EP2675999B1 - Steam turbine with dummy piston sealing arrangement for blocking saturated steam - Google Patents

Steam turbine with dummy piston sealing arrangement for blocking saturated steam Download PDF

Info

Publication number
EP2675999B1
EP2675999B1 EP12722120.8A EP12722120A EP2675999B1 EP 2675999 B1 EP2675999 B1 EP 2675999B1 EP 12722120 A EP12722120 A EP 12722120A EP 2675999 B1 EP2675999 B1 EP 2675999B1
Authority
EP
European Patent Office
Prior art keywords
steam
pressure
steam turbine
dummy piston
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12722120.8A
Other languages
German (de)
French (fr)
Other versions
EP2675999A1 (en
Inventor
Rudolf PÖTTER
Michael Wechsung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Siemens Corp
Original Assignee
Siemens AG
Siemens Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG, Siemens Corp filed Critical Siemens AG
Priority to EP12722120.8A priority Critical patent/EP2675999B1/en
Publication of EP2675999A1 publication Critical patent/EP2675999A1/en
Application granted granted Critical
Publication of EP2675999B1 publication Critical patent/EP2675999B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D3/00Machines or engines with axial-thrust balancing effected by working-fluid
    • F01D3/04Machines or engines with axial-thrust balancing effected by working-fluid axial thrust being compensated by thrust-balancing dummy piston or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/007Preventing corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/26Double casings; Measures against temperature strain in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/55Seals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2240/00Components
    • F05D2240/60Shafts
    • F05D2240/63Glands for admission or removal of fluids from shafts

