EP2675446A1 - Omega-3-formulierungen mit epa, dha und dpa zur behandlung von risikofaktoren für kardiovaskuläre erkrankungen - Google Patents

Omega-3-formulierungen mit epa, dha und dpa zur behandlung von risikofaktoren für kardiovaskuläre erkrankungen

Info

Publication number
EP2675446A1
EP2675446A1 EP12707420.1A EP12707420A EP2675446A1 EP 2675446 A1 EP2675446 A1 EP 2675446A1 EP 12707420 A EP12707420 A EP 12707420A EP 2675446 A1 EP2675446 A1 EP 2675446A1
Authority
EP
European Patent Office
Prior art keywords
omega
formulation
epa
dha
accordance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12707420.1A
Other languages
English (en)
French (fr)
Inventor
George Jackowski
Rachelle MACSWEENEY
Nisar Shaikh
Jason Yantha
Valerie SCHINI-KERTH
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pivotal Therapeutics Inc
Original Assignee
Pivotal Therapeutics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pivotal Therapeutics Inc filed Critical Pivotal Therapeutics Inc
Publication of EP2675446A1 publication Critical patent/EP2675446A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/20Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids
    • A61K31/202Carboxylic acids, e.g. valproic acid having a carboxyl group bound to a chain of seven or more carbon atoms, e.g. stearic, palmitic, arachidic acids having three or more double bonds, e.g. linolenic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications

Definitions

  • This invention relates to compositions designed to mediate omega-3 deficiencies in individuals in need thereof; particularly to compositions containing specific ratios of highly purified long chain fatty acid compositions which are effective in elevating omega-3 levels to a point at which the risk factors for cardiovascular disease are mitigated, and most particularly to a composition having an EPA:DHA ratio and level of purity which enable them to be effective in providing a sustained vasodilatory effect, defined as a vasodilatory effect lasting at least 6 hours.
  • the composition is useful in the treatment of cardiovascular disease (CVD) and in the protection of patients suffering from CVD from sudden death.
  • omega-3 fatty acid deficient 70% of Americans are omega-3 fatty acid deficient. Further studies indicate that over 84% of CVD patients are deficient in omega-3 fatty acids, specifically Eicosapentaenoic acid (EPA), Docosahexaenoic acid (DHA) and Docosapentaenoic acid (DPA).
  • EPA Eicosapentaenoic acid
  • DHA Docosahexaenoic acid
  • DPA Docosapentaenoic acid
  • Cardiovascular disease represents the primary cause of mortality for men and women in developed countries globally. These premature deaths come at great cost to both the individuals and their families, as well as representing a huge burden to the health care system of the country.
  • the risk factors for cardiovascular disease are well- recognized and include: higher than average serum cholesterol, elevated levels of LDL; a low level of HDL in proportion to the LDL level; higher than average serum triglycerides; and higher levels of lipid oxidation products and inflammatory processes creating plaques and streaks which cause blockages of coronary arteries.
  • An additional risk factor for cardiovascular disease and stroke is high blood pressure. Reduction in these risk factors is effective to reduce the prevalence of CVD and its many costs.
  • CVD incidence poor diet and sedentary lifestyle are major factors that contribute to increased risk for the development, and progression of CVD. Because of this, clinical management of CVD often includes an attempt to modify a patient's lifestyle to increase exercise, and incorporate a balanced diet, rich in omega-3 fatty acids. Due to non-compliance, and often an inability of a patient to adhere to lifestyle modifications, optimal patient care is not achieved through these efforts alone, and other therapeutic interventions or strategies must be considered.
  • Treatment options may include lipid-regulating medications, such as statins, or fibrates that act to lower low density lipoprotein (LDL) cholesterol and/or triglycerides (TG), metabolic components that are thought to contribute to atherosclerotic plaque buildup, and increase the risk for heart attack or stroke.
  • LDL low density lipoprotein
  • TG triglycerides
  • Omega-3 fatty acids are natural polyunsaturated fats found in sea foods like fish and which are presently also available as dietary supplements. They contain more than one double bond in the aliphatic chain. They are named according to the number (>1), position and configuration of double bounds.
  • the three major types of omega-3 fatty acids are alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid ,(DHA).
  • omega-3 polyunsaturated fatty acids have been shown to protect against several types of cardiovascular diseases such as myocardial infarction, arrhythmia, atherosclerosis, and hypertension (Abeywardena and Head, 2001 ; Kris-Etherton et al., 2003). It is widely accepted that (EPA) (C20:5n-3) and (DHA) (C22:6n-3) are the major biological active polyunsaturated fatty acids contributing to the prevention of a variety of cardiovascular disorders by improving endothelium-dependent vasodilatation and preventing activation of platelets.
  • U.S. Patent 7,619,002 to Shibuya is directed toward a combination of EPA and DHA for prevention of major cardiovascular events.
  • U.S. Patent 5,562,913 to Horobin shows combinations of fatty acids for the treatment of smokers.
  • the prior art fails to disclose a pharmaceutical formulation as set forth in the instantly disclosed invention, containing about 90% or greater omega 3 fatty acids by weight having a combination of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) in a weight ratio of EPA: DHA of from 5.7 to 6.3, wherein the sum of the EPA, DHA and DPA is about 82% by weight of the total formulation and about 92% of the total omega 3 fatty acid content of the composition.
  • EPA + DHA are about 80% of the total formulation and about 89% of the total omega 3 fatty acid content of the composition.
  • omega-3 fatty acid preparations to cause endothelium-dependent relaxations depends on their relative content of EPA and DHA, as well as the purity of the overall formulation and the presence of additional key omega-3 fatty acids, particularly DPA.
  • formulations in accordance with the present invention having an
  • EPA:DHA ratio of about 6: 1 induced significantly greater relaxations than an EPA:DHA 1 :1 preparation despite their similar content of omega-3 fatty acids.
  • EPA is likely to be a more potent endothelium-dependent vasorelaxant agonist than DHA.
