EP2692203B1 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
EP2692203B1
EP2692203B1 EP12713358.5A EP12713358A EP2692203B1 EP 2692203 B1 EP2692203 B1 EP 2692203B1 EP 12713358 A EP12713358 A EP 12713358A EP 2692203 B1 EP2692203 B1 EP 2692203B1
Authority
EP
European Patent Office
Prior art keywords
induction heating
units
unit
heating
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12713358.5A
Other languages
German (de)
French (fr)
Other versions
EP2692203A1 (en
Inventor
Daniel Anton Falcon
Miguel Angel BUÑUEL MAGDALENA
Jose-Ramon Garcia Jimenez
Jose Andres Garcia Martinez
Ignacio Garde Aranda
Pablo Jesus Hernandez Blasco
Sergio Llorente Gil
Alfonso Lorente Perez
David Ortiz Sainz
Ramon Peinado Adiego
Carmelo Pina Gadea
Diego Puyal Puente
Julio Rivera Peman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Hausgeraete GmbH filed Critical BSH Hausgeraete GmbH
Publication of EP2692203A1 publication Critical patent/EP2692203A1/en
Application granted granted Critical
Publication of EP2692203B1 publication Critical patent/EP2692203B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils

Definitions

  • the invention is based on an induction heating device according to the preamble of claim 1.
  • Induction hobs are known from the prior art, which have a control unit, at least two Schufrequenzüen and at least two induction heating units.
  • EP 0 817 531 A2 or EP 0 844 807 A1 describe induction cooking devices with a boost mode.
  • the object of the invention is in particular to provide a generic device with increased efficiency.
  • the object is achieved by the features of claim 1, while advantageous embodiments and modifications of the invention can be taken from the dependent claims.
  • the invention is based on an induction heating device, in particular an induction hob device, with at least one control unit, at least two heating frequency units and at least two induction heating units. It is proposed that the control unit is provided, in at least one operating mode in which the at least two induction heating units are operated alternately, to operate the induction heating units in each case in a boost mode.
  • a “control unit” is to be understood in particular as an electronic unit which is preferably at least partially integrated in a control and / or regulating unit of an induction heating device and which is preferably provided to control and / or regulate at least the heating frequency units.
  • the control unit preferably comprises a computing unit and, in particular in addition to the computing unit, a memory unit with a control and / or regulating program stored therein, which is intended to be executed by the computing unit.
  • a “heating frequency unit” is to be understood in particular as meaning an electrical unit which generates an oscillating electrical signal, preferably with a heating frequency of at least 1 kHz, in particular of at least 10 kHz, advantageously of at least 20 kHz and in particular of not more than 100 kHz for an induction heating unit.
  • the heating frequency unit is provided to provide a maximum electrical power of at least 1000 W, in particular at least 2000 W, advantageously at least 3000 W, and preferably at least 3500 W, required by the induction heating unit.
  • the heating frequency unit comprises in particular at least one inverter, which preferably has at least two, preferably series-connected, bidirectional unipolar switches, which are in particular formed by a transistor and a diode connected in parallel, and particularly advantageously at least one damping capacitor connected in parallel to the bidirectional unipolar switches, which is in particular formed by at least one capacitor.
  • a voltage tap of the radio-frequency unit is arranged in particular at a common contact point of two bidirectional unipolar switches.
  • an “induction heating unit” is to be understood in particular as a unit having at least one induction heating element. In particular, in an operating state in which the induction heating unit is supplied with high-frequency alternating current, all induction heating elements of the induction heating unit, preferably simultaneously, supplied with high-frequency alternating current.
  • An “induction heating element” is to be understood in particular as a wound electrical conductor, preferably in the form of a circular disk through which high-frequency alternating current flows in at least one operating state.
  • the induction heating element is preferably provided to convert electrical energy into an alternating magnetic field, which is intended to cause in a metallic, preferably at least partially ferromagnetic, heating means, in particular cooking utensils, eddy currents and / or remagnetization effects, which are converted into heat.
  • a metallic, preferably at least partially ferromagnetic, heating means in particular cooking utensils, eddy currents and / or remagnetization effects, which are converted into heat.
  • a distance between two starting points of directly successive operating sections of any induction heating units is a multiple of 50 ms or a multiple of 100 ms.
  • a "operation section" of an induction heating unit in particular, a period of time in which the induction heating unit is operated continuously with a high-frequency alternating current which in particular has at least one heating frequency which is greater than 1 kHz, and in which the induction heating unit obtains a power, in particular greater than 50 W and preferably greater than 100 W. is.
  • boost mode should in particular be understood to mean an operating state in which an induction heating unit is supplied at the same time by at least two heating-frequency units, preferably all heating-frequency units.
  • the induction heating unit is directly connected to the voltage taps of at least two heating frequency units.
  • a "direct connection” is to be understood in particular as meaning an electrical connection which, at least in an operating state with a current flow of alternating current via the connection with a heating frequency between 1 kHz and 100 kHz, has an impedance which is smaller than its magnitude 10 V / A, in particular less than 1 V / A, preferably less than 0.1 V / A, and the amount thereof in particular over a heating frequency range of 1 kHz to 100 kHz by a maximum of 100%, in particular a maximum of 40%, advantageously a maximum 10% and preferably at most 3% varies.
  • the control unit is provided to control the at least two heating frequency units in a boost mode with the same heating frequency and preferably at the same time.
  • amplitudes of the high-frequency alternating currents generated by the at least two heating frequency units differ by less than 50%, in particular less than 30%, advantageously less than 10% and preferably less than 5%.
  • the closest mutually adjacent maxima of the different high-frequency alternating currents, which are generated by the at least two heating frequency units are spaced apart by less than 5 ⁇ s, in particular less than 1 ⁇ s, advantageously less than 0.5 ⁇ s and preferably less than 0.1 ⁇ s.
  • the control unit is provided to determine a number of heating frequency units, which is intended to supply the induction heating units to be operated, in dependence on a sum of services requested for the induction heating units.
  • At least two heating-frequency units are used from a total power of at least 600 W, and from a total power of at least 900 W, if present, at least three heating-frequency units.
  • the control unit in an operating mode with alternating operation of the induction heating units, is provided to use a maximum of so many heating frequency units, each of which supplies a minimum power of at least 300 W in particular it is avoided to recall less than 50 W of power over a period of more than 100 ms.
  • a cost saving can be achieved, since two heating-frequency units which are intended to provide at most an average power, in particular a power less than 2500 W, preferably less than 1800 W, are more favorable than a heating-frequency unit which is intended to a high line, in particular a power greater than 3000 W, advantageously greater than 4000W and preferably greater than 5000 W to provide.
  • at least two induction heating units have a common contact, to which a resonance unit is connected in at least one operating state.
  • a “resonance unit” is to be understood in particular as a unit which comprises at least one resonance capacitance, which is preferably formed by at least one capacitor, which differs preferably from a damping capacity and / or a capacitance which is connected in parallel with a switching element.
  • a resonant capacitance is formed by a combination of series and parallel circuits of a plurality of capacitors.
  • the resonance capacity is in particular part of an electrical resonant circuit, in particular of an electrical series resonant circuit.
  • the resonance capacitance in at least one operating state is connected in series with the induction heating unit and is particularly advantageously intended to be charged via the induction heating unit by at least one heating frequency unit, in particular if the induction heating unit is switched to a higher electrical potential by a switching arrangement is placed.
  • the resonance capacity is arranged in particular on a side of the induction heating unit facing away from the frequency unit, viewed in the direction of a line path.
  • an induction heating unit is operated in a full bridge circuit.
  • the induction heating unit is arranged together with a, preferably in series with the induction heating unit, resonant capacitance between two voltage dividing units formed by Schufrequenzüen in the bridge branch.
  • an induction heating unit is operated in a half-bridge circuit.
  • the induction heating unit is arranged between a voltage divider formed by the heating frequency unit and a voltage divider formed by two resonance capacitances in the bridge branch.
  • the heating frequency units are intended to be operated over a single phase.
  • a single, connected to the phase rectifier is provided by the heating frequency units are supplied with pulsating DC voltage.
  • costs and / or components can be saved.
  • the heating frequency units are designed to operate at least one of the induction heating units, in particular in a boost mode, with a power of at least 3000 W, in particular at least 3500 W and preferably at least 4000W.
  • at least one of the induction heating units is designed to be operated with a power of at least 3000 W, in particular at least 3500 W and preferably at least 4000 W.
  • an increase in comfort can be achieved by a particularly rapid heating.
  • the heating frequency units are designed to provide a total power which is at least 110%, in particular at least 120%, in particular at most 140%, advantageously at most 150%, of a maximum of maximum powers of the induction heating units.
  • increased comfort can be achieved.
  • the induction heating device has at least one further induction heating unit and a switching arrangement which is provided, preferably by switching commands of the control unit, at least three, in particular at least six, advantageously at least ten, different combinations of at least one of the at least two Schufrequenzüen and at least one of the at least three induction heating units directly to each other.
