EP2667137B1 - Modular thermosiphon and cooling housing - Google Patents

Modular thermosiphon and cooling housing Download PDF

Info

Publication number
EP2667137B1
EP2667137B1 EP12004062.1A EP12004062A EP2667137B1 EP 2667137 B1 EP2667137 B1 EP 2667137B1 EP 12004062 A EP12004062 A EP 12004062A EP 2667137 B1 EP2667137 B1 EP 2667137B1
Authority
EP
European Patent Office
Prior art keywords
thermosiphon
modular
sides
angled
barrier walls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12004062.1A
Other languages
German (de)
French (fr)
Other versions
EP2667137A1 (en
Inventor
Benjamin Weber
Bhavesh Patel
Jens Dr. Tepper
Frank Cornelius
Jiahua ZHANG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Schweiz AG
Original Assignee
ABB Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Schweiz AG filed Critical ABB Schweiz AG
Priority to EP12004062.1A priority Critical patent/EP2667137B1/en
Priority to PCT/EP2013/001255 priority patent/WO2013174470A1/en
Publication of EP2667137A1 publication Critical patent/EP2667137A1/en
Application granted granted Critical
Publication of EP2667137B1 publication Critical patent/EP2667137B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0233Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes the conduits having a particular shape, e.g. non-circular cross-section, annular
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/005Other auxiliary members within casings, e.g. internal filling means or sealing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2230/00Sealing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2240/00Spacing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/085Cooling by ambient air

Definitions

  • the invention relates to a modular Thermosyphon comprising a plurality of ribbed cuboid thermosyphon modules with a respective condenser and evaporator side, which are separated from each other by an extending transversely to the ribs outer barrier wall, wherein a plurality of thermosiphon modules are arranged adjacent and wherein the respective outer barrier walls adjacent to each other in a common plane, which separates the condenser and the evaporator sides from each other.
  • the invention also relates to a cooling housing with a modular thermosiphon.
  • thermal siphons are also used as heat exchangers. These include a condenser and an evaporator, which are integrated into a closed and filled with a cooling medium cooling circuit.
  • the evaporator side typically projects into a lower region, from which heat is to be removed. Due to the evaporation of the coolant located in the thermosiphon heat energy is removed from the evaporator side.
  • the vaporized coolant moves within the closed cooling circuit in a natural cooling circuit up to a condenser side, where it is then put back under the release of heat energy in the liquid state and flows back to the evaporator side.
  • the particular advantage of such a thermosyphon is that the heat transport function without using an active element such as a circulating pump or the like, so that a thermosiphon is a particularly safe and reliable variant of a heat exchanger.
  • thermosiphon modules in the patent EP 2284846 A1 is such a heat exchanger described, which is composed of a plurality of preferably similar thermosiphon modules and finds application in a cooling housing.
  • the cooling housing is used to arrange a heat-generating component such as a transformer in a first sealed area, wherein the heat is transferred by the heat exchanger from the first sealed area to a second area from where the heat energy is released by means of forced cooling to the ambient air.
  • the encapsulation of the first area serves in particular the purpose of keeping dirt or other harmful environmental influences such as saline air in ship transformers from the first area and thus to ensure greater reliability and longevity of the respective heat-generating component.
  • the patent JPS5560180 A discloses an arrangement of heat pipes with juxtaposed partitions.
  • thermosiphon modules to a thermosyphon serves primarily for the purpose of standardization, namely that by a suitable number of identical Thermosyphonmodulen in a simple manner individually a required cooling capacity can be installed in a cooling housing.
  • a thermosiphon module generally has a cuboid or disc-like basic shape, which in turn has a rib-like structure.
  • a rib usually comprises a channel leading up and down a closed cooling circuit, wherein the rib-like structure also enlarges the outer surface, so that a heat transfer to the respective surrounding cooling medium is facilitated.
  • thermosyphon modules in a juxtaposition of the cuboid thermosyphon modules a strict separation of the evaporator and capacitor sides is prevented by the fact that each adjoining barrier walls of the thermosiphon modules do not close tight and so can be done mixing of the first and second cooling medium.
  • contaminants of the second cooling medium such as salty ambient air, may penetrate into the first encapsulated region of the cooling housing.
  • a modular thermosiphon according to claim 1.
  • the barrier walls are angled at their respective adjacently arranged sides such that a respective common angled contact surface is formed by the angled side sections.
  • the modular thermosiphon is characterized in that the angled side portions are resiliently configured, thereby causing a pressing force of adjacent side portions.
  • the basic idea of the invention is that an increased and improved seal between the barrier walls is formed by the contact surface between the adjacent barrier walls. With a width of an in each case angled side section of, for example, 3 cm, an increase of the contact area by a factor of 15 is given compared with a thickness of the barrier wall of, for example, 2 mm.
  • a resilient embodiment of the angled side sections causes a contact force of adjacent side sections, so that in this way the sealing effect is increased again.
  • an assembly of several juxtaposed Thermosyphonmodule to a thermosiphon is particularly simple because a continuous barrier wall is avoided, but this is also carried out modularly.
  • the attachment of the adjacent Thermosyphonmodule done, for example, two side support rails with corresponding holes to which then the laterally projecting barrier walls or barrier strips are screwed or secured in any other way.
  • thermosyphon module usually has a plurality of ribs, which are arranged parallel to one another and perpendicular to the barrier wall. Therefore, the barrier wall, which is usually arranged at half height, is also a component of a thermosyphon module, which gives it a mechanical stability.
  • the angling of the barrier wall according to the invention is a type of profile carrier formed, which increases the mechanical stability of the Thermosyphonmoduls in an advantageous manner.
  • the barrier walls have a trapezoidal or U-shaped cross-section.
  • the angled side regions are designed as straight surfaces, so that the sealing effect of the adjoining side regions is particularly high.
  • Particularly preferred is a U-shaped design of the barrier to view. This allows the most space-saving possible juxtaposition of Thermosyphonmodulen invention.
  • the barrier walls of the adjacent thermosiphon modules are arranged with alternating orientation.
  • Alternating arrangement means that the depressions formed in the case of, for example, a trapezoidal or U-shaped cross-section are arranged alternately in opposite directions in adjacent barrier walls, so that a roof tile-like overlap is preferably provided.
  • a dropping down of any condensed water from an overhead condenser area is reliably prevented in an underlying evaporator area, the condensate then collects in each barrier walls upwardly oriented as sinks.
  • a pump device may also be provided which pumps the condensed water collected in the depressions from the condenser region
  • a sealing means is at least partially provided on at least one common contact surface.
  • a sealant is for example a silicone gel or else another sealant which can be applied to further increase the tightness of the barrier walls simply during assembly of the Thermosyphonmodule.
  • elongated clip elements are made of spring steel, for example, and can be easily postponed after mounting a Thermosyphonmoduls invention.
  • thermosyphon adjacently arranged side sections of respective barrier walls are repeatedly angled and interlocked.
  • the sealing effect is increased again and it is also possible that one or more thermosyphon modules are held by adjacent thermosyphon modules, for example when the side surfaces are sawtooth-like angled and interlocked.
  • the object according to the invention is also achieved by a cooling housing, comprising a first encapsulated inner region with a first cooling fluid, which is provided there to arrange a heat-generating component, comprising an adjoining second region, which is intended to be flowed through by a second cooling fluid are, wherein the first and the second region are thermally connected by a heat exchanger.
  • the cooling housing is characterized in that a modular thermosyphon according to the invention is used as the heat exchanger, the evaporator sides projecting into the first region and the capacitor sides into the second region.
  • a cooling housing which on the one hand has a closed first inner region, which is largely shielded from environmental influences.
  • the use of a modular heat exchanger according to the invention ensures that the thermal energy arising in the first inner region is removed to the outside, in which case the installed cooling capacity can be adapted particularly simply by installing a corresponding number of thermosiphon modules.
  • the Thermosyphonmodule are particularly reliable due to the natural circulation of the coolant contained in them and do not require their own power supply.
  • the angling of the barrier walls according to the invention is a ensures a particularly effective separation between encapsulated first interior and adjacent second area, so that the heat-generating component is particularly well protected against harmful effects of the ambient air or dirt.
  • a dry-type transformer is arranged in the first encapsulated inner area as the heat-generating component.
  • a dry-type transformer has, for example, a power in the range of 1 to 5 MVA and is used, for example, on ocean-going vessels for the on-board power supply.
  • an encapsulation according to the invention is particularly important to protect the transformer from the harmful effects of salt-containing sea air.
  • air is used as the first and / or second cooling fluid.
  • ambient air as the second cooling fluid is suitable as a means of transport of the heat to be removed from the condenser area to an external heat sink.
  • At least one conveying device for the first or second cooling fluid is provided for generating a respective cooling fluid flow directed against the evaporator or condenser sides.
  • This is, for example, in each case a blower, which blows the ambient air for improved heat exchange against the condenser side or a fan which blows the first cooling fluid in the encapsulated inner region against the evaporator side, so that an inner circuit of the first cooling fluid is formed in the encapsulated inner region.
  • Fig. 1 shows an exemplary Thermosyphonmodul 10 according to the prior art in a three-dimensional view.
  • This has a plurality of ribs 14, which are arranged transversely to a barrier wall 12.
  • Each rib 14 comprises two internal channels for an internal cooling fluid, which transports heat energy in a closed circuit from the evaporator side located below the barrier wall 12 to the condenser side located above the barrier wall 12.
  • At the upper and lower end of the thermosyphon module are provided cross-piping.
  • the barrier wall 12 is formed by a flat metal strip, so that when stringing together several such thermosiphon modules no gap-free parting plane is formed, which could ensure a secure separation between the evaporator and condenser sides.
  • Fig. 2 shows a first exemplary modular thermosyphon 20 according to the invention in a side view.
  • Three Thermosyphonmodule 28, 30, 32 are arranged side by side to a modular Thermosyphon, which in their central region respectively U-shaped barrier walls 38, 40, 42 which extend in a common plane 24.
  • the reference numeral 22 denotes the respective sides of the condenser, and below the common plane 24, the reference numeral 26, the respective evaporator sides of the thermosiphon modules 28, 30, 32.
  • the respective fins of the thermosiphon modules 28, 30, 32 are connected in the upper and lower regions by means of common connection channels 34, 36, each rib having an upwardly and downwardly directed channel.
  • the U-shaped barrier walls 38, 40, 42 are aligned alternately, that is, the barrier walls 38 and 42 have the opposite orientation as the intermediate barrier wall 40.
  • the barrier walls 38, 40, 42 are also roof tiles similar overlapping aligned, so that a Dripping of condensation water arising in the condenser region 22, even at a gap between the contact surfaces of the angled side sections of the barrier walls 38, 40, 42, does not lead to a transfer of condensed water to the evaporator sides 26.
  • the adjacent angled rare sections may either directly adjoin one another and thus form respective contact surfaces 44, 46 or a seal or sealant may be provided therebetween.
  • Fig. 3 shows a second exemplary modular Thermosyphon 50 according to the invention in a side view.
  • Three Thermosyphonmodule are arranged side by side to a modular Thermosyphon, which in their central region each have a U-shaped barrier wall 58, 60, 62 which extend in a common plane 54.
  • Above the common plane 54 are denoted by the reference numeral 52, the respective capacitor sides and below the common plane 54 with the reference numeral 56, the respective evaporator sides of the thermosiphon modules arranged.
  • the U-shaped barrier walls 58, 60, 62 are the same in this example, with common contact surfaces 64, 66 being formed between their adjoining angled, inclined surfaces, which lead to a significantly increased tightness between the barrier walls.
  • a sealing means is optionally provided on the respective contact surfaces or else an elongated clip element which presses both angled side sections against each other.
  • Fig. 4 shows a third exemplary modular thermosyphon 70 according to the invention in a side view.
  • Three Thermosyphonmodule are arranged side by side to a modular Thermosyphon, which have in their central region respectively trapezoidal barrier walls 78, 80, 82 which extend in a common plane 74.
  • Above the common plane 74 are denoted by the reference numeral 72, the respective sides of the capacitor and below the common plane 74 with the reference numeral 76, the respective evaporator sides of the thermosiphon modules arranged.
  • the U-shaped barrier walls 78, 80, 82 are aligned in this example alternately, wherein between the adjacent angled side surfaces common contact surfaces 84, 86 are formed, which lead to a significantly increased tightness between the barrier walls.
  • FIG. 1 shows an exemplary cooling housing with a dry-type transformer in a schematic sectional view 90.
  • a cooling housing for example made of a metal, is subdivided into a first encapsulated area 92 and a second area 94 adjoining it along a partition wall 114.
  • a dry-type transformer 110 is arranged, for example with a rated power of 6 MVA. This produces a loss of heat during operation, which is dissipated from the first encapsulated area.
  • a conveying device 108 - in this case a fan - and an exemplary air baffle 112
  • a circulating circuit 96 of the air located in the first encapsulated area is generated, which is directed against an evaporator region 104 of a modular thermosyphone 100 according to the invention, so that there is a cooling the air takes place.
  • Its barrier walls are part of the partition wall 114 in the region of the thermosyphon. Natural circulation of the coolant located in the modular thermosyphone 100 results in heat transfer of the heat released to the condenser side 102 of the modular thermosyphone 100.
  • a current 98 forced from it by a fan 106 is applied to this Directed ambient air, so that the capacitor side emits heat energy to the ambient air.
  • Fig. 6 shows variants of multiply angled and provided for a respective toothing side portions of respective barrier walls in a representation 120.
  • Reference numeral 122 is a sawtooth-like teeth and the reference numeral 124 denotes a rectangular toothing of multi-angled barrier walls, in each case only one thermosiphon module with a respective Barrier wall is shown.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