  • the fact that the two major omega-3 fatty acids do not have similar biological activity to cause endothelium-dependent relaxation is important since the leading commercial omega-3 preparations (Lovaza ® ) has a ratio of EPA:DHA 1.2: 1.
  • the optimization of the ratio of EPA:DHA in omega-3 preparations may provide new products with an enhanced vascular protective potential.
  • the present invention provides a novel composition, which may be incorporated into an orally administered formulation for the reduction of risk factors associated with CVD, and a novel treatment method.
  • a composition of the formulation of the invention may be used orally to treat and/or prevent risk factors of CVD and stroke, including reduction of high blood pressure and improving overall lipid profiles, e.g. low density lipoprotein (LDL), high density lipoprotein (HDL) and triglycerides. While not wishing to be bound by theory, the inventors believe that the compositions work by acting at different sites and aspects of cardiovascular disease.
  • the compositions of the present invention are preferably presented for administration to humans and animals in unit dosage forms, such as tablets, capsules, pills, powders, granules, and oral solutions or suspensions and the like, containing suitable quantities of an active ingredient.
  • the present invention also provides methods of treatment, for example administering a patient having an omega-3 fatty acid deficiency, that may be evidencing one or more risk factors for CVD, a therapeutically effective amount of a formulation in accordance with the invention to achieve a therapeutic level of omega-3; whereby mitigation of said one or more risk factors for CVD is achieved.
  • the invention is also a method for providing a sustained vasodilatory effect in a patient by administering a therapeutically effective amount of a formulation in accordance with the invention, whereby an indomethacin-independent sustained vasodilatory effect is achieved.
  • composition of the invention By providing a method of treatment for mediating omega-3 deficiencies, use of the instant invention to improve the health of the heart and to reduce risk factors associated with cardiovascular disease by delivering to an individual the composition of the invention is realized.
  • Delivery of the composition of the invention e.g., by oral administration, has been shown to be useful for preventing oxidation of low density lipoprotein (LDL), increasing high density lipoprotein (HDL), and for reducing total cholesterol.
  • Delivery of the composition of the invention is also useful for reducing triglycerides and reducing homocysteine.
  • the compositions of the invention are formulated such that an effective amount is delivered by multiple tablets (or other suitable formulation) a day.
  • these doses may be taken with meals, mixed into food, or taken on an empty stomach. Generally improvement is observed after two to eight weeks of daily use.
  • the compositions of the invention may be delivered daily in a suitable form (e.g., a chew or bar).
  • suitable dosage regimens may be readily developed by one of skill in the art. Such dosage regimens are not a limitation of the invention.
  • the compositions of the present invention in addition to their use in treating CVD in humans, may also be useful in treating non-human animals, particularly mammals.
  • these dietary supplements may be useful for companion animals such as dogs and cats, for cattle, horses, and pigs, among other animals.
  • Figure 1 illustrates the study design for the VASCAZENTM open label study
  • Figure 2 is a plot of improved whole blood EPA + DHA + DPA levels baseline to week 6;
  • Figure 3 illustrates the normal distribution curves for Groups A-C during the Open Label Study
  • Figure 4 illustrates the effect of differing EPA:DHA ratios on the relaxation of coronary artery rings with and without the presence of the endothelium
  • Figure 5 discloses the relaxation effect of an EPA:DHA 6: 1 control versus the effect of eNOS and EDHF inhibitors;
  • Figure 6 discloses how the presence of Src kinase and PI3 -kinase impacts the relaxation effect of an EPA:DHA 6:1 product:
  • Figure 7 illustrates the shift in relaxation effect of an EPA:DHA 6:1 product by membrane permeant analogues
  • Figure 8A illustrates the effect EPA:DHA 6: 1 has on both Akt and eNOS phosphorylation
  • Figure 8B illustrates Western Blot Data Showing Sustained eNOS
  • Figure 9 demonstrates the relation of purity to the sum of EPA + DHA relative to total Omega-3 ratios on the relaxation of coronary artery rings in the presence or absence of endothelium;
  • Figure 10 illustrates that the relaxation effect of the subject EPA:DHA 6:1 formulation is insensitive to the presence of indomethacin
  • Figure 11 A and Figure 1 IB illustrate the indomethacin sensitivity of the relaxation effect of the subject EPA:DHA 6:1 formulation relative to several over the counter Omega-3 products;
  • Figure 12 illustrates the indomethacin sensitivity of the relaxation effect of the EPA:DHA 6:1 formulation relative to a formulation of like ratio containing certain additives
  • Figure 13 illustrates the comparative vasorelaxing effect of EPA:DHA 6:1 according to the present invention as compared to EPA:DHA 1 :1, EPA alone and DHA alone;