  • the switching arrangement has at least two switching elements, which in particular are both arranged between the first induction heating unit and the first heating frequency unit.
  • the switching elements By arranging the switching elements "between" the heating frequency unit and the induction heating unit, it should be understood in particular that in an operating state in which the induction heating unit is supplied with high-frequency alternating current, the induction heating unit with the switching means in any order on a single contact, preferably a voltage tap, the heating frequency unit are arranged in series.
  • the first switching element with the Schufrequenzü with the first switching element, the second switching element and the second switching element, the induction heating directly connected.
  • the control unit is at least provided to at least two of the induction heating units alternately, preferably periodically alternately, in particular with a period of maximum 7 s, in particular a maximum of 5 s, preferably a maximum of 2 s, to provide about one of the heating frequency units with high-frequency alternating current, in addition in particular, the switching states of the switching arrangement and / or the switching frequency of the heating frequency unit can be changed by the control unit.
  • a flexible, cost-reducing induction heating device can be provided.
  • reduced wear can be achieved by less frequent control of switching elements of the switching arrangement.
  • FIG. 1 shows a formed as an induction hob home appliance 10 with an induction heating device designed as an induction heating 12 with four induction heating 20, 22, 24, 26, each having an induction heating element designed as an inductor.
  • the induction heating units 20, 22, 24, 26 are disposed below a cooktop panel 14.
  • the induction heating device 12 has a power module 18 operated by a single phase 16 of a three-phase in-house connection, which is provided to supply the induction heating units 20, 22, 24, 26 with high-frequency alternating current with a switching frequency between 20 kHz and 100 kHz ,
  • the power module 18 has two heating frequency units 30, 32, which are intended to be operated via the single phase 16 and to supply the induction heating units 20, 22, 24, 26 ( Fig. 2 ).
  • the switching frequency of the heating frequency units 30, 32 is dependent inter alia on a heating power requested for the induction heating unit 20, 22, 24, 26 via an operating unit 28 and a cooking utensil which is located in a cooking zone on the hob plate 14 above the induction heating unit 20, 22, 24, 26, and is determined by a control unit 34 of the induction heater 12.
  • the control unit 34 has an arithmetic unit, a memory unit and an operating program stored in the memory unit, which is intended to be executed by the arithmetic unit.
  • FIG. 2 shows a circuit for the induction heater 12.
  • a voltage applied to a phase 16 between 220 V and 230 V with a mains frequency between 49 Hz and 51 Hz is rectified in a rectifier 36 and stored in a buffer capacity 38 partially.
  • the poles of the buffer capacitor 38 form two external contacts 40, 42 between which a pulsating DC voltage is applied.
  • the Schufrequenzüen 30, 32 are disposed between the outer contacts 40, 42 and convert the pulsating DC voltage into high-frequency alternating current.
  • the Schufrequenztechniken 30, 32 each have two between the outer contacts 40, 42 connected in series, designed as a bidirectional unipolar switch, switching elements 44, 46 each having a parallel-connected damping capacitor 48, 50 on.
  • the switching elements 44, 46 are each formed by an IGBT 52, 54 (insulated gate bipolar transistor) and a parallel connected diode 56, 58.
  • a voltage tap 60, 62 is arranged in each case at a common contact of the two IGBTs 52, 54.
  • the control unit 34 causes by alternating, high-frequency control of the two IGBTs 52, 54 at the voltage tap 60 a high-frequency alternating voltage with pulsating amplitude, which follows a high-frequency alternating current when connecting an induction heating unit 20, 22, 24, 26.
  • the voltage taps 60, 62 of the heating frequency units 30, 32 are connected to a switching arrangement 64 which has four switching elements 66, 68, 70, 72 formed by relays.
  • the switching element 66 is designed as a single-pole power switch and is intended to connect the voltage taps 60, 62 of the heating frequency units directly.
  • the three switching elements 68, 70, 72 are designed as single-pole changeover switches and provided to connect one of the induction heating units directly to the voltage tap 60 of the induction heating unit 30.
  • the switching arrangement 64 is provided by switching commands of the control unit 34 to directly connect eight different combinations of up to two of the two heating frequency units 30, 32 and up to two of the four induction heating units 20, 22, 24, 26.
  • the switching elements 68, 70, 72 each have three contacts and two switching states.
  • the first contact In a first switching state, the first contact is directly connected to the second contact and in a second switching state, the first and the third contact are directly connected (in the illustration, the first contact is arranged on the left and the second contact on the top right).
  • the switching elements 68, 70, 72 are arranged in a cascaded circuit.
  • a first contact of the switching element 68 is connected directly to the voltage tap 60 of the heating frequency unit 30.
  • a second and a third contact of the switching element 68 is in each case directly connected to a first contact of the two switching elements 70, 72.
  • the induction heating units 20, 22, 24, 26 are each directly connected to one of the second or third contacts of the switching elements 70, 72.
  • Each of the induction heating units 20, 22, 24, 26 can thus be directly connected to the heating frequency unit 30 individually by suitable switching states of the switching elements 68, 70, 72. Furthermore, each of the induction heating units 20, 22, 24, 26 may be directly connected in a boost mode to both heating frequency units 30, 32.
  • the Induction heating units 20, 22, 24, 26 are each operated in a half-bridge circuit.
  • the induction heating units 20, 22 and 24, 26 each have a common contact 78, 79 which is in each case directly connected to a resonance unit 80, 81 which is formed by two resonance capacitances 82, 84 and 83, 85 formed from individual capacitors ,
  • the resonant capacitances 82, 84 and 83, 85 are each connected in series and one of the resonant capacitances 82, 83 is connected directly to one of the external contacts 40 and the other of the resonant capacitors 84, 85 is connected directly to the other external contact 42.
  • Both of the resonance capacitances 82, 84 and 83, 85 are each directly connected to the two induction heating units 20, 22 and 24, 26, respectively.
  • the resonance units 80, 81 have capacitances adapted to the induction heating units 20, 22 and 24, 26, respectively.
  • the induction heating device 12 thus has a control unit 34, four induction heating units 20, 22, 24, 26 and two heating frequency units 30, 32.
  • the induction heating unit 20 is designed to supply a power of up to 3600 W to a cooking utensil.
  • the induction heating unit 22 is designed to transmit a power of up to 3000 W to a cooking utensil.
  • the induction heating units 24 and 26 are designed to pass a power of 2000 W each to a cooking utensil.
  • the heating frequency units 30, 32 are designed to provide a total power of 4600W. Each of the heating frequency units 30, 32 is configured to provide a power of 2300W.
  • the heating frequency units 30, 32 are adapted to operate in a boost mode, the induction heating unit 20 with a power of 3600 W. Likewise, the heating frequency units 30, 32 are configured to provide a total power that is 130% of a maximum of maximum powers of the induction heating units 20, 22, 24, 26.
  • the control unit 34 is provided to operate the induction heating units 20, 22, 24, 26 each in a boost mode in an operation mode in which two or more of the induction heating units 20, 22, 24, 26 are alternately operated.
  • the switching element 66 is closed and the heating frequency units 30, 32 are operated at the same frequency, which is dependent on a total requested for the induction heating units power.
  • FIG. 3 shows an exemplary operation for three active induction heating units 20, 22, 24 based on five diagrams.
  • the performances P 30 , P 32 of the heating frequency units 30, 32 are shown and in the lower diagrams in each case the powers P 20 , P 22 , P 24 , which are implemented in the induction heating units 20, 22, 24.
  • the outputs of the heating frequency units 30, 32 outputs P 1 , P 2 are the same size and correspond in their sum to the sum of the induction heating units 20, 22, 24 requested services P 20 ', P 22 ', P 24 '.
  • the switching arrangement 64 is switched so that the induction heating unit 20 is connected directly to the voltage tap 60.
  • the induction heating unit 20 is simultaneously operated by both heating frequency units 30, 32.
  • a second operating section 92 directly following the first operating section 90 the induction heating unit 22 is operated.
  • Starting points 91, 93 of the operating sections 90, 92 are spaced at 100 ms.
  • Between the operating sections 90, 92 is a pause of 7 ms, which serves to switch the switching element 70 so that instead of the induction heating unit 20, the induction heating unit 22 is now connected directly to the voltage tap 60.
  • a third operating section 94 directly following the second operating section 92 the induction heating unit 24 is operated.
  • Starting points 93, 95 of the operating sections 92, 94 are spaced at 800 ms.
  • This mode of operation may also be performed with only two or more than three induction heating units 20, 22, 24, 26. If a sum of the powers required for the induction heating units 20, 22, 24, 26 is less than 600 W, the heating frequency unit 32 is turned off and its direct connection to the voltage tap 60 is interrupted by opening the switching element 66.
  • At least one further heating frequency unit is provided to be connected with its voltage tap via a switching element directly to the voltage tap 60.
  • switching arrangements are conceivable in which find alternative switching arrangements application.
  • switching arrangements are conceivable which can connect each of the induction heating units with any desired heating frequency units.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

Die Erfindung geht aus von einer Induktionsheizvorrichtung nach dem Oberbegriff des Anspruchs 1.The invention is based on an induction heating device according to the preamble of claim 1.

Aus dem Stand der Technik sind Induktionskochfelder bekannt, die eine Steuereinheit, zumindest zwei Heizfrequenzeinheiten und zumindest zwei Induktionsheizeinheiten aufweisen.Induction hobs are known from the prior art, which have a control unit, at least two Heizfrequenzeinheiten and at least two induction heating units.

Dokumente WO 2008/067999 A1 , EP 0 817 531 A2 oder EP 0 844 807 A1 beschreiben Induktionskochvorrichtungen mit einem Boostmodus.Documents WO 2008/067999 A1 . EP 0 817 531 A2 or EP 0 844 807 A1 describe induction cooking devices with a boost mode.