Definitions

  • the invention relates to a steam turbine comprising a steam turbine having a rotatably mounted rotor, an inner housing and a high-pressure flow passage arranged between the rotor and the inner housing, the rotor having a thrust balance piston, wherein the steam turbine has a thrust balance piston line, wherein the thrust balance piston line opens into a thrust balance piston antechamber wherein the steam turbine has a wet steam line that establishes a fluidic connection between a gap space and a first pressure space, wherein the gap space between the rotor and the inner housing is arranged, wherein the thrust balance piston line is fluidly connected to a steam source, wherein the steam source disposed outside of the steam turbine wherein the steam turbine has a second flow channel and an inflow region assigned to the second flow channel, the thrust balance piston line being connected to the E inström Suite is fluidically connected.
  • steam turbines are divided into several sub-turbines, such as a high-pressure, medium-pressure and low-pressure turbine part.
  • the aforementioned sub-turbines differ essentially in that the steam parameters such as temperature and pressure of the incoming steam are different.
  • a high-pressure turbine part experiences the highest steam parameters and is thus subjected to the highest thermal load.
  • the effluent from the high-pressure turbine section steam is reheated via a reheater and forwarded to a medium-pressure turbine section, the steam usually flows without intermediate reheating after flowing through the medium-pressure turbine section in the low-pressure turbine section.
  • each turbine part has its own housing.
  • the high-pressure turbine section and the medium-pressure turbine section are housed in a common outer housing.
  • sub-turbines are known in which the medium-pressure part and the low-pressure part are arranged together in an outer housing.
  • the turbine sections are formed with a rotor, an inner housing arranged around the rotor and an outer housing.
  • the rotor comprises moving blades, which form a flow channel with the guide vanes arranged in the inner housing.
  • the high-pressure turbine sections are designed to be single-flow, with the result that a comparatively high thrust as a result of the steam pressure on the rotor leads in one direction. Therefore, the rotors are usually formed with thrust balance piston. By flow of the thrust balance piston at a defined location, a pressure is generated, which leads to a counter thrust, which holds the rotor substantially force-free in the axial direction.
  • the components of a steam turbine must be designed to be relatively resistant to corrosion, since some components are flown with wet steam at the same time high flow velocity of the steam. Such components would result in corrosion and erosion upon exposure to wet steam coupled with high flow velocity. This issue is currently addressed by taking relatively costly measures.
  • One of the measures would be, for example, the use of high-chromium materials or the use of coatings that are applied to the components and thus avoid corrosion and erosion.
  • the steam flowing out of the flow channel is essentially a wet steam.
  • the object of the invention is to avoid corrosion and erosion damage caused by wet steam.
  • a steam turbine comprising a rotatably mounted rotor, an inner housing and a high-pressure flow channel arranged between the rotor and the inner housing, the rotor having a thrust balance piston, the steam turbine having a thrust balance piston line, wherein the thrust balance piston line opens into a thrust balance piston antechamber, the steam turbine has a wet steam line which produces a fluidic connection between a gap space and a first pressure space, the gap space being arranged between the rotor and the inner housing, the thrust balance piston line being fluidically connected to a steam source, the steam source being arranged outside the steam turbine, wherein the steam turbine has a second flow channel and an inflow region assigned to the second flow channel, wherein the thrust balance piston line flows with the inflow region is not connected technically, wherein the first pressure chamber is arranged in the inflow region.
  • the thrust balance steam line directs steam into a thrust balance piston anvil which, as a result of the pressure, exerts a force on the rotor to compensate for thrust.
  • the thrust balance piston is usually a section of the rotor with an ideally for the purpose desired thrust balance selected radius at an axial point corresponding pressure levels.
  • the vestibule is located in front of a radial lateral surface.
  • the thrust balance steam line is connected to a source of steam having a particular vapor at a pressure and a temperature. This steam mixes with the effluent from the high-pressure turbine section steam and passes between the thrust balance piston and the inner housing in a space between the inner housing and the outer housing.
  • the steam turbine is now carried out with a wet steam line.
  • This wet steam line opens into a gap, which is located between the inner housing and the rotor.
  • the wet steam flowing out of the high-pressure turbine part flow channel flows in the direction of the thrust balance piston.
  • This wet steam line is fluidically connected to a first pressure chamber, wherein in this first pressure chamber, a lower pressure prevails than in the gap.
  • this first pressure chamber is located in an inflow region.
  • the mixing of the wet steam with the steam in the thrust balance piston antechamber is thereby drastically reduced.
  • An outflow of a mixed vapor formed from the wet steam and the steam in the thrust balance piston antechamber is thereby almost prevented, so that virtually no mixing steam flows between the thrust balance piston and the inner housing to the outer housing.
  • the turbine has a second flow channel, wherein the thrust balance piston steam line is fluidically connected to the second inflow region or another pressure chamber.
  • a vapor, which may be superheated steam passes from the second flow passage via the thrust balance piston steam line to the thrust balance piston antechamber.
  • the outer housing can thus be made of a material having a lower corrosion and erosion resistance having. This will lead to a cheaper version of the outer housing.
  • the leakage losses are reduced. As a result, the steam turbine efficiency increases and the wet steam line costs are lower because of simplified interconnection.
  • the FIG. 1 shows a cross-section of a steam turbine 1.
  • the steam turbine 1 comprises a combined high-pressure and medium-pressure turbine part 2.
  • An essential feature of the steam turbine 1 is that a common outer housing 3 is arranged around the high-pressure and medium-pressure turbine section 2.
  • the steam turbine 1 comprises a rotor 4, on which a first Beschaufelungs Scheme 5, which is arranged in a high-pressure flow channel 6.
  • the rotor 4 further comprises a second blading region 7, which is arranged in a medium-pressure flow channel 8.
  • Both the high-pressure flow channel 6 and the medium-pressure flow channel 8 comprise a plurality of rotor blades 4, which are not provided with reference numerals, and guide vanes, which are not provided with reference symbols, arranged in an inner housing 9.
  • high pressure and medium pressure turbine parts refer to the steam parameters of the incoming steam.
  • the pressure of the steam flowing into the high-pressure turbine part is greater than the pressure of the steam flowing into the medium-pressure turbine section.
  • high-pressure and medium-pressure turbine part differ in the feature that the steam flowing out of the high-pressure turbine section is reheated in a reheater and then flows into the medium-pressure turbine section.
  • steam turbine 1 is characterized by a common inner housing 9 for the first blading region 5 and the second blading region 7.
  • steam flows into a high-pressure inflow region 10. From there, the steam flows through the first impingement region 5 in a first flow direction 11. After flowing through the first blading region 5, the steam flows out into a high-pressure outflow region 12 out of the steam turbine.
  • the steam present in the high-pressure outflow region 12 has temperature and pressure values which differ from the temperature and pressure values of the steam in the high-pressure inflow region 10. In particular, the temperature and pressure values have become lower due to expansion of the steam.
  • the steam present in the high-pressure outflow region 12 has such temperature and pressure values that this steam can be referred to as wet steam.
  • this wet steam is the smallest condensed water particles contains. These smallest water particles in the wet steam at high speeds in an impact on a component of the steam turbine 1 lead to erosion and corrosion damage.
  • the majority of the wet steam flows out of the steam turbine 1 via the high-pressure outflow region 12.
  • a residual leakage flow remains, which is arranged in a gap 13 between the rotor 4 and the inner housing 9.
  • This wet steam located in the gap 13 flows in the first flow direction 11 and strikes a thrust balance piston 14.
  • the thrust balance piston 14 has a thrust balance piston antechamber 15, in which a superheated steam flows.
  • This superheated steam is located in the thrust balance piston antechamber 15 which is disposed between the thrust balance piston 14 and a rear wall 16 of the inner housing 9.
  • the superheated steam located in the thrust balance piston antechamber 15 leads to an axially acting force on the thrust balance piston 14 and thus on the rotor 4.
  • a gap 17 Between the inner housing 9 and the rotor 4 in the region of the thrust balance piston 14 is a gap 17. Through this gap, a vapor can flow, which passes into a gap 18 which is located between the outer housing 3 and the inner housing 9. A wet steam present in the gap 17 could lead to an increased risk of corrosion and erosion of the outer housing 3.
  • a wet steam line 19 is now arranged in the steam turbine 1, which establishes a fluidic connection between the gap space 13 and a first pressure space 20, the gap space 13 being arranged between the rotor 4 and the inner housing 9.
  • the first pressure chamber 20 is arranged in the inflow region 26.
  • This in FIG. 1 illustrated embodiment shows that the wet steam line 19 opens into the inflow 26.
  • the inflow region 26 has the shape of a bubble and is therefore also referred to as a medium-pressure bladder.
  • the wet steam arising from the first blading area 5 flows to a reheater unit (not shown).
  • This vapor flowing out of the first blading area 5 is therefore also referred to as a cold reheater steam.
  • this steam is reheated and flows from the reheater to the inflow region 26. Therefore, this steam is also referred to as a hot reheater steam.
  • the thrust balance piston 14 and the outer housing 3 are protected from wet steam.
  • this first pressure chamber 20 should be such that the pressure for the wet steam in the gap 13 is greater than in the first pressure chamber 20, so that a pressure gradient in the wet steam line 19 prevails, which causes the wet steam from the gap 13 to first pressure chamber 20 passes.
  • the thrust balance piston 14 extends in a radial direction 22, which is formed substantially perpendicular to the rotation axis 23.
  • the thrust balance piston steam line 24 is fluidly connected to a steam source 25.
  • the inflow region 26 forms the steam source 25.
  • This steam which flows into the medium-pressure turbine section in the inflow region 26, is a superheated steam which enters the thrust balance piston antechamber 15.
  • the steam source 25 is also arranged outside the steam turbine 1.
  • the inner housing 9 has a feed opening 27, with which the wet steam line 19 can be connected.
  • the FIG. 2 shows an enlarged section of the high pressure Ausström Schemes 12 of the high pressure turbine section.
  • the inner housing 9 is designed such that a high-pressure outflow region 12 is enclosed and rests in the region of the gap space 13 with respect to the rotor 4.
  • the gap 13 should be as small as possible so that the wet steam located in the high-pressure outflow region 12 does not flow out over the gap 13.
  • the majority of the wet steam will pass through the high-pressure discharge area 12 to a reheater.
  • a lesser part passes as leakage flow between the rotor 4 and the inner housing 9 in the gap space 13. Therefore, a not-shown cavity is arranged in the inner housing 9, which is connected to the gap space 13.
  • the first pressure chamber 20 which has a lower pressure than the pressure in the gap space 13, serves as the drive for this extraction. Further flow of the leakage flow formed in the gap 13 in the direction of the thrust balance piston chamber 15 is prevented by the greater part of the wet steam flowing in the wet steam line 19 is sucked off.
  • the superheated steam which enters the thrust balance piston antechamber 15 via a thrust balance piston line 24, spreads in two directions. A portion of the superheated steam propagates in the direction of the gap 17 and strikes the outer housing 3. Another part of the superheated steam flows in the direction of the gap 13 and is sucked as well as the wet steam through the wet steam line 19 to the first pressure chamber 20 through.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Die Erfindung betrifft eine Dampfturbine umfassend eine Dampfturbine mit einem drehbar gelagerten Rotor, einem Innengehäuse und einen zwischen dem Rotor und dem Innengehäuse angeordneten Hochdruck-Strömungskanal, wobei der Rotor einen Schubausgleichskolben aufweist, wobei die Dampfturbine eine Schubausgleichskolbenleitung aufweist, wobei die Schubausgleichskolbenleitung in einen Schubausgleichskolbenvorraum mündet, wobei die Dampfturbine eine Nassdampfleitung aufweist, die eine strömungstechnische Verbindung zwischen einem Spaltraum und einem ersten Druckraum herstellt, wobei der Spaltraum zwischen dem Rotor und dem Innengehäuse angeordnet ist, wobei die Schubausgleichskolbenleitung mit einer Dampfquelle strömungstechnisch verbunden ist, wobei die Dampfquelle außerhalb der Dampfturbine angeordnet ist, wobei die Dampfturbine einen zweiten Strömungskanal und einen dem zweiten Strömungskanal zugeordneten Einströmbereich aufweist, wobei die Schubausgleichskolbenleitung mit dem Einströmbereich strömungstechnisch verbunden ist.The invention relates to a steam turbine comprising a steam turbine having a rotatably mounted rotor, an inner housing and a high-pressure flow passage arranged between the rotor and the inner housing, the rotor having a thrust balance piston, wherein the steam turbine has a thrust balance piston line, wherein the thrust balance piston line opens into a thrust balance piston antechamber wherein the steam turbine has a wet steam line that establishes a fluidic connection between a gap space and a first pressure space, wherein the gap space between the rotor and the inner housing is arranged, wherein the thrust balance piston line is fluidly connected to a steam source, wherein the steam source disposed outside of the steam turbine wherein the steam turbine has a second flow channel and an inflow region assigned to the second flow channel, the thrust balance piston line being connected to the E inströmbereich is fluidically connected.