  • Figure 14 illustrates the mechanism by which EPA:DHA 6:1 stimulates the endothelial formation of NO via the redox-sensitive activation of the Phosphoinositide 3- Kinase (PI3-Kinase)/ Protein Kinase (Akt) pathway.
  • PI3-Kinase Phosphoinositide 3- Kinase
  • Akt Protein Kinase
  • the present invention provides a long chain fatty acid composition that includes a formulation containing a minimum of about 90% omega 3 fatty acids by weight having a combination of Eicosapentaenoic acid (EPA) and Docosahexaenoic acid (DHA) in a weight ratio of EPA: DHA of from 5.7 to 6.3, wherein the sum of the EPA, DHA and DPA is about 82% by weight of the total formulation and about 92% of the total omega 3 fatty acid content of the composition.
  • EPA + DHA are about 80% of the total formulation and about 89% of the total omega 3 fatty acid content of the composition.
  • the fatty acids of the present invention are understood to include biologically active glyceride forms, e.g. triglycerides, biologically active ester forms, e.g. ethyl ester forms, and biologically active phospholipid forms, their derivatives, conjugates, precursors, and pharmaceutically acceptable salts and mixtures thereof.
  • the pharmaceutical formulation of the instant invention is contemplated as being administered in amounts providing a daily dosage of 1 to 4 gm of said formulation.
  • the pharmaceutical formulation at such dosage level being effective for the treatment or prophylaxis of risk factors of cardiovascular disease and the protection against sudden death in patients with CVD.
  • compositions of the instant invention may be provided wherein a unit form is a gel or liquid capsule.
  • An exemplary unit dosage form includes from about 645 to about 715 mg/gm EPA, for example about 680 mg/gm EPA and from about 105 to 1 15 mg/gm, for example about 110 mg/gm DHA.
  • the unit dosage can include from about 22 to about 28 mg/gm DPA for example about 25 mg/gm DPA.
  • Unit doses may additionally include a stabilizer, e.g. tocopherol in amounts up to about 0.5 %, for example about 0.15% to about 0.25% or about 0.2% by weight.
  • the effective unit dosage is generally 3 gm to 4 gm of the pharmaceutical formulation which are provided daily to CVD patients in one or more unit doses, for example about 3 - 4 one gram capsules per day.
  • one or more optional ingredients can be included in the formulations. Such ingredients may be separately added or may be components of the source from which the omega 3 fatty acids in the formulation are derived.
  • the formulation may further contain about 30 mg/gm of arachidonic acid (AA). In some embodiments, the formulation may further contain up to about 5%, for example about 3% or about 30 mg/gm of arachidonic acid (AA). It has been discovered that aspirin-acetylated COX-2 is also able to convert Omega-6 AA through lipoxygenases (LOX) to lipoxins (LXs), which are potent anti-inflammatory mediators (Nature Chemical Biology, Vol. 6, June 2010, Pp 401-402). [0043] Some embodiments of the formulation contains >2%, for example >3%, of
  • 18 carbon Omega-3 fatty acids either individually or in total.
  • exemplary 18 carbon atom omega-3 fatty acids include alpha-linolenic acid (ALA) and Stearidonic acid (SDA), either alone or in combination.
  • ALA alpha-linolenic acid
  • SDA Stearidonic acid
  • the composition can contain additional fatty acids in lesser amounts, usually less than about 1% of each that is present. Exemplary embodiments contain about 0.3- 0.7%, or about 5% of any of the additional fatty acids,
  • additional fatty acids can include, for example, omega -6 fatty acids such as Dihomo-gamma-linolenic acid (DGLA; 20:3n6), Docosapentaenoic acid (Osbond acid; 22:5n6); omega-9 fatty acids such as Oleic acid (18:ln9) and others such as 7,10,13,15-hexadecatetraenoic acid and (16:4nl), 9,12,15,17-octadecatetraenoic acid (18:4nl).
  • omega -6 fatty acids such as Dihomo-gamma-linolenic acid (DGLA; 20:3n6), Docosapentaenoic acid (Osbond acid; 22:5n6)
  • omega-9 fatty acids such as Oleic acid (18
  • Eicosatetraenoic acid (ETA; 20:4n3) may be present in amounts up to about 2%, for example about 1.5%
  • Heneicosapentaenoic acid (HPA; 21 :5n3) may be present in amounts up to about 3%, for example at about 2.3%.
  • HPA Heneicosapentaenoic acid
  • These additional fatty acids may be added separately or may be present in formulations obtained from particular sources using particular methods.
  • Other additional components and fatty acids may also be present in small amounts, for example 0-0.25% of the formulation.
  • composition is formulated with a DHA content to provide about 400 mg per daily dose.
  • TG high density phospholipids
  • a highly potent omega-3 formulation in accordance with the present invention is marketed by Pivotal Therapeutics, Inc., under the trade name
  • VASCAZENTM to alleviate the cardiovascular risks associated with omega-3 deficiency.
  • VASCAZENTM has been formulated for the dietary management of omega-3 deficiency in patients with CVD, providing EPA and DHA to levels not attainable through normal dietary modifications.
  • the VASCAZENTM product exemplifies the present invention in being composed of about 90% or more omega-3 fatty acids at a ratio of eicosapentaenoic acid (EPA) to docosahexaenoic acid (DHA) within the range of 5.7: 1 - 6.3 : 1 , respectively.