Die Aufgabe der Erfindung besteht insbesondere darin, eine gattungsgemäße Vorrichtung mit erhöhter Effizienz bereitzustellen. Die Aufgabe wird erfindungsgemäß durch die Merkmale des Patentanspruchs 1 gelöst, während vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung den Unteransprüchen entnommen werden können.
Die Erfindung geht aus von einer Induktionsheizvorrichtung, insbesondere einer Induktionskochfeldvorrichtung, mit zumindest einer Steuereinheit, zumindest zwei Heizfrequenzeinheiten und zumindest zwei Induktionsheizeinheiten.
Es wird vorgeschlagen, dass die Steuereinheit dazu vorgesehen ist, in zumindest einem Betriebsmodus, in dem die zumindest zwei Induktionsheizeinheiten abwechselnd betrieben werden, die Induktionsheizeinheiten jeweils in einem Boostmodus zu betreiben. Unter einer "Steuereinheit" soll insbesondere eine elektronische Einheit verstanden werden, die vorzugsweise in einer Steuer- und/oder Regeleinheit einer Induktionsheizvorrichtung zumindest teilweise integriert ist und die vorzugsweise dazu vorgesehen ist, zumindest die Heizfrequenzeinheiten zu steuern und/oder zu regeln. Vorzugsweise umfasst die Steuereinheit eine Recheneinheit und insbesondere zusätzlich zur Recheneinheit eine Speichereinheit mit einem darin gespeicherten Steuer- und/oder Regelprogramm, das dazu vorgesehen ist, von der Recheneinheit ausgeführt zu werden. Unter einer "Heizfrequenzeinheit" soll insbesondere eine elektrische Einheit verstanden werden, die ein oszillierendes elektrisches Signal, vorzugsweise mit einer Heizfrequenz von zumindest 1 kHz, insbesondere von wenigstens 10 kHz, vorteilhaft von mindestens 20 kHz und insbesondere von maximal 100 kHz für eine Induktionsheizeinheit erzeugt. Insbesondere ist die Heizfrequenzeinheit dazu vorgesehen, eine, von der Induktionsheizeinheit geforderte, maximale elektrische Leistung von zumindest 1000 W, insbesondere zumindest 2000 W, vorteilhaft zumindest 3000 W und vorzugsweise zumindest 3500 W bereitzustellen. Die Heizfrequenzeinheit umfasst insbesondere zumindest einen Wechselrichter, der vorzugsweise zumindest zwei, vorzugsweise in Reihe geschaltete, bidirektionale unipolare Schalter, die insbesondere von einem Transistor und einer parallel geschalteten Diode gebildet sind, und besonders vorteilhaft zumindest jeweils einen parallel zu den bidirektionalen unipolaren Schaltern geschaltete Dämpfungskapazität, die insbesondere von zumindest einem Kondensator gebildet ist, aufweist. Hierdurch kann eine hochfrequente Energieversorgung der Induktionsheizeinheit bereitgestellt werden. Ein Spannungsabgriff der Hochfrequenzeinheit ist insbesondere an einer gemeinsamen Kontaktstelle zweier bidirektionaler unipolarer Schalter angeordnet. Unter einer "Induktionsheizeinheit" soll insbesondere eine Einheit mit zumindest einem Induktionsheizelement verstanden werden. Insbesondere werden in einem Betriebszustand, in dem die Induktionsheizeinheit mit hochfrequentem Wechselstrom versorgt wird, alle Induktionsheizelemente der Induktionsheizeinheit, vorzugsweise gleichzeitig, mit hochfrequentem Wechselstrom versorgt. Unter einem "Induktionsheizelement" soll insbesondere ein gewickelter elektrischer Leiter verstanden werden, vorzugsweise in Form einer Kreisscheibe, der in zumindest einem Betriebszustand von hochfrequentem Wechselstrom durchflossen wird. Das Induktionsheizelement ist vorzugsweise dazu vorgesehen, elektrische Energie in ein magnetisches Wechselfeld umzuwandeln, das dazu vorgesehen ist, in einem metallischen, vorzugsweise zumindest teilweise ferromagnetischen, Heizmittel, insbesondere einem Gargeschirr, Wirbelströme und/oder Ummagnetisierungseffekte hervorzurufen, die in Wärme umgewandelt werden. Darunter, dass zumindest zwei Induktionsheizeinheiten "abwechselnd" betrieben werden, soll insbesondere verstanden werden, dass direkt aufeinanderfolgende Betriebsabschnitte unterschiedlicher Induktionsheizeinheiten mit maximal 100 ms, insbesondere maximal 50 ms, vorzugsweise maximal 10 ms beabstandet sind. Vorzugsweise sind Startpunkte von Betriebsabschnitten der gleichen Induktionsheizeinheit mit maximal 10 s, insbesondere maximal 7 s, vorteilhaft maximal 5 s und vorzugsweise maximal 3 s beabstandet. Insbesondere beträgt ein Abstand zweier Startpunkte direkt aufeinanderfolgender Betriebsabschnitte beliebiger Induktionsheizeinheiten ein Vielfaches von 50 ms bzw. ein Vielfaches von 100 ms. Unter einem "Betriebabschnitt" einer Induktionsheizeinheit soll insbesondere ein Zeitraum verstanden werden, in dem die Induktionsheizeinheit kontinuierlich mit einem hochfrequenten Wechselstrom betrieben wird, der insbesondere zumindest eine Heizfrequenz aufweist, die größer als 1 kHz ist, und in dem die Induktionsheizeinheit eine Leistung bezieht, die insbesondere größer als 50 W und vorzugsweise größer als 100 W ist. Unter einem "Boostmodus" soll insbesondere ein Betriebszustand verstanden werden, in dem eine Induktionsheizeinheit von zumindest zwei Heizfrequenzeinheiten, vorzugsweise allen Heizfrequenzeinheiten, gleichzeitig versorgt wird. Insbesondere ist in einem Boostmodus die Induktionsheizeinheit mit den Spannungsabgriffen von zumindest zwei Heizfrequenzeinheiten direkt verbunden. Unter einer "direkten Verbindung" soll insbesondere eine elektrische Verbindung verstanden werden, die, zumindest in einem Betriebszustand mit einem Stromfluss von Wechselstrom über die Verbindung mit einer Heizfrequenz zwischen 1 kHz und 100 kHz, eine Impedanz aufweist, die von ihrem Betrag her kleiner ist als 10 V/A, insbesondere kleiner ist als 1 V/A, vorzugsweise kleiner ist als 0,1 V/A, und deren Betrag insbesondere über einen Heizfrequenzbereich von 1 kHz bis 100 kHz um maximal 100 %, insbesondere maximal 40 %, vorteilhaft maximal 10 % und vorzugsweise maximal 3 % schwankt. Insbesondere ist die Steuereinheit dazu vorgesehen, die zumindest zwei Heizfrequenzeinheiten in einem Boostmodus mit gleicher Heizfrequenz und vorzugsweise gleichzeitig anzusteuern. Insbesondere unterscheiden sich Amplituden der von den zumindest zwei Heizfrequenzeinheiten erzeugten hochfrequenten Wechselströme um weniger als 50 %, insbesondere weniger als 30 %, vorteilhaft weniger als 10 % und vorzugsweise weniger als 5 %. Vorzugsweise sind am nächsten beieinander liegende Maxima der verschiedenen hochfrequenten Wechselströme, die von den zumindest zwei Heizfrequenzeinheiten erzeugt werden, mit weniger als 5 µs, insbesondere weniger als 1 µs, vorteilhaft weniger als 0,5 µs und bevorzugt weniger als 0,1 µs beabstandet. Insbesondere ist die Steuereinheit dazu vorgesehen, eine Anzahl an Heizfrequenzeinheiten, die zu einer Versorgung der zu betreibenden Induktionsheizeinheiten vorgesehen ist, in Abhängigkeit von einer Summe von für die Induktionsheizeinheiten angeforderten Leistungen, zu bestimmen. Insbesondere werden ab einer Gesamtleistung von zumindest 600 W zumindest zwei Heizfrequenzeinheiten und ab einer Gesamtleistung von zumindest 900 W, soweit vorhanden, zumindest drei Heizfrequenzeinheiten genutzt. Insbesondere ist die Steuereinheit in einem Betriebsmodus mit abwechselndem Betrieb der Induktionsheizeinheiten dazu vorgesehen, maximal so viele Heizfrequenzeinheiten, die jeweils eine Minimalleistung von insbesondere zumindest 300 W liefern, zu nutzen, dass vermieden wird, über eine Zeitdauer von mehr als 100 ms weniger als 50 W Leistung abzurufen. Es kann insbesondere eine Kostenersparnis erreicht werden, da zwei Heizfrequenzeinheiten, die dazu vorgesehen sind, maximal eine mittlere Leistung, insbesondere eine Leistung kleiner als 2500 W, vorzugsweise kleiner als 1800 W, bereitzustellen, günstiger sind, als eine Heizfrequenzeinheit, die dazu vorgesehen ist, eine hohe Leitung, insbesondere eine Leistung größer als 3000 W, vorteilhaft größer als 4000W und vorzugsweise größer als 5000 W, bereitzustellen. Insbesondere weisen zumindest zwei Induktionsheizeinheiten einen gemeinsamen Kontakt auf, an dem in zumindest einem Betriebszustand eine Resonanzeinheit angeschlossen ist. Unter einer "Resonanzeinheit" soll insbesondere eine Einheit verstanden werden, die zumindest eine Resonanzkapazität, die vorzugsweise von zumindest einem Kondensator gebildet ist, umfasst, der vorzugsweise von einer Dämpfungskapazität und/oder einer Kapazität, die zu einem Schaltelement parallelgeschaltet ist, verschieden ist. Insbesondere ist eine Resonanzkapazität von einer Kombination aus Reihen- und Parallelschaltungen von mehreren Kondensatoren gebildet. Die Resonanzkapazität ist insbesondere Bestandteil eines elektrischen Schwingkreises, insbesondere eines elektrischen Reihenschwingkreises. Vorzugsweise ist die Resonanzkapazität in zumindest einem Betriebszustand, insbesondere über ein Schaltelement, in Reihe mit der Induktionsheizeinheit geschaltet und ist besonders vorteilhaft dazu vorgesehen, über die Induktionsheizeinheit durch zumindest eine Heizfrequenzeinheit aufgeladen zu werden, insbesondere wenn die Induktionsheizeinheit durch eine Schaltanordnung auf ein höheres elektrisches Potential gelegt wird. Die Resonanzkapazität ist insbesondere auf einer, in Richtung eines Leitungspfads gesehen, von der Frequenzeinheit abgewandten Seite der Induktionsheizeinheit angeordnet. Insbesondere wird eine Induktionsheizeinheit in einer Vollbrückenschaltung betrieben. In einer Vollbrückenschaltung ist die Induktionsheizeinheit gemeinsam mit einer, vorzugsweise in Reihe zur Induktionsheizeinheit geschalteten, Resonanzkapazität zwischen zwei von Heizfrequenzeinheiten gebildeten Spannungsteilern im Brückenzweig angeordnet. Vorzugsweise wird eine Induktionsheizeinheit in einer Halbbrückenschaltung betrieben. In einer Halbbrückenschaltung ist die Induktionsheizeinheit zwischen einem von der Heizfrequenzeinheit gebildeten Spannungsteiler und einem, von zwei Resonanzkapazitäten gebildeten, Spannungsteiler im Brückenzweig angeordnet. Weiterhin kann insbesondere eine höhere Effizienz gegenüber einem Betriebsmodus erreicht werden, in dem eine der Heizfrequenzeinheiten ein der Induktionsheizeinheiten mit geringer Leistung versorgt und die andere Heizfrequenzeinheit eine andere Induktionsheizeinheit mit hoher Leistung versorgt, da in dem vorgeschlagenen Betriebsmodus beide Heizfrequenzeinheiten mit einer mittleren Leistung belastet sind. Weiterhin kann eine Reduktion von akustischen Schwingungen und somit eine Komfortsteigerung erreicht werden.
