EP2672731B1 - Hörinstrumentsystem mit wiederaufladbarer Batterie - Google Patents

Hörinstrumentsystem mit wiederaufladbarer Batterie Download PDF

Info

Publication number
EP2672731B1
EP2672731B1 EP13167401.2A EP13167401A EP2672731B1 EP 2672731 B1 EP2672731 B1 EP 2672731B1 EP 13167401 A EP13167401 A EP 13167401A EP 2672731 B1 EP2672731 B1 EP 2672731B1
Authority
EP
European Patent Office
Prior art keywords
accumulator
hearing instrument
battery
energy transfer
charging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13167401.2A
Other languages
English (en)
French (fr)
Other versions
EP2672731A1 (de
Inventor
Tom Weidner
Frank Koch
Mihail Boguslavskij
Simon Hüttinger
Frank Naumann
Benjamin Sewiolo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Sivantos Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102012214469A external-priority patent/DE102012214469A1/de
Application filed by Sivantos Pte Ltd filed Critical Sivantos Pte Ltd
Publication of EP2672731A1 publication Critical patent/EP2672731A1/de
Application granted granted Critical
Publication of EP2672731B1 publication Critical patent/EP2672731B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/30Monitoring or testing of hearing aids, e.g. functioning, settings, battery power
    • H04R25/305Self-monitoring or self-testing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/10Earpieces; Attachments therefor ; Earphones; Monophonic headphones
    • H04R1/1025Accumulators or arrangements for charging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/31Aspects of the use of accumulators in hearing aids, e.g. rechargeable batteries or fuel cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2460/00Details of hearing devices, i.e. of ear- or headphones covered by H04R1/10 or H04R5/033 but not provided for in any of their subgroups, or of hearing aids covered by H04R25/00 but not provided for in any of its subgroups
    • H04R2460/03Aspects of the reduction of energy consumption in hearing devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/554Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired using a wireless connection, e.g. between microphone and amplifier or using Tcoils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/75Electric tinnitus maskers providing an auditory perception