  • the formulation contains about 680mg/g of EPA, about l l Omg/g of DHA, and about 25 mg/g of DPA per capsule.
  • Each capsule has a total weight of about 1000 mg. It is generally contemplated that a daily regimen of VASCAZEN rM includes 4 tablets per day given either in one dose or in separate doses throughout the day. With respect to a 1000 mg fill, the formulation contains at least about 90% or more omega-3 fatty acids, wherein about 80% is the sum of EPA+DHA, and about 82% the sum of EPA + DPA + DHA. Embodiments can also contain about 30mg/g of
  • arachidonic acid an omega-6 fatty acid, and/or >3% of 18 carbon Omega-3 fatty acids.
  • omega-3 deficient due to lack of consumption of this essential nutrient in the typical "western diet", which includes an overabundance of proinflammatory omega-6 fatty acid intake, by comparison.
  • this dietary trend can be particularly dangerous. Coupled with other cardiometabolic risk factors, omega-3 deficiency further exacerbates the chronic progression of this disease.
  • a growing body of evidence has demonstrated the cardiovascular health risks associated with chronic omega-3 deficiency.
  • a dietary deficiency of EPA acid and DHA in particular allows for downward pro-inflammatory pressures created by the metabolism of arachidonic acid (AA) that is typically very high in the diets of most Americans.
  • AA arachidonic acid
  • omega-3 fatty acid deficiency contributes to a pro-inflammatory state, the consequences of which include negative effects on cardiovascular health, including increased risk for development of dyslipidemia (high cholesterol, high triglycerides), atherosclerotic plaque buildup, hypertension, and cardiac arrhythmia.
  • VASCAZENTM whole blood omega-3 fatty acid levels were examined in 143 patients, and the inventive formulation was administered to patients for two or six-week follow-ups, providing about 2800 mg/day EPA and about 480 mg/day DHA.
  • the primary outcome measure was the change in the sum of blood EPA+DHA+DPA. levels (the Omega-ScoreTM ), expressed as a percentage of total blood fatty acid levels over a two or six-week duration.
  • the formulation in accordance with the present invention was generally well tolerated, with only minor adverse events reported in a small proportion of study
  • Subjects were eligible for the study if they met all inclusion and exclusion criteria set out in the clinical study protocol. All eligible subjects provided informed consent prior study enrollment, and entered Group A ( Figure 1.). Sixty three subjects were provided 4 capsules per day of VASCAZENTM (Group B), an oral dose of 2720mg EPA and 440mg DHA per day. After two weeks of treatment, whole blood omega-3 blood level was assessed, and 31 subjects entered into Group C, for continued treatment. Group C subjects provided whole blood samples at weeks 4 and week 6, for follow-up Omega-ScoreTM assessment.
  • the primary outcome measure was the change in Omega-ScoreTM values expressed as a percentage of total blood fatty acid levels over a 2-week period for Group B, and 6-week period for Group C.
  • the baseline Omega-ScoreTM value for Group A was calculated as the mean percentage at week 0, prior to VASCAZENTM intervention, and Groups B and C Omega-ScoreTM means were evaluated at the specified time points accordingly.
  • the study included both men and women >15 years of age, in stable medical condition.
  • Exclusion criteria included the following: A history of ventricular arrhythmia, known bleeding or clotting disorder, liver or kidney disease, autoimmune disorder or suppressed immune systems, seizure disorder or taking anticonvulsant medication; allergies to fish; or subjects with an implantable cardioverter defibrillator. Medical histories, and current medications were also documented.
  • Fatty acids were extracted from 200 of whole blood sample using a mixture of methanol and chloroform. Fatty acids were then methylated with 10% (w/v) BC1 3 in methanol by incubation at 90 °C for 25 min to form fatty acid methyl esters (FAMEs). After cooling the FAMEs were extracted with water hexane mixture and 1 uL of n-hexane extract was injected for GC-MS analysis.
  • the safety population was defined as a patient group that had a minimum of 2 weeks and maximum of 6 weeks VASCAZENTM, at a dose of 4 capsules per day.
  • Primary analyses of treatment efficacy were performed on the subset of enrolled study subjects for whom blood measurements were taken at baseline and after 2 weeks of study treatment.
  • the change in blood Omega- ScoreTM levels over the 2-week period was computed for each study subject.
  • the distribution of changes in blood Omega-ScoreTM levels over 2 weeks were tested for normality using the Pearson- D'Agostino test. A paired t-test was conducted in order to test the change in blood Omega-ScoreTM levels over the 2-week period.
  • VASCAZENTM intervention for 2 weeks had a significant (PO.0001)
  • Omega-ScoreTM (%) % of Patients At Risk ( ⁇ 6.1% Omega-
  • VASCAZENTM was generally well tolerated with a low incidence, of minor adverse events that are typical for omega-3 polyunsaturated fatty acid ethyl esters. This study has highlighted the prevalence of chronic omega-3 deficiency in the majority of people (84%>), both men and women.