The object of the invention is in particular to provide a generic device with increased efficiency. The object is achieved by the features of claim 1, while advantageous embodiments and modifications of the invention can be taken from the dependent claims.
The invention is based on an induction heating device, in particular an induction hob device, with at least one control unit, at least two heating frequency units and at least two induction heating units.
It is proposed that the control unit is provided, in at least one operating mode in which the at least two induction heating units are operated alternately, to operate the induction heating units in each case in a boost mode. A "control unit" is to be understood in particular as an electronic unit which is preferably at least partially integrated in a control and / or regulating unit of an induction heating device and which is preferably provided to control and / or regulate at least the heating frequency units. The control unit preferably comprises a computing unit and, in particular in addition to the computing unit, a memory unit with a control and / or regulating program stored therein, which is intended to be executed by the computing unit. A "heating frequency unit" is to be understood in particular as meaning an electrical unit which generates an oscillating electrical signal, preferably with a heating frequency of at least 1 kHz, in particular of at least 10 kHz, advantageously of at least 20 kHz and in particular of not more than 100 kHz for an induction heating unit. In particular, the heating frequency unit is provided to provide a maximum electrical power of at least 1000 W, in particular at least 2000 W, advantageously at least 3000 W, and preferably at least 3500 W, required by the induction heating unit. The heating frequency unit comprises in particular at least one inverter, which preferably has at least two, preferably series-connected, bidirectional unipolar switches, which are in particular formed by a transistor and a diode connected in parallel, and particularly advantageously at least one damping capacitor connected in parallel to the bidirectional unipolar switches, which is in particular formed by at least one capacitor. As a result, a high-frequency power supply of the induction heating unit can be provided. A voltage tap of the radio-frequency unit is arranged in particular at a common contact point of two bidirectional unipolar switches. An "induction heating unit" is to be understood in particular as a unit having at least one induction heating element. In particular, in an operating state in which the induction heating unit is supplied with high-frequency alternating current, all induction heating elements of the induction heating unit, preferably simultaneously, supplied with high-frequency alternating current. An "induction heating element" is to be understood in particular as a wound electrical conductor, preferably in the form of a circular disk through which high-frequency alternating current flows in at least one operating state. The induction heating element is preferably provided to convert electrical energy into an alternating magnetic field, which is intended to cause in a metallic, preferably at least partially ferromagnetic, heating means, in particular cooking utensils, eddy currents and / or remagnetization effects, which are converted into heat. Under the fact that at least two induction heating units are operated "alternately" should be understood in particular that directly successive operating sections of different induction heating units with a maximum of 100 ms, in particular a maximum of 50 ms, preferably a maximum of 10 ms are spaced. Preferably, starting points of operating sections of the same induction heating unit with a maximum of 10 s, in particular a maximum of 7 s, advantageously at most 5 s, and preferably at most 3 s spaced. In particular, a distance between two starting points of directly successive operating sections of any induction heating units is a multiple of 50 ms or a multiple of 100 ms. Under a "operation section" of an induction heating unit, in particular, a period of time in which the induction heating unit is operated continuously with a high-frequency alternating current which in particular has at least one heating frequency which is greater than 1 kHz, and in which the induction heating unit obtains a power, in particular greater than 50 W and preferably greater than 100 W. is. A "boost mode" should in particular be understood to mean an operating state in which an induction heating unit is supplied at the same time by at least two heating-frequency units, preferably all heating-frequency units. In particular, in a boost mode, the induction heating unit is directly connected to the voltage taps of at least two heating frequency units. A "direct connection" is to be understood in particular as meaning an electrical connection which, at least in an operating state with a current flow of alternating current via the connection with a heating frequency between 1 kHz and 100 kHz, has an impedance which is smaller than its magnitude 10 V / A, in particular less than 1 V / A, preferably less than 0.1 V / A, and the amount thereof in particular over a heating frequency range of 1 kHz to 100 kHz by a maximum of 100%, in particular a maximum of 40%, advantageously a maximum 10% and preferably at most 3% varies. In particular, the control unit is provided to control the at least two heating frequency units in a boost mode with the same heating frequency and preferably at the same time. In particular, amplitudes of the high-frequency alternating currents generated by the at least two heating frequency units differ by less than 50%, in particular less than 30%, advantageously less than 10% and preferably less than 5%. Preferably, the closest mutually adjacent maxima of the different high-frequency alternating currents, which are generated by the at least two heating frequency units, are spaced apart by less than 5 μs, in particular less than 1 μs, advantageously less than 0.5 μs and preferably less than 0.1 μs. In particular, the control unit is provided to determine a number of heating frequency units, which is intended to supply the induction heating units to be operated, in dependence on a sum of services requested for the induction heating units. In particular, at least two heating-frequency units are used from a total power of at least 600 W, and from a total power of at least 900 W, if present, at least three heating-frequency units. In particular, in an operating mode with alternating operation of the induction heating units, the control unit is provided to use a maximum of so many heating frequency units, each of which supplies a minimum power of at least 300 W in particular it is avoided to recall less than 50 W of power over a period of more than 100 ms. In particular, a cost saving can be achieved, since two heating-frequency units which are intended to provide at most an average power, in particular a power less than 2500 W, preferably less than 1800 W, are more favorable than a heating-frequency unit which is intended to a high line, in particular a power greater than 3000 W, advantageously greater than 4000W and preferably greater than 5000 W to provide. In particular, at least two induction heating units have a common contact, to which a resonance unit is connected in at least one operating state. A "resonance unit" is to be understood in particular as a unit which comprises at least one resonance capacitance, which is preferably formed by at least one capacitor, which differs preferably from a damping capacity and / or a capacitance which is connected in parallel with a switching element. In particular, a resonant capacitance is formed by a combination of series and parallel circuits of a plurality of capacitors. The resonance capacity is in particular part of an electrical resonant circuit, in particular of an electrical series resonant circuit. Preferably, the resonance capacitance in at least one operating state, in particular via a switching element, is connected in series with the induction heating unit and is particularly advantageously intended to be charged via the induction heating unit by at least one heating frequency unit, in particular if the induction heating unit is switched to a higher electrical potential by a switching arrangement is placed. The resonance capacity is arranged in particular on a side of the induction heating unit facing away from the frequency unit, viewed in the direction of a line path. In particular, an induction heating unit is operated in a full bridge circuit. In a full-bridge circuit, the induction heating unit is arranged together with a, preferably in series with the induction heating unit, resonant capacitance between two voltage dividing units formed by Heizfrequenzeinheiten in the bridge branch. Preferably, an induction heating unit is operated in a half-bridge circuit. In a half-bridge circuit, the induction heating unit is arranged between a voltage divider formed by the heating frequency unit and a voltage divider formed by two resonance capacitances in the bridge branch. Furthermore, in particular a higher efficiency compared to an operating mode can be achieved, in which one of the heating frequency units one of the induction heating units supplied with low power and the other heating frequency unit provides another induction heating unit with high power, since in the proposed mode of operation both heating frequency units are loaded with an average power. Furthermore, a reduction of acoustic vibrations and thus an increase in comfort can be achieved.