Definitions

  • the invention relates to a Hörinstrumentsystem with rechargeable battery, or short battery.
  • Rechargeable batteries can be used in particular for mobile devices.
  • mobile devices are for example hearing instruments into consideration.
  • Hearing instruments can be designed for example as hearing aids.
  • a hearing aid is used to supply a hearing-impaired person with acoustic ambient signals that are processed and amplified for compensation or therapy of the respective hearing impairment. It consists in principle of one or more input transducers, of a signal processing device, of an amplification device, and of an output transducer.
  • the input transducer is typically a sound receiver, e.g. a microphone, and / or an electromagnetic receiver, e.g. an induction coil.
  • the output transducer is usually as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B.
  • the output transducer generates output signals that are routed to the patient's ear and are intended to produce a hearing sensation in the patient.
  • the amplifier is usually integrated in the signal processing device.
  • the hearing aid is powered by a battery integrated into the hearing aid housing.
  • the essential components of a hearing aid are usually arranged on a printed circuit board as a circuit carrier or connected thereto.
  • Tinnitus maskers are used to treat tinnitus patients. They generate from the respective hearing impairment and depending on the principle of action also dependent on ambient noise acoustic output signals, which can contribute to reducing the perception of disturbing tinnitus or other ear noises.
  • Hearing instruments can also be designed as telephones, mobile phones, headsets, headphones, MP3 players or other mobile telecommunications or consumer electronics devices.
  • Hearing instruments have traditionally been operated with non-rechargeable batteries. Frequently batteries are used based on Zn-air cells, which have a high energy density.
  • the power supply including the battery itself is integrated in the hearing instrument.
  • the battery In the hearing instrument, the battery is covered by a door or flap and thereby shielded from the environment. Through the door or flap, the battery can be inserted and removed.
  • the hearing instrument has electrical contacts that contact the battery. These are clamped in a holder and not firmly connected to the hearing instrument. However, since this door does not close completely tight, impurities, moisture and especially chemically aggressive earwax can get into the battery compartment and thus into the hearing instrument and cause corrosion or other problems there.
  • NiMH batteries have the advantage that they have the same voltage level (1.2V) as the usual non-rechargeable batteries in hearing instruments, and that the form factor is the same.
  • 1.2V voltage level
  • a major disadvantage of NiMH batteries is that they have a relatively short life span, that their capacity is limited, and that they react sensitively to high temperatures during charging. Because of the difficulties mentioned, a change of the battery must continue allows what an openable and thus not completely tight battery compartment requires.
  • Li-Ion batteries are sensitive to a variety of influences, such as extreme temperatures, high charging temperatures, overcharging or over-discharging. In addition, they benefit in particular from suitable charge current cycles and trickle current cycles. That's why Li-Ion batteries are used to advantage with custom charging and protection circuitry to optimize capacity and life.
  • the hearing aid is additionally connected via an IR coupling to the charger.
  • the IR connection controls the start and end of the charging process so that the charger automatically determines or receives information regarding the battery.
  • EOL end-of-life detection
  • the charge state of the rechargeable battery would have to be determined or the impending exhaustion of the rechargeable battery charge would have to be detected.
  • the EOL detection is adapted to the current battery systems, whose remaining battery life is determined by the hearing instrument based on the battery voltage.
  • other battery systems, such as batteries may exhibit a different EOL behavior so that EOL detection may not work properly using such systems.
  • the size requirements (especially thickness) of the battery are for mobile devices, especially for hearing instruments, very strict. On the other hand, the duration of hearing instruments should be at least one day with 16-20 hours - ideally more. To comply with the size specifications, all parts of the power supply must be matched as optimally as possible. This is particularly true of the battery itself, as it adds significantly to the overall size of the power supply, and equally applies to rechargeable batteries. It also includes any intended charging and protection circuits.
  • EP 1 727 395 A2 is a hearing aid known that can be charged inductively.
  • the state of charge of the hearing device is transmitted via a communication interface from the hearing aid to the charger.
  • auxiliary device serving, among other things, the energy supply of the small appliance.
  • the auxiliary device transmits information to the small appliance, for example by modulating information on the charging current.
  • the object of the invention is to optimize the Alltasgsnutzen a battery, in particular by an EOL detection, and the performance and life of a battery, especially in sensitive systems such as Li-ion batteries in a hearing instrument system.
  • a basic idea of the invention is to document information regarding the battery, for example battery capacity, state of charge, events during use of the battery in daily operation, operating time and charging cycles.
  • the information should be made available, for example, during operation and while the battery is being charged.
  • Important usage information from ongoing operations, such as the occurrence of errors, are stored in the hearing instrument and to the charger or a hearing instrument fitting software to hand over. In response to such information, hearing instrument parameters may be adjusted to the state of the battery.
  • the invention solves the problem by a hearing instrument system, a hearing instrument, a battery system and a charging system with the features of the independent claims.
  • the energy transfer connection between the battery system and the hearing instrument is also designed as a communication connection.
  • the already existing energy transfer connection can experience an additional use for communication purposes, which contributes to the reduction of the number of separate connections or interfaces and thus to reduce the size.
  • the battery system provides a supply voltage for the hearing aid via the energy transfer and communication link and transmits the charge state information by adjusting the supply voltage to a predetermined value.
  • a battery system with a regulated output voltage such as a 3.7 volt Li-ion battery with a regulated to 1.2 volts output voltage to make the state of charge of the battery via the voltage visible.
  • a suitable choice of the predetermined voltage matched to conventional types of batteries EOL detection of the hearing instrument can also be used for batteries.
  • the EOL voltage curve a conventional battery can be simulated.
  • an alternative embodiment not belonging to the invention would be that the battery system via the energy transfer and communication connection provides a supply voltage for the hearing instrument, and that the battery system transmits the state of charge information by modulating a predetermined signal to the supply voltage.
  • the state of charge information can be transmitted, for example, to enable EOL detection. With modulation, a high transmission bandwidth is available, so that more extensive information about the state of charge of the battery can be transmitted, as is the case with conventional EOL detection.
  • the parameters essential for the operation of a battery are available either in the hearing instrument or in the charging system.
  • the daily use of the battery can be monitored in the hearing instrument and a usage history stored, which can then be read out for fitting and optimization purposes.
  • a further advantageous embodiment is that the energy transfer interface and the communication interface of the battery system consists of the same, preferably two, electrical contacts.
  • the information to be transmitted can then, for example, be modulated onto the energy transfer signal provided, usually a supply voltage.
  • the already existing energy transfer compound can experience an additional use for communication purposes, resulting in the reduction of Number of separate connections or interfaces and thus helps to reduce the size.
  • a further advantageous embodiment consists in that the energy transfer interface of the battery system consists of, preferably two, electrical contacts, and that the communication interface of the battery system comprises at least one further electrical contact.
  • the use of an additional contact for the transmission of information considerably increases the possible communication bandwidth and thus allows a more intensive and more complete monitoring of the battery.
  • a further advantageous embodiment is that the energy transfer connection between the battery system and the hearing instrument consists of, preferably two, electrical contacts, and that the energy transfer connection and / or the communication link between the battery system and the charging system are wireless. While wireless transmission is too energy consuming and not necessary at the same time within the hearing instrument, it is desirable for connection to the charging system.
  • the wireless connection to the charging system makes it possible to dispense with external interfaces of the hearing instrument and the battery system inserted therein. This helps to reduce the size. At the same time a greater seal against ingress of moisture and dirt is achieved.
  • FIG. 1 a hearing instrument system 1 with charge current regulator 109 in the battery 13 is shown schematically.
  • the hearing instrument system comprises a charging system 10, a battery system 11, and a hearing instrument 12.
  • the battery system 11 is surrounded by dashed lines and consists of several components that may be arranged differently.
  • the battery system 11, including all its components can be designed as an independent module (battery pack) and can be advantageously encapsulated against dirt and moisture.
  • the components may be partially integrated in the hearing instrument 12 and partially in the battery 13.
  • the embodiment shown in the figure has at least one charging current regulator 109 integrated in the battery 13.
  • the charge current regulator 109 is specially adapted to the type of battery used and ensures basic, battery-specific functions such as overload protection, protection against over-discharge, overcharge protection, protection against charging or commissioning with reverse polarity (reverse polarity protection) and charging current control and trickle current control. Depending on the type of battery used, some of these functions, all or even other functions may be performed by the charge current regulator 109. Depending on the design of the charge current regulator 109, this can be adapted to different types of battery, for example, by variously parameterized operating software or firmware.
  • the battery 13 provides energy for operating the hearing instrument 12. He makes these on the battery system contacts 17 on the hearing instrument contacts 18 available. In addition, can he transmitted via the same contacts information concerning the battery itself to the hearing instrument 12. It can be seen that the same two contacts 17 and 18, respectively, serve to transfer energy as well as data, so that they represent a mutually integrated energy transfer connection and communication link.
  • the information transmitted by the battery 13 is received by the battery control device 14. Possibly.
  • the battery control device 14 can make adjustments to operating parameters by passing corresponding programs, program parameters or settings via the communication and energy transfer connection to the battery 13 or the charging current regulator 109.
  • the Akku horrungs Rhein 14 forms together with the battery 13 and the charging current regulator 109, the battery system 11th
  • the battery control device 14 On the part of the hearing instrument 12, in which parts of the battery system 11 may be integrated, in the present example, the battery control device 14, a data exchange with the battery control device 14 via the programmer interface 103.
  • the programmer interface 103 is used to set operating parameters of the hearing instrument 12 and Upload software or firmware updates. Via the programmer interface 103, data can also be recorded or read out accordingly in the battery system 11.
  • a memory 104 is connected, on the one hand serves the hearing instrument 12 as operating data and software memory, and in the other hand log data of the battery system 11 can be stored. With the help of these log data of the battery system 11, a history of the battery use and error monitoring for analysis and adjustment purposes can be done.
  • a signal processing device 105 which is connected to a microphone and a loudspeaker (also referred to as a receiver).
  • a separate from the hearing instrument 12 and the battery system 11 charging system 10 is connected via charging system contacts 16 to the battery system 11 and the hearing instrument 12.
  • the charging system 10 on the one hand, a charging current for the battery 13 is available.
  • data are also exchanged via the same two contacts 16, so that a mutual integration of energy transfer connection and communication connection is also provided with respect to the connection to the charging system 10.
  • a few external connections are preferably provided on the hearing instrument 12, which allows the connection of the charging system 10 both with the battery system 11 and with the hearing instrument 12 at the same time. In this way, the total number of required electrical contacts is minimized.
  • the charging system 10 includes a charging control device 15 that controls the charging system 10.
  • a charge current regulator 100 ensures a regulated charging current for the battery 13, with the basic charge control functions described above being provided. In this respect, functions in the charging current regulator 109 and in the charge current regulator 100 can be provided redundantly.
  • the charging system 10 further comprises a memory 101.
  • the memory 101 serves on the one hand for the storage of operating parameters, software and / or firmware of the charging system 10.
  • the memory 101 also from the battery system 11 and the hearing instrument 12 received data regarding the Batteries 13, such as log data or status information stored. In this way, the charging system 10 is a history of battery use available, allowing an individual adaptation of the behavior and functions of the charging system 10 to the respective battery 13.
  • This information can be given automatically, for example, when starting the hearing instrument 12, after predetermined time intervals, or when called by the user
  • FIG. 2 is a Hörinstrumentsystem 2 shown with a similar structure as explained above.
  • the hearing instrument system 2 comprises a charging system 20, a hearing instrument 22 and a battery system 21.
  • the hearing instrument system 2 differs above all from the wireless connection of the charging system 20 from the previously explained. Furthermore, no charge current regulation is integrated into the battery 13. Instead, there is a charging current control 110 with comparable functionality in the hearing instrument 22.
  • the charging system 20 communicates with the hearing instrument 22 or battery system 21 via a wireless communication and energy transfer connection 108.
  • the charge current regulator 25 is particularly adapted to the requirements of wireless energy and data communication and otherwise has similar functionalities as the above-explained.
  • the battery 23 or the battery system 21 is connected to the hearing instrument 22 via electrical hearing instrument contacts 28, and provides the energy supply for the hearing instrument 22 via these two contacts 28.
  • the two contacts 28 also represent the communication connection between the battery system 21 and the hearing instrument 22, which is thus mutually integrated with the energy transfer connection.
  • the battery system 21 uses the same wireless connection 108 as the hearing instrument 22.
  • the battery system 21 includes a charging current regulator 110 which is adapted in particular to the reception of wirelessly transmitted energy from the charging system 20.
  • FIG. 3 a hearing instrument system 3 with additional communication contact 37 is shown schematically.
  • the hearing instrument system 3 comprises a charging system 30 with charging current regulator 35, which provides a charging current for the battery 33 in the battery system 31 via charging system contacts 36.
  • An additional charging system contact 76 serves to transmit information.
  • the battery system 31 receives power provided by the charging system 30 via the battery system contacts 37.
  • An additional battery system contact 77 serves to transfer data.
  • the two pairs of contacts 36 and 37 represent the energy transfer connection between charging system 30 and battery system 31 or hearing instrument 32, while the communication connection is based at least on the additional contact pair 77, 76.
  • the two charging system contacts 36 form the energy transfer interface of the charging system 30, while the two battery system contacts 37 represent the energy transfer interface of the battery system 31.
  • Corresponding hearing instrument contacts 38 form the energy transfer interface of the hearing instrument 32.
  • the communication interface of the charging system 30 comprises at least the charging system contact
  • the communication interface of the battery system 31 comprises at least the contact 77
  • the communication interface of the hearing instrument 32 comprises at least the hearing instrument contact 78 ,
  • the battery system 31 includes a battery control device 34 that is adapted to the individual interface configuration with at least partially separate power transfer connection and communication link.
  • a hearing instrument system 4 with wireless communication link 106 is shown schematically. It includes a charging system 40 with the special communication configuration adapted functionality, a battery system 41 and a hearing instrument 42 with also specially adapted battery control device 107.
  • a battery pack is arranged that a battery 43 and an integrated circuit 43 in the battery interface circuit 118 includes.
  • the interface circuit 118 includes a charge current regulator as previously discussed with respect to the function of the integrated charge current regulator 118 in the foregoing description.
  • the charge current controller 118 which is as described above specifically adapted to the type of battery used and basic, battery-specific features such as overload protection, protection against over-discharge, overcharge protection, protection against charging or start-up with reverse polarity (reverse polarity protection) and charging current control and preserve current regulation.
  • this can be adapted to different types of battery, for example, by variously parameterized operating software or firmware.
  • the interface circuit 118 the voltage of the battery 43 can be transformed to a required supply voltage of the hearing instrument. It can transmit data relating to the battery 43, in particular information about the state of charge.
  • the energy transfer connection is ensured by the wireless link 106, whose respective transmitter thus forms the energy transfer interface.
  • the communication link for transmitting data from and to the battery pack is also formed by the wireless link 106, whose respective transmitter thus forms the respective communication interface.
  • a hearing instrument system 5 is shown with hearing instrument 52 without its own charging current regulator. It comprises a charging system 50, a charging control device 55 and charging system contacts 56, which form the energy transfer and communication interface of the charging system 50.
  • Battery system contacts 57 and hearing instrument contacts 58 form the respective energy transfer interface and communication interface of the battery system 51 and the hearing instrument 52.
  • Neither battery system 51 nor hearing instrument 52 have their own charging current regulator.
  • the battery control device 54 is adapted accordingly to the energy transfer and communication needs in the absence of hearing instrument or battery side charging current regulator.
  • FIG. 6 an auditory instrument system 6 with charging current regulator 110 in the hearing instrument 62 is shown.
  • the hearing instrument system 6 comprises a charging system 60 with charging control device 65 and charging system contacts 66, as well as a battery system 61 with battery system contacts 67 and battery 63 and charging current regulator 110 and battery control device 64. Parts of the battery system 61 can be integrated into the hearing instrument 62, in particular the charging current regulator 110.
  • a hearing instrument 111 is adapted to the user at the acoustician (fitting), wherein the hearing instrument 111 has a battery.
  • the acoustician enters data regarding the fitting session into the fitting software. These also include information about the battery system, eg charging system, type of battery, condition of the battery, etc.
  • the fitting data are provided by the Programmer 112 detected and transmitted to the hearing instrument 111.
  • step 2 the user takes the hearing instrument 111 by itself and installs accessories, for example the charging system or wireless connection of audio and video and telephone, via the user interface 113 of the hearing instrument 111.
  • accessories for example the charging system or wireless connection of audio and video and telephone, via the user interface 113 of the hearing instrument 111.
  • step 3 after removing the hearing instrument 111, the user places the same in the charging system 114.
  • the charging system 114 first establishes the energy transfer and communication connection with the hearing instrument 111. All counters in the charging system 114 and in the hearing instrument 111 are reset, as well as any data records relating to the previous use of other batteries.
  • the hearing instrument 111, or the battery, is charged and increased to 1 after the charging cycle counter has been successfully loaded.
  • the depth discharge error counter is incremented by 1. The same applies to reverse polarity when connecting the battery, or for other errors.
  • the fitting software with the programmer 113 reads all the stored information from the hearing instrument 111 and makes it available to the acoustician.
  • the acoustician can respond to the information received, for example by providing additional explanations to the user, or by asking questions about their daily use.
  • the acoustician may check the charge capacity of the battery as well as the remaining life cycle charge cycles and, for example, suggest replacing the battery.
  • the old battery can be sent together with the recorded data to the manufacturer in case of replacement, for example, to provide warranty claims or on the part of the manufacturer data for an improvement and further development of the battery system.
  • FIG. 8 is shown by the battery system regulated supply voltage (V) over time (t) shown schematically, which allows an EOL detection (End Of Life).
  • V battery system regulated supply voltage
  • t time
  • the regulated voltage (V) can be lowered in several steps, with each lowered voltage corresponding to a certain reduced battery level.
  • the reduced charge level is shown as an example in percent, with the increased voltage drop in the second half of the waveform indicating the imminent battery depletion (EOL indicator).
  • EOL indicator imminent battery depletion
  • FIG. 8 and FIG. 9 explained methods for EOL detection via the supply voltage make it possible in particular to transmit the state of charge of the battery via the energy transfer interface or energy transfer connection between the battery system and the hearing instrument.
  • a minimum number of contacts for the realization of the two interfaces is sufficient.
  • the energy transfer interface is simultaneously used as a communication interface.
  • the invention relates to a hearing instrument system with a rechargeable battery or a short battery.
  • the object of the invention is to optimize the overall usefulness of a rechargeable battery, in particular by an EOL recognition, as well as the performance and service life of a rechargeable battery, in particular in the case of sensitive systems such as Li-ion rechargeable batteries, in a hearing instrument system.
  • a basic idea of the invention consists in a hearing instrument system 1, 2, 3, 4, 5, 6 comprising a hearing instrument 12, 22, 32, 42, 52, 62 with energy transfer interface and communication interface, a battery system 11, 21, 31, 41, 51,61, the battery system 11,21,31,41,51,61 with battery 13,23,33,43,53,63, energy transfer interface, communication interface and Akkueuerungs worn 14,24,34,44,54,64, and a Charging system 10,20,30,40,50,60, with energy transfer interface, communication interface and charging control device 15,25,35,45,55,65.
  • the battery-side energy transfer interface and communication interface can each produce an energy transfer connection or communication link with the loader-side and the hearing-instrument-side, the battery system 11, 21, 31, 41, 51, 61 being connected via the corresponding energy transfer connection in the battery 13,23,33,43,53,63 stored energy for the hearing instrument 12,22,32,42,52,62 provides, and via the respective communication link one of the Akkueuerungs worn 14,24,34,44,54,64 generated charge level information to the hearing instrument 12,22,32,42,52,62 transmitted.
  • a reliable charging state detection allows for EOL detection by the hearing instrument.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Neurosurgery (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Description