  • omega-3 deficiency in patients with CVD are well documented, with numerous studies linking EPA and DHA deficiency. Many studies and current therapeutic approaches have categorized omega-3 as a
  • formulations according to the invention have been shown to provide a sustainable eNOS vasodilatory effect, defined as a vasodilatory effect persisting for 6 hours or more, which has heretofore not been achievable with either prescription or OTC grade omega-3 supplements.
  • ROS Reactive oxygen species Reactive Oxygen Species
  • sGC Soluble guanylyl cyclase
  • the endothelium consists of a single endothelial cell layer lining the luminal surface of all blood vessels. Endothelial cells play an important function in the regulation of vascular homeostasis. They regulate the contact of blood with the underlying
  • thrombogenic arterial wall respond to numerous physiological stimuli such as circulating hormones and shear stress by releasing several short-lived potent endothelium- derived vasoactive factors such as nitric oxide (NO) and endothelium- derived
  • EDHF hyperpolarizing factor
  • NO is produced by endothelial nitric oxide synthase (eNOS) from L- arginine and plays critical roles in normal vascular biology and pathophysiology. NO induces relaxation of the vascular smooth muscle by activating soluble guanylyl cyclase resulting in the formation of cyclic guanosine 3 '-5 'monophosphate (cGMP). In addition to the regulation of vascular tone and inhibition of platelet aggregation, NO also inhibits many key steps involved in atherogenesis including vascular smooth muscle cell proliferation, monocyte adhesion (Dimmeler et al., 1997; Hermann et al., 1997; Tsao et al., 1996) and cell death.
  • eNOS endothelial nitric oxide synthase
  • eNOS can be activated by receptor-dependent and -independent agonists as a consequence of an increase in the intracellular concentration of free Ca ([Ca 2+ ]i) and the association of a Ca 2+ / Calmodulin (CaM) complex with eNOS leading to its activation (Fleming et al., 2001). Indeed both the agonist-induced NO formation and subsequent vasorelaxation are abolished by the removal of Ca 2+ from the extracellular space as well as by CaM antagonists.
  • eNOS is also regulated in endothelial cells at a post- translational level primarily through protein/protein interactions and multisite
  • eNOS phosphorylation at Serl 16, Thr497, Ser635, and Serl 179
  • Residue numbers are for the bovine sequence, equivalent to Serl 14, Thr495, Ser633, and Serl 177 in the human sequence
  • positive and negative protein modulators such as caveolin (Cav-1) and heat shock protein 90 (Garcia-Cardena et al., 1998; Ju et al., 1997; Pritchard et al., 2001).
  • Akt PI3-kinase-dependent mechanisms
  • Akt one of the major regulatory targets of PI3-kinase, has been shown to directly phosphorylate eNOS at Serl 179 and activate the enzyme in response to vascular endothelial growth factor (VEGF), sphingosine-1 -phosphate, and estrogens (Dimmeler et al., 1997; Fulton et al., 1999).
  • VEGF vascular endothelial growth factor
  • sphingosine-1 -phosphate sphingosine-1 -phosphate
  • estrogens Dimmeler et al., 1997; Fulton et al., 1999.
  • eNOS-Serl 179 can also be phosphorylated by AMP-activated protein kinase (Busse et al., 2002), protein kinase A (PKA), and protein kinase G (PKG). Exactly which protein kinase(s) phosphorylates eNOS-Serl 179 in intact cells appears to be dependent on the type of endothelial cells and stimuli.
  • AMP-activated protein kinase Busse et al., 2002
  • PKA protein kinase A
  • PKG protein kinase G
  • shear stress phosphorylates eNOS Serl 179 by a PI3-kinase- and PKA-dependent manner without involving Akt whereas EGF phosphorylates eNOS Serl 179 by a PI3-kinase- and Akt-dependent manner (Boo et al., 2002).
  • EGF phosphorylates eNOS Serl 179 by a PI3-kinase- and Akt-dependent manner
  • the ischemia-reperfusion injury activates the PKA pathway leading to the phosphorylation of eNOS at Serl 179 and Ser635 (Li et al., 2010).
  • eNOS expression can be modulated by several factors including shear stress (Butt et al., 2000), hypoxia, low- density lipoproteins (LDL) (Chen et al., 2008; Chen et al., 1999) and oxidized fatty acids (Corson et al., 1996).
  • Endothelium-dependent vasorelaxation has also been observed in some blood vessels following inhibition of NO and PGI2 synthesis and has been attributed to endothelium-derived hyperpolarizing factor (EDHF).
  • EDHF relaxes blood vessels through hyperpolarization of the vascular smooth muscle. This effect will close voltage-operated Ca channels resulting in reduction of the intracellular free Ca level and subsequent relaxation of the vascular smooth muscle. Potassium (K + ) channels underlie the
  • endothelial dysfunction is characterized by impaired NO bioavailability subsequent to a reduced generation of NO by eNOS and/or an increased breakdown of NO by reactive oxygen species (ROS) and, in particular, superoxide anions (Vanhoutte, 1989).
  • ROS reactive oxygen species
  • Omega-3 fatty acids have been shown to cause endothelium-dependent vasorelaxation in vitro in rat aortic rings and coronary artery rings by stimulating the endothelial formation of NO (Engler et al., 2000; Omura et al., 2001).
