden und das zweite Zeitlimit tLi2 zum Beispiel 5 Betriebsstunden betragen. Zum Zeitpunkt t3 wird das erste Zeitlimit tLi1 erreicht. Die Prozessvariable D1 wechselt daher zum Zeitpunkt t3 auf den Wert D1=1, wodurch ein Gelbalarm zur Warnung des Betreibers initiiert wird. Zum Zeitpunkt t4 wird auch das zweite Zeitlimit tLi2 erreicht. Die Prozessvariable D2 wechselt zu diesem Zeitpunkt auf den Wert D2=1, wodurch ein Rotalarm ausgelöst wird.Since the rail pressure can no longer be measured, therefore, can not be determined exactly when the pressure relief valve opens. For this reason, that time is assumed as the opening time, in which both a defective rail pressure sensor has been detected, here: time t1, as well as the start phase of the internal combustion engine is also completed. This is the time t2. Therefore, at time t2, the pressure relief valve is set to open. The signal DBV now changes from the value 0 to the value DBV = 1. From time t2, the opening time of the pressure limiting valve is monitored for exceeding a first time limit tLi1 and a second time limit tLi2. In practical operation, the first time limit tLi1 may be, for example, 3 operating hours and the second time limit tLi2 may be, for example, 5 operating hours. At time t3, the first time limit tLi1 is reached. The process variable D1 therefore changes at the time t3 to the value D1 = 1, whereby a yellow alarm is initiated to warn the operator. At time t4, the second time limit tLi2 is reached. The process variable D2 changes to the value D2 = 1 at this time, which triggers a red alarm.

Zum Zeitpunkt t5 wird die Brennkraftmaschine vom Betreiber gestoppt, wodurch die Prozessvariable Motor steht Mst auf den Wert Mst=1 gesetzt wird. Da das Druckbegrenzungsventil bei stehender Brennkraftmaschine geschlossen ist, wird das Signal DBV nun wieder auf den Wert DBV=0 zurückgesetzt. Die Brennkraftmaschine ist wieder in der Startphase, das Signal START wird wieder auf den Wert 1 gesetzt. Zum Zeitpunkt t6 wird der Rail-Drucksensor ausgetauscht, der angezeigte Sensordefekt verschwindet, d. h. das Signal SD wird auf den Wert SD=0 zurückgesetzt. Zum Zeitpunkt t7 wird die Reset-Taste gedrückt (RS=1), dadurch verschwinden die beiden Alarme, d. h. die Signale D1 und D2 werden vom Wert 1 auf den Wert 0 zurückgesetzt. Die Alarme würden auch dann zurückgesetzt werden, wenn zu diesem Zeitpunkt der defekte Rail-Drucksensor noch nicht getauscht wäre.At time t5, the engine is stopped by the operator, whereby the process variable engine is Mst set to the value Mst = 1. Since the pressure relief valve is closed when the engine is stationary, the Signal DBV is now reset to the value DBV = 0. The internal combustion engine is back in the starting phase, the signal START is reset to the value 1. At time t6, the rail pressure sensor is replaced, the sensor defect displayed disappears, ie the signal SD is reset to the value SD = 0. At time t7, the reset button is pressed (RS = 1), thus the two alarms disappear, ie the signals D1 and D2 are reset from the value 1 to the value 0. The alarms would also be reset if the defective rail pressure sensor had not been replaced at that time.

Wird die Brennkraftmaschine abgestellt, bevor die Öffnungszeit das erste Zeitlimit tLi1 oder das zweite Zeitlimit tLi2 überschritten hat, so wird die aktuelle Öffnungszeit beim Erkennen des Motorstillstands abgespeichert. Wird nach einem Neustart der Brennkraftmaschine zu einem späteren Zeitpunkt erneut ein offenes Druckbegrenzungsventil erkannt, so wird die abgespeicherte Öffnungszeit weitergezählt und auf Limit-Verletzung überwacht. Durch diese Maßnahme wird die Sicherheit erhöht, indem ein Druckbegrenzungsventil mit unerwünschter Leckage erkannt wird.If the internal combustion engine is switched off before the opening time has exceeded the first time limit tLi1 or the second time limit tLi2, then the current opening time is stored when the engine standstill is detected. If, after a restart of the internal combustion engine, an open pressure limiting valve is detected again at a later time, the stored opening time is counted further and monitored for limit violation. By this measure, the safety is increased by a pressure relief valve is detected with unwanted leakage.