Herkömmlicherweise werden Dampfturbinen in mehrere Teilturbinen unterteilt, wie z.B. einer Hochdruck-, Mitteldruck- und Niederdruckteilturbine. Die vorgenannten Teilturbinen unterscheiden sich im Wesentlichen dadurch, dass die Dampfparameter wie Temperatur und Druck des einströmenden Dampfes unterschiedlich sind. So erfährt eine Hochdruck-Teilturbine die höchsten Dampfparameter und wird somit am stärksten thermisch belastet. Der aus der Hochdruck-Teilturbine ausströmende Dampf wird über einen Zwischenüberhitzer wieder erhitzt und in eine Mitteldruck-Teilturbine weitergeleitet, wobei der Dampf nach Durchströmen der Mitteldruck-Teilturbine in die Niederdruckteilturbine gewöhnlich ohne Zwischenüberhitzung einströmt.Conventionally, steam turbines are divided into several sub-turbines, such as a high-pressure, medium-pressure and low-pressure turbine part. The aforementioned sub-turbines differ essentially in that the steam parameters such as temperature and pressure of the incoming steam are different. Thus, a high-pressure turbine part experiences the highest steam parameters and is thus subjected to the highest thermal load. The effluent from the high-pressure turbine section steam is reheated via a reheater and forwarded to a medium-pressure turbine section, the steam usually flows without intermediate reheating after flowing through the medium-pressure turbine section in the low-pressure turbine section.

In der Regel werden die Teilturbinen separat ausgebildet. Das bedeutet, dass jede Teilturbine ein eigenes Gehäuse aufweist. Es sind allerdings auch Bauformen bekannt, in denen die Hochdruck-Teilturbine und die Mitteldruck-Teilturbine in einem gemeinsamen Außengehäuse untergebracht sind. Ebenso sind Teilturbinen bekannt, in denen der Mitteldruckteil und der Niederdruckteil gemeinsam in einem Außengehäuse angeordnet sind.As a rule, the turbine sections are formed separately. This means that each turbine part has its own housing. However, there are also known designs in which the high-pressure turbine section and the medium-pressure turbine section are housed in a common outer housing. Likewise, sub-turbines are known in which the medium-pressure part and the low-pressure part are arranged together in an outer housing.

Besonders im Hochdruck- und Mitteldruckbereich, werden die Teilturbinen mit einem Rotor, einem um den Rotor angeordneten Innengehäuse und einen Außengehäuse ausgebildet. Der Rotor umfasst Laufschaufeln, die mit den im Innengehäuse angeordneten Leitschaufeln einen Strömungskanal bilden. In der Regel werden die Hochdruck-Teilturbinen einflutig ausgebildet, was dazu führt, dass ein vergleichsweise hoher Schub in Folge des Dampfdruckes auf den Rotor in eine Richtung führt. Daher werden die Rotoren meistens mit Schubausgleichskolben ausgebildet. Durch Beströmen des Schubausgleichskolbens an einer definierten Stelle wird ein Druck erzeugt, der zu einem Gegenschub führt, der den Rotor im Wesentlichen kraftfrei in axialer Richtung hält.Particularly in the high-pressure and medium-pressure range, the turbine sections are formed with a rotor, an inner housing arranged around the rotor and an outer housing. The rotor comprises moving blades, which form a flow channel with the guide vanes arranged in the inner housing. As a rule, the high-pressure turbine sections are designed to be single-flow, with the result that a comparatively high thrust as a result of the steam pressure on the rotor leads in one direction. Therefore, the rotors are usually formed with thrust balance piston. By flow of the thrust balance piston at a defined location, a pressure is generated, which leads to a counter thrust, which holds the rotor substantially force-free in the axial direction.

Die Komponenten einer Dampfturbine müssen vergleichsweise korrosionsfest ausgebildet sein, da manche Komponenten mit Nassdampf beströmt werden bei gleichzeitig hoher Strömungsgeschwindigkeit des Dampfes. Solche Komponenten würden bei einer Konfrontation mit Nassdampf in Verbindung mit hoher Strömungsgeschwindigkeit zu Korrosion und Erosion führen. Dieses Problem wird derzeit dadurch behoben, dass vergleichsweise kostenintensive Maßnahmen ergriffen werden.The components of a steam turbine must be designed to be relatively resistant to corrosion, since some components are flown with wet steam at the same time high flow velocity of the steam. Such components would result in corrosion and erosion upon exposure to wet steam coupled with high flow velocity. This issue is currently addressed by taking relatively costly measures.

Eine der Maßnahme wäre beispielsweise der Einsatz von hochchromigen Werkstoffen oder der Einsatz von Beschichtungen, die auf die Komponenten aufgetragen werden und somit eine Korrosion und Erosion vermeiden.One of the measures would be, for example, the use of high-chromium materials or the use of coatings that are applied to the components and thus avoid corrosion and erosion.