  • NO endothelium-dependent vasorelaxation
  • the signal transduction pathway leading to eNOS activation remains poorly studied.
  • little information is currently available regarding the optimal ratio of EPA:DHA for the activation of eNOS. Therefore, the following experiments were carried out to characterize the fish oil-induced activation of eNOS in isolated blood vessels and cultured endothelial cells.
  • the initial experiment was designed to determine the ability of omega-3 fatty acids (EPA, DHA and different ratios of EPA:DHA) to cause endothelium-dependent relaxations in rings of porcine coronary arteries, thereby enabling the characterization of the role of NO and EDHF in endothelium-dependent relaxation and identification of the signal transduction pathway involved.
  • omega-3 fatty acids EPA, DHA and different ratios of EPA:DHA
  • Rings with or without endothelium were suspended in organ baths containing Krebs bicarbonate solution (composition in mM: NaCl 118.0, KC1 4.7, CaCl 2 2.5, MgS0 4 1.2, NaHC0 3 23.0; KH 2 P0 4 1.2 and glucose 11.0, pH 7.4, 37°C) oxygenated with a mixture of 95% 0 2 and 5% C0 2 .
  • Krebs bicarbonate solution composition in mM: NaCl 118.0, KC1 4.7, CaCl 2 2.5, MgS0 4 1.2, NaHC0 3 23.0; KH 2 P0 4 1.2 and glucose 11.0, pH 7.4, 37°C
  • ⁇ -nitro-L-arginine L-NA, 300 ⁇
  • NOS NO synthase
  • TRAM 34 100 nM
  • apamin 100 nM
  • IKCa and SKCa Ca 2+ -activated potassium channels
  • Pig coronary artery endothelial cells were harvested, cleaned with phosphate buffered saline solution (PBS) without calcium to remove any residual blood.
  • Endothelial cells were isolated by collagenase (type I, Worthington, 1 mg/ml, 14 min at 37°C) and cultured in medium MCDB131 (Invitrogen) supplemented with 15% v/v fetal calf serum, 2 mM glutamine, 100 U/mL penicillin, 100 U/mL streptomycin and 250 mg/ml fungizone (Sigma, St Louis, MO) at 37°C in 5% C0 2 . All experiments were performed with confluent endothelial cells used at first passage. Endothelial cells were exposed to MCDB131 with 0.1% v/v fetal calf serum 5 h before treatment with different substances.
  • PBS phosphate buffered saline solution
  • endothelial cells were rinsed twice with PBS and lysed with extraction buffer (composition in mM: Tris / HC1 20, pH 7.5 (QBiogene), NaCl 150, Na 3 V0 4 1, Na 4 P 2 0 7 10, NaF 20, okadaic acid 0.01 (Sigma), protease inhibitors (Complete Roche) and 1% Triton X-100). 25 ⁇ g of total proteins were separated on SDS- polyacrylamide (Sigma 8%) at 100 V for 2 h. Separated proteins were transferred onto a polyvinylidene fluoride membrane (Amersham) by electrophoresis at 100 V for 2 h.
  • extraction buffer composition in mM: Tris / HC1 20, pH 7.5 (QBiogene), NaCl 150, Na 3 V0 4 1, Na 4 P 2 0 7 10, NaF 20, okadaic acid 0.01 (Sigma), protease inhibitors (Complete Roche) and 1% Triton X-100.
  • membranes were blocked with blocking buffer containing 3% bovine serum albumin in TBS-T (Tris-buffered saline solution, Biorad, containing 0.1% Tween 20, Sigma) for 1 h.
  • TBS-T Tris-buffered saline solution, Biorad, containing 0.1% Tween 20, Sigma
  • membranes were incubated in TBS-T containing the respective primary antibodies (p-eNOS Ser 1 177, p-eNOS Thr 495 and p-Akt Ser 473 (dilution 1 : 1000), ⁇ -tubulin (dilution 1 :5000, Cell Signaling Technology) overnight at 4°C.
  • Bonferoni post-hoc test A P value of ⁇ 0.05 is considered statistically significant.
  • the omega-3 fatty acid preparation EPA:DHA 1 : 1 induced concentration- dependent relaxations of coronary artery rings with endothelium whereas only small relaxations were obtained in those without endothelium contracted with U46619 ( Figure 4).
  • the relaxations to EPA:DHA 1 : 1 was observed at volumes greater than 0.01 % v/v and they reached about 75% at 0.4 % v/v ( Figure 4).
  • the omega-3 fatty acid preparation EPA:DHA 6: 1 also induced endothelium-dependent relaxations which were more potent than those induced by EPA:DHA 1 :1 ( Figure 4).
  • omega-3 fatty acid preparation EPA:DHA 6:1 induces endothelium-dependent relaxations involving both NO and EDHF.
  • Omega-3 in % signifies total omega-3 in % of total fatty acids as EE (ethyl esters)
  • Indomethacin is an inhibitor of COX-1 and thus will prevent the formation of vasorelaxing prostanoids.
  • the magnitude of the endothelium-dependent relaxation is dependent on the purity of the formulation ( Figure 9) and on the EPA:DHA ratio ( Figure 4).
  • the EPA:DHA 6:1 formulation caused similar endothelium-dependent relaxation as the OTC Omega-3 product TETESEPTTM with an omega-3 purity (as defined above) of 22.2 % as compared to that of the EPA:DHA 6:1 formulation of 75.1 % and was much more effective than the other OTC Omega-3s tested (ABTEI LACHSOLTM 1300, DOPPELHERZ ® , SCHAEBENSTM and OPTISANATM ( Figure 1 1 A).
  • TETESEPTTM has a more than fivefold higher vitamin E content than that of the
  • omega-3 fatty acid preparations are potent endothelium-dependent vasodilators and that this effect is dependent on the ratio and the omega-3 purity of EPA and DHA within the capsule. They further suggest that omega-3 fatty acids activate eNOS via a redox-sensitive PI3- kinase/ Akt pathway leading to changes in the phosphorylation level of eNOS as illustrated in Figure 14.