Die Figur 4 zeigt ein Verfahren, bei dem neben der Öffnungszeit des Druckbegrenzungsventils auch die Anzahl der Öffnungsvorgänge überwacht wird. Aus Gründen der Übersichtlichkeit sind in der Figur 4 die beiden Zeitenlimits tLi1 und tLi2 weggelassen. Über der Zeit sind dargestellt: der Raildruck pCR, ein Zähler Z, die Prozessvariable SD zur Kennzeichnung eines defekten Rail-Drucksensors, eine Prozessvariable SDL zur Kennzeichnung des Saugdrosselstroms, ein Signal Motorstart START, eine Prozessvariable DBV als Zustandskennung des Druckbegrenzungsventils, eine Prozessvariable D1 für den Gelbalarm, eine Prozessvariable D2 für den Rotalarm, eine Prozessvariable Motor steht Mst für die Erkennung einer stehenden Brennkraftmaschinen und ein Signal RS als Rücksetzsignal.The FIG. 4 shows a method in which the number of opening operations is monitored in addition to the opening time of the pressure relief valve. For the sake of clarity are in the FIG. 4 the two time limits tLi1 and tLi2 omitted. Over time are shown: the rail pressure pCR, a counter Z, the process variable SD to identify a defective rail pressure sensor, a process variable SDL to identify the Saugdrosselstroms, a signal engine start START, a process variable DBV as a state identifier of the pressure relief valve, a process variable D1 for the yellow alarm, a process variable D2 for the red alarm, a process variable motor Mst stands for the detection of a stationary internal combustion engine and a signal RS as a reset signal.