Weiterhin wird vorgeschlagen, dass die Heizfrequenzeinheiten dazu vorgesehen sind, über eine einzelne Phase betrieben zu werden. Insbesondere ist ein einzelner, an die Phase angeschlossener Gleichrichter vorgesehen, von dem die Heizfrequenzeinheiten mit pulsierender Gleichspannung versorgt werden. Es können insbesondere Kosten und/oder Bauteile gespart werden.Furthermore, it is proposed that the heating frequency units are intended to be operated over a single phase. In particular, a single, connected to the phase rectifier is provided by the heating frequency units are supplied with pulsating DC voltage. In particular, costs and / or components can be saved.

In einer weiteren Ausgestaltung der Erfindung wird vorgeschlagen, dass die Heizfrequenzeinheiten dazu ausgelegt sind, zumindest eine der Induktionsheizeinheiten, insbesondere in einem Boostmodus, mit einer Leistung von zumindest 3000 W, insbesondere zumindest 3500 W und vorzugsweise zumindest 4000 W, zu betreiben. Insbesondere ist zumindest eine der Induktionsheizeinheiten dazu ausgelegt, mit einer Leistung von zumindest 3000 W, insbesondere zumindest 3500 W und vorzugsweise zumindest 4000 W betrieben zu werden. Es kann insbesondere eine Komfortsteigerung durch eine besonders schnelle Erwärmung erreicht werden.In a further embodiment of the invention, it is proposed that the heating frequency units are designed to operate at least one of the induction heating units, in particular in a boost mode, with a power of at least 3000 W, in particular at least 3500 W and preferably at least 4000W. In particular, at least one of the induction heating units is designed to be operated with a power of at least 3000 W, in particular at least 3500 W and preferably at least 4000 W. In particular, an increase in comfort can be achieved by a particularly rapid heating.

Weiterhin wird vorgeschlagen, dass die Heizfrequenzeinheiten dazu ausgelegt sind, eine Gesamtleistung bereitzustellen, die zumindest 110 %, insbesondere zumindest 120 %, insbesondere maximal 140 %, vorteilhaft maximal 150%, eines Maximums von Maximalleistungen der Induktionsheizeinheiten beträgt. Es kann insbesondere ein erhöhter Komfort erreicht werden. Insbesondere kann erreicht werden, dass bei einer maximalen Belastung der Induktionsheizeinheit mit der größten Maximalleistung genügend übrige Leistung zur Verfügung steht, so dass zumindest eine andere Induktionsheizeinheit zumindest mit einer Warmhalteleistung versorgt werden kann.Furthermore, it is proposed that the heating frequency units are designed to provide a total power which is at least 110%, in particular at least 120%, in particular at most 140%, advantageously at most 150%, of a maximum of maximum powers of the induction heating units. In particular, increased comfort can be achieved. In particular, it can be achieved that, given a maximum load of the induction heating unit with the greatest maximum power, sufficient remaining power is available, so that at least one other induction heating unit can be supplied with at least one heat retention capacity.

Es wird weiterhin vorgeschlagen, dass die Induktionsheizvorrichtung zumindest eine weitere Induktionsheizeinheit und eine Schaltanordnung aufweist, die dazu vorgesehen ist, vorzugsweise durch Schaltbefehle der Steuereinheit, zumindest drei, insbesondere zumindest sechs, vorteilhaft zumindest zehn, unterschiedliche Kombinationen von wenigstens einer der zumindest zwei Heizfrequenzeinheiten und zumindest einer der zumindest drei Induktionsheizeinheiten direkt miteinander zu verbinden. Insbesondere weist die Schaltanordnung zumindest zwei Schaltelemente auf, die insbesondere beide zwischen der ersten Induktionsheizeinheit und der ersten Heizfrequenzeinheit angeordnet sind. Darunter, dass die Schaltelemente "zwischen" der Heizfrequenzeinheit und der Induktionsheizeinheit angeordnet sind, soll insbesondere verstanden werden, dass in einem Betriebszustand, in dem die Induktionsheizeinheit mit hochfrequentem Wechselstrom versorgt wird, die Induktionsheizeinheit mit den Schaltmitteln in beliebiger Reihenfolge an einem einzelnen Kontakt, vorzugsweise einem Spannungsabgriff, der Heizfrequenzeinheit in Reihenschaltung angeordnet sind. Vorzugsweise ist in einem beliebigen Betriebszustand das erste Schaltelement mit der Heizfrequenzeinheit, mit dem ersten Schaltelement das zweite Schaltelement und mit dem zweiten Schaltelement die Induktionsheizeinheit direkt verbunden. Vorzugsweise ist die Steuereinheit zumindest dazu vorgesehen, wenigstens zwei der Induktionsheizeinheiten abwechselnd, vorzugsweise periodisch abwechselnd, insbesondere mit einer Periodendauer die maximal 7 s, insbesondere maximal 5 s, vorzugsweise maximal 2 s beträgt, über eine der Heizfrequenzeinheiten mit hochfrequentem Wechselstrom zu versorgen, wobei dazu insbesondere die Schaltzustände der Schaltanordnung und/oder die Schaltfrequenz der Heizfrequenzeinheit durch die Steuereinheit verändert werden. Es kann insbesondere eine flexible, Kosten reduzierende Induktionsheizvorrichtung bereitgestellt werden. Vorteilhaft kann durch Anwendung des vorgeschlagenen Betriebsmodus in einer derartigen Anwendung ein verringerter Verschleiß durch seltenere Ansteuerung von Schaltelementen der Schaltanordnung erreicht werden.It is further proposed that the induction heating device has at least one further induction heating unit and a switching arrangement which is provided, preferably by switching commands of the control unit, at least three, in particular at least six, advantageously at least ten, different combinations of at least one of the at least two Heizfrequenzeinheiten and at least one of the at least three induction heating units directly to each other. In particular, the switching arrangement has at least two switching elements, which in particular are both arranged between the first induction heating unit and the first heating frequency unit. By arranging the switching elements "between" the heating frequency unit and the induction heating unit, it should be understood in particular that in an operating state in which the induction heating unit is supplied with high-frequency alternating current, the induction heating unit with the switching means in any order on a single contact, preferably a voltage tap, the heating frequency unit are arranged in series. Preferably, in any operating state, the first switching element with the Heizfrequenzeinheit, with the first switching element, the second switching element and the second switching element, the induction heating directly connected. Preferably, the control unit is at least provided to at least two of the induction heating units alternately, preferably periodically alternately, in particular with a period of maximum 7 s, in particular a maximum of 5 s, preferably a maximum of 2 s, to provide about one of the heating frequency units with high-frequency alternating current, in addition in particular, the switching states of the switching arrangement and / or the switching frequency of the heating frequency unit can be changed by the control unit. In particular, a flexible, cost-reducing induction heating device can be provided. Advantageously, by using the proposed operating mode in such an application, reduced wear can be achieved by less frequent control of switching elements of the switching arrangement.

Weitere Vorteile ergeben sich aus der folgenden Zeichnungsbeschreibung. In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Die Zeichnung, die Beschreibung und die Ansprüche enthalten zahlreiche Merkmale in Kombination. Der Fachmann wird die Merkmale zweckmäßigerweise auch einzeln betrachten und zu sinnvollen weiteren Kombinationen zusammenfassen.Further advantages emerge from the following description of the drawing. In the drawings, embodiments of the invention are shown. The drawing, the description and the claims contain numerous features in combination. The person skilled in the art will expediently also consider the features individually and combine them into meaningful further combinations.

Es zeigen:

Fig. 1
eine schematische Darstellung eines Induktionskochfelds mit einer erfindungsgemäßen Induktionsheizvorrichtung in einer Ansicht von oben,
Fig. 2
eine erfindungsgemäße Induktionsheizvorrichtung in einer schematischen Darstellung und
Fig. 3
einen schematischen Betriebsablauf.
Show it:
Fig. 1
a schematic representation of an induction hob with an induction heating device according to the invention in a view from above,
Fig. 2
an induction heater according to the invention in a schematic representation and
Fig. 3
a schematic operation.