Besonders bei Hochdruck-Teilturbinen ist der aus dem Strömungskanal ausströmende Dampf, der im Wesentlichen ein Nassdampf ist. Das bedeutet, dass sich in dem Dampf kleine Wasserpartikel bilden, die auf Komponenten der Dampfturbine prallen und zu einer Schädigung, wie z.B. einer Korrosion oder Erosion der Komponente führen. Es ist bekannt, durch Schutzschilde diesen Nassdampf von den Komponenten fern zu halten.Particularly in high-pressure turbine sections, the steam flowing out of the flow channel is essentially a wet steam. This means that small water particles are formed in the steam which impinge on components of the steam turbine and cause damage, such as damage to the steam turbine. lead to corrosion or erosion of the component. It is known to keep this wet steam away from the components by means of protective shields.

Die Erfindung hat es sich zur Aufgabe gestellt, durch Nassdampf verursachte Korrosions- und Erosionsschäden zu vermeiden.The object of the invention is to avoid corrosion and erosion damage caused by wet steam.

Die Aufgabe wird gelöst durch eine Dampfturbine umfassend einen drehbar gelagerten Rotor, ein Innengehäuse und einen zwischen dem Rotor und dem Innengehäuse angeordneten Hochdruck-Strömungskanal, wobei der Rotor einen Schubausgleichskolben aufweist, wobei die Dampfturbine eine Schubausgleichskolbenleitung aufweist, wobei die Schubausgleichskolbenleitung in einen Schubausgleichskolbenvorraum mündet, die Dampfturbine eine Nassdampfleitung aufweist, die eine strömungstechnische Verbindung zwischen einem Spaltraum und einem ersten Druckraum herstellt, wobei der Spaltraum zwischen dem Rotor und dem Innengehäuse angeordnet ist, wobei die Schubausgleichskolbenleitung mit einer Dampfquelle strömungstechnisch verbunden ist, wobei die Dampfquelle außerhalb der Dampfturbine angeordnet ist, wobei die Dampfturbine einen zweiten Strömungskanal und einem dem zweiten Strömungskanal zugeordneten Einströmbereich aufweist, wobei die Schubausgleichskolbenleitung mit dem Einströmbereich strömungstechnisch verbunden ist, wobei der erste Druckraum im Einströmbereich angeordnet ist.The object is achieved by a steam turbine comprising a rotatably mounted rotor, an inner housing and a high-pressure flow channel arranged between the rotor and the inner housing, the rotor having a thrust balance piston, the steam turbine having a thrust balance piston line, wherein the thrust balance piston line opens into a thrust balance piston antechamber, the steam turbine has a wet steam line which produces a fluidic connection between a gap space and a first pressure space, the gap space being arranged between the rotor and the inner housing, the thrust balance piston line being fluidically connected to a steam source, the steam source being arranged outside the steam turbine, wherein the steam turbine has a second flow channel and an inflow region assigned to the second flow channel, wherein the thrust balance piston line flows with the inflow region is not connected technically, wherein the first pressure chamber is arranged in the inflow region.

Mit der Schubausgleichskolbendampfleitung wird Dampf in einen Schubausgleichskolbenvorraum gebracht, der in Folge des Druckes eine Kraft auf den Rotor ausübt, um einen Schub auszugleichen. Der Schubausgleichskolben ist in der Regel ein Teilstück des Rotors mit einem idealerweise speziell für den gewünschten Schubausgleich gewählten Radius an einer axialen Stelle entsprechenden Druckniveaus. Der Vorraum befindet sich vor einer radialen Mantelfläche. Die Schubausgleichskolbendampfleitung wird mit einer Dampfquelle verbunden, die einen bestimmten Dampf mit einem Druck und einer Temperatur aufweist. Dieser Dampf vermischt sich mit dem aus der Hochdruck-Teilturbine ausströmenden Dampf und gelangt zwischen dem Schubausgleichskolben und dem Innengehäuse in einen Zwischenraum zwischen dem Innengehäuse und dem Außengehäuse. An der Stelle, wo der Dampf zwischen dem Rotor und dem Innengehäuse ausströmt, wird das Außengehäuse in Bezug auf Erosion und Korrosion stark beansprucht. Erfindungsgemäß wird nun die Dampfturbine mit einer Nassdampfleitung ausgeführt. Diese Nassdampfleitung mündet in einen Spaltraum, der sich zwischen dem Innengehäuse und dem Rotor befindet. An dieser Stelle strömt der aus dem Hochdruck-Teilturbinen-Strömungskanal ausströmende Nassdampf in Richtung Schubausgleichskolben. Diese Nassdampfleitung wird mit einem ersten Druckraum strömungstechnisch verbunden, wobei in diesem ersten Druckraum ein geringerer Druck herrscht als in dem Spaltraum. Erfindungsgemäß befindet sich dieser erste Druckraum in einem Einströmbereich. Das führt dazu, dass der in diesen Spaltraum befindliche Nassdampf sozusagen nahezu komplett abgesaugt und in der Nassdampfleitung abgeführt wird. Das Vermischen des Nassdampfes mit dem Dampf im Schubausgleichskolbenvorraum wird dadurch drastisch reduziert. Ein Ausströmen eines Misch-Dampfes gebildet aus dem Nassdampf und dem Dampf im Schubausgleichskolbenvorraum ist dadurch nahezu verhindert, so dass praktisch kein Misch-Dampf zwischen dem Schubausgleichskolben und dem Innengehäuse auf das Außengehäuse strömt. Die Turbine weist einen zweiten Strömungskanal auf, wobei die Schubausgleichskolbendampfleitung mit dem zweiten Einströmbereich oder einem anderen Druckraum strömungstechnisch verbunden ist. Somit gelangt ein Dampf, der ein überhitzter Dampf sein kann, aus dem zweiten Strömungskanal über die Schubausgleichskolbendampfleitung in den Schubausgleichskolbenvorraum. Das Außengehäuse kann somit aus einem Werkstoff hergestellt werden, der eine geringere Korrosions- und Erosionsbeständigkeit aufweist. Dies wird zu einer günstigeren Variante des Außengehäuses führen. Außerdem werden die Leckage-Verluste verringert. Dadurch steigt der Dampfturbinen-Wirkungsgrad an und die Nassdampf-Leitungskosten sind wegen vereinfachter Verschaltung geringer.The thrust balance steam line directs steam into a thrust balance piston anvil which, as a result of the pressure, exerts a force on the rotor to compensate for thrust. The thrust balance piston is usually a section of the rotor with an ideally for the purpose desired thrust balance selected radius at an axial point corresponding pressure levels. The vestibule is located in front of a radial lateral surface. The thrust balance steam line is connected to a source of steam having a particular vapor at a pressure and a temperature. This steam mixes with the effluent from the high-pressure turbine section steam and passes between the thrust balance piston and the inner housing in a space between the inner housing and the outer housing. At the point where the steam flows out between the rotor and the inner housing, the outer housing is heavily stressed in terms of erosion and corrosion. According to the invention, the steam turbine is now carried out with a wet steam line. This wet steam line opens into a gap, which is located between the inner housing and the rotor. At this point, the wet steam flowing out of the high-pressure turbine part flow channel flows in the direction of the thrust balance piston. This wet steam line is fluidically connected to a first pressure chamber, wherein in this first pressure chamber, a lower pressure prevails than in the gap. According to the invention, this first pressure chamber is located in an inflow region. As a result, the wet steam present in this gap space is virtually completely sucked off and removed in the wet steam line. The mixing of the wet steam with the steam in the thrust balance piston antechamber is thereby drastically reduced. An outflow of a mixed vapor formed from the wet steam and the steam in the thrust balance piston antechamber is thereby almost prevented, so that virtually no mixing steam flows between the thrust balance piston and the inner housing to the outer housing. The turbine has a second flow channel, wherein the thrust balance piston steam line is fluidically connected to the second inflow region or another pressure chamber. Thus, a vapor, which may be superheated steam, passes from the second flow passage via the thrust balance piston steam line to the thrust balance piston antechamber. The outer housing can thus be made of a material having a lower corrosion and erosion resistance having. This will lead to a cheaper version of the outer housing. In addition, the leakage losses are reduced. As a result, the steam turbine efficiency increases and the wet steam line costs are lower because of simplified interconnection.

Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.Advantageous developments are specified in the subclaims.

Die Erfindung wird nun anhand eines Ausführungsbeispiels näher beschrieben. Komponenten mit gleichen Bezugszeichen weisen im Wesentlichen die gleiche Funktionsweise auf.The invention will now be described with reference to an embodiment. Components with the same reference numbers have essentially the same functionality.

Es zeigen:

Figur 1
einen Querschnitt durch eine erfindungsgemäße Dampfturbine;
Figur 2
einen vergrößerter Ausschnitt im Bereich des Schubausgleichskolbens der Dampfturbine aus Fig. 1.
Show it:
FIG. 1
a cross section through a steam turbine according to the invention;
FIG. 2
an enlarged section in the region of the thrust balance piston of the steam turbine Fig. 1 ,

Die Figur 1 zeigt einen Querschnitt einer Dampfturbine 1. Die Dampfturbine 1 umfasst eine kombinierte Hochdruck- und Mitteldruck-Teilturbine 2. Ein wesentliches Merkmal der Dampfturbine 1 ist, dass ein gemeinsames Außengehäuse 3 um die Hochdruck- und Mitteldruck-Teilturbine 2 angeordnet ist. Die Dampfturbine 1 umfasst einen Rotor 4, auf dem ein erster Beschaufelungsbereich 5, der in einem Hochdruck-Strömungskanal 6 angeordnet ist. Der Rotor 4 umfasst des Weiteren einen zweiten Beschaufelungsbereich 7, der in einem Mitteldruck-Strömungskanal 8 angeordnet ist. Sowohl der Hochdruck-Strömungskanal 6 und der Mitteldruck-Strömungskanal 8 umfassen mehrere auf dem Rotor 4 angeordnete, nicht mit Bezugszeichen versehene, Laufschaufeln auf sowie in einem Innengehäuse 9 angeordnete nicht mit Bezugszeichen versehene Leitschaufeln auf. Die Begriffe Hochdruck- und Mitteldruck-Teilturbine beziehen sich auf die Dampfparameter des einströmenden Dampfes. So ist der Druck des in die Hochdruck-Teilturbine einströmenden Dampfes größer als der Druck des in die Mitteldruck-Teilturbine einströmenden Dampfes. Die Begriffe Hochdruck- und Mitteldruck-Teilturbine unterscheiden sich durch das Merkmal, dass der aus der Hochdruck-Teilturbine ausströmende Dampf in einem Zwischenüberhitzer wieder überhitzt wird und anschließend in die Mitteldruck-Teilturbine einströmt.The FIG. 1 shows a cross-section of a steam turbine 1. The steam turbine 1 comprises a combined high-pressure and medium-pressure turbine part 2. An essential feature of the steam turbine 1 is that a common outer housing 3 is arranged around the high-pressure and medium-pressure turbine section 2. The steam turbine 1 comprises a rotor 4, on which a first Beschaufelungsbereich 5, which is arranged in a high-pressure flow channel 6. The rotor 4 further comprises a second blading region 7, which is arranged in a medium-pressure flow channel 8. Both the high-pressure flow channel 6 and the medium-pressure flow channel 8 comprise a plurality of rotor blades 4, which are not provided with reference numerals, and guide vanes, which are not provided with reference symbols, arranged in an inner housing 9. The terms high pressure and medium pressure turbine parts refer to the steam parameters of the incoming steam. Thus, the pressure of the steam flowing into the high-pressure turbine part is greater than the pressure of the steam flowing into the medium-pressure turbine section. The terms high-pressure and medium-pressure turbine part differ in the feature that the steam flowing out of the high-pressure turbine section is reheated in a reheater and then flows into the medium-pressure turbine section.

Eine einheitliche Definition von Hochdruck- und Mitteldruck-Teilturbinen wird in der Fachwelt nicht verwendet.A common definition of high pressure and medium pressure turbine parts is not used in the art.