Zum Zeitpunkt t0 sind das System und der Rail-Drucksensor fehlerfrei. Zum Zeitpunkt t1 sind zwei Ereignisse zusammengefasst. Einerseits wird eine laufende Brennkraftmaschine erkannt, d. h. die Variable Motor steht Mst wird auf den Wert Mst=0 zurückgesetzt. Andererseits wird ein defekter Rail-Drucksensor erkannt, d. h. die Variable SD wird auf den Wert 1 gesetzt. Als Folge wird die Saugdrossel in Öffnungsrichtung beaufschlagt. Die Prozessvariable SDL ist daher SDL=0. Dies führt zu einem Ansteigen des Raildrucks pCR. Erreicht der Raildruck pCR zum Zeitpunkt t2 den Wert pLi1, so ist die nicht dargestellte Motordrehzahl mit der Leerlaufdrehzahl identisch. Die Startphase ist damit abgeschlossen. Die Prozessvariable START wird zurückgesetzt. Da nunmehr beide Bedingungen erfüllt sind, d. h. der Rail-Drucksensor ist defekt und die Starphase ist abgeschlossen, wird das Druckbegrenzungsventil als geöffnet gesetzt. Die Variable DBV wird auf den Wert DBV=1 gesetzt. Da nun der erste Öffnungsvorgang des Druckbegrenzungsventils erkannt ist, nimmt der Zähler Z den Wert Z=1 an. Zum Zeitpunkt t3 wird ein Motorstillstand erkannt, das Signal Motor steht Mst wird auf den Wert Mst=1 gesetzt. Das Druckbegrenzungsventil ist nun geschlossen, die Variable DBV wird auf den Wert DBV=0 zurückgesetzt. Die Startphase der Brennkraftmaschine wird wieder angezeigt, indem die Variable START auf den Wert 1 gesetzt wird. Die Brennkraftmaschine wird nun wieder gestartet, so dass zum Zeitpunkt t4 eine laufende Brennkraftmaschine erkannt wird. Damit wird das Signal Motor steht Mst auf den Wert Mst=0 zurückgesetzt. Zum Zeitpunkt t5 wird wieder ein offenes Druckbegrenzungsventil erkannt, wodurch der Zähler Z auf den Wert Z=2 inkrementiert wird. Im Folgenden wird die Brennkraftmaschine bei einem weiterhin defekten Rail-Drucksensor mehrfach gestartet und wieder gestoppt. Zum Zeitpunkt t8 hat das Druckbegrenzungsventil nGELB-mal geöffnet. Der Zähler Z hat jetzt den Wert Z=nD1, womit der Grenzwert für die Aktivierung des Gelbalarms erreicht ist. Die Variable D1 wird folglich auf den Wert 1 gesetzt. Zum Zeitpunkt t11 hat das Druckbegrenzungsventil nROT-mal geöffnet. Der Zähler Z hat jetzt den Wert Z=nD2, wodurch ein Rotalarm ausgelöst wird. Dieser wird angezeigt, indem die Variable D2 auf den Wert D2=1 gesetzt wird. Zum Zeitpunkt t12 wird eine stehende Brennkraftmaschine erkannt, das Signal Motor steht Mst wechselt vom Wert Mst=0 auf den Wert Mst=1. Da die Brennkraftmaschine nun steht, kann das Druckbegrenzungsventil ausgetauscht werden. Nach dem Tausch des Druckbegrenzungsventils bleibt der Raildrucksensordefekt weiterhin aktiv, weil der Rail-Drucksensor nicht gleichzeitig auch ausgetauscht wurde. Dies wird angezeigt durch das Signal SD, welches weiterhin identisch 1 ist. Zum Zeitpunkt t13 wird nun das Rücksetzsignal aktiviert, das Signal RS nimmt den Wert 1 an. Als Folge werden beide Alarme zurückgesetzt, d. h. die Variablen D1 und D2 werden auf den Wert 0 zurückgesetzt. Gleichzeitig wird die Variable Z auf den Wert 0 zurückgesetzt, so dass nun der Zählvorgang wieder von vorne beginnen kann.At time t0, the system and rail pressure sensor are error free. At time t1, two events are combined. On the one hand, a running internal combustion engine is recognized, ie the variable engine is stopped Mst is reset to the value Mst = 0. On the other hand, a defective rail pressure sensor is detected, ie the variable SD is set to the value 1. As a result, the suction throttle in the opening direction applied. The process variable SDL is therefore SDL = 0. This leads to an increase in the rail pressure pCR. If the rail pressure pCR reaches the value pLi1 at the time t2, the engine speed (not shown) is identical to the idling speed. The start phase is completed. The process variable START is reset. Since now both conditions are met, ie the rail pressure sensor is defective and the star phase is completed, the pressure relief valve is set as open. The variable DBV is set to the value DBV = 1. Since now the first opening operation of the pressure limiting valve is detected, the counter Z assumes the value Z = 1. At the time t3, a motor standstill is detected, the signal motor is Mst is set to the value Mst = 1. The pressure relief valve is now closed, the variable DBV is reset to the value DBV = 0. The starting phase of the internal combustion engine is displayed again by setting the variable START to the value 1. The internal combustion engine is now restarted, so that at the time t4 a running internal combustion engine is detected. This resets the signal motor stalled Mst to the value Mst = 0. At time t5, an open pressure relief valve is again detected, whereby the counter Z is incremented to the value Z = 2. In the following, the internal combustion engine is repeatedly started and stopped again in the event of a further defective rail pressure sensor. At time t8, the pressure relief valve has opened nGELB times. The counter Z now has the value Z = nD1, whereby the limit for the activation of the yellow alarm is reached. The variable D1 is consequently set to the value 1. At time t11, the pressure relief valve has opened nROT times. The counter Z now has the value Z = nD2, whereby a red alarm is triggered. This is displayed by setting the variable D2 to the value D2 = 1. At time t12, a stationary internal combustion engine is detected, the signal motor is Mst changes from the value Mst = 0 to the value Mst = 1. Since the internal combustion engine is now standing, the pressure relief valve can be replaced. After replacing the pressure relief valve, the rail pressure sensor defect remains active because the rail pressure sensor was not replaced at the same time. This is indicated by the signal SD, which is still 1 identical. At time t13, the reset signal is now activated, the signal RS assumes the value 1. As a result both alarms are reset, ie the variables D1 and D2 are reset to the value 0. At the same time, the variable Z is reset to the value 0, so that the counting process can start again from the beginning.