Die Erfindung betrifft einen modularen Thermosyphon, umfassend mehrere rippenartig ausgeprägte quaderähnliche Thermosyphonmodule mit einer jeweiligen Kondensator- und Verdampferseite, welche von einer quer zu den Rippen verlaufenden äußeren Barrierewandung voneinander getrennt sind, wobei mehrere Thermosyphonmodule benachbart angeordnet sind und wobei die jeweiligen äußeren Barrierewandungen aneinander grenzend in einer gemeinsamen Ebene verlaufen, welche die Kondensator- und die Verdampferseiten voneinander trennt. Die Erfindung betrifft auch ein Kühlgehäuse mit einem modularen Thermosyphon.The invention relates to a modular Thermosyphon comprising a plurality of ribbed cuboid thermosyphon modules with a respective condenser and evaporator side, which are separated from each other by an extending transversely to the ribs outer barrier wall, wherein a plurality of thermosiphon modules are arranged adjacent and wherein the respective outer barrier walls adjacent to each other in a common plane, which separates the condenser and the evaporator sides from each other. The invention also relates to a cooling housing with a modular thermosiphon.

Es ist allgemein bekannt, dass als Wärmeübertrager auch Thermosyphons zum Einsatz kommen. Diese umfassen einen Kondensator und einen Verdampfer, welche in einen geschlossenen und mit einem Kühlmedium gefüllten Kühlkreislauf eingebunden sind. Die Verdampferseite ragt typischerweise in einen unteren Bereich hinein, aus welchem Wärme abzuführen ist. Durch das Verdampfen des im Thermosyphon befindlichen Kühlmittels wird der Verdampferseite Wärmeenergie entzogen. Das verdampfte Kühlmittel bewegt sich innerhalb des geschlossenen Kühlkreislaufes in einem natürlichen Kühlkreislauf nach oben zu einer Kondensatorseite, wo es dann unter Abgabe von Wärmeenergie wieder in den flüssigen Aggregatzustand versetzt wird und zur Verdampferseite zurückfließt. Der besondere Vorteil eines derartigen Thermosyphons besteht darin, dass die Wärmetransportfunktion ohne Verwendung eines aktiven Elementes wie einer Umwälzpumpe oder dergleichen erfolgt, so dass ein Thermosyphon eine besonders sichere und zuverlässige Variante eines Wärmeübertragers ist.It is well known that thermal siphons are also used as heat exchangers. These include a condenser and an evaporator, which are integrated into a closed and filled with a cooling medium cooling circuit. The evaporator side typically projects into a lower region, from which heat is to be removed. Due to the evaporation of the coolant located in the thermosiphon heat energy is removed from the evaporator side. The vaporized coolant moves within the closed cooling circuit in a natural cooling circuit up to a condenser side, where it is then put back under the release of heat energy in the liquid state and flows back to the evaporator side. The particular advantage of such a thermosyphon is that the heat transport function without using an active element such as a circulating pump or the like, so that a thermosiphon is a particularly safe and reliable variant of a heat exchanger.