Figur 1 zeigt ein als Induktionskochfeld ausgebildetes Hausgerät 10 mit einer als Induktionskochfeldvorrichtung ausgebildeten Induktionsheizvorrichtung 12 mit vier Induktionsheizeinheiten 20, 22, 24, 26, die jeweils ein als Induktor ausgebildetes Induktionsheizelement aufweisen. Die Induktionsheizeinheiten 20, 22, 24, 26 sind unter einer Kochfeldplatte 14 angeordnet. Weiterhin weist die Induktionsheizvorrichtung 12 ein von einer einzelnen Phase 16 eines Drei-Phasen-Hausanschlusses betriebenes Leistungsmodul 18 auf, das dazu vorgesehen ist, die Induktionsheizeinheiten 20, 22, 24, 26 mit hochfrequentem Wechselstrom mit einer Schaltfrequenz zwischen 20 kHz und 100 kHz zu versorgen. Dazu weist das Leistungsmodul 18 zwei Heizfrequenzeinheiten 30, 32 auf, die dazu vorgesehen sind, über die einzelne Phase 16 betrieben zu werden und die Induktionsheizeinheiten 20, 22, 24, 26 zu versorgen (Fig. 2). Die Schaltfrequenz der Heizfrequenzeinheiten 30, 32 ist unter anderem abhängig von einer für die Induktionsheizeinheit 20, 22, 24, 26 über eine Bedieneinheit 28 angeforderten Heizleistung und einem Gargeschirr, das in einer Kochzone auf der Kochfeldplatte 14 über der Induktionsheizeinheit 20, 22, 24, 26 angeordnet ist, und wird durch eine Steuereinheit 34 der Induktionsheizvorrichtung 12 bestimmt. Die Steuereinheit 34 weist eine Recheneinheit, eine Speichereinheit und ein in der Speichereinheit hinterlegtes Betriebsprogramm auf, das dazu vorgesehen ist, von der Recheneinheit ausgeführt zu werden. FIG. 1 shows a formed as an induction hob home appliance 10 with an induction heating device designed as an induction heating 12 with four induction heating 20, 22, 24, 26, each having an induction heating element designed as an inductor. The induction heating units 20, 22, 24, 26 are disposed below a cooktop panel 14. Furthermore, the induction heating device 12 has a power module 18 operated by a single phase 16 of a three-phase in-house connection, which is provided to supply the induction heating units 20, 22, 24, 26 with high-frequency alternating current with a switching frequency between 20 kHz and 100 kHz , For this purpose, the power module 18 has two heating frequency units 30, 32, which are intended to be operated via the single phase 16 and to supply the induction heating units 20, 22, 24, 26 ( Fig. 2 ). The switching frequency of the heating frequency units 30, 32 is dependent inter alia on a heating power requested for the induction heating unit 20, 22, 24, 26 via an operating unit 28 and a cooking utensil which is located in a cooking zone on the hob plate 14 above the induction heating unit 20, 22, 24, 26, and is determined by a control unit 34 of the induction heater 12. The control unit 34 has an arithmetic unit, a memory unit and an operating program stored in the memory unit, which is intended to be executed by the arithmetic unit.

Figur 2 zeigt eine Schaltung für die Induktionsheizvorrichtung 12. Eine an einer Phase 16 anliegende Netzspannung zwischen 220 V und 230 V mit einer Netzfrequenz zwischen 49 Hz und 51 Hz wird in einem Gleichrichter 36 gleichgerichtet und in einer Pufferkapazität 38 teilweise gespeichert. Die Pole der Pufferkapazität 38 bilden zwei Außenkontakte 40, 42 zwischen denen eine pulsierende Gleichspannung anliegt. Die Heizfrequenzeinheiten 30, 32 sind zwischen den Außenkontakten 40, 42 angeordnet und wandeln die pulsierende Gleichspannung in hochfrequenten Wechselstrom um. Die Heizfrequenzeinheiten 30, 32 weisen dazu jeweils zwei zwischen den Außenkontakten 40, 42 in Reihe geschaltete, als bidirektionale unipolare Schalter ausgebildete, Schaltelemente 44, 46 mit jeweils einem parallelgeschalteten Dämpfungskondensator 48, 50 auf. Die Schaltelemente 44, 46 sind jeweils von einem IGBT 52, 54 (Bipolartransistor mit isolierter Gate-Elektrode) und einer parallelgeschalteten Diode 56, 58 gebildet. Ein Spannungsabgriff 60, 62 ist jeweils an einem gemeinsamen Kontakt der beiden IGBTs 52, 54 angeordnet. Die Steuereinheit 34 verursacht durch abwechselnde, hochfrequente Ansteuerung der beiden IGBTs 52, 54 am Spannungsabgriff 60 eine hochfrequente Wechselspannung mit pulsierender Amplitude, der bei Anschluss einer Induktionsheizeinheit 20, 22, 24, 26 ein hochfrequenter Wechselstrom folgt. Die Spannungsabgriffe 60, 62 der Heizfrequenzeinheiten 30, 32 sind mit einer Schaltanordnung 64 verbunden, die vier von Relais gebildete Schaltelemente 66, 68, 70, 72 aufweist. Das Schaltelement 66 ist als einpoliger Einschalter ausgebildet und ist dazu vorgesehen, die Spannungsabgriffe 60, 62 der Heizfrequenzeinheiten direkt zu verbinden. Die drei Schaltelemente 68, 70, 72 sind als einpolige Wechselschalter ausgebildet und dazu vorgesehen, eine der Induktionsheizeinheiten mit dem Spannungsabgriff 60 der Induktionsheizeinheit 30 direkt zu verbinden. Die Schaltanordnung 64 ist durch Schaltbefehle der Steuereinheit 34 dazu vorgesehen, acht unterschiedliche Kombinationen von bis zu zwei der zwei Heizfrequenzeinheiten 30, 32 und bis zu zwei der vier Induktionsheizeinheiten 20, 22, 24, 26 direkt miteinander zu verbinden. Die Schaltelemente 68, 70, 72 weisen jeweils drei Kontakte und zwei Schaltzustände auf. In einem ersten Schaltzustand ist der erste Kontakt mit dem zweiten Kontakt direkt verbunden und in einem zweiten Schaltzustand sind der erste und der dritte Kontakt direkt verbunden (in der Darstellung ist der erste Kontakt jeweils links und der zweite Kontakt rechts oben angeordnet). Die Schaltelemente 68, 70, 72 sind in einer kaskadierten Schaltung angeordnet. Ein erster Kontakt des Schaltelements 68 ist mit dem Spannungsabgriff 60 der Heizfrequenzeinheit 30 direkt verbunden. Ein zweiter und ein dritter Kontakt des Schaltelements 68 ist jeweils mit einem ersten Kontakt der beiden Schaltelemente 70, 72 direkt verbunden. Die Induktionsheizeinheiten 20, 22, 24, 26 sind jeweils mit einem der zweiten oder dritten Kontakte der Schaltelemente 70, 72 direkt verbunden. Jede der Induktionsheizeinheiten 20, 22, 24, 26 kann so durch geeignete Schaltzustände der Schaltelemente 68, 70, 72 einzeln mit der Heizfrequenzeinheit 30 direkt verbunden werden. Weiterhin kann jede der Induktionsheizeinheiten 20, 22, 24, 26 in einem Boostmodus mit beiden Heizfrequenzeinheiten 30, 32 direkt verbunden sein. Die Induktionsheizeinheiten 20, 22, 24, 26 werden jeweils in einer Halbbrückenschaltung betrieben. Die Induktionsheizeinheiten 20, 22 bzw. 24, 26 weisen jeweils einen gemeinsamen Kontakt 78, 79 auf, der jeweils direkt mit einer Resonanzeinheit 80, 81 verbunden ist, die von zwei, aus einzelnen Kondensatoren gebildeten Resonanzkapazitäten 82, 84 und 83, 85 gebildet ist. Die Resonanzkapazitäten 82, 84 bzw. 83, 85 sind jeweils in Reihe geschaltet und eine der Resonanzkapazitäten 82, 83 ist direkt mit einem der Außenkontakte 40 verbunden und die andere der Resonanzkapazitäten 84, 85 ist direkt mit dem anderen Außenkontakt 42 verbunden. Beide der Resonanzkapazitäten 82, 84 bzw. 83, 85 sind jeweils direkt mit den zwei Induktionsheizeinheiten 20, 22 bzw. 24, 26 verbunden. Die Resonanzeinheiten 80, 81 weisen an die Induktionsheizeinheiten 20, 22 bzw. 24, 26 angepasste Kapazitäten auf. Die Induktionsheizvorrichtung 12 weist somit eine Steuereinheit 34, vier Induktionsheizeinheiten 20, 22, 24, 26 und zwei Heizfrequenzeinheiten 30, 32 auf. Die Induktionsheizeinheit 20 ist dazu ausgelegt, eine Leistung von bis zu 3600 W an ein Gargeschirr weiterzugeben. Die Induktionsheizeinheit 22 ist dazu ausgelegt eine Leistung von bis zu 3000 W an ein Gargeschirr weiterzugeben. Die Induktionsheizeinheiten 24 und 26 sind dazu ausgelegt, jeweils eine Leistung von 2000 W an ein Gargeschirr weiterzugeben. Die Heizfrequenzeinheiten 30, 32 sind dazu ausgelegt, eine Gesamtleistung von 4600 W bereitzustellen. Jeder der Heizfrequenzeinheiten 30, 32 ist dazu ausgelegt, eine Leistung von 2300 W bereitstellen. Demnach sind die Heizfrequenzeinheiten 30, 32 dazu ausgelegt, in einem Boostmodus, die Induktionsheizeinheit 20 mit einer Leistung von 3600 W zu betreiben. Ebenso sind die Heizfrequenzeinheiten 30, 32 dazu ausgelegt, eine Gesamtleistung bereitzustellen, die 130% eines Maximums von Maximalleistungen der Induktionsheizeinheiten 20, 22, 24, 26 beträgt. FIG. 2 shows a circuit for the induction heater 12. A voltage applied to a phase 16 between 220 V and 230 V with a mains frequency between 49 Hz and 51 Hz is rectified in a rectifier 36 and stored in a buffer capacity 38 partially. The poles of the buffer capacitor 38 form two external contacts 40, 42 between which a pulsating DC voltage is applied. The Heizfrequenzeinheiten 30, 32 are disposed between the outer contacts 40, 42 and convert the pulsating DC voltage into high-frequency alternating current. The Heizfrequenzeinheiten 30, 32 each have two between the outer contacts 40, 42 connected in series, designed as a bidirectional unipolar switch, switching elements 44, 46 each having a parallel-connected damping capacitor 48, 50 on. The switching elements 44, 46 are each formed by an IGBT 52, 54 (insulated gate bipolar transistor) and a parallel connected diode 56, 58. A voltage tap 60, 62 is arranged in each case at a common contact of the two IGBTs 52, 54. The control unit 34 causes by alternating, high-frequency control of the two IGBTs 52, 54 at the voltage tap 60 a high-frequency alternating voltage with pulsating amplitude, which follows a high-frequency alternating current when connecting an induction heating unit 20, 22, 24, 26. The voltage taps 60, 62 of the heating frequency units 30, 32 are connected to a switching arrangement 64 which has four switching elements 66, 68, 70, 72 formed by relays. The switching element 66 is designed as a single-pole power switch and is intended to connect the voltage taps 60, 62 of the heating frequency units directly. The three switching elements 68, 70, 72 are designed as single-pole changeover switches and provided to connect one of the induction heating units directly to the voltage tap 60 of the induction heating unit 30. The switching arrangement 64 is provided by switching commands of the control unit 34 to directly connect eight different combinations of up to two of the two heating frequency units 30, 32 and up to two of the four induction heating units 20, 22, 24, 26. The switching elements 68, 70, 72 each have three contacts and two switching states. In a first switching state, the first contact is directly connected to the second contact and in a second switching state, the first and the third contact are directly connected (in the illustration, the first contact is arranged on the left and the second contact on the top right). The switching elements 68, 70, 72 are arranged in a cascaded circuit. A first contact of the switching element 68 is connected directly to the voltage tap 60 of the heating frequency unit 30. A second and a third contact of the switching element 68 is in each case directly connected to a first contact of the two switching elements 70, 72. The induction heating units 20, 22, 24, 26 are each directly connected to one of the second or third contacts of the switching elements 70, 72. Each of the induction heating units 20, 22, 24, 26 can thus be directly connected to the heating frequency unit 30 individually by suitable switching states of the switching elements 68, 70, 72. Furthermore, each of the induction heating units 20, 22, 24, 26 may be directly connected in a boost mode to both heating frequency units 30, 32. The Induction heating units 20, 22, 24, 26 are each operated in a half-bridge circuit. The induction heating units 20, 22 and 24, 26 each have a common contact 78, 79 which is in each case directly connected to a resonance unit 80, 81 which is formed by two resonance capacitances 82, 84 and 83, 85 formed from individual capacitors , The resonant capacitances 82, 84 and 83, 85 are each connected in series and one of the resonant capacitances 82, 83 is connected directly to one of the external contacts 40 and the other of the resonant capacitors 84, 85 is connected directly to the other external contact 42. Both of the resonance capacitances 82, 84 and 83, 85 are each directly connected to the two induction heating units 20, 22 and 24, 26, respectively. The resonance units 80, 81 have capacitances adapted to the induction heating units 20, 22 and 24, 26, respectively. The induction heating device 12 thus has a control unit 34, four induction heating units 20, 22, 24, 26 and two heating frequency units 30, 32. The induction heating unit 20 is designed to supply a power of up to 3600 W to a cooking utensil. The induction heating unit 22 is designed to transmit a power of up to 3000 W to a cooking utensil. The induction heating units 24 and 26 are designed to pass a power of 2000 W each to a cooking utensil. The heating frequency units 30, 32 are designed to provide a total power of 4600W. Each of the heating frequency units 30, 32 is configured to provide a power of 2300W. Thus, the heating frequency units 30, 32 are adapted to operate in a boost mode, the induction heating unit 20 with a power of 3600 W. Likewise, the heating frequency units 30, 32 are configured to provide a total power that is 130% of a maximum of maximum powers of the induction heating units 20, 22, 24, 26.