Figur 5 zeigt einen Programmablaufplan zur Überwachung des Druckbegrenzungsventils bei einem Defekt des Rail-Drucksensors. Bei S1 wird geprüft, ob ein defekter Rail-Drucksensor erkannt wurde. Ist dies nicht der Fall, Abfrageergebnis S1: nein, so wird in das Programm Normalbetrieb verzweigt. Anderenfalls wird bei S2 der Wert des Merkers3 abgefragt. Der Merker3 wird immer dann gesetzt, wenn das Druckbegrenzungsventil als geöffnet gesetzt wird. Insofern entspricht der Merker3 der Prozessvariablen DBV aus der Figur 3 und der Figur 4. Ist der Merker3=1, so wird der Programmteil S7 bis S13 durchlaufen. Ist der Merker3=0, so wird der Programmteil S3 bis S6 durchlaufen. FIG. 5 shows a program flowchart for monitoring the pressure relief valve in case of a defect of the rail pressure sensor. At S1 it is checked whether a defective rail pressure sensor has been detected. If this is not the case, query result S1: no, the program branches to normal operation. Otherwise, the value of the flag 3 is queried in S2. The flag 3 is always set when the pressure relief valve is set as open. In this respect, the flag 3 of the process variable DBV corresponds to the FIG. 3 and the FIG. 4 , If the flag 3 = 1, the program part S7 to S13 is run through. If the flag 3 = 0, the program part S3 to S6 is run through.

Wurde bei S2 festgestellt, dass das Druckbegrenzungsventil noch geschlossen ist, so wird bei S3 geprüft, ob die Startphase der Brennkraftmaschine abgeschlossen ist. Hierzu wird die Motordrehzahl mit der Leerlaufdrehzahl verglichen. Ist die Startphase noch nicht abgeschlossen, das heißt, die Prozessvariable START ist 1, so wird bei S14 fortgefahren. Ist die Startphase beendet, Abfrageergebnis S5: nein, so wird der Zähler Z bei S4 inkrementiert und anschließend bei S5 in einem Unterprogramm UP der Zählerstand geprüft. Das Unterprogramm ist in der Figur 6 dargestellt und wird in Verbindung mit dieser Figur erklärt. Anschließend wird bei S6 der Merker3=1 gesetzt, das heißt, das Druckbegrenzungsventil wird als geöffnet gesetzt. Danach wird der Programmablauf bei S14 fortgesetzt.If it was determined at S2 that the pressure limiting valve is still closed, it is checked at S3, whether the starting phase of the internal combustion engine is completed. For this purpose, the engine speed is compared with the idle speed. If the start phase is not yet completed, that is, the process variable START is 1, the process continues at S14. If the start phase is completed, query result S5: no, then the counter Z is incremented at S4 and then checked at S5 in a subroutine UP the count. The subroutine is in the FIG. 6 and will be explained in connection with this figure. Subsequently, the flag 3 = 1 is set at S6, that is, the pressure limiting valve is set as open. Thereafter, the program flow continues at S14.