  • Die Erfindung betrifft ein Hörinstrumentsystem mit wiederaufladbarer Batterie, oder kurz Akku.
  • Wiederaufladbare Batterien können insbesondere bei mobilen Geräten zum Einsatz kommen. Als mobile Geräte kommen beispielsweise Hörinstrumente in Betracht. Hörinstrumente können beispielsweise als Hörgeräte ausgeführt sein. Ein Hörgerät dient der Versorgung einer hörgeschädigten Person mit akustischen Umgebungssignalen, die zur Kompensation bzw. Therapie der jeweiligen Hörschädigung verarbeitet und verstärkt sind. Es besteht prinzipiell aus einem oder mehreren Eingangswandlern, aus einer Signalverarbeitungseinrichtung, einer Verstärkungseinrichtung, und aus einem Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z.B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z.B. eine Induktionsspule. Der Ausgangswandler ist in der Regel als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Er wird auch als Hörer oder Receiver bezeichnet. Der Ausgangswandler erzeugt Ausgangssignale, die zum Gehör des Patienten geleitet werden und beim Patienten eine Hörwahrnehmung erzeugen sollen. Der Verstärker ist in der Regel in die Signalverarbeitungseinrichtung integriert. Die Stromversorgung des Hörgeräts erfolgt durch eine ins Hörgerätegehäuse integrierte Batterie. Die wesentlichen Komponenten eines Hörgeräts sind in der Regel auf einer gedruckten Leiterplatine als Schaltungsträger angeordnet bzw. damit verbunden.
  • Hörinstrumente können außer als Hörgeräte auch als sogenannte Tinnitus-Masker ausgeführt sein. Tinnitus-Masker werden zu Therapie von Tinnitus-Patienten eingesetzt. Sie erzeugen von der jeweiligen Hörbeeinträchtigung und je nach Wirkprinzip auch von Umgebungsgeräuschen abhängige akustische Ausgangssignale, die zur Verringerung der Wahrnehmung störender Tinnitus- oder sonstiger Ohrgeräusche beitragen können.
  • Hörinstrumente können weiter auch als Telefone, Handys, Headsets, Kopfhörer, MP3-Player oder sonstige mobile Telekommunikations- oder Unterhaltungselektronik-Geräte ausgeführt sein.
  • Hörinstrumente werden bislang üblicherweise mit nicht wiederaufladbaren Batterien betrieben. Häufig werden Batterien auf Basis von Zn-Luft-Zellen eingesetzt, die eine hohe Energiedichte aufweisen. Die Energieversorgung samt Batterie selbst ist in das Hörinstrument integriert. Im Hörinstrument ist die Batterie durch eine Tür oder Klappe abgedeckt und dadurch von der Umwelt abgeschirmt. Durch die Tür oder Klappe hindurch kann die Batterie eingelegt und entnommen werden. Im Hörinstrument sind elektrische Kontakte vorgesehen, die die Batterie kontaktieren. Diese werden in einen Halter geklemmt und nicht fest mit dem Hörinstrument verbunden. Da diese Tür jedoch nicht vollkommen dicht schließt, können Verunreinigungen, Feuchtigkeit und vor allem auch chemisch agressives Ohrschmalz in das Batteriefach und damit in das Hörinstrument gelangen und dort Korrosion oder andere Probleme verursachen.
  • Leider muss die Batterie oft getauscht werden, vielfach schon nach wenigen Tagen. Dies ist, gerade für ältere Nutzer, ein Problem bzw. eine Frage der Bequemlichkeit. Deshalb wird an wiederaufladbaren Batterielösungen für Hörinstrumente gearbeitet. Beispielsweise ist bereits ein Produkt mit einer wiederaufladbaren NiMH-Batterie, kurz NiMH-Akku, im Markt erhältlich. NiMH-Akkus haben den Vorteil, dass sie das gleiche Spannungslevel (1.2V) besitzen wie die in Hörinstrumenten üblichen nicht wiederaufladbaren Batterien, und das der Formfaktor der Gleiche ist. Somit kann der Benutzer frei zwischen Batterie und Akku wählen. Ein großer Nachteil der NiMH-Akkus ist aber, dass diese nur eine verhältnismäßig kurze Lebensdauer haben, dass ihre Kapazität begrenzt ist, und dass sie empfindlich hohe Temperaturen beim Laden reagieren. Wegen der genannten Schwierigkeiten muss ein Wechsel der Batterie weiterhin ermöglicht sein, was ein öffenbares und damit nicht vollkommen dichtes Batteriefach erforderlich macht.
  • Ein wiederaufladbares Batteriesystem mit hoher Energiedichte ist die Lithium-Ionen-Technologie. Lithium-Ionen (kurz: Li-Ion) Akkus reagieren allerdings empfindlich auf eine Vielzahl von Einflüssen, beispielsweise extreme Temperaturen, hohe Ladetemperaturen, Überladung oder Tiefentladung. Darüber hinaus profitieren sie in besonderem Maße von geeigneten Ladestrom-Zyklen und Erhaltungsstrom-Zyklen. Daher werden Li-Ion Akkus vorteilhaft mit eigens angepassten Lade- und Schutz-Schaltungen verwendet, um Kapazität und Lebensdauer zu optimieren.
  • Vom wiederaufladbaren Hörgerät Hansaton AQ ist es bekannt, ein Hörgerät induktiv zu laden. Das Hörgerät ist zusätzlich über eine IR-Kopplung mit dem Ladegerät verbunden. Über die IR-Kopplung werden Beginn und Beendigung des Ladevorgangs gesteuert, so dass das Ladegerät selbsttätig Informationen bezüglich des Akkus ermittelt bzw. erhält.
  • Für den Nutzer ist es in der täglichen Benutzung insbesondere wichtig, über die verbleibende Benutzungsdauer informiert zu werden. Dazu weisen Hörinstrumente eine End-Of-Life-Erkennung (EOL) auf, die das bevorstehende Ende der Batterie-Lebensdauer bzw. die bevorstehende Erschöpfung der Batterie erkennt und den Nutzer darauf hinweist. Bei Akkus müsste entsprechend der Ladezustand des Akkus ermittelt bzw. die bevorstehende Erschöpfung der Akkuladung erkannt werden. Die EOL-Erkennung ist an die derzeit üblichen Batterie-Systeme angepasst, deren verbleibende Batterie-Lebensdauer durch das Hörinstrument anhand der Batterie-Spannung ermittelt wird. Andere Batterie-Systeme, beispielsweise Akkus, können jedoch ein anderes EOL-Verhalten zeigen, so dass die EOL-Erkennung bei Verwendung solcher Systeme nicht korrekt funktionieren kann.
  • Die Anforderungen an die Größe (speziell Dicke) der Batterie sind bei mobilen Geräten, insbesondere bei Hörinstrumenten, sehr strikt. Dagegen ist die Laufzeit abzuwägen, die bei Hörinstrumenten mindestens einen Tag mit 16-20 Stunden - idealerweise mehr - betragen sollte. Um die Größenvorgaben einzuhalten, müssen alle Teile der Energieversorgung so optimal wie möglich aufeinander abgestimmt werden. Dies betrifft insbesondere die Batterie selbst, da diese beträchtlich zur Gesamtgröße der Energieversorgung beiträgt, und gilt gleichermaßen für wiederaufladbare Batterien. Es schließt auch eventuell vorgesehene Lade- und Schutz-Schaltungen ein.
  • Aus dem Artikel "NTT Docomo's New Smartphone, Charger Can Be Wirelessly Charged" May 17, 2011, Kouji Kariatsumari, Nikkei Electronics (http://techon.nikkeibp.co.jp/english/NEWS_EN/20110517/191823 /) und aus dem Produktangebot Jhih hong technology Co Ltd, Wireless Battery Pack & Charger for iPhone 3G/3GS (http://www.jht-energy.com/style/content/CN-09-2a/product_detail.asp?lang=2&customer_id=2255&name_id=96567&r id=56802&id=318528#iphone3G) sind kabellos wiederaufladbare Akkupacks bekannt. Über die integrierten elektronischen Komponenten und Betriebsspannungen ist wenig offenbart. Die Akkupacks sind verhältnismäßig groß.
  • Aus der Druckschrift EP 1 727 395 A2 ist ein Hörgerät bekannt, das induktiv geladen werden kann. Der Ladezustand des Hörgeräts wird über eine Kommunikationsschnittstelle vom Hörgerät an das Ladegerät übermittelt.
  • Aus der Druckschrift US 2012/130660 A1 ist ein Hörgerät bekannt, das ebenfalls wiederaufladbar ist. Der Ladezustand des Akkumulators wird innerhalb des Hörgeräts überwacht.
  • Aus der Druckschrift DE 198 17 273 A1 ist ein System aus einem Kleingerät und einem unter anderem der Energieversorgung des Kleingeräts dienenden Zusatzgerät. Das Zusatzgerät übermittelt Informationen an das Kleingerät, z.B. durch Aufmodulieren von Informationen auf den Ladestrom.
  • Die Aufgabe der Erfindung besteht darin, den Alltasgsnutzen eines Akkus, insbesondere durch eine EOL-Erkennung, sowie die Leistungsfähigkeit und Lebensdauer eines Akkus, insbesondere bei empfindlichen Systemen wie Li-Ionen-Akkus, in einem Hörinstrumentsystem zu optimieren.
  • Ein Grundgedanke der Erfindung besteht darin, Informationen bezüglich des Akku, beispielsweise Akku-Kapazität, Ladezustand, Ereignisse während der Benutzung des Akkus im täglichen Betrieb, Betriebsdauer und Ladezyklen zu dokumentieren. Die Information sollen geeignet verfügbar gemacht werden, beispielsweise im laufenden Betrieb und während der Akku geladen wird. Wichtige Benutzungsinformationen aus dem laufenden Betrieb, z.B. das Auftreten von Fehlern, werden im Hörinstrument gespeichert und an das Ladegerät oder eine Hörinstrument-Anpass-Software übergeben. In Reaktion auf solche Informationen können Hörinstrument-Parameter an den Zustand des Akkus angepasst werden.
  • Die Erfindung löst die Aufgabe durch ein Hörinstrumentsystem, ein Hörinstrument, ein Akkusystem und ein Ladesystem mit den Merkmalen der nebengeordneten Patentansprüche.
  • Ein Grundgedanke der Erfindung besteht in einem Hörinstrumentsystem umfassend
    • ein Hörinstrument, das Hörinstrument umfassend eine Energietransferschnittstelle und eine Kommunikationsschnittstelle,
    • ein Akkusystem, das Akkusystem umfassend einen Akku, eine Energietransferschnittstelle, eine Kommunikationsschnittstelle und eine Akkusteuerungseinrichtung,
    • und ein Ladesystem, das Ladesystem umfassend eine Energietransferschnittstelle, eine Kommunikationsschnittstelle und eine Ladesteuerungseinrichtung.
    Die akku-seitige Energietransferschnittstelle und Kommunikationsschnittstelle können mit der lader-seitigen und der hörinstrument-seitigen Energietransferschnittstelle und Kommunikationsschnittstelle je eine Energietransferverbindung bzw. Kommunikationsverbindung herstellen. Das Akkusystem stellt über die entsprechende Energietransferverbindung im Akku gespeicherte Energie für das Hörinstrument zur Verfügung, und übermittelt über die entsprechende Kommunikationsverbindung eine von der Akkusteuerungseinrichtung erzeugte vom Ladezustand des Akkus abhängige Ladezustandsinformation an das Hörinstrument.