Die Steuereinheit 34 ist dazu vorgesehen, in einem Betriebsmodus, in dem zwei oder mehr der Induktionsheizeinheiten 20, 22, 24, 26 abwechselnd betrieben werden, die Induktionsheizeinheiten 20, 22, 24, 26 jeweils in einem Boostmodus zu betreiben. Dazu ist das Schaltelement 66 geschlossen und die Heizfrequenzeinheiten 30, 32 werden bei gleicher Frequenz, die von einer für die Induktionsheizeinheiten insgesamt angeforderten Leistung abhängig ist, betrieben.The control unit 34 is provided to operate the induction heating units 20, 22, 24, 26 each in a boost mode in an operation mode in which two or more of the induction heating units 20, 22, 24, 26 are alternately operated. For this purpose, the switching element 66 is closed and the heating frequency units 30, 32 are operated at the same frequency, which is dependent on a total requested for the induction heating units power.

Figur 3 zeigt einen beispielhaften Betriebsablauf für drei aktive Induktionsheizeinheiten 20, 22, 24 anhand von fünf Diagrammen. In einem oberen und einem mittleren Diagramm sind die Leistungen P30, P32 der Heizfrequenzeinheiten 30, 32 dargestellt und in den unteren Diagrammen jeweils die Leistungen P20, P22, P24, die in den Induktionsheizeinheiten 20, 22, 24 umgesetzt werden. Die von den Heizfrequenzeinheiten 30, 32 abgegebenen Leistungen P1, P2 sind gleich groß und entsprechen in ihrer Summe der Summe der für die Induktionsheizeinheiten 20, 22, 24 angeforderten Leistungen P20', P22', P24'. In einem ersten Betriebsabschnitt 90 ist die Schaltanordnung 64 so geschaltet, dass die Induktionsheizeinheit 20 direkt mit dem Spannungsabgriff 60 verbunden ist. Die Induktionsheizeinheit 20 wird gleichzeitig von beiden Heizfrequenzeinheiten 30, 32 betrieben. In einem direkt auf den ersten Betriebsabschnitt 90 folgenden zweiten Betriebsabschnitt 92 wird das Induktionsheizeinheit 22 betrieben. Startpunkte 91, 93 der Betriebsabschnitte 90, 92 sind mit 100 ms beabstandet. Zwischen den Betriebsabschnitten 90, 92 liegt eine Pause von 7 ms, die dazu dient, das Schaltelement 70 umzuschalten, damit statt der Induktionsheizeinheit 20 die Induktionsheizeinheit 22 nun direkt mit dem Spannungsabgriff 60 verbunden ist. In einem direkt auf den zweiten Betriebsabschnitt 92 folgenden dritten Betriebsabschnitt 94 wird das Induktionsheizeinheit 24 betrieben. Startpunkte 93, 95 der Betriebsabschnitte 92, 94 sind mit 800 ms beabstandet. Zwischen den Betriebsabschnitten 92, 94 liegt eine Pause von 7 ms, die dazu dient, die Schaltelemente 68 und 72 so zu schalten, dass statt der Induktionsheizeinheit 22 die Induktionsheizeinheit 24 nun direkt mit dem Spannungsabgriff 60 verbunden ist. Auf den Betriebsabschnitt 94 folgt nach einer 7 ms Pause, zur Anpassung der Schaltanordnung 64, zyklisch erneut der erste Betriebsabschnitt 90. Ein gesamter Zyklus hat die Länge 2 s. FIG. 3 shows an exemplary operation for three active induction heating units 20, 22, 24 based on five diagrams. In an upper and a middle diagram the performances P 30 , P 32 of the heating frequency units 30, 32 are shown and in the lower diagrams in each case the powers P 20 , P 22 , P 24 , which are implemented in the induction heating units 20, 22, 24. The outputs of the heating frequency units 30, 32 outputs P 1 , P 2 are the same size and correspond in their sum to the sum of the induction heating units 20, 22, 24 requested services P 20 ', P 22 ', P 24 '. In a first operating section 90, the switching arrangement 64 is switched so that the induction heating unit 20 is connected directly to the voltage tap 60. The induction heating unit 20 is simultaneously operated by both heating frequency units 30, 32. In a second operating section 92 directly following the first operating section 90, the induction heating unit 22 is operated. Starting points 91, 93 of the operating sections 90, 92 are spaced at 100 ms. Between the operating sections 90, 92 is a pause of 7 ms, which serves to switch the switching element 70 so that instead of the induction heating unit 20, the induction heating unit 22 is now connected directly to the voltage tap 60. In a third operating section 94 directly following the second operating section 92, the induction heating unit 24 is operated. Starting points 93, 95 of the operating sections 92, 94 are spaced at 800 ms. Between the operating sections 92, 94 is a pause of 7 ms, which serves to switch the switching elements 68 and 72 so that instead of the induction heating unit 22, the induction heating unit 24 is now connected directly to the voltage tap 60. After a 7 ms pause, to adapt the switching arrangement 64, the operating section 94 is followed cyclically again by the first operating section 90. An entire cycle has the length 2 s.