Wurde bei S2 erkannt, dass das Druckbegrenzungsventil bereits als geöffnet gesetzt wurde, Merker3=1, so wird bei S7 die Zeit t1 inkrementiert. Anschließend wird bei S8 geprüft, ob die Zeit t1 das erste Zeitlimit tLi1, zum Beispiel 3 Betriebsstunden, bereits überschritten hat. Ist dies nicht der Fall, Abfrageergebnis S8: nein, wird der Programmablauf bei S10 fortgesetzt. Anderenfalls wird bei S9 der Gelbalarm als Warnung für den Betreiber gesetzt. Bei S10 wird dann geprüft, ob die Zeit t1 auch das zweite Zeitlimit tLi2, zum Beispiel 5 Betriebsstunden, schon überschritten hat. Ist dies nicht der Fall, Abfrageergebnis S10: nein, so wird der Programmablauf bei S12 fortgesetzt. Anderenfalls wird bei S11 der Rotalarm gesetzt. Bei S12 wird geprüft, ob die Brennkraftmaschine steht. Ist dies nicht der Fall, so wird der Programmablauf bei S14 fortgesetzt. Anderenfalls wird bei S13 der Merker3=0 gesetzt, das heißt, das Druckbegrenzungsventil gilt als geschlossen. Bei S14 wird in einer Abfrage 1 folgendes geprüft: Wurde die Rücksetz-Taste betätigt (RS=1) und liegt ein Gelb- oder Rotalarm vor und Motor steht (Mst=1). Ist die Abfrage negativ, Abfrageergebnis S14: nein, so ist der Programmablauf beendet. Anderenfalls wird bei S15 die Zeit t1 und der Zähler Z auf 0 gesetzt. Dann ist der Programmablauf beendet.If it was detected at S2 that the pressure limiting valve was already set as open, flag3 = 1, the time t1 is incremented at S7. Subsequently, it is checked at S8 whether the time t1 has already exceeded the first time limit tLi1, for example 3 operating hours. If this is not the case, query result S8: no, the program flow continues at S10. Otherwise, the yellow alarm is set as a warning to the operator at S9. At S10 it is then checked whether the time t1 has already exceeded the second time limit tLi2, for example 5 operating hours. If this is not the case, query result S10: no, then the program flow continues at S12. Otherwise, the red alarm is set at S11. At S12, it is checked if the internal combustion engine is stationary. If this is not the case, the program sequence is continued at S14. Otherwise, the flag 3 = 0 is set at S13, that is, the pressure relief valve is considered closed. At S14 the following is checked in a query 1: If the reset button was pressed (RS = 1) and a yellow or red alarm is present and the motor is stopped (Mst = 1). If the query is negative, query result S14: no, that is the end of the program. Otherwise, the time t1 and the counter Z is set to 0 at S15. Then the program is finished.

Im Programm-Ablaufplan der Figur 5 ist auch der Fall berücksichtigt, dass der Rail-Drucksensor im laufenden Betrieb ausfällt. In diesem Fall wird nach Durchlaufen von S1 und S2 dann bei S3 erkannt, dass die Startphase abgeschlossen ist, Abfrageergebnis S3: nein. Im Anschluss wird der Zähler Z bei S4 inkrementiert, der Zählerstand bei S5 geprüft und unmittelbar bei S6 der Merker3=1 gesetzt. Damit gilt das Druckbegrenzungsventil als geöffnet.In the program schedule of FIG. 5 the case is also considered that the rail pressure sensor fails during operation. In this case, after passing through S1 and S2, it is then detected at S3 that the starting phase has been completed, query result S3: no. The counter Z is then incremented at S4, the count is checked at S5 and the flag 3 = 1 is set immediately at S6. Thus, the pressure relief valve is considered open.