  • Durch die zusätzlich zu den Energietransferverbindungen vorgesehenen Kommunikationsverbindungen zwischen Akkusystem, Ladesystem und Hörinstrument können sämtliche Betriebsparameter und Nutzungsinformationen bezüglich des Akkus laufend überwacht, gespeichert und ausgewertet werden, indem das Akkusystem derartige Daten an das Ladesystem oder Hörinstrument übermittelt. Auf diese Weise können insbesondere heikle Betriebsparameter empfindlicher Akkus, beispielsweise Li-Ion-Akkus, überwacht und kontrolliert werden, um die Benutzung solcher Akkus und den Umgang damit zu optimieren und so Lebensdauer, Akku-Kapazität, Zuverlässigkeit und Alltags-Nutzen zu erhöhen. Insbesondere wird durch Übertragung der Ladezutandsinformation auch bei Akkus, deren Ladezustand nicht ohne weiteres über ihre Spannung erkennbar wird, eine zuverlässige Ladezustands-Erkennung beispielsweise hinsichtlich EOL-Erkennung durch das Hörinstrument möglich. Dies können insbesondere Akku-Systeme sein, die eine konstant geregelte Spannung zur Verfügung stellen. Dies ist beispielsweise bei Li-Ion-Akkus in Hörinstrumenten der Fall, deren Spannung von 3,7 Volt auf die für Hörinstrumente üblichen 1,2 Volt heruntertransformiert wird.
  • Die Energietransferverbindung zwischen dem Akkusystem und dem Hörinstrument ist auch als Kommunikationsverbindung ausgebildet. Damit kann die ohnehin bestehende Energietransferverbindung eine zusätzliche Nutzung für Kommunikationszwecke erfahren, was zur Reduzierung der Anzahl separater Verbindungen bzw. Schnittstellen und damit zur Reduzierung der Baugröße beiträgt.
  • Das Akkusystem stellt über die Energietransfer- und Kommunikationsverbindung eine Versorgungsspannung für das Hörinstrument zur Verfügung und überträgt die Ladezustandsinformation durch Einstellen der Versorgungsspannung auf einen vorbestimmten Wert. Auf diese Weise ist es insbesondere möglich, auch bei einem Akkusystem mit geregelter Ausgangsspannung, beispielsweise einem 3,7 Volt Li-Ion-Akku mit einer auf 1,2 Volt geregelten Ausgangsspannung, den Ladezustand des Akkus über die Spannung sichtbar zu machen. Da die Erkennung des Zustands herkömmlicher Batterien in Hörinstrumenten anhand der Batterie-Spannung erfolgt, kann bei geeigneter Wahl der vorbestimmten Spannung die auf herkömmliche Batterietypen abgestimmte EOL-Erkennung des Hörinstruments auch für Akkus verwendet werden. Mit anderen Worten kann durch geeignete Wahl der vorbestimmten Spannung des Akkusystems der EOL-Spannungsverlauf einer herkömmlichen Batterie simuliert werden.
  • Eine alternative nicht zur Erfindung gehörende Ausgestaltung bestünde darin, dass das Akkusystem über die Energietransfer- und Kommunikationsverbindung eine Versorgungsspannung für das Hörinstrument zur Verfügung stellt, und dass das Akkusystem die Ladezustandsinformation durch Aufmodulieren eines vorbestimmten Signals auf die Versorgungsspannung überträgt. Damit ist es möglich, dem Hörinstrument eine konstant geregelte Versorgungsspannung zur Verfügung zu stellen, was für dessen Betrieb optimal ist. Gleichzeitig kann trotzdem die Ladezustandsinformation übermittelt werden, um beispielsweise EOL-Erkennung zu ermöglichen. Bei Modulation steht eine hohe Übertragungsbandbreite zur Verfügung, so dass umfangreichere Informationen über den Ladezustand des Akkus übertragen werden können, als dies bei der herkömmlichen EOL-Erkennung der Fall ist.
  • Eine weitere vorteilhafte Ausgestaltung besteht darin, dass das Akkusystem über die entsprechende Kommunikationsverbindung eine von der Akkusteuerungseinrichtung ermittelte Akkuinformation an das Hörinstrument und/oder das Ladesystem übermittelt bezüglich einem oder mehreren der folgenden Akkuparameter:
    • Anzahl erfolgter Ladezyklen
    • Dauer eines Ladevorgangs
    • Temperatur eines Ladevorgangs
    • Tiefentladung des Akkus
    • Anschließen des Akkus mit verkehrter Polarität
    • Fehler bei einem Ladevorgang, insbesondere bezüglich Spannung, Strom oder Temperatur,
    • State of Health
    • Impedanz des Akkus
    • Lademenge
    • Restkapazität
    • Gesamtkapazität
    • Art des Akkus, beispielsweise betreffend Akku-Chemie, Seriennummer, sonstige Produktions-Informationen.
  • Akkuinformationen über auf einen Akku bzw. auf eine wiederaufladbare Zelle bezogene Eigenschaften vermitteln für den praktischen Gebrauch wesentliche Informationen über deren Gesundheits- und Ladezustand (SoH = state of health sowie SoC = state of condition). Die meisten Akkuinformationen sind individuell für den jeweiligen Akkutyp. Wichtig sind dabei auch Zusammenhänge und Abläufe im alltäglichen Gebrauch. Beispielsweise variieren Akkuentladungen von kurzen, geringen Stromentnahmen , z.B. für ein Telefon, über intermittierende, hohe Stromentnahmen, z.B. für elektronische Werkzeuge, bis hin zu lang anhaltendem, gleichmäßigem Stromverbrauch, z.B. für Hörinstrumente. Eine wichtige Akkuinformation ist beispielsweise der Innenwiderstand (Scheinwiderstand), der einen einigermaßen genauen Hinweis auf den Akkuzustand gibt. Der Innenwiderstand wird vom Meßzeitpunkt (vor oder nach Ladung/Entladung) und der Temperatur starkt beeinflusst.
  • Damit stehen die für den Betrieb eines Akkus wesentlichen Parameter wahlweise im Hörinstrument und im Ladesystem zur Verfügung. Im Hörinstrument kann so insbesondere die tägliche Benutzung des Akkus überwacht und eine Benutzungs-Historie abgespeichert werden, die dann für Anpass- und Optimierungs-Zwecke ausgelesen werden kann.
  • Eine weitere vorteilhafte Ausgestaltung besteht darin, dass die Energietransferschnittstelle und die Kommunikations-schnittstelle des Akkusystems aus denselben, vorzugsweise zwei, elektrischen Kontakten besteht. Die zu übertragende Information kann dann beispielsweise auf die zur Verfügung gestellte Energietransfer-Signal, üblicherweise eine Versorgungsspannung, aufmoduliert werden. Damit kann die ohnehin bestehende Energietransferverbindung eine zusätzliche Nutzung für Kommunikationszwecke erfahren, was zur Reduzierung der Anzahl separater Verbindungen bzw. Schnittstellen und damit zur Reduzierung der Baugröße beiträgt.
  • Eine weitere vorteilhafte Ausgestaltung besteht darin, dass die Energietransferschnittstelle des Akkusystems aus, vorzugsweise zwei, elektrischen Kontakten besteht, und dass die Kommunikationsschnittstelle des Akkusystems mindestens einen weiteren elektrischen Kontakt umfasst. Die Verwendung eines zusätzlichen Kontakts zur Übertragung von Information erweitert die mögliche Kommunikationsbandbreite beträchtlich und ermöglicht mithin eine intensivere und lückenlosere Überwachung des Akkus.
  • Eine weitere vorteilhafte Ausgestaltung besteht darin, dass die Energietransferverbindung zwischen dem Akkusystem und dem Hörinstrument aus, vorzugsweise zwei, elektrischen Kontakten besteht, und dass die Energietransferverbindung und/oder die Kommunikationsverbindung zwischen dem Akkusystem und dem Ladesystem kabellos sind. Während innerhalb des Hörinstruments die kabellose Übertragung zu energieaufwändig und gleichzeitig auch gar nicht erforderlich ist, ist sie wiederum für die Verbindung mit dem Ladesystem wünschenswert. Die kabellose Verbindung mit dem Ladesystem ermöglicht den Verzicht auf externe Schnittstellen des Hörinstruments und des darin eingelegten Akkusytems. Das trägt zur Reduzierung der Baugröße bei. Gleichzeitig wird eine größere Dichtigkeit gegen Eindringen von Feuchtigkeit und Schmutz erreicht.
  • Weitere Vorteile und Weiterbildungen ergeben sich aus den abhängigen Patentansprüchen und aus der nachfolgenden Beschreibung von Ausführungsbeispielen und Figuren. Es zeigen:
  • Fig.1
    Hörinstrumentsystem mit Ladestromregler im Akku
    Fig.2
    Hörinstrumentsystem mit kabelloser LadesystemAnbindung
    Fig.3
    Hörinstrumentsystem mit zusätzlichem Kommunikationskontakt
    Fig.4
    Hörinstrumentsystem mit kabelloser Kommunikationsverbindung
    Fig.5
    Hörinstrumentsystem mit Hörinstrument ohne Ladestromregler
    Fig.6
    Hörinstrumentsystem mit Ladestromregler im Hörinstrument
    Fig.7
    Schematische Funktionsweise des Hörinstrumentsystems
    Fig.8
    Geregelte Versorgungsspannung zur EOL-Erkennung
    Fig.9
    Modulierte Versorgungsspannung zur EOL-Erkennung
  • In Figur 1 ist ein Hörinstrumentsystem 1 mit Ladestromregler 109 im Akku 13 schematisch dargestellt. Das Hörinstrumentsystem umfasst ein Ladesystem 10, ein Akkusystem 11, und ein Hörinstrument 12. Das Akkusystem 11 ist strichliert umrandet und besteht aus mehreren Komponenten, die unterschiedlich angeordnet sein können. Zum einen kann das Akkusystem 11 einschließlich all seiner Komponenten als eigenständiges Modul (Akkupack) ausgebildet und vorteilhaft gegen Verschmutzung und Feuchtigkeit gekapselt sein. Zum anderen können die Komponenten teilweise im Hörinstrument 12 integriert sein und teilweise im Akku 13. Die in der Abbildung dargestellte Ausführungsform weist mindestens einen in den Akku 13 integrierten Ladestromregler 109 auf.
  • Der Ladestromregler 109 ist eigens an den verwendeten Akkutyp angepasst und gewährleistet grundlegende, Akku-spezifische Funktionen wie Überlastschutz, Schutz vor Tiefentladung, Überladungsschutz, Schutz vor Laden oder Inbetriebnahme mit verkehrter Polung (Verpolungsschutz) sowie Ladestromregelung und Erhaltungsstromregelung. Je nach eingesetztem Akkutyp können einige dieser Funktionen, alle oder sogar weitere Funktionen vom Ladestromregler 109 wahrgenommen werden. Je nach Ausführung des Ladestromreglers 109 kann dieser an verschiedene Akkutypen angepasst werden, beispielsweise durch verschieden parametrierte Betriebssoftware oder Firmware.
  • Der Akku 13 stellt Energie zum Betrieb des Hörinstruments 12 zur Verfügung. Diese macht er über die Akkusystem-Kontakte 17 an den Hörinstrument-Kontakten 18 verfügbar. Zusätzlich kann er über dieselben Kontakte Informationen, die den Akku selbst betreffen, an das Hörinstrument 12 übertragen. Es ist ersichtlich, dass dieselben beiden Kontakte 17 bzw. 18 zum Übertragen von Energie sowie von Daten dienen, so dass sie eine gegenseitig integrierte Energietransferverbindung und Kommunikationsverbindung darstellen.
  • Im Hörinstrument 12 werden die vom Akku 13 übertragenen Informationen von der Akkusteuerungseinrichtung 14 empfangen. Ggf. kann die Akkusteuerungseinrichtung 14 umgekehrt Anpassungen von Betriebsparametern vornehmen, indem sie entsprechende Programme, Programmparameter oder Einstellungen über die Kommunikations- und Energietransferverbindung an den Akku 13 bzw. den Ladestromregler 109 übergibt. Die Akkusteuerungseinrichtung 14 bildet gemeinsam mit dem Akku 13 sowie dem Ladestromregler 109 das Akkusystem 11.