In der Patentschrift EP 2284846 A1 ist ein derartiger Wärmeübertrager beschrieben, welcher aus mehreren vorzugsweise gleichartigen Thermosyphonmodulen zusammengesetzt ist und in einem Kühlgehäuse Anwendung findet. Das Kühlgehäuse dient der Anordnung einer Wärme erzeugenden Komponente wie einem Transformator in einem ersten gekapselten Bereich, wobei die Wärme mittels des Wärmeübertragers aus dem ersten gekapselten Bereich in einen zweiten Bereich transferiert wird, von wo die Wärmeenergie mittels forcierter Kühlung an die Umgebungsluft abgegeben wird. Die Kapselung des ersten Bereiches dient insbesondere dem Zweck, Schmutz oder andere schädliche Umwelteinflüsse wie beispielsweise salzhaltige Luft bei Schiffstransformatoren aus dem ersten Bereich fernzuhalten und so für eine höhere Zuverlässigkeit und Langlebigkeit der jeweiligen Wärme erzeugenden Komponente zu sorgen.In the patent EP 2284846 A1 is such a heat exchanger described, which is composed of a plurality of preferably similar thermosiphon modules and finds application in a cooling housing. The cooling housing is used to arrange a heat-generating component such as a transformer in a first sealed area, wherein the heat is transferred by the heat exchanger from the first sealed area to a second area from where the heat energy is released by means of forced cooling to the ambient air. The encapsulation of the first area serves in particular the purpose of keeping dirt or other harmful environmental influences such as saline air in ship transformers from the first area and thus to ensure greater reliability and longevity of the respective heat-generating component.

In der Patentschrift EP 0 536967 A2 ist ein Schutzsystem für einen Wärmetauscher offenbart, durch welches eine Überhitzung desselben vermieden werden soll. Eine Trennwand ist hierbei zur Trennung zweier unterschiedlicher innerer Bereiche des Wärmetauschers vorgesehen, welche der Führung jeweils unterschiedlicher Gasströme dienen, wobei durch die Trennwand jeweilige Thermosyphonmodule angeordnet sind. In the patent EP 0 536967 A2 discloses a protection system for a heat exchanger, by which overheating of the same is to be avoided. A partition is hereby provided for the separation of two different inner regions of the heat exchanger, which serve to guide each different gas flows, wherein respective Thermosyphonmodule are arranged by the partition wall .

Der Patentschrift JPS5560180 A offenbart eine Anordnung von Wärmerohren mit nebeneinander angeordneten Trennwänden.The patent JPS5560180 A discloses an arrangement of heat pipes with juxtaposed partitions.

Die modulare Anordnung der Thermosyphonmodule zu einem Thermosyphon dient primär dem Zweck der Standardisierung, dass nämlich durch eine geeignete Anzahl an baugleichen Thermosyphonmodulen auf einfache Art und Weise individuell eine geforderte Kühlleistung in einem Kühlgehäuse installiert werden kann. Ein derartiges Thermosyphonmodul weist in der Regel eine quader- oder scheibenähnliche Grundform auf, wobei diese ihrerseits eine rippenartige Struktur aufweist. Eine Rippe umfasst zumeist einen hinauf- und einen hinabführenden Kanal eines geschlossenen Kühlkreislaufes, wobei die rippenartige Struktur zudem die Außenfläche vergrößert, so dass eine Wärmeübertragung an das jeweils umgebende Kühlmedium erleichtert ist.The modular arrangement of the thermosiphon modules to a thermosyphon serves primarily for the purpose of standardization, namely that by a suitable number of identical Thermosyphonmodulen in a simple manner individually a required cooling capacity can be installed in a cooling housing. Such a thermosiphon module generally has a cuboid or disc-like basic shape, which in turn has a rib-like structure. A rib usually comprises a channel leading up and down a closed cooling circuit, wherein the rib-like structure also enlarges the outer surface, so that a heat transfer to the respective surrounding cooling medium is facilitated.

Nachteilig ist jedoch, dass bei einer Aneinanderreihung der quaderähnlichen Thermosyphonmodule eine strikte Trennung der Verdampfer- und Kondensatorseiten dadurch verhindert wird, dass die jeweils aneinander grenzenden Barrierewandungen der Thermosyphonmodule nicht dicht abschließen und so eine Vermischung des ersten und zweiten Kühlmediums erfolgen kann. Somit können Verunreinigungen des zweiten Kühlmediums, beispielsweise salzhaltige Umgebungsluft, in den ersten gekapselten Bereich des Kühlgehäuses eindringen.The disadvantage, however, is that in a juxtaposition of the cuboid thermosyphon modules a strict separation of the evaporator and capacitor sides is prevented by the fact that each adjoining barrier walls of the thermosiphon modules do not close tight and so can be done mixing of the first and second cooling medium. Thus, contaminants of the second cooling medium, such as salty ambient air, may penetrate into the first encapsulated region of the cooling housing.

Ausgehend von diesem Stand der Technik ist es Aufgabe der Erfindung, einen modularen Thermosyphon bereitzustellen, welcher trotz seiner Modularität eine einfache und sichere Trennung zwischen Kondensatorseiten- und Verdampferseiten der aneinander gereihten Thermosyphonmodule ermöglichtBased on this prior art, it is an object of the invention to provide a modular Thermosyphon, which despite its modularity, a simple and secure separation between the sides of the condenser and evaporator sides of the juxtaposed Thermosyphonmodule allows

Diese Aufgabe wird gelöst durch einen modularen Thermosyphon gemäß Anspruch 1. Die Barrierewandungen sind an ihren jeweiligen benachbart angeordneten Seiten derart angewinkelt, dass durch die angewinkelten Seitenabschnitte eine jeweilige gemeinsame angewinkelte Kontaktfläche gebildet ist. Der modulare Thermosyphon ist dadurch gekennzeichnet, dass die angewinkelten Seitenabschnitte federnd ausgestaltet sind, so dass dadurch eine Anpresskraft aneinander grenzender Seitenabschnitte bewirkt ist. Die Grundidee der Erfindung besteht darin, dass durch die Kontaktfläche zwischen den benachbarten Barrierewandungen eine erhöhte und verbesserte Abdichtung zwischen den Barrierewandungen gebildet ist. Bei einer Breite eines jeweils angewinkelten Seitenabschnittes von beispielsweise 3cm ist gegenüber einer Dicke der Barrierewandung von beispielsweise 2mm eine Erhöhung der Kontaktfläche um den Faktor 15 gegeben. Eine federnde Ausführung der angewinkelten Seitenabschnitte, beispielsweise durch Verwendung eines Federstahls, bewirkt eine Anpresskraft aneinandergrenzender Seitenabschnitte, so dass hierdurch die Dichtwirkung abermals erhöht wird. Dennoch ist eine Montage mehrerer nebeneinander angeordneter Thermosyphonmodule zu einem Thermosyphon besonders einfach, weil eine durchgehende Barrierewand vermieden ist, sondern diese ebenfalls modular ausgeführt ist. Die Befestigung der benachbarten Thermosyphonmodule erfolgt beispielsweise an zwei seitlichen Trägerleisten mit entsprechenden Bohrungen, an welchen dann die seitlich überstehenden Barrierewandungen oder Barriereleisten festgeschraubt oder auf andere Weise befestigt werden.This object is achieved by a modular thermosiphon according to claim 1. The barrier walls are angled at their respective adjacently arranged sides such that a respective common angled contact surface is formed by the angled side sections. The modular thermosiphon is characterized in that the angled side portions are resiliently configured, thereby causing a pressing force of adjacent side portions. The basic idea of the invention is that an increased and improved seal between the barrier walls is formed by the contact surface between the adjacent barrier walls. With a width of an in each case angled side section of, for example, 3 cm, an increase of the contact area by a factor of 15 is given compared with a thickness of the barrier wall of, for example, 2 mm. A resilient embodiment of the angled side sections, for example by using a spring steel, causes a contact force of adjacent side sections, so that in this way the sealing effect is increased again. Nevertheless, an assembly of several juxtaposed Thermosyphonmodule to a thermosiphon is particularly simple because a continuous barrier wall is avoided, but this is also carried out modularly. The attachment of the adjacent Thermosyphonmodule done, for example, two side support rails with corresponding holes to which then the laterally projecting barrier walls or barrier strips are screwed or secured in any other way.