In der Figur 6 ist das Unterprogramm UP dargestellt, über welches der Zähler Z abgeprüft wird. Der Zähler Z wird immer dann inkrementiert, wenn ein geöffnetes Druckbegrenzungsventil erkannt wird. Bei S1 wird abgeprüft, ob der Zähler Z größer/gleich als eine vorgebbare Anzahl nGELB, zum Beispiel 30; ist. Ist dies nicht der Fall, so wird mit S3 fortgefahren. Anderenfalls, Abfrageergebnis S1: ja, wird bei S2 der Gelbalarm zur Warnung des Betreibers initiiert. Anschließend wird bei S3 geprüft, ob der Zähler Z größer/gleich als eine vorgebbare Anzahl nROT, zum Beispiel 50, ist. Ist dies nicht der Fall, so ist das Unterprogramm beendet. Ist der Zähler hingegen größer/gleich als nROT, so wird bei S4 ein Rotalarm initiiert. Über den Rotalarm wird dem Betreiber angezeigt, dass das Druckbegrenzungsventil getauscht werden sollte. Danach ist das Unterprogramm beendet, es wird in das Hauptprogramm der Figur 5 zurückgekehrt und dort bei S5 das Hauptprogramm fortgeführt.In the FIG. 6 is the subroutine UP shown, over which the counter Z is checked. The counter Z is incremented whenever an open pressure relief valve is detected. At S1 it is checked whether the counter Z is greater than / equal to a predeterminable number nGELB, for example 30; is. If this is not the case, then continue with S3. Otherwise, query result S1: yes, at S2 the yellow alarm is initiated to warn the operator. Subsequently, it is checked at S3 whether the counter Z is greater than / equal to a predeterminable number nROT, for example 50. If this is not the case, then the subroutine is ended. On the other hand, if the counter is greater than or equal to nROT, a red alarm is initiated at S4. The red alarm indicates to the operator that the pressure relief valve should be replaced. After that, the subroutine is finished, it is in the main program of FIG. 5 returned and continued there at S5 the main program.

Bezugszeichenreference numeral

11
BrennkraftmaschineInternal combustion engine
22
KraftstofftankFuel tank
33
NiederdruckpumpeLow pressure pump
44
Saugdrosselinterphase
55
Hochdruckpumpehigh pressure pump
66
RailRail
77
Injektorinjector
88th
Einzelspeicher (optional)Single memory (optional)
99
Rail-DrucksensorRail pressure sensor
1010
elektronisches Steuergerät (ECU)electronic control unit (ECU)
1111
Druckbegrenzungsventil, passivPressure relief valve, passive
1212
Raildruck-RegelkreisRail pressure control circuit
1313
Filterfilter
1414
Druckreglerpressure regulator
1515
Begrenzunglimit
1616
Pumpen-KennliniePump curve
1717
Funktionsblockfunction block

Claims (7)

  1. Method for monitoring a passive pressure-limiting valve (11) by means of which fuel from the rail (6) of a common rail system is diverted into the fuel tank (2), in which, when a defective rail pressure sensor (9) is detected, there is a changeover from the rail pressure regulating mode into an emergency mode, wherein in the emergency mode the rail pressure is successively increased until the pressure-limiting valve (11) is triggered, in which in the emergency mode the pressure-limiting valve (11) is set as opened if in addition the starting phase of the internal combustion engine is detected as ended, and in which the opening duration of the pressure-limiting valve (11) is additionally monitored.
  2. Method according to Claim 1,
    characterized
    in that the opening duration is monitored in that with the setting of an opened pressure-limiting valve (11) a first time limit (tLi1) and a second time limit (tLi2) are defined for further operation, after expiry of the first time limit (tLi1) a yellow alarm for warning the operator is initiated, and after the expiry of the second time limit (tLi2) a red alarm is initiated as a recommendation to replace the pressure-limiting valve (11).
  3. Method according to Claim 2,
    characterized
    in that the current opening duration is stored after the shutting down of the internal combustion engine (1) and counting is continued after a restart of the internal combustion engine (1).
  4. Method according to Claim 3,
    characterized
    in that after a restart of the internal combustion engine (1) the stored opening duration is set as decisive for the initiation of the yellow alarm and of the red alarm if the pressure-limiting valve (11) is detected again as opened.
  5. Method according to Claim 1,
    characterized
    in that in addition to the monitoring of the opening duration the frequency of the opening processes is also detected.
  6. Method according to Claim 5,
    characterized
    in that in the case of a first number (nYELLOW) of opening processes the yellow alarm is initiated, and in the case of a second number (nRED) of opening processes the red alarm is initiated.
  7. Method according to Claim 1,
    characterized
    in that in the normal mode the rail pressure is regulated by means of a low-pressure-side suction throttle (4) as a first pressure actuating element in a rail pressure regulating circuit, and in the emergency mode the suction throttle is placed in a completely opened state.
EP12715854.1A 2011-05-02 2012-04-19 Method for monitoring a passive pressure regulator valve Active EP2705236B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011100189A DE102011100189A1 (en) 2011-05-02 2011-05-02 Method for monitoring a passive pressure relief valve
PCT/EP2012/001694 WO2012150003A1 (en) 2011-05-02 2012-04-19 Method for monitoring a passive pressure regulation valve