  • Seitens des Hörinstruments 12, in welches Teile des Akkusystems 11 integriert sein können, vorliegend beispielsweise die Akkusteuerungseinrichtung 14, erfolgt ein Datenaustausch mit der Akkusteuerungseinrichtung 14 über das Programmer-Interface 103. Das Programmer-Interface 103 dient zum Einstellen von Betriebsparametern des Hörinstruments 12 und zum Aufspielen von Software- oder Firmware-Updates. Über das Programmer-Interface 103 können entsprechend auch Daten in das Akkusystem 11 eingespielt oder ausgelesen werden. Weiter ist mit dem Programmer-Interface 103 ein Speicher 104 verbunden, der einerseits dem Hörinstrument 12 als Betriebsdaten- und Software-Speicher dient, und in den andererseits Log-Daten des Akkusystems 11 gespeichert werden können. Mit Hilfe dieser Log-Daten des Akkusystems 11 kann eine Historie der Akku-Benutzung sowie eine Fehler-Überwachung zu Analyse- und Anpassungs-Zwecken erfolgen.
  • Weitere Komponenten des Hörinstruments 12 sind eine Signalverarbeitungseinrichtung 105, die mit einem Mikrofon und einem Lautsprecher (auch als Receiver bezeichnet) verbunden ist.
  • Ein vom Hörinstrument 12 und vom Akkusystem 11 getrenntes Ladesystem 10 ist über Ladesystem-Kontakte 16 mit dem Akkusystem 11 und dem Hörinstrument 12 verbunden. Über die Ladesystem-Kontakte 16 stellt das Ladesystem 10 einerseits einen Ladestrom für den Akku 13 zur Verfügung. Andererseits werden über dieselben beiden Kontakte 16 auch Daten ausgetauscht, so dass auch bezüglich der Verbindung mit dem Ladesystem 10 eine gegenseitige Integration von Energietransfer-Verbindung und Kommunikations-Verbindung gegeben ist. In der tatsächlichen Ausführung wird vorzugsweise ein paar externer Anschlüsse am Hörinstrument 12 vorgesehen, das die Verbindung des Ladesystems 10 sowohl mit dem Akkusystem 11 als auch mit dem Hörinstrument 12 gleichzeitig ermöglicht. Auf diese Weise ist insgesamt die Anzahl erforderlicher elektrischer Kontakte minimiert.
  • Das Ladesystem 10 umfasst eine Ladesteuerungseinrichtung 15, die das Ladesystem 10 steuert. Ein Ladestromregler 100 gewährleistet einen geregelten Ladestrom für den Akku 13, wobei die vorangehend beschriebenen grundlegenden Laderegelungs-Funktionen zur Verfügung gestellt sind. Insofern können Funktionen im Ladestromregler 109 und im Ladestromregler 100 redundant vorgesehen sein. Neben einer Spannungsversorgung 102 umfasst das Ladesystem 10 weiter einen Speicher 101. Der Speicher 101 dient einerseits zur Speicherung von Betriebsparametern, Software und/oder Firmware des Ladesystems 10. Andererseits können im Speicher 101 auch vom Akkusystem 11 bzw. vom Hörinstrument 12 empfangene Daten bezüglich des Akkus 13, beispielsweise Log-Daten oder Zustandsinformationen, gespeichert werden. Auf diese Weise steht dem Ladesystem 10 eine Historie der Akku-Benutzung zur Verfügung, was eine individuelle Anpassung des Verhaltens und der Funktionen des Ladesystems 10 an den jeweiligen Akku 13 ermöglicht.
  • Das schematisch erläuterte Hörinstrumentsystem ermöglicht es, die hohen Anforderungen zu erfüllen, die Akkus, insbesondere empfindliche Akkutypen wie Li-Ion-Akkus, an die tägliche Benutzung und Wiederaufladung stellen, um hinsichtlich Lebensdauer, Zuverlässigkeit, und Ladekapazität optimal arbeiten zu können. Insbesondere Ladekapazität und Lebensdauer (vor allem die erreichbare Anzahl an Ladezyklen) hängen von der Qualität und Kontrolle des Ladesystems ab. Aus diesem Grund ist in dem Hörinstrumentsystem 1 eine durchgängige Kommunikation zwischen Ladesystem 10, Akkusystem 11 sowie Hörinstrument 12 ermöglicht. Daten können zwischen den einzelnen Komponenten beliebig ausgetauscht werden. Diese Daten können insbesondere sein:
    • Anzahl der Ladezyklen
    • Verweildauer des Akkus 13 bzw. Hörinstruments 12 im Ladesystem 10
    • Dauer zwischen Ladezyklen
    • Dauer der Ladezyklen
    • Temperatur während des Ladevorgangs
    • Verbleibende Kapazität bzw. Ladung im Akku
    • Information bezüglich aufgetretener Fehler, z.B. Tiefentladungen, Verpolung, Spannungs-Strom- oder Temperaturfehler im Ladesystem 10
    • Version der Firmware oder Software
    • Herstellungsdatum
    • Aufführungszeichen
    • Reinigungs- bzw. Wartungs-Intervall
    • Erfolgreiche oder nicht erfolgreiche System-Selbst-Checks des Ladesystems 10
    • Status-Informationen des Hörinstruments 12, wie Typ, Hersteller, Serien-Nummer, Programmdaten, etc.
  • Weitere Daten und Informationen, die insbesondere zwischen dem Hörinstrument 12 und einer Anpasssoftware z.B. beim Händler oder Akustiker ausgetauscht werden können, sind:
    • Austausch oder Ersatz des Akkus (kann Zähler im Ladesystem neu starten)
    • Typ und Hersteller des Akkus (um die Ladestromregelung und Ladestromparameter für den speziellen Akkutyp zu optimieren oder neue Ladeparameter bzgl. einer neuen Akku-Chemie eines neuen Akku-Typs zu überspielen)
    • Termin zur Erinnerung des Benutzers, den Akkustatus zu überprüfen
    • Update der Firmware oder Software des Ladesystems 10, das ggf. auch in den Speicher 104 des Hörinstruments 12 gespeichert werden kann, ggf. einschließlich eines Update-Flags
    • Bestätigung einer Wartung oder Überprüfung beim Akustiker, was ggf. sämtliche Zähler im Ladesystem 10 für das individuelle Hörinstrument 12 löschen kann
    • Sämtliche Zähler, die vorangehend erwähnt wurden, und die dem Akustiker helfen können, dem Nutzer des Hörinstruments 12 Hinweise und Ratschläge für eine optimale Benutzung zu geben, um insbesondere die Akku-Lebensdauer zu maximieren
    • Zusätzlich kann der Akustiker Signal und Einstellungen im Hörinstrument 12 setzen oder löschen, beispielsweise zum Überprüfen des Akkus 13 oder zum Ersetzen, wenn die verbleibende Akku-Kapazität während der Lebensdauer des Akkus 13 abnimmt. Durch den Datenaustausch zwischen Ladesystem 10 und Hörinstrument 12 wird es außerdem ermöglicht, eine bessere Abschätzung der möglichen Betriebsdauer des Hörinstruments 12 mit der durch den Akku 13 zur Verfügung gestellten Ladekapazität vorzunehmen.
  • Im täglichen Betrieb kann das Hörinstrument 12 den Nutzer außerdem, beispielsweise über eine externe Fernbedienung oder akustische Signale, informieren über:
    • Ladezustand des Akkus 13 (z.B. vollgeladen oder teilgeladen)
    • Verbleibende Akku-Ladung und geschätzte Betriebsdauer, bis zum nächsten Laden
    • Anzahl bereits erfolgter Ladezyklen
    • Abschätzung noch möglicher Ladezyklen und der Zeitdauer, bis der Akku 13 ersetzt werden muss
  • Diese Informationen können beispielsweise automatisch beim Starten des Hörinstruments 12, nach vorbestimmten Zeitintervallen, oder bei Abruf durch den Nutzer gegeben werden
  • In Figur 2 ist ein Hörinstrumentsystem 2 mit ähnlichem Aufbau wie vorangehend erläutert dargestellt. Das Hörinstrumentsystem 2 umfasst ein Ladesystem 20, ein Hörinstrument 22 sowie ein Akkusystem 21. Das Hörinstrumentsystem 2 unterscheidet sich vor allem durch die kabellose Anbindung des Ladesystems 20 von dem vorangehend Erläuterten, außerdem ist in den Akku 13 keine Ladestromregelung integriert. Stattdessen befindet sich eine Ladestromregelung 110 mit vergleichbarer Funktionalität im Hörinstrument 22.
  • Das Ladesystem 20 kommuniziert mit dem Hörinstrument 22 bzw. Akkusystem 21 über eine kabellose Kommunikations- und Energietransferverbindung 108. Der Ladestromregler 25 ist insbesondere an die Anforderungen kabelloser Energie- und DatenKommunikation angepasst und weist im übrigen ähnliche Funktionalitäten wie der vorangehend erläuterte auf.
  • Der Akku 23 bzw. das Akkusystem 21 ist mit dem Hörinstrument 22 über elektrische Hörinstrument-Kontakte 28 verbunden, und stellt über diese beiden Kontakte 28 die Energieversorgung für das Hörinstrument 22 zur Verfügung. Zudem stellen die beiden Kontakte 28 auch die Kommunikationsverbindung zwischen Akkusystem 21 und Hörinstrument 22 dar, die also mit der Energietransfer-Verbindung gegenseitig integriert ist. Zur Kommunikation mit dem Ladesystem 20 nutzt das Akkusystem 21 dieselbe kabellose Verbindung 108 wie das Hörinstrument 22.
  • Das Akkusystem 21 umfasst einen Ladestromregler 110, der insbesondere an den Empfang kabellos übertragener Energie vom Ladesystem 20 angepasst ist. Bezüglich weiterer Funktionen und Komponenten wird auf die vorangehende Figurenbeschreibung verwiesen.
  • In Figur 3 ist ein Hörinstrumentsystem 3 mit zusätzlichem Kommunikationskontakt 37 schematisch dargestellt. Das Hörinstrumentsystem 3 umfasst ein Ladesystem 30 mit Ladestromregler 35, das über Ladesystem-Kontakte 36 einen Ladestrom für den Akku 33 im Akkusystem 31 zur Verfügung stellt. Ein zusätzlicher Ladesystemkontakt 76 dient der Übertragung von Information. Das Akkusystem 31 empfängt vom Ladesystem 30 zur Verfügung gestellte Energie über die Akkusystem-Kontakte 37. Ein zusätzlicher Akkusystem-Kontakt 77 dient der Übertragung von Daten.
  • Somit stellen die beiden Kontaktpaare 36 und 37 die Energietransfer-Verbindung zwischen Ladesystem 30 und Akkusystem 31 bzw. Hörinstrument 32 dar, während die Kommunikationsverbindung mindestens auf dem zusätzlichen Kontaktpaar 77, 76 basiert. Mit anderen Worten bilden die beiden Ladesystem-Kontakte 36 die Energietransferschnittstelle des Ladesystems 30, während die beiden Akkusystem-Kontakte 37 die Energietransfer-Schnittstelle des Akkusystems 31 darstellen. Entsprechende Hörinstrument-Kontakte 38 bilden die Energietransfer-Schnittstelle des Hörinstruments 32. Die Kommunikationsschnittstelle des Ladesystems 30 umfasst mindestens den Ladesystem-Kontakt, die Kommunikationsschnittstelle des Akkusystems 31 umfasst mindestens den Kontakt 77, und die Kommunikationsschnittstelle des Hörinstruments 32 umfasst mindestens den Hörinstrument-Kontakt 78.
  • Das Akkusystem 31 umfasst eine Akkusteuerungseinrichtung 34, die an die individuelle Schnittstellen-Konfiguration mit mindestens teilweise getrennter Energietransferverbindung und Kommunikationsverbindung angepasst ist.
  • Bezüglich der weiteren Funktionalitäten und Komponenten wird auf die vorangehende Figurenbeschreibung verwiesen.