Ein Thermosyphonmodul weist üblicherweise eine Vielzahl an Rippen auf, welche parallel zueinander und senkrecht zur Barrierewandung angeordnet sind. Daher ist die üblicherweise auf halber Höhe angeordnete Barrierewandung auch eine Komponente eines Thermosyphonmoduls, welches ihm eine mechanische Stabilität verleiht. Durch die erfindungsgemäße Anwinkelung der Barrierewandung ist eine Art Profilträger gebildet, welcher die mechanische Stabilität des Thermosyphonmoduls in vorteilhafter Weise steigert.A thermosyphon module usually has a plurality of ribs, which are arranged parallel to one another and perpendicular to the barrier wall. Therefore, the barrier wall, which is usually arranged at half height, is also a component of a thermosyphon module, which gives it a mechanical stability. The angling of the barrier wall according to the invention is a type of profile carrier formed, which increases the mechanical stability of the Thermosyphonmoduls in an advantageous manner.

Gemäß einer weiteren Ausführungsform weisen die Barrierewandungen einen trapezförmigen oder U-förmigen Querschnitt auf. Hierdurch sind die gewinkelten Seitenbereiche als gerade Flächen ausgeführt, so dass die Dichtwirkung der aneinandergrenzenden Seitenbereiche besonders hoch ist. Als besonders bevorzugt ist eine U-förmige Ausgestaltung der Barriere anzusehen. Diese ermöglicht eine möglichst platzsparende Aneinanderreihung von erfindungsgemäßen Thermosyphonmodulen.According to a further embodiment, the barrier walls have a trapezoidal or U-shaped cross-section. As a result, the angled side regions are designed as straight surfaces, so that the sealing effect of the adjoining side regions is particularly high. Particularly preferred is a U-shaped design of the barrier to view. This allows the most space-saving possible juxtaposition of Thermosyphonmodulen invention.

Entsprechend einer besonders bevorzugten Ausgestaltungsform des erfindungsgemäßen modularen Thermosyphons sind die Barrierewandungen der benachbarten Thermosyphonmodule mit alternierender Ausrichtung angeordnet. Alternierende Anordnung bedeutet, dass die bei beispielsweise trapez- oder U-förmigem Querschnitt gebildeten Senken bei benachbarten Barrierewandungen alternierend in entgegengesetzte Richtungen angeordnet sind, so dass in bevorzugter Weise eine dachziegelähnliche Überlappung gegeben ist. Durch eine derartige Überlappung ist beispielsweise ein Heruntertropfen von eventuellem Kondenswasser aus einem oben liegenden Kondensatorbereich in einen unten liegenden Verdampferbereich sicher verhindert, wobei sich das Kondenswasser dann in den jeweils als Senken nach oben ausgerichteten Barrierewandungen sammelt. Optional kann im Falle von verstärktem Auftreten von Kondenswasser auch eine Pumpvorrichtung vorgesehen sein, welche das in den Senken gesammelte Kondenswasser aus dem Kondensatorbereich pumptAccording to a particularly preferred embodiment of the modular thermosyphon according to the invention, the barrier walls of the adjacent thermosiphon modules are arranged with alternating orientation. Alternating arrangement means that the depressions formed in the case of, for example, a trapezoidal or U-shaped cross-section are arranged alternately in opposite directions in adjacent barrier walls, so that a roof tile-like overlap is preferably provided. By such an overlap, for example, a dropping down of any condensed water from an overhead condenser area is reliably prevented in an underlying evaporator area, the condensate then collects in each barrier walls upwardly oriented as sinks. Optionally, in the case of increased occurrence of condensation, a pump device may also be provided which pumps the condensed water collected in the depressions from the condenser region

Gemäß einer weiteren Ausgestaltungsform ist auf wenigstens einer gemeinsamen Kontaktfläche zumindest bereichsweise ein Dichtmittel vorgesehen. Ein derartiges Dichtmittel Ist beispielsweise ein Silikongel oder aber auch eine andere Dichtmasse, welche zur weiteren Erhöhung der Dichtigkeit der Barrierewandungen einfach bei der Montage der Thermosyphonmodule aufgetragen werden kann.According to a further embodiment, a sealing means is at least partially provided on at least one common contact surface. Such a sealant is for example a silicone gel or else another sealant which can be applied to further increase the tightness of the barrier walls simply during assembly of the Thermosyphonmodule.

Gemäß einer weiteren erfindungsgemäßen Ausgestaltung sind benachbart angeordnete angewinkelte Seitenabschnitte und eine gemeinsame Kontaktfläche bildende Barrierewandungen mittels wenigstens eines länglichen Klammerelementes miteinander verbunden. Ein derartiges vorzugsweise längliches Klammerelement übt eine permanente Anpresskraft auf die benachbarten Seitenabschnitte aus, so dass hierdurch die Dichtigkeit in vorteilhafter Weise weiter gesteigert ist. Derartige längliche Klammerelemente sind beispielsweise aus Federstahl gefertigt und können nach der Montage eines erfindungsgemäßen Thermosyphonmoduls einfach nachträglich aufgeschoben werden.According to a further embodiment of the invention adjacently arranged angled side portions and a common contact surface forming barrier walls by means of at least one elongate clamping element with each other connected. Such a preferably elongate clamping element exerts a permanent contact pressure on the adjacent side sections, so that in this way the tightness is further increased in an advantageous manner. Such elongated clip elements are made of spring steel, for example, and can be easily postponed after mounting a Thermosyphonmoduls invention.

Entsprechend einer weiteren Ausgestaltungsform des erfindungsgemäßen modularen Thermosyphons sind jeweils benachbart angeordneten Seitenabschnitte von jeweiligen Barrierewandungen mehrfach angewinkelt und ineinander verzahnt. Hierdurch wird die Dichtwirkung abermals erhöht und es ist zudem ermöglicht, dass ein oder mehrere Thermosyphonmodule von benachbarten Thermosyphonmodulen gehalten werden, beispielsweise wenn die Seitenflächen sägezahnähnlich angewinkelt und ineinander verzahnt sind.In accordance with a further embodiment of the modular thermosyphon according to the invention, adjacently arranged side sections of respective barrier walls are repeatedly angled and interlocked. As a result, the sealing effect is increased again and it is also possible that one or more thermosyphon modules are held by adjacent thermosyphon modules, for example when the side surfaces are sawtooth-like angled and interlocked.