Publications (2)

Publication Number Publication Date
EP2705236A1 EP2705236A1 (en) 2014-03-12
EP2705236B1 true EP2705236B1 (en) 2015-04-01

Family

ID=45998241

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12715854.1A Active EP2705236B1 (en) 2011-05-02 2012-04-19 Method for monitoring a passive pressure regulator valve

Country Status (6)

Country Link
US (1) US9458786B2 (en)
EP (1) EP2705236B1 (en)
KR (1) KR101791532B1 (en)
CN (1) CN103732891B (en)
DE (1) DE102011100189A1 (en)
WO (1) WO2012150003A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012019457B3 (en) * 2012-10-04 2014-03-20 Mtu Friedrichshafen Gmbh Method for regulating the rail pressure of an internal combustion engine
CN106704011B (en) * 2016-12-14 2019-05-10 中国第一汽车股份有限公司 The method that rail pressure control optimizes under rail pressure sensor fault mode
DE102017005537A1 (en) * 2017-06-10 2018-12-13 Mtu Friedrichshafen Gmbh Fuel injection system and method of execution therewith
US10711726B2 (en) * 2017-11-03 2020-07-14 Caterpillar Inc. Fuel delivery system
KR102586912B1 (en) * 2018-03-22 2023-10-10 현대자동차주식회사 Method and apparatus for preventing engine stall
CN109322757B (en) * 2018-10-30 2021-06-18 潍柴动力股份有限公司 Rail pressure simulation method and device in starting process of diesel engine
CN111365137B (en) * 2020-03-27 2022-08-19 潍柴重机股份有限公司 High-pressure oil pipe fuel leakage alarm device and alarm method

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836974A (en) * 1986-11-24 1989-06-06 Westinghouse Electric Corp. Variable linear motion cycle monitoring device
DE19626689C1 (en) 1996-07-03 1997-11-20 Bosch Gmbh Robert Common-rail fuel injection system monitoring method
DE19937962A1 (en) * 1999-08-11 2001-02-15 Bosch Gmbh Robert IC engine common-rail fuel injection system control method monitors valve inserted between high pressure and low pressure regions for indicating fault
JP4781899B2 (en) * 2006-04-28 2011-09-28 日立オートモティブシステムズ株式会社 Engine fuel supply system
DE102006040441B3 (en) * 2006-08-29 2008-02-21 Mtu Friedrichshafen Gmbh Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
DE102006049266B3 (en) 2006-10-19 2008-03-06 Mtu Friedrichshafen Gmbh Method for recognizing opened passive pressure-relief-valve, which deviates fuel from common-railsystem into fuel tank, involves regulating the rail pressure, in which actuating variable is computed from rail-pressure offset
DE102006061558A1 (en) * 2006-12-27 2008-07-03 Robert Bosch Gmbh Fuel delivery device for internal combustion engine of motor vehicle, has adjustable throttle device arranged upstream to suction valve, where outlet of throttle device is arranged directly proximate to suction valve
DE102008000983A1 (en) 2008-04-03 2009-10-08 Robert Bosch Gmbh Method and device for controlling a fuel metering system
JP4525793B2 (en) * 2008-05-08 2010-08-18 トヨタ自動車株式会社 Abnormality diagnosis apparatus and abnormality diagnosis method for fuel system
EP2116711B1 (en) 2008-05-08 2013-01-09 Toyota Jidosha Kabushiki Kaisha Malfunction diagnostic device and malfunction diagnostic method for fuel system
US8271141B2 (en) 2008-06-09 2012-09-18 Ross Operating Valve Company Control valve system with cycle monitoring, diagnostics and degradation prediction
DE102009050468B4 (en) 2009-10-23 2017-03-16 Mtu Friedrichshafen Gmbh Method for controlling and regulating an internal combustion engine