Die in Figur 1 dargestellte Dampfturbine 1 zeichnet sich durch ein gemeinsames Innengehäuse 9 für den ersten Beschaufelungsbereich 5 und dem zweiten Beschaufelungsbereich 7 aus. Im Betrieb strömt ein Dampf in einen Hochdruck-Einströmbereich 10. Von dort strömt der Dampf durch den ersten Beschaufelungsbereich 5 in einer ersten Strömungsrichtung 11 entlang. Nach Durchströmen des ersten Beschaufelungsbereichs 5 strömt der Dampf in einen Hochdruck-Ausströmbereich 12 aus der Dampfturbine heraus. Der im Hochdruck-Ausströmbereich 12 befindliche Dampf hat Temperatur- und Druckwerte, die sich von den Temperatur- und Druckwerten des Dampfes im Hochdruck-Einströmbereich 10 unterscheiden. Insbesondere sind die Temperatur- und Druckwerte infolge Expansion des Dampfes geringer geworden. Der im Hochdruck-Ausströmbereich 12 befindliche Dampf hat dabei derartige Temperatur- und Druckwerte, dass dieser Dampf als Nassdampf bezeichnet werden kann. Das bedeutet, dass dieser Nassdampf kleinste kondensierte Wasserpartikel enthält. Diese kleinsten Wasserpartikel in dem Nassdampf führen bei hohen Geschwindigkeiten bei einem Aufprall auf eine Komponente der Dampfturbine 1 zu Erosions- und Korrosionsschäden. Der Großteil des Nassdampfes strömt über den Hochdruck-Ausströmbereich 12 aus der Dampfturbine 1 heraus. Allerdings verbleibt eine Restleckageströmung, die in einem Spaltraum 13 zwischen dem Rotor 4 und dem Innengehäuse 9 angeordnet ist. Dieser im Spaltraum 13 befindliche Nassdampf strömt in der ersten Strömungsrichtung 11 entlang und trifft auf einen Schubausgleichskolben 14. Der Schubausgleichskolben 14 weist einen Schubausgleichskolbenvorraum 15 auf, in dem ein überhitzter Dampf einströmt. Dieser überhitzte Dampf befindet sich im Schubausgleichskolbenvorraum 15, der zwischen dem Schubausgleichskolben 14 und einer rückseitigen Wand 16 des Innengehäuses 9 angeordnet ist. Der im Schubausgleichskolbenvorraum 15 befindliche überhitzte Dampf führt zu einer axial wirkenden Kraft auf den Schubausgleichskolben 14 und somit auf den Rotor 4.In the FIG. 1 shown steam turbine 1 is characterized by a common inner housing 9 for the first blading region 5 and the second blading region 7. In operation, steam flows into a high-pressure inflow region 10. From there, the steam flows through the first impingement region 5 in a first flow direction 11. After flowing through the first blading region 5, the steam flows out into a high-pressure outflow region 12 out of the steam turbine. The steam present in the high-pressure outflow region 12 has temperature and pressure values which differ from the temperature and pressure values of the steam in the high-pressure inflow region 10. In particular, the temperature and pressure values have become lower due to expansion of the steam. The steam present in the high-pressure outflow region 12 has such temperature and pressure values that this steam can be referred to as wet steam. This means that this wet steam is the smallest condensed water particles contains. These smallest water particles in the wet steam at high speeds in an impact on a component of the steam turbine 1 lead to erosion and corrosion damage. The majority of the wet steam flows out of the steam turbine 1 via the high-pressure outflow region 12. However, a residual leakage flow remains, which is arranged in a gap 13 between the rotor 4 and the inner housing 9. This wet steam located in the gap 13 flows in the first flow direction 11 and strikes a thrust balance piston 14. The thrust balance piston 14 has a thrust balance piston antechamber 15, in which a superheated steam flows. This superheated steam is located in the thrust balance piston antechamber 15 which is disposed between the thrust balance piston 14 and a rear wall 16 of the inner housing 9. The superheated steam located in the thrust balance piston antechamber 15 leads to an axially acting force on the thrust balance piston 14 and thus on the rotor 4.

Zwischen dem Innengehäuse 9 und dem Rotor 4 im Bereich des Schubausgleichskolbens 14 ist ein Spalt 17. Durch diesen Spalt kann ein Dampf strömen, der in einen Zwischenraum 18 gelangt, der sich zwischen dem Außengehäuse 3 und dem Innengehäuse 9 befindet. Ein im Spalt 17 befindlicher Nassdampf könnte zu einer erhöhten Korrosions- und Erosionsgefahr des Außengehäuses 3 führen.Between the inner housing 9 and the rotor 4 in the region of the thrust balance piston 14 is a gap 17. Through this gap, a vapor can flow, which passes into a gap 18 which is located between the outer housing 3 and the inner housing 9. A wet steam present in the gap 17 could lead to an increased risk of corrosion and erosion of the outer housing 3.

Erfindungsgemäß wird nun eine Nassdampfleitung 19 in der Dampfturbine 1 angeordnet, die eine strömungstechnische Verbindung zwischen dem Spaltraum 13 und einem ersten Druckraum 20 herstellt, wobei der Spaltraum 13 zwischen dem Rotor 4 und dem Innengehäuse 9 angeordnet ist. Der erste Druckraum 20 ist im Einströmbereich 26 angeordnet. Das in Figur 1 dargestellte Ausführungsbeispiel zeigt, dass die Nassdampfleitung 19 in den Einströmbereich 26 mündet. Der Einströmbereich 26 hat die Form einer Blase und wird daher auch als Mitteldruck-Blase bezeichnet.According to the invention, a wet steam line 19 is now arranged in the steam turbine 1, which establishes a fluidic connection between the gap space 13 and a first pressure space 20, the gap space 13 being arranged between the rotor 4 and the inner housing 9. The first pressure chamber 20 is arranged in the inflow region 26. This in FIG. 1 illustrated embodiment shows that the wet steam line 19 opens into the inflow 26. The inflow region 26 has the shape of a bubble and is therefore also referred to as a medium-pressure bladder.

Im Betrieb strömt der aus dem ersten Beschaufelungsbereich 5 anfallende Nassdampf zu einer Zwischenüberhitzereinheit (nicht dargestellt). Dieser aus dem ersten Beschaufelungsbereich 5 ausströmende Dampf wird daher auch als kalter Zwischenüberhitzerdampf bezeichnet. Im Zwischenüberhitzer wird dieser Dampf wieder erhitzt und strömt aus dem Zwischenüberhitzer in den Einströmbereich 26. Daher wird dieser Dampf auch als heißer Zwischenüberhitzerdampf bezeichnet.In operation, the wet steam arising from the first blading area 5 flows to a reheater unit (not shown). This vapor flowing out of the first blading area 5 is therefore also referred to as a cold reheater steam. In the reheater, this steam is reheated and flows from the reheater to the inflow region 26. Therefore, this steam is also referred to as a hot reheater steam.

Erfindungsgemäß wird somit ein großer Teil des nassen und kalten Zwischenüberhitzerdampfes in die Mitteldruck-Blase geleitet. Der verbleibende, kleinere Teil des nassen Dampfes strömt mit geringer Geschwindigkeit weiter und wird getrocknet mit überhitztem heißem Zwischenüberhitzerdampf, der über die Kolbenausgleichsleitung strömt. Dadurch werden der Schubausgleichskolben 14 und das Außengehäuse 3 so vor nassem Dampf geschützt.According to the invention, a large part of the wet and cold reheater steam is thus conducted into the medium-pressure bladder. The remaining, smaller portion of the wet steam continues to flow at low speed and is dried with superheated hot reheater steam flowing over the piston equalization line. As a result, the thrust balance piston 14 and the outer housing 3 are protected from wet steam.