Die erfindungsgemäße Aufgabe wird auch gelöst durch ein Kühlgehäuse, umfassend einen ersten gekapselten Innenbereich mit einem ersten Kühlfluid, welcher dafür vorgesehen ist, dort eine Wärme erzeugende Komponente anzuordnen, umfassend einen daran angrenzenden zweiten Bereich, welcher dafür vorgesehen ist, von einem zweiten Kühlfluid durchströmt zu werden, wobei der erste und der zweite Bereich thermisch durch einen Wärmeübertrager verbunden sind. Das Kühlgehäuse ist dadurch gekennzeichnet, dass als Wärmeübertrager ein erfindungsgemäßer modularer Thermosyphon verwendet ist, wobei die Verdampferseiten in den ersten Bereich und die Kondensatorseiten in den zweiten Bereich hineinragen.The object according to the invention is also achieved by a cooling housing, comprising a first encapsulated inner region with a first cooling fluid, which is provided there to arrange a heat-generating component, comprising an adjoining second region, which is intended to be flowed through by a second cooling fluid are, wherein the first and the second region are thermally connected by a heat exchanger. The cooling housing is characterized in that a modular thermosyphon according to the invention is used as the heat exchanger, the evaporator sides projecting into the first region and the capacitor sides into the second region.

Somit ist ein Kühlgehäuse bereitgestellt, welches einerseits einen abgeschlossenen ersten Innenbereich aufweist, der von Umwelteinflüssen weitestgehend geschirmt ist. Durch den Einsatz eines erfindungsgemäßen modularen Wärmeübertragers ist gewährleistet, dass ein Abtransport der im ersten Innenbereich anfallenden Wärmeenergie nach außen erfolgt, wobei hier die installierte Kühlleistung durch den Verbau einer entsprechenden Anzahl Thermosyphonmodulen besonders einfach anpassbar ist. Die Thermosyphonmodule sind aufgrund des Naturumlaufs des in ihnen befindlichen Kühlmittels besonders zuverlässig und benötigen keine eigene Energieversorgung. Durch die erfindungsgemäße Anwinkelung der Barrierewandungen ist eine besonders wirkungsvolle Trennung zwischen gekapseltem erstem Innenbereich und angrenzendem zweiten Bereich gewährleistet, so dass die Wärme erzeugende Komponente besonders gut vor schädlichen Einflüssen der Umgebungsluft oder Schmutzeinwirkungen geschützt ist.Thus, a cooling housing is provided, which on the one hand has a closed first inner region, which is largely shielded from environmental influences. The use of a modular heat exchanger according to the invention ensures that the thermal energy arising in the first inner region is removed to the outside, in which case the installed cooling capacity can be adapted particularly simply by installing a corresponding number of thermosiphon modules. The Thermosyphonmodule are particularly reliable due to the natural circulation of the coolant contained in them and do not require their own power supply. The angling of the barrier walls according to the invention is a ensures a particularly effective separation between encapsulated first interior and adjacent second area, so that the heat-generating component is particularly well protected against harmful effects of the ambient air or dirt.

Entsprechend einer weiteren erfindungsgemäßen Ausgestaltungsvariante des Kühlgehäuses ist in dem ersten gekapselten Innenbereich als Wärme erzeugende Komponente ein Trockentransformator angeordnet. Ein derartiger Trockentransformator weist beispielsweise eine Leistung im Bereich von 1 bis 5 MVA auf und wird beispielsweise auf Hochseeschiffen für die Bordstromversorgung eingesetzt. Dort ist eine erfindungsgemäße Kapselung besonders wichtig, um den Transformator vor den schädigenden Einflüssen der salzhaltigen Meeresluft zu schützen. Entsprechend einer besonders bevorzugten Ausgestaltungsvariante des erfindungsgemäßen Kühlgehäuses wird als erstes und/oder als zweites Kühlfluid Luft verwendet. Insbesondere Umgebungsluft als zweites Kühlfluid eignet sich als Transportmittel der dem Kondensatorbereich zu entziehenden Wärme zu einer externen Wärmesenke.According to a further embodiment variant of the cooling housing according to the invention, a dry-type transformer is arranged in the first encapsulated inner area as the heat-generating component. Such a dry-type transformer has, for example, a power in the range of 1 to 5 MVA and is used, for example, on ocean-going vessels for the on-board power supply. There, an encapsulation according to the invention is particularly important to protect the transformer from the harmful effects of salt-containing sea air. According to a particularly preferred embodiment variant of the cooling housing according to the invention, air is used as the first and / or second cooling fluid. In particular, ambient air as the second cooling fluid is suitable as a means of transport of the heat to be removed from the condenser area to an external heat sink.

Gemäß einer besonders bevorzugten Ausgestaltungsform des erfindungsgemäßen Kühlgehäuses ist zur Erzeugung eines jeweiligen gegen die Verdampfer- beziehungsweise Kondensatorseiten gerichteten Kühlfluidstroms wenigstens eine Fördervorrichtung für das erste beziehungsweise zweite Kühlfluid vorgesehen. Dies ist beispielsweise jeweils ein Gebläse, welches die Umgebungsluft zum verbesserten Wärmeaustausch gegen die Kondensatorseite bläst beziehungsweise ein Gebläse das in dem gekapselten Innenbereich das erste Kühlfluid gegen die Verdampferseite bläst, so dass ein innerer Kreislauf des ersten Kühlfluids im gekapselten Innenbereich gebildet ist.According to a particularly preferred embodiment of the cooling housing according to the invention, at least one conveying device for the first or second cooling fluid is provided for generating a respective cooling fluid flow directed against the evaporator or condenser sides. This is, for example, in each case a blower, which blows the ambient air for improved heat exchange against the condenser side or a fan which blows the first cooling fluid in the encapsulated inner region against the evaporator side, so that an inner circuit of the first cooling fluid is formed in the encapsulated inner region.

Weitere vorteilhafte Ausgestaltungsmöglichkeiten sind den weiteren abhängigen Ansprüchen zu entnehmen.Further advantageous embodiment possibilities can be found in the further dependent claims.

Anhand der in den Zeichnungen dargesteilten Ausführungsbeispiele sollen die Erfindung, weitere Ausführungsformen und weitere Vorteile näher beschrieben werden.Reference to the dargesteilten in the drawings embodiments, the invention, further embodiments and other advantages will be described in detail.

Es zeigen:

Fig. 1
ein exemplarisches Thermosyphonmodul,
Fig. 2
einen ersten exemplarischen modularen Thermosyphon,
Fig. 3
einen zweiten exemplarischen modularen Thermosyphon,
Fig. 4
einen dritten exemplarischen modularen Thermosyphon,
Fig. 5
ein exemplarisches Kühlgehäuse mit Trockentransformator sowie
Fig. 6
Varianten von mehrfach angewinkelten Seitenabschnitten.
Show it:
Fig. 1
an exemplary thermosyphon module,
Fig. 2
a first exemplary modular thermosyphon,
Fig. 3
a second exemplary modular thermosyphone,
Fig. 4
a third exemplary modular thermosyphon,
Fig. 5
an exemplary cooling housing with dry transformer as well
Fig. 6
Variants of multi-angled side sections.

Fig. 1 zeigt ein exemplarisches Thermosyphonmodul 10 entsprechend dem Stand der Technik in einer dreidimensionalen Ansicht. Dieses weist mehrere Rippen 14 auf, welche quer zu einer Barrierewandung 12 angeordnet sind. Jede Rippe 14 umfasst zwei innere Kanäle für ein internes Kühlfluid, welches in einem geschlossenen Kreislauf Wärmeenergie von der unterhalb der Barrierewandung 12 befindlichen Verdampferseite zur oberhalb der Barrierewandung 12 befindlichen Kondensatorseite transportiert. Am oberen und unteren Ende des Thermosyphonmoduls sind übergreifende Rohrleitungen vorgesehen. Die Barrierewandung 12 ist durch einen flachen Metallstreifen gebildet, so dass bei Aneinanderreihung mehrerer derartiger Thermosyphonmodule keine spaltfreie Trennebene gebildet ist, welche eine sichere Trennung zwischen Verdampfer- und Kondensatorseiten gewährleisten könnte. Fig. 1 shows an exemplary Thermosyphonmodul 10 according to the prior art in a three-dimensional view. This has a plurality of ribs 14, which are arranged transversely to a barrier wall 12. Each rib 14 comprises two internal channels for an internal cooling fluid, which transports heat energy in a closed circuit from the evaporator side located below the barrier wall 12 to the condenser side located above the barrier wall 12. At the upper and lower end of the thermosyphon module are provided cross-piping. The barrier wall 12 is formed by a flat metal strip, so that when stringing together several such thermosiphon modules no gap-free parting plane is formed, which could ensure a secure separation between the evaporator and condenser sides.