  • In Figur 4 ist ein Hörinstrumentsystem 4 mit kabelloser Kommunikationsverbindung 106 schematisch dargestellt. Es umfasst ein Ladesystem 40 mit an die spezielle Kommunikations-Konfiguration angepasster Funktionalität, ein Akkusystem 41 sowie ein Hörinstrument 42 mit ebenfalls eigens angepasster Akkusteuerungseinrichtung 107. In dem Akkusystem 41 ist ein Akkupack angeordnet, dass einen Akku 43 sowie einen in den Akku 43 integrierte Schnittstellenschaltung 118 umfasst.
  • Die Schnittstellenschaltung 118 umfasst einen Ladestromregler, der wie vorangehend Bezüglich der Funktion des integrierten Ladestromreglers 118 wird auf die vorangehende Beschreibung verwiesen. Darüber hinaus umfasst der Ladestromregler 118, der wie vorangehend beschrieben eigens an den verwendeten Akkutyp angepasst ist und grundlegende, Akku-spezifische Funktionen gewährleistet, wie Überlastschutz, Schutz vor Tiefentladung, Überladungsschutz, Schutz vor Laden oder Inbetriebnahme mit verkehrter Polung (Verpolungsschutz) sowie Ladestromregelung und Erhaltungsstromregelung. Je nach Ausführung des Ladestromreglers kann dieser an verschiedene Akkutypen angepasst werden, beispielsweise durch verschieden parametrierte Betriebssoftware oder Firmware. Durch die Schnittstellenschaltung 118 kann die Spannung des Akkus 43 auf eine erforderliche Versorgungsspannung des Hörinstruments transformiert werden. Sie kann Daten bezüglich des Akkus 43, insbesondere Informationen über den Ladezustand, übermitteln.
  • Die Energietransferverbindung wird durch die kabellose Verbindung 106 gewährleistet, deren jeweiliger Transmitter mithin die Energietransfer-Schnittstelle bildet. Die Kommunikationsverbindung zum Übermitteln von Daten vom und zum Akkupack wird ebenfalls durch die kabellose Verbindung 106 gebildet, deren jeweiliger Transmitter mithin die jeweilige Kommunikationsschnittstelle bildet.
  • Bezüglich der weiteren Funktionalitäten und Komponenten wird auf die vorangehende Figurenbeschreibung verwiesen.
  • In Figur 5 ist ein Hörinstrumentsystem 5 mit Hörinstrument 52 ohne eigenen Ladestromregler dargestellt. Es umfasst ein Ladesystem 50, das eine Ladesteuerungseinrichtung 55 sowie Ladesystemkontakte 56, die die Energietransfer- und Kommunikationsschnittstelle des Ladesystems 50 bilden.
  • Akkusystem-Kontakte 57 sowie Hörinstrument-Kontakte 58 bilden die jeweilige Energietransfer-Schnittstelle sowie Kommunikationsschnittstelle des Akkusystems 51 und des Hörinstruments 52. Weder Akkusystem 51 noch Hörinstrument 52 verfügen über einen eigenen Ladestromregler. Somit ist ein Laden des Akkus 53 mit optimiertem Ladestrom und Ladeparametern ausschließlich durch das Ladesystem 50 möglich. Die Akkusteuerungseinrichtung 54 ist entsprechend an die Energietransfer- und Kommunikations-Bedürfnisse bei Fehlen hörinstrument- oder akkuseitiger Ladestromregler angepasst.
  • Bezüglich der weiteren Funktionalitäten und Komponenten wird auf die vorangehenden Figurenbeschreibungen verwiesen.
  • In Figur 6 ist ein Hörinstrumentsystem 6 mit Ladestromregler 110 im Hörinstrument 62 dargestellt. Das Hörinstrumentsystem 6 umfasst ein Ladesystem 60 mit Ladesteuerungseinrichtung 65 und Ladesystem-Kontakten 66, sowie ein Akkusystem 61 mit Akkusystemkontakten 67 sowie Akku 63 und Ladestromregler 110 und Akkusteuerungseinrichtung 64. Teile des Akkusystems 61 können in das Hörinstrument 62 integriert sein, insbesondere der Ladestromregler 110.
  • Bezüglich weiterer Funktionalitäten und Komponenten wird auf die vorangehenden Figurenbeschreibungen verwiesen.
  • In Figur 7 ist die Funktionsweise des vorangehend erläuterten Hörinstrumentsystems schematisch dargestellt. In Schritt 1 wird ein Hörinstrument 111 beim Akustiker an den Benutzer angepasst (Fitting), wobei das Hörinstrument 111 einen Akku aufweist. Der Akustiker gibt Daten bezüglich der Fitting-Sitzung in die Fitting-Software ein. Diese umfassen auch Informationen über das Akkusystem, z.B. Ladesystem, Akkutyp, Zustand des Akkus etc. Die Fitting-Daten werden durch den Programmer 112 erfasst und in das Hörinstrument 111 übertragen.
  • In Schritt 2 nimmt der Benutzer das Hörinstrument 111 an sich und installiert Zubehör, beispielsweise das Ladesystem oder kabellose Anbindung von Audio und Video und Telefon, über das Benutzerinterface 113 des Hörinstruments 111.
  • In Schritt 3 legt der Benutzer, nach Abnehmen des Hörinstruments 111, selbiges in das Ladesystem 114. Das Ladesystem 114 stellt erstmalig die Energietransfer- und KommunikationsVerbindung mit dem Hörinstrument 111 her. Dabei werden sämtliche Zähler im Ladesystem 114 und im Hörinstrument 111 zurückgesetzt, ebenso eventuelle Datenaufzeichnungen bezüglich vorangehender Nutzung anderer Akkus. Das Hörinstrument 111, bzw. der Akku, wird geladen und nach erfolgreichem Laden der Ladezykluszähler auf 1 erhöht.
  • Falls der Akku im täglichen Gebrauch tief entladen worden sein sollte, z.B. weil er versehentlich zu lange nicht geladen wurde, wird der Fehlerzähler für Tiefentladungen um 1 erhöht. Dasselbe gilt für Verpolung beim Anschließen des Akkus, oder für sonstige Fehler.
  • Während der nächsten Überprüfung des Hörinstruments 111 durch den Akustiker liest die Fitting-Software mit dem Programmer 113 alle gespeicherten Informationen aus dem Hörinstrument 111 aus und stellt sie dem Akustiker zur Verfügung. Der Akustiker kann auf die erhaltenen Informationen reagieren, z.B. durch zusätzliche Erklärungen für den Benutzer, oder indem er Fragen bezüglich der täglichen Benutzung stellt. Insbesondere kann der Akustiker die Ladekapazität des Akkus sowie die verbleibenden Lebensdauer-Ladezyklen prüfen und beispielsweise ein Ersetzen des Akkus vorschlagen. Der alte Akku kann im Falle des Ersetzens gemeinsam mit den aufgezeichneten Daten an den Hersteller gesendet werden, um beispielsweise Garantieansprüche zu ermöglichen oder seitens des Herstellers Daten für eine Verbesserung und Weiterentwicklung des Akkusystems zur Verfügung zu stellen.
  • In Figur 8 ist eine vom Akkusystem geregelte Versorgungsspannung (V) über der Zeit (t) schematisch dargestellt, die eine EOL-Erkennung (End Of Life) ermöglicht. Die im Akku gespeicherte Energie wird als geregelte Versorgungsspannung verfügbar gemacht, wobei die Versorgungsspannung grundsätzlich konstant geregelt ist, um den Anforderungen des Hörinstruments optimal zu genügen. Um jedoch die EOL-Erkennung zu ermöglichen, die den Benutzer vor dem bevorstehenden Entladen des Akkus warnen soll, ist die geregelte Spannung (V) in mehreren Schritten absenkbar, wobei jede abgesenkte Spannung einem bestimmten reduzierten Ladestand des Akkus entspricht. Der reduzierte Ladestand ist in der Abbildung beispielhaft in Prozenten angegeben, wobei durch den erhöhten Spannungsabfall in der zweiten Hälfte des Verlaufs die bevorstehende Akku-Erschöpfung angezeigt wird (EOL-Anzeige). Auf diese Weise kann das Hörinstrument an der vom Akku zur Verfügung gestellten Versorgungsspannung erkennen, welches der gegenwärtige Ladestand des Akkus ist.
  • In Figur 9 ist ebenfalls eine vom Akkusystem modulierte Versorgungsspannung (V) über der Zeit (t) schematisch dargestellt, die eine EOL-Erkennung ermöglicht. Die vom Akku zur Verfügung gestellte Energie wird in Form einer geregelten Versorgungsspannung (V) zur Verfügung gestellt. Die Versorgungsspannung ist dabei konstant. Um eine Information über den Ladestand des Akkus verfügbar zu machen, wird auf die geregelte Versorgungsspannung ein Signal aufmoduliert. Der reduzierte Ladestand ist in der Abbildung beispielhaft in Prozenten angegeben. Dabei können verschiedene vorbestimmte Modulationen verwendet werden, die verschiedene Ladestände des Akkus anzeigen. Durch den Spannungsabfall in der zweiten Hälfte des Verlaufs wird die bevorstehende Akku-Erschöpfung angezeigt (EOL-Anzeige). Auf diese Weise steht einerseits eine mit Ausnahme des EOL-Bereichs konstant geregelte Energieversorgung bzw. Versorgungsspannung zur Verfügung, andererseits kann nichtsdestotrotz eine EOL-Erkennung durch das Hörinstrument durchgeführt werden.
  • Die in Figur 8 und Figur 9 erläuterten Verfahren zur EOL-Erkennung über die Versorgungsspannung ermöglichen es insbesondere, den Ladezustand des Akkus über die EnergietransferSchnittstelle bzw. Energietransfer-Verbindung zwischen Akkusystem und Hörinstrument zu übertragen. Insofern ist eine minimale Anzahl von Kontakten zur Realisierung der beiden Schnittstellen ausreichend. Es wird nämlich die Energietransfer-Schnittstelle gleichzeitig als KommunikationsSchnittstelle verwendet.
  • Ein Grundgedanke der Erfindung lässt sich wie folgt zusammenfassen: Die Erfindung betrifft Hörinstrumentsystem mit wiederauflad-barer Batterie, oder kurz Akku. Die Aufgabe der Erfindung be-steht darin, den Alltasgsnutzen eines Akkus, insbesondere durch eine EOL-Erkennung, sowie die Leistungsfähigkeit und Lebensdauer eines Akkus, insbesondere bei empfindlichen Sys-temen wie Li-Ionen-Akkus, in einem Hörinstrumentsystem zu op-timieren. Ein Grundgedankte der Erfindung besteht in einem Hörinstrumentsystem 1,2,3,4,5,6 umfassend ein Hörinstrument 12,22,32,42,52,62 mit Energietransferschnittstelle und Kom-munikationsschnittstelle, ein Akkusystem 11,21,31,41,51,61, das Akkusystem 11,21,31,41,51,61 mit Akku 13,23,33,43,53,63, Energietransferschnittstelle, Kommunikationsschnittstelle und Akkusteuerungseinrichtung 14,24,34,44,54,64, und ein Ladesystem 10,20,30,40,50,60, mit Energietransferschnittstelle, Kommunikationsschnittstelle und Ladesteuerungseinrichtung 15,25,35,45,55,65. Die akku-seitige Energietransferschnittstelle und Kommunikations-schnittstelle können mit der lader-seitigen und der hörin-strument-seitigen je eine Energietransferverbindung bzw. Kommunikationsverbindung herstellen, wobei das Akkusystem 11,21,31,41,51,61 über die entsprechende Energietransferverbindung im Akku 13,23,33,43,53,63 gespeicherte Energie für das Hörinstrument 12,22,32,42,52,62 zur Verfügung stellt, und über die jeweilige Kommunikationsverbindung eine von der Akkusteuerungseinrichtung 14,24,34,44,54,64 erzeug-te Ladestand-Information an das Hörinstrument 12,22,32,42,52,62 übermittelt. Durch Übertragung der Lade-zutandsinformation wird auch bei Akkus, deren Ladezustand nicht an ihrer Spannung erkennbar wird, beispielsweise Li-Ion-Systeme mit geregelter Spannung, eine zuverlässige Lade-zustands-Erkennung beispielsweise hinsichtlich EOL-Erkennung durch das Hörinstrument ermöglicht.