Ebenfalls sollte der Druck in diesem ersten Druckraum 20 derart sein, dass der Druck für den Nassdampf im Spaltraum 13 größer ist als im ersten Druckraum 20, so dass ein Druckgefälle in der Nassdampfleitung 19 herrscht, die dazu führt, dass der Nassdampf vom Spaltraum 13 zum ersten Druckraum 20 gelangt.Also, the pressure in this first pressure chamber 20 should be such that the pressure for the wet steam in the gap 13 is greater than in the first pressure chamber 20, so that a pressure gradient in the wet steam line 19 prevails, which causes the wet steam from the gap 13 to first pressure chamber 20 passes.

Der Schubausgleichskolben 14 erstreckt sich in einer radialen Richtung 22, die im Wesentlichen senkrecht zur Rotationsachse 23 ausgebildet ist.The thrust balance piston 14 extends in a radial direction 22, which is formed substantially perpendicular to the rotation axis 23.

Die Schubausgleichskolben-Dampfleitung 24 ist mit einer Dampfquelle 25 strömungstechnisch verbunden. Wie in Figur 1 dargestellt bildet der Einströmbereich 26 die Dampfquelle 25. Dieser im Einströmbereich 26 in die Mitteldruck-Teilturbine einströmende Dampf ist ein überhitzter Dampf, der in den Schubausgleichskolbenvorraum 15 gelangt. In einer alternativen Ausführungsform ist die Dampfquelle 25 auch außerhalb der Dampfturbine 1 angeordnet.The thrust balance piston steam line 24 is fluidly connected to a steam source 25. As in FIG. 1 the inflow region 26 forms the steam source 25. This steam, which flows into the medium-pressure turbine section in the inflow region 26, is a superheated steam which enters the thrust balance piston antechamber 15. In an alternative embodiment, the steam source 25 is also arranged outside the steam turbine 1.

Das Innengehäuse 9 weist eine Einspeiseöffnung 27 auf, mit der die Nassdampfleitung 19 verbunden werden kann.The inner housing 9 has a feed opening 27, with which the wet steam line 19 can be connected.

Die Figur 2 zeigt einen vergrößerten Ausschnitt des Hochdruck-Ausströmbereichs 12 der Hochdruck-Teilturbine. Das Innengehäuse 9 ist derart ausgebildet, dass ein Hochdruck-Ausströmbereich 12 umschlossen wird und im Bereich des Spaltraumes 13 gegenüber dem Rotor 4 anliegt. Der Spaltraum 13 sollte möglichst klein sein, damit der im Hochdruck-Ausströmbereich 12 befindliche Nassdampf nicht über den Spaltraum 13 ausströmt. Der größte Teil des Nassdampfes wird über den Hochdruck-Ausströmbereich 12 zu einem Zwischenüberhitzer gelangen. Ein geringerer Teil gelangt als Leckageströmung zwischen dem Rotor 4 und dem Innengehäuse 9 in den Spaltraum 13. Daher wird im Innengehäuse 9 eine nicht näher dargestellte Kavität angeordnet, die mit dem Spaltraum 13 erbunden ist. Über diese Kavität und über die Nassdampfleitung 19 wird der Leckagestrom sozusagen abgesaugt. Als Antrieb für diese Absaugung dient der erste Druckräum 20, der einen geringeren Druck aufweist als der Druck im Spaltraum 13. Ein weiteres Strömen der aus Nassdampf gebildeten Leckageströmung im Spaltraum 13 in Richtung des Schubausgleichskolbenvorraums 15 wird dadurch verhindert, dass der größte Teil des Nassdampfes in der Nassdampfleitung 19 abgesaugt wird. Im Betrieb breitet sich der überhitzte Dampf, der über eine Schubausgleichskolbenleitung 24 in den Schubausgleichskolbenvorraum 15 kommt, in zwei Richtungen aus. Ein Teil des überhitzten Dampfes breitet sich in Richtung des Spaltes 17 aus und trifft auf das Außengehäuse 3. Ein weiterer Teil des überhitzten Dampfes strömt in Richtung des Spaltraumes 13 und wird ebenso wie der Nassdampf über die Nassdampfleitung 19 zum ersten Druckraum hin 20 abgesaugt.The FIG. 2 shows an enlarged section of the high pressure Ausströmbereichs 12 of the high pressure turbine section. The inner housing 9 is designed such that a high-pressure outflow region 12 is enclosed and rests in the region of the gap space 13 with respect to the rotor 4. The gap 13 should be as small as possible so that the wet steam located in the high-pressure outflow region 12 does not flow out over the gap 13. The majority of the wet steam will pass through the high-pressure discharge area 12 to a reheater. A lesser part passes as leakage flow between the rotor 4 and the inner housing 9 in the gap space 13. Therefore, a not-shown cavity is arranged in the inner housing 9, which is connected to the gap space 13. About this cavity and the wet steam line 19, the leakage flow is sucked out, so to speak. The first pressure chamber 20, which has a lower pressure than the pressure in the gap space 13, serves as the drive for this extraction. Further flow of the leakage flow formed in the gap 13 in the direction of the thrust balance piston chamber 15 is prevented by the greater part of the wet steam flowing in the wet steam line 19 is sucked off. In operation, the superheated steam, which enters the thrust balance piston antechamber 15 via a thrust balance piston line 24, spreads in two directions. A portion of the superheated steam propagates in the direction of the gap 17 and strikes the outer housing 3. Another part of the superheated steam flows in the direction of the gap 13 and is sucked as well as the wet steam through the wet steam line 19 to the first pressure chamber 20 through.

Claims (8)