Fig. 2 zeigt einen ersten erfindungsgemäßen exemplarischen modularen Thermosyphon 20 in einer Seitenansicht. Drei Thermosyphonmodule 28, 30, 32 sind nebeneinander zu einem modularen Thermosyphon angeordnet, wobei diese in ihrem mittleren Bereich jeweils U-förmige Barrierewandungen 38, 40, 42 aufweisen, welche in einer gemeinsamen Ebene 24 verlaufen. Oberhalb der gemeinsamen Ebene 24 sind mit der Bezugsziffer 22 gekennzeichnet die jeweiligen Kondensatorseiten und unterhalb der gemeinsamen Ebene 24 mit der Bezugsziffer 26 die jeweiligen Verdampferseiten der Thermosyphonmodule 28, 30, 32 angeordnet. Die jeweiligen Rippen der Thermosyphonmodule 28, 30, 32 sind im oberen und unteren Bereich mittels gemeinsamer Verbindungskanäle 34, 36 verbunden, wobei jede Rippe einen aufwärts- und einen abwärtsgerichteten Kanal aufweist. Fig. 2 shows a first exemplary modular thermosyphon 20 according to the invention in a side view. Three Thermosyphonmodule 28, 30, 32 are arranged side by side to a modular Thermosyphon, which in their central region respectively U-shaped barrier walls 38, 40, 42 which extend in a common plane 24. Above the common plane 24, the reference numeral 22 denotes the respective sides of the condenser, and below the common plane 24, the reference numeral 26, the respective evaporator sides of the thermosiphon modules 28, 30, 32. The respective fins of the thermosiphon modules 28, 30, 32 are connected in the upper and lower regions by means of common connection channels 34, 36, each rib having an upwardly and downwardly directed channel.

Die U-förmigen Barrierewandungen 38, 40, 42 sind alternierend ausgerichtet, das heißt die Barrierewandungen 38 und 42 weisen die entgegengesetzte Ausrichtung auf wie die dazwischen liegende Barrierewandung 40. Die Barrierewandungen 38, 40, 42 sind zudem noch dachziegelähnlich überlappend ausgerichtet, so dass ein Herabtropfen von im Kondensatorbereich 22 entstehendem Kondenswasser selbst bei einem Spalt zwischen den Kontaktflächen der angewinkelten Seitenabschnitte der Barrierewandungen 38, 40, 42 nicht zu einem Übertritt von Kondenswasser auf die Verdampferseiten 26 führt. Die benachbart angewinkelten Seltenabschnitte können entweder direkt anelnandergrenzen und so jeweilige Kontaktflächen 44, 46 bilden oder es kann auch eine Dichtung oder Dichtmasse dazwischen vorgesehen sein.The U-shaped barrier walls 38, 40, 42 are aligned alternately, that is, the barrier walls 38 and 42 have the opposite orientation as the intermediate barrier wall 40. The barrier walls 38, 40, 42 are also roof tiles similar overlapping aligned, so that a Dripping of condensation water arising in the condenser region 22, even at a gap between the contact surfaces of the angled side sections of the barrier walls 38, 40, 42, does not lead to a transfer of condensed water to the evaporator sides 26. The adjacent angled rare sections may either directly adjoin one another and thus form respective contact surfaces 44, 46 or a seal or sealant may be provided therebetween.

Fig. 3 zeigt einen zweiten erfindungsgemäßen exemplarischen modularen Thermosyphon 50 in einer Seitenansicht. Drei Thermosyphonmodule sind nebeneinander zu einem modularen Thermosyphon angeordnet, wobei diese in ihrem mittleren Bereich jeweils eine U-förmige Barrierewandung 58, 60, 62 aufweisen, welche in einer gemeinsamen Ebene 54 verlaufen. Oberhalb der gemeinsamen Ebene 54 sind mit der Bezugsziffer 52 gekennzeichnet die jeweiligen Kondensatorseiten und unterhalb der gemeinsamen Ebene 54 mit der Bezugsziffer 56 die jeweiligen Verdampferseiten der Thermosyphonmodule angeordnet. Die U-förmigen Barrierewandungen 58, 60, 62 sind in diesem Beispiel gleich ausgerichtet, wobei zwischen deren aneinander grenzenden angewinkelten Seltenflächen gemeinsame Kontaktflächen 64, 66 gebildet sind, welche zu einer deutlich erhöhten Dichtigkeit zwischen den Barrierewandungen führen. Auch hier ist optional ein Dichtmittel auf den jeweiligen Kontaktflächen vorgesehen oder aber auch ein längliches Klammerelement, welches beide angewinkelten Seitenabschnitte gegeneinander drückt. Fig. 3 shows a second exemplary modular Thermosyphon 50 according to the invention in a side view. Three Thermosyphonmodule are arranged side by side to a modular Thermosyphon, which in their central region each have a U-shaped barrier wall 58, 60, 62 which extend in a common plane 54. Above the common plane 54 are denoted by the reference numeral 52, the respective capacitor sides and below the common plane 54 with the reference numeral 56, the respective evaporator sides of the thermosiphon modules arranged. The U-shaped barrier walls 58, 60, 62 are the same in this example, with common contact surfaces 64, 66 being formed between their adjoining angled, inclined surfaces, which lead to a significantly increased tightness between the barrier walls. Again, a sealing means is optionally provided on the respective contact surfaces or else an elongated clip element which presses both angled side sections against each other.

Fig. 4 zeigt einen dritten erfindungsgemäßen exemplarischen modularen Thermosyphon 70 in einer Seitenansicht. Drei Thermosyphonmodule sind nebeneinander zu einem modularen Thermosyphon angeordnet, wobei diese in ihrem mittleren Bereich jeweils trapezförmige Barrierewandungen 78, 80, 82 aufweisen, welche in einer gemeinsamen Ebene 74 verlaufen. Oberhalb der gemeinsamen Ebene 74 sind mit der Bezugsziffer 72 gekennzeichnet die jeweiligen Kondensatorseiten und unterhalb der gemeinsamen Ebene 74 mit der Bezugsziffer 76 die jeweiligen Verdampferseiten der Thermosyphonmodule angeordnet. Die U-förmigen Barrierewandungen 78, 80, 82 sind in diesem Beispiel alternierend ausgerichtet, wobei zwischen deren aneinander grenzenden angewinkelten Seitenflächen gemeinsame Kontaktflächen 84, 86 gebildet sind, welche zu einer deutlich erhöhten Dichtigkeit zwischen den Barrierewandungen führen. Fig. 4 shows a third exemplary modular thermosyphon 70 according to the invention in a side view. Three Thermosyphonmodule are arranged side by side to a modular Thermosyphon, which have in their central region respectively trapezoidal barrier walls 78, 80, 82 which extend in a common plane 74. Above the common plane 74 are denoted by the reference numeral 72, the respective sides of the capacitor and below the common plane 74 with the reference numeral 76, the respective evaporator sides of the thermosiphon modules arranged. The U-shaped barrier walls 78, 80, 82 are aligned in this example alternately, wherein between the adjacent angled side surfaces common contact surfaces 84, 86 are formed, which lead to a significantly increased tightness between the barrier walls.