Also Published As

Publication number Publication date
DE102011100189A1 (en) 2012-11-08
CN103732891A (en) 2014-04-16
KR101791532B1 (en) 2017-10-30
KR20140028050A (en) 2014-03-07
CN103732891B (en) 2016-08-17
US20140109876A1 (en) 2014-04-24
US9458786B2 (en) 2016-10-04
WO2012150003A1 (en) 2012-11-08
EP2705236A1 (en) 2014-03-12

Similar Documents

Publication Publication Date Title
EP2705236B1 (en) Method for monitoring a passive pressure regulator valve
EP2705237B1 (en) Method for controlling and regulating an internal combustion engine
DE102006040441B3 (en) Method for identifying opening of passive pressure limiting valve, involves supplying fuel from common-rail system in fuel tank, where load shedding is identified
DE102009050468B4 (en) Method for controlling and regulating an internal combustion engine
DE102009050467B4 (en) Method for controlling and regulating an internal combustion engine
DE10162989C1 (en) Circuit for regulating injection system fuel pump, derives adaptive component of desired delivery volume from integral component if integral component above threshold for defined time
DE102009051390B4 (en) Method for controlling and regulating an internal combustion engine
EP2006521B1 (en) Method for controlling rail pressure during a starting process
DE102004061474A1 (en) Method and device for controlling the rail pressure
DE102009050469B4 (en) Method for controlling and regulating an internal combustion engine
EP1446568B1 (en) Method for controlling an internal combustion engine
EP3289205B1 (en) Method for detecting continuous injection during the operation of an internal combustion engine, injection system for an internal combustion engine and internal combustion engine
DE102016214760B4 (en) Method for operating an internal combustion engine, device for controlling and / or regulating an internal combustion engine, injection system and internal combustion engine
DE102012008538B4 (en) Method for controlling and regulating an internal combustion engine
DE102017216989B4 (en) Method for operating an internal combustion engine with an injection system and injection system for carrying out such a method
WO2020165333A1 (en) Method for operating an injection system of an internal combustion engine, an injection system for an internal combustion engine, and an internal combustion engine comprising such an injection system
DE10058959B4 (en) Method for monitoring a control circuit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131104

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002716

Country of ref document: DE

Effective date: 20150507

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 719231

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150401

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150803

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150701

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150702

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150801

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002716

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

26N No opposition filed

Effective date: 20160105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120419

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20170414

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20170412

Year of fee payment: 6

Ref country code: IT

Payment date: 20170424

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150419

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012002716

Country of ref document: DE

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Free format text: FORMER OWNER: MTU FRIEDRICHSHAFEN GMBH, 88045 FRIEDRICHSHAFEN, DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: HC

Ref document number: 719231

Country of ref document: AT

Kind code of ref document: T

Owner name: ROLLS-ROYCE SOLUTIONS GMBH, DE

Effective date: 20220503

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230424

Year of fee payment: 12

Ref country code: DE

Payment date: 20230420

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20230420

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230419

Year of fee payment: 12