Claims (6)

  1. Hörinstrumentsystem (1,2,3,4,5,6) umfassend
    - ein Hörinstrument (12,22,32,42,52,62), das Hörinstrument (12,22,32,42,52,62) umfassend eine Energietransferschnittstelle und eine Kommunikationsschnittstelle,
    - ein Akkusystem (11,21,31,41,51,61), das Akkusystem (11,21,31,41,51,61) umfassend einen Akku (13,23,33,43,53,63), eine Energietransferschnittstelle, eine Kommunikationsschnittstelle und eine Akkusteuerungseinrichtung (14,24,34,44,54,64),
    - und ein Ladesystem (10,20,30,40,50,60), das Ladesystem (10,20,30,40,50,60) umfassend eine Energietransferschnittstelle, eine Kommunikationsschnittstelle und eine Ladesteuerungseinrichtung (15,25,35,45,55,65),
    wobei die akku-seitige mit der lader-seitigen und der hörinstrument-seitigen Energietransferschnittstelle und Kommunikationsschnittstelle je eine Energietransferverbindung bzw. Kommunikationsverbindung herstellen können,
    wobei das Akkusystem (11,21,31,41,51,61) über die entsprechende Energietransferverbindung im Akku (13,23,33,43,53,63) gespeicherte Energie für das Hörinstrument (12,22,32,42,52,62) zur Verfügung stellt, wobei das Akkusystem (11,21,31,41,51,61) über die jeweilige Kommunikationsverbindung eine von der Akkusteuerungseinrichtung (14,24,34,44,54,64) erzeugte den Akku (13,23,33,43,53,63) betreffende Information an das Hörinstrument (12,22,32,42,52,62) und/oder das Ladesystem (10,20,30,40,50,60) übermittelt, und
    wobei das Akkusystem (11,21,31,41,51,61) eine von der Akkusteuerungseinrichtung (14,24,34,44,54,64) ermittelte vom Ladezustand des Akkus (13,23,33,43,53,63) abhängige Ladezustandsinformation an das Hörinstrument (12,22,32,42,52,62) übermittelt,
    wobei die Energietransferverbindung zwischen dem Akkusystem (11,21,31,41,51,61) und dem Hörinstrument (12,22,32,42,52,62) zusätzlich auch als Kommunikationsverbindung ausgebildet ist,
    dadurch gekennzeichnet, dass das Akkusystem (11,21,31,41,51,61) über die Energietransferund Kommunikationsverbindung eine geregelte Versorgungsspannung (115) für das Hörinstrument (12,22,32,42,52,62) zur Verfügung stellt, und dass (8) das Akkusystem (11,21,31,41,51,61) die Ladezustandsinformation durch Einstellen der Versorgungsspannung (115) auf einen vorbestimmten Wert überträgt.
  2. Hörinstrumentsystem (1,2,3,4,5,6) nach einem Anspruch 1,
    dadurch gekennzeichnet, dass das Akkusystem (11,21,31,41,51,61) über die entsprechende Kommunikationsverbindung eine von der Akkusteuerungseinrichtung (14,24,34,44,54,64) ermittelte Akkuinformation an das Hörinstrument (12,22,32,42,52,62) und/oder das Ladesystem (10,20,30,40,50,60) übermittelt, beispielsweise bezüglich einem oder mehreren der folgenden Akkuparameter:
    - Anzahl erfolgter Ladezyklen
    - Dauer eines Ladevorgangs
    - Temperatur eines Ladevorgangs
    - Tiefentladung
    - Anschließen mit verkehrter Polarität
    - Fehler bei einem Ladevorgang, insbesondere bezüglich Spannung, Strom oder Temperatur,
    - State of Health
    - Impedanz des Akkus
    - Lademenge
    - Restkapazität
    - Gesamtkapazität
    - Art des Akkus, beispielsweise betreffend Akku-Chemie, Seriennummer, sonstige Produktions-Informationen.
  3. Hörinstrumentsystem (1,2,3,4,5,6) nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Energietransferschnittstelle und die Kommunikations-schnittstelle des Akkusystems (11,21,31,41,51,61) aus denselben, vorzugsweise zwei, elektrischen Kontakten (17,57,67) besteht.
  4. Hörinstrumentsystem (3) nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass die Energietransferschnittstelle des Akkusystems (31) aus, vorzugsweise zwei, elektrischen Kontakten (37) besteht, und dass die Kommunikationsschnittstelle des Akkusystems (31) mindestens einen weiteren elektrischen Kontakt (77) umfasst.
  5. Hörinstrumentsystem (2,4) nach einem der Ansprüche 1 oder 2,
    dadurch gekennzeichnet, dass die Energietransferverbindung zwischen dem Akkusystem (21,41) und dem Hörinstrument (22,42) aus, vorzugsweise zwei, elektrischen Kontakten besteht, und dass die Energietransferverbindung und/oder die Kommunikationsverbindung zwischen dem Akkusystem (21,41) und dem Ladesystem (20,40) kabellos sind.
  6. Akkusystem (11,21,31,41,51,61) das zur Verwendung in einem Hörinstrumentsystem (1,2,3,4,5,6) nach einem der Ansprüche 1 bis 5 ausgestaltet ist, umfassend einen Akku (13, 23, 33, 43, 53, 63), eine Energietransferschnittstelle, eine Kommunikationsschnittstelle und eine Akkusteuerungseinrichtung (14, 24, 34, 44, 54, 64), wobei das Akkusystem (11, 21, 31, 41, 51, 61) derart ausgebildet ist, dass bei der Verwendung im Hörinstrumentsystem (1, 2, 3, 4, 5, 6)
    - die akkuseitige mit einer laderseitigen und einer hörinstrumentseitigen Energietransferschnittstelle und Kommunikationsschnittstelle je eine Energietransferverbindung bzw. Kommunikationsverbindung herstellen kann,
    - das Akkusystem (11, 21, 31, 41, 51, 61) über die entsprechende Energietransferverbindung im Akku (13, 23, 33, 43, 53, 63) gespeicherte Energie für ein Hörinstrument (12, 22, 32, 42, 52, 62) zur Verfügung stellt,
    - das Akkusystem (11, 21, 31, 41, 51, 61) über die jeweilige Kommunikationsverbindung eine von der Akkusteuerungseinrichtung (14, 24, 34, 44, 54, 64) erzeugte den Akku (13, 23, 33, 43, 53, 63) betreffende Information an das Hörinstrument (12, 22, 32, 42, 52, 62) und/oder ein Ladesystem (10, 20, 30, 40, 50, 60) übermittelt, und
    - das Akkusystem (11, 21, 31, 41, 51, 61) eine von der Akkusteuerungseinrichtung (14, 24, 34, 44, 54, 64) ermittelte vom Ladezustand des Akkus (13, 23, 33, 43, 53, 63) abhängige Ladezustandsinformation an das Hörinstrument (12, 22, 32, 42, 52, 62) übermittelt,
    - die Energietransferverbindung zwischen dem Akkusystem (11, 21, 31, 41, 51, 61) und dem Hörinstrument (12, 22, 32, 42, 52, 62) zusätzlich auch als Kommunikationsverbindung ausgebildet ist,
    - das Akkusystem (11, 21, 31, 41, 51, 61) über die Energietransfer- und Kommunikationsverbindung eine geregelte Versorgungsspannung (115) für das Hörinstrument (12, 22, 32, 42, 52, 62) zur Verfügung stellt, und dass das Akkusystem (11, 21, 31, 41, 51, 61) die Ladezustandsinformation durch Einstellen der Versorgungsspannung (115) auf einen vorbestimmten Wert überträgt.
EP13167401.2A 2012-06-06 2013-05-13 Hörinstrumentsystem mit wiederaufladbarer Batterie Active EP2672731B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261656062P 2012-06-06 2012-06-06
DE102012214469A DE102012214469A1 (de) 2012-06-06 2012-08-14 Hörinstrumentsystem mit wiederaufladbarer Batterie