Fig. 5 zeigt ein exemplarisches Kühlgehäuse mit Trockentransformator in einer schematischen Schnittansicht 90. Ein Kühlgehäuse, beispielsweise aus einem Metall gefertigt, ist in einen ersten gekapselten Bereich 92 und einen daran längs einer Trennwand 114 angrenzenden zweiten Bereich 94 unterteilt. In dem ersten gekapselten Bereich 92 ist ein Trockentransformator 110 angeordnet, beispielsweise mit einer Nennleistung von 6MVA. Dieser produziert im laufenden Betrieb eine Verlustwärme, welche aus dem ersten gekapselten Bereich abzuführen ist. Hierzu wird mittels einer Fördervorrichtung 108 - in diesem Fall einem Gebläse - und einem exemplarischen Luftleitblech 112 ein zirkulierender Kreislauf 96 der in dem ersten gekapselten Bereich befindlichen Luft erzeugt, welcher gegen einen Verdampferbereich 104 eines erfindungsgemäßen modularen Thermosyphons 100 gerichtet ist, so dass dort eine Abkühlung der Luft erfolgt. Dessen Barrierewandungen sind im Bereich des Thermosyphons Teil der Trennwand 114. Durch einen natürlichen Umlauf des im modularen Thermosyphon 100 befindlichen Kühlmittels erfolgt ein Wärmetransport der abgegebenen Wärme auf die Kondensatorseite 102 des modularen Thermosyphons 100. Auf diesen ist ein von einem Gebläse 106 forcierter Strom 98 von Umgebungsluft gerichtet, so dass die Kondensatorseite Wärmeenergie an die Umgebungsluft abgibt. Durch die Verwendung eines erfindungsgemäßen modularen Thermosyphons mit angewinkelten Seitenflächen der jeweiligen Barrierewandungen ist eine besonders dichte Kapselung des ersten Innenbereiches ermöglicht und der darin angeordnete Trockentransformator 110 besonders gut geschützt. Fig. 5 FIG. 1 shows an exemplary cooling housing with a dry-type transformer in a schematic sectional view 90. A cooling housing, for example made of a metal, is subdivided into a first encapsulated area 92 and a second area 94 adjoining it along a partition wall 114. In the first encapsulated region 92, a dry-type transformer 110 is arranged, for example with a rated power of 6 MVA. This produces a loss of heat during operation, which is dissipated from the first encapsulated area. For this purpose, by means of a conveying device 108 - in this case a fan - and an exemplary air baffle 112, a circulating circuit 96 of the air located in the first encapsulated area is generated, which is directed against an evaporator region 104 of a modular thermosyphone 100 according to the invention, so that there is a cooling the air takes place. Its barrier walls are part of the partition wall 114 in the region of the thermosyphon. Natural circulation of the coolant located in the modular thermosyphone 100 results in heat transfer of the heat released to the condenser side 102 of the modular thermosyphone 100. A current 98 forced from it by a fan 106 is applied to this Directed ambient air, so that the capacitor side emits heat energy to the ambient air. By using a modular thermosyphon according to the invention with angled side surfaces of the respective barrier walls, a particularly tight encapsulation of the first inner region is made possible and the dry transformer 110 arranged therein is particularly well protected.

Fig. 6 zeigt Varianten von mehrfach angewinkelten und für eine jeweilige Verzahnung vorgesehene Seitenabschnitten von jeweiligen Barrierewandungen in einer Darstellung 120. Mit der Bezugsziffer 122 ist eine sägezahnähnliche Verzahnung und mit der Bezugsziffer 124 eine rechteckige Verzahnung von mehrfach angewinkelten Barrierewandungen angedeutet, wobei jeweils nur ein Thermosyphonmodul mit einer jeweiligen Barrierewandung dargestellt ist. Fig. 6 shows variants of multiply angled and provided for a respective toothing side portions of respective barrier walls in a representation 120. Reference numeral 122 is a sawtooth-like teeth and the reference numeral 124 denotes a rectangular toothing of multi-angled barrier walls, in each case only one thermosiphon module with a respective Barrier wall is shown.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
exemplarisches Thermosyphonmodulexemplary thermosiphon module
1212
erste äußere Barrierewandungfirst outer barrier wall
1414
Rippenribs
2020
erster exemplarischer modularer Thermosyphonfirst exemplary modular thermosiphon
2222
Kondensatorseiten der ThermosyphonmoduleCapacitor sides of the thermosiphon modules
2424
gemeinsame Ebene der Barrierewandungencommon level of barrier walls
2626
Verdampferseiten der ThermosyphonmoduleEvaporator sides of the thermosiphon modules
2828
erstes Thermosyphonmodul von erstem Thermosyphonfirst thermosyphon module of the first thermosyphone
3030
zweites Thermosyphonmodul von erstem Thermosyphonsecond thermosyphon module of the first thermosyphone
3232
drittes Thermosyphonmodul von erstem Thermosyphonthird thermosyphon module of the first thermosyphone
3434
erster gemeinsamer Verbindungskanalfirst common connection channel
3636
zweiter gemeinsamer Verbindungskanalsecond common connection channel
3838
U-förmige Barrierewandung des ersten ThermosyphonmodulsU-shaped barrier wall of the first thermosyphon module
4040
U-förmige Barrierewandung des zweiten ThermosyphonmodulsU-shaped barrier wall of the second thermosyphon module
4242
U-förmige Barrierewandung des dritten ThermosyphonmodulsU-shaped barrier wall of the third thermosyphon module
4444
erste gemeinsame angewinkelte Kontaktflächefirst joint angled contact surface
4646
zweite gemeinsame angewinkelte Kontaktflächesecond common angled contact surface
5050
zweiter exemplarischer modularer Thermosyphonsecond exemplary modular thermosiphon
5252
Kondensatorseiten der ThermosyphonmoduleCapacitor sides of the thermosiphon modules
5454
gemeinsame Ebene der Barrierewandungencommon level of barrier walls
5656
Verdampferseiten der ThermosyphonmoduleEvaporator sides of the thermosiphon modules
5858
U-förmige Barrierewandung des ersten ThermosyphonmodulsU-shaped barrier wall of the first thermosyphon module
6060
U-förmige Barrierewandung des zweiten ThermosyphonmodulsU-shaped barrier wall of the second thermosyphon module
6262
U-förmige Barrierewandung des dritten ThermosyphonmodulsU-shaped barrier wall of the third thermosyphon module
6464
erste gemeinsame angewinkelte Kontaktflächefirst joint angled contact surface
6666
zweite gemeinsame angewinkelten Kontaktflächesecond common angled contact surface
7070
dritter exemplarischer modularer Thermosyphonthird exemplary modular thermosiphon
7272
Kondensatorseiten der ThermosyphonmoduleCapacitor sides of the thermosiphon modules
7474
gemeinsame Ebene der Barrierewandungencommon level of barrier walls
7676
Verdampferseiten der ThermosyphonmoduleEvaporator sides of the thermosiphon modules
7878
trapezförmige Barrierewandung des ersten ThermosyphonmodulsTrapezoid barrier wall of the first thermosyphon module
8080
trapezförmige Barrierewandung des zweiten ThermosyphonmodulsTrapezoid barrier wall of the second thermosyphon module
8282
trapezförmige Barrierewandung des dritten ThermosyphonmodulsTrapezoid barrier wall of the third thermosyphon module
8484
erste gemeinsame angewinkelte Kontaktflächefirst joint angled contact surface
8686
zweite gemeinsame angewinkelte Kontaktflächesecond common angled contact surface
9090
exemplarisches Kühlgehäuse mit Trockentransformatorexemplary cooling housing with dry-type transformer
9292
erster gekapselter Innenbereichfirst enclosed interior
9494
zweiter Bereichsecond area
9696
exemplarischer Kreislauf des ersten Kühlfluidsexemplary cycle of the first cooling fluid
9898
exemplarische Strömungsrichtung des zweiten Kühlfluidsexemplary flow direction of the second cooling fluid
100100
vierter exemplarischer modularer Thermosyphonfourth exemplary modular thermosiphon
102102
Kondensatorbereich des vierten ThermosyphonCondenser area of the fourth thermosyphone
104104
Verdampferbereich des vierten ThermosyphonsEvaporator area of the fourth thermosyphone
106106
Fördervorrichtung für zweites KühlfluidConveying device for second cooling fluid
108108
Fördervorrichtung für erstes KühlfluidConveying device for first cooling fluid
110110
Trockentransformatordry-type transformer
112112
LuftleitblechAir baffle
114114
Trennwand zwischen gekapseltem Innenbereich und zweitem BereichPartition between encapsulated interior and second area
120120
Varianten von mehrfach angewinkelten SeitenabschnittenVariants of multi-angled side sections
122122
sägezahnähnliche Verzahnungsawtooth-like toothing
124124
rechteckige Verzahnungrectangular toothing