  1. Steam turbine (1) comprising a rotatably mounted rotor (4), an inner casing (9) and a high-pressure flow duct (6) arranged between the rotor (4) and the inner casing (9), wherein the rotor (4) has a dummy piston (14),
    wherein the steam turbine (1) has a dummy piston line (24),
    wherein the dummy piston line (24) opens into a dummy piston prechamber (15),
    the steam turbine (1) has a wet steam line (19), which establishes a fluidic connection between a gap space (13) and a first pressure space (20),
    wherein the gap space (13) is arranged between the rotor (4) and the inner casing (9),
    wherein the dummy piston line (24) is connected fluidically to a steam source (25) wherein the steam source (25) is arranged outside the steam turbine, wherein the steam turbine (1) has a second flow duct (21) and an inflow zone (26) assigned to the second flow duct (21),
    wherein the dummy piston line (24) is connected fluidically to the inflow zone (26),
    characterized in that
    the first pressure space (20) is arranged in the inflow zone (26),
    wherein the second flow duct (21) has the first pressure space (20) and a feed opening (27) for feeding steam into the first pressure space (20),
    wherein the second flow duct (21) has a plurality of blade stages arranged in series in a direction of flow and comprising guide and rotor blades.
  2. Steam turbine (1) according to Claim 1,
    wherein the wet steam line (19) opens into the inflow zone (26).
  3. Steam turbine (1) according to Claim 1 or 2,
    wherein the dummy piston (14) is designed to compensate for the thrust of the rotor (4) which occurs during operation.
  4. Steam turbine (1) according to Claim 1, 2 or 3
    wherein the dummy piston (14) extends in a radial direction (22).
  5. Steam turbine (1) according to Claim 4,
    wherein the dummy piston prechamber (15) is formed between the dummy piston (14) and the inner casing (9).
  6. Steam turbine (1) according to one of the preceding claims,
    wherein the gap space (13) is arranged between the dummy piston prechamber (15) and a high-pressure outflow zone (12) of the high-pressure flow duct (6).
  7. Steam turbine (1) according to one of the preceding claims,
    wherein the inner casing (9) has a cavity open toward the gap space (13).
  8. Steam turbine (1) according to one of the preceding claims,
    wherein the high-pressure duct (6) and the second flow duct (21) are arranged in a common inner casing (9).
EP12722120.8A 2011-05-18 2012-05-15 Steam turbine with dummy piston sealing arrangement for blocking saturated steam Not-in-force EP2675999B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12722120.8A EP2675999B1 (en) 2011-05-18 2012-05-15 Steam turbine with dummy piston sealing arrangement for blocking saturated steam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP11166525A EP2525042A1 (en) 2011-05-18 2011-05-18 Steam turbine with dummy piston sealing arrangement for blocking saturated steam
PCT/EP2012/058972 WO2012156387A1 (en) 2011-05-18 2012-05-15 Blocking circuit in steam turbines for shutting off wet steam
EP12722120.8A EP2675999B1 (en) 2011-05-18 2012-05-15 Steam turbine with dummy piston sealing arrangement for blocking saturated steam

Publications (2)

Publication Number Publication Date
EP2675999A1 EP2675999A1 (en) 2013-12-25
EP2675999B1 true EP2675999B1 (en) 2015-01-14

Family

ID=46125434

Family Applications (2)

Application Number Title Priority Date Filing Date
EP11166525A Withdrawn EP2525042A1 (en) 2011-05-18 2011-05-18 Steam turbine with dummy piston sealing arrangement for blocking saturated steam
EP12722120.8A Not-in-force EP2675999B1 (en) 2011-05-18 2012-05-15 Steam turbine with dummy piston sealing arrangement for blocking saturated steam

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11166525A Withdrawn EP2525042A1 (en) 2011-05-18 2011-05-18 Steam turbine with dummy piston sealing arrangement for blocking saturated steam

Country Status (3)

Country Link
EP (2) EP2525042A1 (en)
CN (1) CN103534441B (en)
WO (1) WO2012156387A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112796841B (en) * 2020-12-25 2022-03-15 东方电气集团东方汽轮机有限公司 Structure for reducing steam leakage of gap bridge steam seal
CN115405380B (en) * 2022-09-30 2025-03-07 上海电气电站设备有限公司 A cooling channel structure in a three-shell steam turbine and a steam turbine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3614255A (en) * 1969-11-13 1971-10-19 Gen Electric Thrust balancing arrangement for steam turbine
DE2148855A1 (en) * 1971-09-30 1973-04-05 Aeg Kanis Turbinen LABYRINTH ARRANGEMENT FOR CONDENSATION TURBINES
JPH09125909A (en) * 1995-10-30 1997-05-13 Mitsubishi Heavy Ind Ltd Combined-cycle steam turbine
EP1630360B1 (en) * 2004-08-23 2009-10-28 Siemens Aktiengesellschaft Supplying steam for cooling the outer casing of a steam turbine

Also Published As

Publication number Publication date
CN103534441B (en) 2015-08-05
EP2525042A1 (en) 2012-11-21
CN103534441A (en) 2014-01-22
WO2012156387A1 (en) 2012-11-22
EP2675999A1 (en) 2013-12-25

Similar Documents

Publication Publication Date Title
EP1774140B1 (en) Steam turbine, and method for the operation of a steam turbine
EP2179143B1 (en) Gap cooling between combustion chamber wall and turbine wall of a gas turbine installation
CH702101B1 (en) Turbine blade with winglet.
EP0906494A1 (en) Turbine shaft and process for cooling it
DE102010037862A1 (en) Whirl chambers for slit flow control
EP0900322A1 (en) Turbine shaft and process for cooling a turbine shaft
EP3130748A1 (en) Rotor cooling for a steam turbine
EP2601382B1 (en) Disabling circuit in steam turbines for shutting off saturated steam
EP2675999B1 (en) Steam turbine with dummy piston sealing arrangement for blocking saturated steam
EP2554789A1 (en) Steamturbine comprising a dummy piston
EP3155226B1 (en) Steam turbine and method for operating a steam turbine
DE102010012583A1 (en) Method for operating a steam turbine with a pulse rotor and steam turbine for carrying out the method
WO2004003346A1 (en) Steam turbine
DE102013219771B4 (en) steam turbine
EP2310633B1 (en) Reducing the thermal load of an external housing for a turbo-machine
EP2877699B1 (en) Low pressure turbine
EP2775096B1 (en) Diffuser assembly for an exhaust housing of a steam turbine, and steam turbine with the same
EP1734292A1 (en) Sealing means for a turbomachine
DE102009037411B4 (en) Erosion protection device for steam turbine stages
EP3056663A1 (en) Axial flow steam turbine, especially of the double-flow type
EP3183426B1 (en) Controlled cooling of turbine shafts
EP2824279B1 (en) Turbomachine with sealing arrangement
EP1561909A1 (en) Diffuser, turbomachine and method of recovery of pressure in a turbomachine.
EP1674670B1 (en) Turbine and method for cooling an external casing of a turbine
DE102016203731A1 (en) steam turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
INTG Intention to grant announced

Effective date: 20140808

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 707178

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012002123

Country of ref document: DE

Effective date: 20150226

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SIEMENS SCHWEIZ AG, CH

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150114

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150414

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150514

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012002123

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20151015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150515

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120515

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160515

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: WERNER-VON-SIEMENS-STRASSE 1, 80333 MUENCHEN (DE)

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 707178

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20180427

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150114

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180809

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190515

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200720

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502012002123

Country of ref document: DE

Owner name: SIEMENS ENERGY GLOBAL GMBH & CO. KG, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20210517

Year of fee payment: 10

Ref country code: FR

Payment date: 20210526

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012002123

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220515

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531