Dieser Betriebsmodus kann ebenso mit nur zwei oder mehr als drei Induktionsheizeinheiten 20, 22, 24, 26 durchgeführt werden. Liegt eine Summe der für die Induktionsheizeinheiten 20, 22, 24, 26 angeforderten Leistungen unter 600 W wird die Heizfrequenzeinheit 32 abgestellt und deren direkte Verbindung zum Spannungsabgriff 60 durch Öffnen des Schaltelements 66 unterbrochen.This mode of operation may also be performed with only two or more than three induction heating units 20, 22, 24, 26. If a sum of the powers required for the induction heating units 20, 22, 24, 26 is less than 600 W, the heating frequency unit 32 is turned off and its direct connection to the voltage tap 60 is interrupted by opening the switching element 66.

In einer alternativen Ausgestaltung ist zumindest eine weitere Heizfrequenzeinheit dazu vorgesehen, mit ihrem Spannungsabgriff über ein Schaltelement direkt mit dem Spannungsabgriff 60 verbunden zu werden. Weiterhin sind Ausgestaltungen denkbar, in denen alternative Schaltanordnungen Anwendung finden. Insbesondere sind Schaltanordnungen denkbar, die jede der Induktionsheizeinheiten mit beliebigen Heizfrequenzeinheiten verbinden können. Bezugszeichen 10 Hausgerät 62 Spannungsabgriff 12 Induktionsheizvorrichtung 64 Schaltanordnung 14 Kochfeldplatte 66 Schaltelement 16 Phase 68 Schaltelement 18 Leistungsmodul 70 Schaltelement 20 Induktionsheizeinheit 72 Schaltelement 22 Induktionsheizeinheit 74 Schaltelement 24 Induktionsheizeinheit 76 Schaltelement 26 Induktionsheizeinheit 78 gemeinsamer Kontakt 28 Bedieneinheit 79 gemeinsamer Kontakt 30 Heizfrequenzeinheit 80 Resonanzeinheit 32 Heizfrequenzeinheit 81 Resonanzeinheit 34 Steuereinheit 82 Resonanzkapazität 36 Gleichrichter 83 Resonanzkapazität 38 Pufferkapazität 84 Resonanzkapazität 40 Außenkontakt 85 Resonanzkapazität 42 Außenkontakt 90 Betriebsabschnitt 44 Schaltelement 91 Startpunkt 46 Schaltelement 92 Betriebsabschnitt 48 Dämpfungskondensator 93 Startpunkt 50 Dämpfungskondensator 94 Betriebsabschnitt 52 IGBT 95 Startpunkt 54 IGBT 56 Diode 58 Diode 60 Spannungsabgriff In an alternative embodiment, at least one further heating frequency unit is provided to be connected with its voltage tap via a switching element directly to the voltage tap 60. Furthermore, embodiments are conceivable in which find alternative switching arrangements application. In particular, switching arrangements are conceivable which can connect each of the induction heating units with any desired heating frequency units. reference numeral 10 household appliance 62 voltage tap 12 induction heating 64 switching arrangement 14 Hotplate 66 switching element 16 phase 68 switching element 18 power module 70 switching element 20 induction heating 72 switching element 22 induction heating 74 switching element 24 induction heating 76 switching element 26 induction heating 78 common contact 28 operating unit 79 common contact 30 Heizfrequenzeinheit 80 resonance unit 32 Heizfrequenzeinheit 81 resonance unit 34 control unit 82 resonant capacitance 36 rectifier 83 resonant capacitance 38 buffering capacity 84 resonant capacitance 40 outside Contact 85 resonant capacitance 42 outside Contact 90 operating section 44 switching element 91 starting point 46 switching element 92 operating section 48 snubber capacitor 93 starting point 50 snubber capacitor 94 operating section 52 IGBT 95 starting point 54 IGBT 56 diode 58 diode 60 voltage tap

Claims (5)

  1. Induction hob apparatus with at least one control unit (34), at least two heating frequency units (30, 32) and at least two induction heating units (20, 22, 24, 26), characterised in that the control unit (34) is provided, in at least one operating mode in which the at least two induction heating units (20, 22, 24, 26) are operated in an alternating manner, to operate the induction heating units (20, 22, 24, 26) in a boost mode in each case.
  2. Induction hob apparatus according to claim 1, characterised in that the heating frequency units (30, 32) are provided to be operated over a single phase (16).
  3. Induction hob apparatus according to one of the preceding claims, characterised in that the heating frequency units (30, 32) are configured to operate at least one of the induction heating units (20, 22, 24, 26) with a power of at least 2900 W.
  4. Induction hob apparatus according to one of the preceding claims, characterised in that the heating frequency units (30, 32) are configured to supply an overall power which amounts to at least 110% of a maximum of maximum powers of the induction heating units (20, 22, 24, 26).
  5. Induction hob apparatus according to one of the preceding claims, characterised by at least one further induction heating unit (20, 22, 24, 26) and a circuit arrangement (64), which is provided to directly connect at least three different combinations of at least one of the at least two heating frequency units (30, 32) and at least one of the at least three induction heating units (20, 22, 24, 26) to one another by means of switching commands of a control unit (34).
EP12713358.5A 2011-03-30 2012-03-19 Induction heating device Active EP2692203B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201130495 2011-03-30
PCT/IB2012/051307 WO2012131528A1 (en) 2011-03-30 2012-03-19 Induction heating device

Publications (2)

Publication Number Publication Date
EP2692203A1 EP2692203A1 (en) 2014-02-05
EP2692203B1 true EP2692203B1 (en) 2016-05-25

Family

ID=45937489

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12713358.5A Active EP2692203B1 (en) 2011-03-30 2012-03-19 Induction heating device

Country Status (3)

Country Link
EP (1) EP2692203B1 (en)
ES (1) ES2575091T3 (en)
WO (1) WO2012131528A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2128941B1 (en) * 1996-06-26 2000-01-16 Balay Sa INVERTER CIRCUIT OF VARIABLE CONFIGURATION.
ES2128958B1 (en) * 1996-11-21 2000-01-16 Balay Sa POWER CONTROL PROCEDURE IN POWERED INDUCTION COOKERS THROUGH RECONFIGURABLE INVERTERS.
DE102006058874A1 (en) * 2006-12-06 2008-06-19 E.G.O. Elektro-Gerätebau GmbH Method for controlling induction heating devices in an electric cooking appliance

Also Published As

Publication number Publication date
EP2692203A1 (en) 2014-02-05
WO2012131528A1 (en) 2012-10-04
ES2575091T3 (en) 2016-06-24

Similar Documents

Publication Publication Date Title
EP2380395B1 (en) Cook-top having at least three heating zones
EP2744299A1 (en) Induction heating device for household appliances
DE102012220324A1 (en) Induction heater for domestic appliance e.g. cook hob, has frequency units that are operated at different phase of multi-phase current connection
EP2007174B2 (en) Cooking device control and method for heating an object
EP2670213B1 (en) Induction heating device
EP2692202B1 (en) Induction heating device
EP2590476B1 (en) Domestic appliance
EP2515608B1 (en) Domestic appliance
EP2506673B1 (en) Induction cooktop
EP2582201B1 (en) Induction heating device
EP2692203B1 (en) Induction heating device
EP2506670B1 (en) Induction heating device
EP2774456B1 (en) Induction heating apparatus
EP2506667B1 (en) Induction heating device
EP2380394B1 (en) Induction cooktop having at least one power inverter
EP2706817B1 (en) Cooking hob
DE102012206940A1 (en) Induction heating device i.e. induction hob device, for use in induction oven, has control unit simultaneously adjusting resonance capacitor of resonance unit and attenuation capacitor depending on operational parameter
EP2648476B1 (en) Induction heating device
DE102012204250A1 (en) Household appliance device e.g. induction heating appliance device used in induction cooktop, has switching elements to immediately provide and separate direct connection between different combinations of consumer unit and power converter
EP2453714A1 (en) Induction heating device
DE102004021217A1 (en) Method for controlling an inverter, in particular for generating active power for inductive heating
EP2692205A1 (en) Induction heating device
DE102013205746A1 (en) Induction heating device e.g. induction cook box device for cook box, has heating frequency unit providing induction heating units with high frequency alternating current in operating mode, where frequency unit includes switching components
EP2789208B1 (en) Induction heating device
DE102012204249A1 (en) Induction heating device i.e. household induction hob, has induction heating units connected with respective frequency units, and control unit determining typical switching frequency of frequency units depending on characteristic of sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160113

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PEINADO ADIEGO, RAMON

Inventor name: ANTON FALCON, DANIEL

Inventor name: PUYAL PUENTE, DIEGO

Inventor name: ORTIZ SAINZ, DAVID

Inventor name: GARDE ARANDA, IGNACIO

Inventor name: GARCIA JIMENEZ, JOSE-RAMON

Inventor name: GARCIA MARTINEZ, JOSE ANDRES

Inventor name: HERNANDEZ BLASCO, PABLO JESUS

Inventor name: LORENTE PEREZ, ALFONSO

Inventor name: RIVERA PEMAN, JULIO

Inventor name: LLORENTE GIL, SERGIO

Inventor name: BUNUEL MAGDALENA, MIGUEL ANGEL

Inventor name: PINA GADEA, CARMELO

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

Ref country code: AT

Ref legal event code: REF

Ref document number: 803248

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160615

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2575091

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160624

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012007248

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012007248

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170319

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170319

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 803248

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160925

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230414

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240331

Year of fee payment: 13