Claims (10)

  1. Modular thermosiphon (20, 50, 70, 100), comprising a plurality of fin-like (14) cuboid-like thermosiphon modules (10, 28, 30, 32) with a respective condenser side (22, 52, 72, 102) and evaporator side (26, 56, 76, 104) which are separated from one another by an outer barrier wall (12, 38, 40, 42, 58, 60, 62, 78, 80, 82) which runs transversely with respect to the fins (14), a plurality of thermosiphon modules (10, 28, 30, 32) being arranged adjacently, and the respective outer barrier walls (12, 38, 40, 42, 58, 60, 62, 78, 80, 82) running in a common plane (24, 54, 74) in a manner bordering one another, which common plane (24, 54, 74) separates the condenser sides (22, 52, 72, 102) and the evaporator sides (26, 56, 76, 104) from one another, the barrier walls (12, 38, 40, 42, 58, 60, 62, 78, 80, 82) being angled on their respective adjacently arranged sides in such a way that a respective common angled contact face (44, 46, 64, 66, 84, 86) is formed by way of the angled side sections, characterized in that the angled side sections are of resilient configuration, such that a pressing force of side sections which border one another is brought about as a result.
  2. Modular thermosiphon according to Claim 1, characterized in that the barrier walls (12, 38, 40, 42, 58, 60, 62, 78, 80, 82) have a trapezoidal (78, 80, 82) or U-shaped (12, 38, 40, 42, 58, 60, 62) cross section.
  3. Modular thermosiphon according to Claim 1 or 2, characterized in that the barrier walls (12, 38, 40, 42, 58, 60, 62, 78, 80, 82) of the adjacent thermosiphon modules (10, 28, 30, 32) are arranged with an alternating orientation (38 - 40 - 42; 78 - 80 - 82).
  4. Modular thermosiphon according to one of the preceding claims, characterized in that a sealant is provided at least in regions on at least one common contact face (44, 46, 64, 66, 84, 86).
  5. Modular thermosiphon according to one of the preceding claims, characterized in that adjacently arranged angled side sections and barrier walls (12, 38, 40, 42, 58, 60, 62, 78, 80, 82) which form a common contact face (44, 46, 64, 66, 84, 86) are connected to one another by means of at least one clamp element.
  6. Modular thermosiphon according to one of the preceding claims, characterized in that respective adjacently arranged side sections of respective barrier walls are angled multiple times (122, 124) and are interlocked with one another.
  7. Cooling housing (90), comprising a first encapsulated inner region (92) with a first cooling fluid, which inner region (92) is provided for arranging a heat generating component (110) there, comprising a second region (94) which adjoins said first inner region (92) and is provided for being flowed through (98) by a second cooling fluid, the first (92) and the second (94) region being connected thermally by way of a heat exchanger, characterized in that a modular thermosiphon (20, 50, 70, 100) according to one of Claims 1 to 5 is used as a heat exchanger, the evaporator sides (26, 56, 76, 104) protruding into the first region (92), and the condenser sides (22, 52, 72, 102) protruding into the second region (94).
  8. Cooling housing according to Claim 7, characterized in that a dry transformer (110) is arranged as a heat generating component in the first encapsulated inner region (92).
  9. Cooling housing according to either of Claims 7 and 8, characterized in that the first and/or the second cooling fluid are/is air.
  10. Cooling housing according to one of Claims 7 to 9, characterized in that at least one conveying apparatus (108 and 106, respectively) for the first and second cooling fluid, respectively, is provided in order to generate a respective cooling fluid flow (96 and 98, respectively) which is directed towards the evaporator sides (26, 56, 76, 104) and condenser sides (22, 52, 72, 102), respectively.
EP12004062.1A 2012-05-24 2012-05-24 Modular thermosiphon and cooling housing Active EP2667137B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP12004062.1A EP2667137B1 (en) 2012-05-24 2012-05-24 Modular thermosiphon and cooling housing
PCT/EP2013/001255 WO2013174470A1 (en) 2012-05-24 2013-04-26 Modular thermosiphon and cooling housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12004062.1A EP2667137B1 (en) 2012-05-24 2012-05-24 Modular thermosiphon and cooling housing

Publications (2)

Publication Number Publication Date
EP2667137A1 EP2667137A1 (en) 2013-11-27
EP2667137B1 true EP2667137B1 (en) 2018-04-25

Family

ID=48463911

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12004062.1A Active EP2667137B1 (en) 2012-05-24 2012-05-24 Modular thermosiphon and cooling housing

Country Status (2)

Country Link
EP (1) EP2667137B1 (en)
WO (1) WO2013174470A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015214601A1 (en) * 2015-07-31 2017-02-02 Siemens Aktiengesellschaft Transformer and method for cooling a transformer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560180A (en) * 1978-10-28 1980-05-07 Babcock Hitachi Kk Heat exchanger
JPS6091193A (en) * 1983-10-25 1985-05-22 Sasakura Eng Co Ltd Heat pipe type heat exchanger
US5131457A (en) * 1991-10-07 1992-07-21 Foster Wheeler Energy Corporation Protection system for heat pipe airheaters
EP2031332B1 (en) * 2007-08-27 2010-09-15 ABB Research LTD Heat exchanger for power-electronics components
EP2284846A1 (en) 2009-08-13 2011-02-16 ABB Research Ltd. Dry transformer cooled by means of a compact thermosyphon air to air heat exchanger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2667137A1 (en) 2013-11-27
WO2013174470A1 (en) 2013-11-28

Similar Documents

Publication Publication Date Title
DE4015030C1 (en)
DE60110061T2 (en) THERMOELECTRIC DEHUMIDIFIER
DE112006003825T5 (en) Electric current transformer device
DE69132499T2 (en) Heat exchanger with stacked plates
DE2313117B2 (en) THERMOELECTRIC DEVICE WITH HEATING PIPES AS HEAT EXCHANGER
DE112006003812T5 (en) cooler
DE102010001417A1 (en) Heat exchanger for thermoelectric generators
DE102017005315A1 (en) battery box
DE102018203231A1 (en) HEAT EXCHANGERS FOR COOLING SEVERAL LAYERS OF ELECTRONIC MODULES
DE19739309A1 (en) Power supply unit
DE2801660C2 (en) Device for dissipating heat loss from electronic components
DE102017222350A1 (en) HEAT EXCHANGER FOR DOUBLE-SIDED COOLING OF ELECTRONIC MODULES
DE102013113222A1 (en) CONTROL CABINET WITH A COOLING CONNECTOR PLATE FOR CONNECTING MULTIPLE POWER BUSHES
DE102013219665B4 (en) Cooling arrangement
DE102015102606A1 (en) Electricity transporting systems and methods for their assembly
EP2667137B1 (en) Modular thermosiphon and cooling housing
EP0585611A2 (en) Power resistor for liquid cooling
DE2163209A1 (en) Air cooling system for a high voltage DC valve
EP2957157B1 (en) Combination cable and air channel for air conditioning an electrical enclosure, and a corresponding electrical enclosure
EP3824705B1 (en) Power converter with a separate interior
DE102019210190B4 (en) THERMOELECTRIC COOLING UNIT
DE3202271C2 (en)
AT520693B1 (en) accumulator
DE102023112906B3 (en) Inverter with closed cooling channel
BE1029900B1 (en) Housing for accommodating an electrical heat source

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140514

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB SCHWEIZ AG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20171116

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 993379

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012568

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180425

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180725

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180827

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012568

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180524

26N No opposition filed

Effective date: 20190128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180531

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 993379

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180425

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240521

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240521

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240528

Year of fee payment: 13