Landscapes

  • Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Epidemiology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
EP12707420.1A 2011-02-16 2012-02-14 Omega-3-formulierungen mit epa, dha und dpa zur behandlung von risikofaktoren für kardiovaskuläre erkrankungen Withdrawn EP2675446A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161457271P 2011-02-16 2011-02-16
PCT/US2012/025021 WO2012112527A1 (en) 2011-02-16 2012-02-14 Omega 3 formulations comprising epa, dha and dpa for treatment of risk factors for cardiovascular disease

Publications (1)

Publication Number Publication Date
EP2675446A1 true EP2675446A1 (de) 2013-12-25

Family

ID=45809613

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12707420.1A Withdrawn EP2675446A1 (de) 2011-02-16 2012-02-14 Omega-3-formulierungen mit epa, dha und dpa zur behandlung von risikofaktoren für kardiovaskuläre erkrankungen

Country Status (4)

Country Link
EP (1) EP2675446A1 (de)
JP (1) JP2014505731A (de)
CA (1) CA2827579A1 (de)
WO (1) WO2012112527A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2800563T3 (pl) * 2012-01-06 2018-12-31 Omthera Pharmaceuticals Inc. Wzbogacone w DPA kompozycje wielonienasyconych kwasów tłuszczowych omega-3 w postaci wolnego kwasu
JP6173437B2 (ja) 2012-05-07 2017-08-02 オムセラ・ファーマシューティカルズ・インコーポレイテッド スタチン及びω−3脂肪酸の組成物
JP2016500055A (ja) * 2012-10-23 2016-01-07 ディーキン・ユニバーシティー トリグリセリドを低減させる方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2119000A1 (en) 1993-03-19 1994-09-20 David Frederick Horrobin Formulation for use in smokers
ITMI20012384A1 (it) 2001-11-12 2003-05-12 Quatex Nv Uso di acidi grassi poliinsaturi per la prevenzione primaria di eventi cardiovascolari maggiori
FR2862873A1 (fr) * 2003-12-01 2005-06-03 Pf Medicament Utilisation des acides gras polyinsatures omega 3 dans l'apnee du sommeil
US20060211762A1 (en) * 2004-12-06 2006-09-21 Rongen Roelof M Omega-3 fatty acids and dyslipidemic agent for lipid therapy
CN101098690A (zh) * 2004-12-06 2008-01-02 瑞莱恩特医药品有限公司 用于血脂治疗的ω-3脂肪酸和脂血异常剂
BRPI0612908A2 (pt) * 2005-07-18 2010-12-07 Reliant Phamaceuticals Inc composições farmacêuticas compreendendo inibidores de absorção de colesterol à base de azetidinona e ácidos graxos de Èmega-3 e métodos de tratamento utilizando as mesmas
CA2634139C (en) 2005-12-20 2015-06-23 Cenestra, Llc. Omega 3 fatty acid formulations
ATE509624T1 (de) * 2005-12-23 2011-06-15 Nutricia Nv Zusammensetzung enthaltend mehrfach ungesättigte fettsäuren, proteine, mangan und/oder molybden und nukleotide/nukleoside, zur behandlung von demenz
EP1962617A2 (de) * 2005-12-23 2008-09-03 N.V. Nutricia Babynahrungszusammensetzungen zur verhinderung von fettleibigkeit
US20100130611A1 (en) 2006-12-20 2010-05-27 Cenestra Llc Omega 3 fatty acid formulations
EP2405902B1 (de) * 2009-03-09 2021-07-21 Basf As Zusammensetzungen mit einer fettsäureölmischung und einem tensid sowie verfahren und verwendung dafür

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012112527A1 *

Also Published As

Publication number Publication date
CA2827579A1 (en) 2012-08-23
JP2014505731A (ja) 2014-03-06
WO2012112527A1 (en) 2012-08-23

Similar Documents

Publication Publication Date Title
EP2675445A1 (de) Statin und omega-3-fettsäuren (epa, dha und dpa) zur verwendung bei kardiovaskulären erkrankungen
Kaur et al. Short-term docosapentaenoic acid (22: 5n-3) supplementation increases tissue docosapentaenoic acid, DHA and EPA concentrations in rats
EP2675443A1 (de) Diagnostischer omega-3-fettsäure-assay zur dietätischen behandlung von patienten mit herz-kreislauf-erkrankungen
US20150224075A1 (en) Omega 3 formulations for treatment of risk factors for cardiovascular disease and protection against sudden death
US20150246012A1 (en) Omega 3 fatty acid for use as a prescription medical food and omega 3 fatty acid diagnostic assay for the dietary management of cardiovascular patients with cardiovascular disease (cvd) who are deficient in blood epa and dha levels
US20150119414A1 (en) Statin and omega 3 fatty acids for reduction of apolipoprotein-b levels
US8715648B2 (en) Method for treating obesity with anti-obesity formulations and omega 3 fatty acids for the reduction of body weight in cardiovascular disease patients (CVD) and diabetics
EP2675446A1 (de) Omega-3-formulierungen mit epa, dha und dpa zur behandlung von risikofaktoren für kardiovaskuläre erkrankungen
CA2827555A1 (en) Cholesterol absorption inhibitor (azetidinone) and omega 3 fatty acids (epa, dha, dpa) for the reduction of cholesterol and for the reduction of cardiovascular events
EP2675444A1 (de) Formulierungen mit omega-3-fettsäuren und mittel gegen adipositas zur reduzierung des körpergewichts bei patienten mit herz-kreislauf-erkrankungen (cvd) und diabetes
US8952000B2 (en) Cholesterol absorption inhibitor and omega 3 fatty acids for the reduction of cholesterol and for the prevention or reduction of cardiovascular, cardiac and vascular events
US9248138B2 (en) Process and composition for stabilization of vulnerable plaque utilizing a combination of a statin and omega 3 fatty acids
WO2015106177A1 (en) Process and composition for stabilization of vulnerable plaque utilizing a combination of a statin and omega 3 fatty acids
JP2020503388A (ja) 悪液質を予防及び/又は処置するためのオメガ−3脂肪酸組成物
US20150272920A1 (en) Method for treating obesity with anti-obesity formulations and omega 3 fatty acids for the reduction of body weight in cardiovascular disease patients (cvd) and diabetics

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130916

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1192721

Country of ref document: HK

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160901

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1192721

Country of ref document: HK