Publications (2)

Publication Number Publication Date
EP2672731A1 EP2672731A1 (de) 2013-12-11
EP2672731B1 true EP2672731B1 (de) 2016-11-23

Family

ID=48288947

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13167401.2A Active EP2672731B1 (de) 2012-06-06 2013-05-13 Hörinstrumentsystem mit wiederaufladbarer Batterie

Country Status (1)

Country Link
EP (1) EP2672731B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545499A (zh) * 2019-05-16 2019-12-06 珠海市杰理科技股份有限公司 通信方法、装置及其芯片、待充电设备和系统

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2952015B1 (de) * 2013-01-29 2019-10-30 Sonova AG Ladezustandsanzeige in einem hörgerät
DE102015204750A1 (de) * 2015-03-17 2016-09-22 Sivantos Pte. Ltd. Vorrichtung, System und Verfahren zum Trocknen von Hörhilfegeräten
EP3430822B1 (de) * 2016-03-18 2020-03-11 Sonova AG Verfahren zur überwachung des gesundheitszustands einer batterie eines hörgeräts, hörgerät und anordnung mit einem hörgerät
DE102021205950A1 (de) 2021-06-11 2022-12-15 Sivantos Pte. Ltd. Verfahren zum Laden eines Energiespeichers, mobiles Gerät und Ladegerät

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE515366C2 (sv) * 1996-11-20 2001-07-23 Ericsson Telefon Ab L M Batteripaket för en portabel elektrisk apparat samt sätt vid uppladdning av detsamma
DE19817273A1 (de) * 1998-04-18 1999-10-21 Braun Gmbh Verfahren zur Datenübertragung zwischen einem Elektrokleingerät und einem mit diesem verbindbaren elektrischen Zusatzgerät, sowie entsprechend ausgestattete Geräte
DE102005024227A1 (de) * 2005-05-25 2006-11-30 Audia Akustik Gmbh Verfahren und Vorrichtung zum induktiven Laden von Hörgeräten
DE102009030070A1 (de) * 2009-06-22 2010-12-23 Sennheiser Electronic Gmbh & Co. Kg Transport-und/oder Aufbewahrungsbehälter für aufladbare drahtlose Hörer
US10687150B2 (en) * 2010-11-23 2020-06-16 Audiotoniq, Inc. Battery life monitor system and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110545499A (zh) * 2019-05-16 2019-12-06 珠海市杰理科技股份有限公司 通信方法、装置及其芯片、待充电设备和系统

Also Published As

Publication number Publication date
EP2672731A1 (de) 2013-12-11

Similar Documents

Publication Publication Date Title
DE102012214469A1 (de) Hörinstrumentsystem mit wiederaufladbarer Batterie
EP2672731B1 (de) Hörinstrumentsystem mit wiederaufladbarer Batterie
US8265315B2 (en) Listening system comprising a charging station with a data memory
EP2043388B1 (de) Vollautomatisches Ein-/Ausschalten bei Hörhilfegeräten
EP3585063A1 (de) Tragbare ladeeinheit mit beschleunigter aufladung für hörhilfegeräte
EP2134106A1 (de) Hörgerät und Energieladegerät sowie zugehöriges Verfahren
EP1628504B1 (de) Stromsparbetrieb bei Hörhilfegeräten
US11239681B2 (en) Method for inductive charging of a rechargeable hearing instrument
DE102007013420A1 (de) Hörvorrichtung mit spezieller Ladeschaltung
DE102014218053B4 (de) Hörinstrument mit Stromversorgungseinheit und Stromversorgungseinheit für ein Hörinstrument
WO2019219974A1 (de) Verfahren zum laden eines im gehörgang getragenen elektrischen geräts, elektrisches gerät, lademodul und hörsystem
DE102008030551A1 (de) Hörgerät zur Aufnahme von zumindest einer austauschbaren Komponente, austauschbare Komponente und Hörgerätesystem aus dem Hörgerät und der Komponente
US20020191806A1 (en) Hearing aid system with a programmable hearing aid and a transmission and/or reception unit, a transmission and/or reception unit as well as a programmable hearing aid
EP1944850A2 (de) Ladevorrichtung für ein Hörgerät, Hörgerät und Hörgerätefernbedienung
WO2012034815A1 (de) Hörgerät mit einer batterielade
DE20011451U1 (de) Batteriesatz für Mobiltelefone
EP3794843A1 (de) Mehrteiliges, tief im gehörgang platziertes trommelfell-kontakt-hörgerät
EP3119472A1 (de) Hörprothesensystem mit schallprozessor und drahtlosem modul zur kommunikation mit einer externen computervorrichtung
CA2445727C (en) Hearing aid and a method of compensating magnetic distortion
WO2016038165A1 (de) Hörinstrument und verfahren zum betrieb eines hörinstruments
AU2002315242A1 (en) Hearing aid and a method of compensating magnetic distortion
EP0909113A2 (de) Im-Ohr-Hörgerät
EP1458110B1 (de) Mobilfunkendgerät
DE102011005417A1 (de) Energiespeicher und Energiespeichersystem
DE102009008456B4 (de) Automatische Hörerkennung bei Hörhilfegeräten

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS MEDICAL INSTRUMENTS PTE. LTD.

Owner name: SIEMENS AKTIENGESELLSCHAFT

17P Request for examination filed

Effective date: 20140611

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 1/10 20060101ALN20150327BHEP

Ipc: H04R 25/00 20060101AFI20150327BHEP

17Q First examination report despatched

Effective date: 20150421

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

Owner name: SIEMENS AKTIENGESELLSCHAFT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20160112BHEP

Ipc: H04R 1/10 20060101ALN20160112BHEP

INTG Intention to grant announced

Effective date: 20160209

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEIDNER, TOM

Inventor name: SEWIOLO, BENJAMIN

Inventor name: BOGUSLAVSKIJ, MIHAIL

Inventor name: HUETTINGER, SIMON

Inventor name: KOCH, FRANK

Inventor name: NAUMANN, FRANK

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20160614BHEP

Ipc: H04R 1/10 20060101ALN20160614BHEP

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

Owner name: SIVANTOS PTE. LTD.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

INTG Intention to grant announced

Effective date: 20160720

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 848843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013005457

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20170301

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170224

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013005457

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170223

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170513

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170513

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20130513

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 848843

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161123

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180513

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161123

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170323

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240522

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240517

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20240522

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240602

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240522

Year of fee payment: 12