EP2659099B1 - Power generation device - Google Patents

Power generation device Download PDF

Info

Publication number
EP2659099B1
EP2659099B1 EP11811035.2A EP11811035A EP2659099B1 EP 2659099 B1 EP2659099 B1 EP 2659099B1 EP 11811035 A EP11811035 A EP 11811035A EP 2659099 B1 EP2659099 B1 EP 2659099B1
Authority
EP
European Patent Office
Prior art keywords
flue gas
heat exchanger
heat
line
guided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11811035.2A
Other languages
German (de)
French (fr)
Other versions
EP2659099A2 (en
Inventor
Frank Eckert
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Duerr Cyplan Ltd
Original Assignee
Duerr Cyplan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE202010017143U external-priority patent/DE202010017143U1/en
Priority claimed from DE202011001111U external-priority patent/DE202011001111U1/en
Application filed by Duerr Cyplan Ltd filed Critical Duerr Cyplan Ltd
Publication of EP2659099A2 publication Critical patent/EP2659099A2/en
Application granted granted Critical
Publication of EP2659099B1 publication Critical patent/EP2659099B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/003Plants characterised by condensers arranged or modified to co-operate with the engines condenser cooling circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B35/00Control systems for steam boilers
    • F22B35/002Control by recirculating flue gases

Definitions

  • the invention relates to a device for generating electrical or mechanical energy with a combustion device for a solid, gaseous or liquid medium, in particular biomass, which generates during combustion flue gas containing heat, and with an RC system, which is a circuit for a Having working means, which is guided for the absorption of heat by acting as a working medium evaporator heat exchanger.
  • Such a device for power generation is both in the German utility model application DE 20 2011 001 111.9 with the utility model DE 20 2011 001 111 U1 as well as in the German utility model application DE 20 2010 017 143.1 with the utility model DE 20 2010 017 143 U1 to which reference is hereby made and the disclosures of which are fully incorporated into the description of this invention. Furthermore, the document also shows EP 1 221 573 a combustion device with ORC system.
  • a combustion device is a system in which by the supply of air, a solid, liquid or gaseous medium is oxidized as fuel and thereby exhaust gases in the form of gaseous combustion products. Due to the chemical energy stored in the fuel, heat is released in the oxidation of the fuel. The resulting during combustion gaseous combustion products are referred to herein as flue gas.
  • the temperature of this flue gas can be up to 1000 ° C or even higher.
  • RC Rankine Cycle
  • RC Rankine Cycle
  • ORC Organic Rankine Cycle
  • An ORC system is an RC system that uses a thermodynamic cycle of heat to generate mechanical or electrical energy.
  • ORC Organic Rankine Cycle
  • the working fluid in an ORC system is usually pressurized by a pump. The pressurized working fluid is then heated in an evaporator. The working fluid is evaporated and optionally overheated. The vaporized or superheated working fluid then passes to a steam turbine.
  • the working fluid is expanded to generate mechanical energy to a lower pressure and then condensed.
  • the working fluid is then returned to the evaporator, where it is reheated and re-evaporated or overheated.
  • the evaporation temperature is higher than that of water.
  • ORC systems can be advantageously used for generating electrical or mechanical energy from heat, especially when the available temperature gradient between a heat source and a heat sink is too low to operate a heat engine, such as a turbine, with water vapor.
  • ORC plants are not only operated with heat from incinerators.
  • the heat required for operating an ORC plant can also be obtained geothermally or come from solar power plants.
  • ORC systems can also be operated with the waste heat of internal combustion engines (eg reciprocating engines).
  • thermal oil for heat transfer
  • closed circuits with heat exchangers for heat transfer they are used for both heating and cooling.
  • the viscosity, the solidification and boiling points as well as the flammability of the relevant thermal oil are generally adapted here to a temperature range in which the heat is to be transferred.
  • thermal oil used as an intermediate heat transfer medium In order to operate an RC system with the heat from a combustion device, it is known to heat thermal oil used as an intermediate heat transfer medium to about 300 ° C. However, to ensure that the chemical structure of the thermal oil is not destroyed at this temperature, it must be continuously pumped through heat exchangers in a piping system. However, this causes a significant energy consumption and reduces the efficiency of the system.
  • the object of the invention is to provide a device for generating electrical or mechanical energy with an RC system that receives heat from a combustion device and that can be reliably operated with high efficiency.
  • the temperature level of the guided through the heat exchanger flue gas is lowered and if a part of the thus cooled flue gas can be returned via a further flue gas line in front of the heat exchanger in the flue gas line.
  • the flue gas generated during combustion can be mixed with already cooled flue gas and set a lower temperature level in the heat exchanger.
  • the temperature level in the heat exchanger is preferably adjusted by changing the amount of recirculated exhaust gas. According to the invention can be selected as the temperature of the cooled exhaust gas, a temperature of 150 ° C to 300 ° C.
  • flue gas is generated by burning a solid, gaseous or liquid medium, in particular by burning biomass, which contains heat.
  • the heat of the flue gas is fed to a heat exchanger acting as working medium evaporator in an RC system.
  • the generated flue gas is passed through the heat exchanger for this purpose.
  • the guided through the heat exchanger flue gas can be sucked with a flue gas blower and fed through the other flue gas line in the flue gas line. It is particularly advantageous if a circulation blower is arranged in the further flue gas line, which sucks the flue gas passed through the heat exchanger and conveys it into the further flue gas line.
  • the RC system includes a working as a working fluid condenser heat exchanger, which is connected to a cooling water circuit to dissipate via the cooling water circuit, the heat of condensation of the working fluid.
  • the cooling water circuit is also guided by a further heat exchanger which extracts heat from the flue gas passed through the heat exchanger.
  • the RC system may include a feed pump that moves the working fluid from the heat exchanger operating as a working fluid condenser to the heat exchanger.
  • the working fluid can be conveyed through a recuperator arranged in the circuit for the working fluid upstream of the heat exchanger.
  • An idea of the invention is in particular to adjust the temperature of the flue gas stream upstream of acting as evaporator for working heat exchanger by changing the mass flow of the cooled flue gas by throttling by a flue gas flap in the further flue gas line, which at least partially returns the flue gas to the heat exchanger.
  • An idea of the invention is also the temperature of the flue gas stream before the working medium heat exchanger by changing the speed of a fan arranged in the further flue gas line over which the flue gas is at least partially returned to the heat exchanger.
  • a bypass line is provided, can be fed via the guided through the heat exchanger flue gas in the further flue gas line or via which it is possible to lead flue gas from the further flue gas duct to the other heat exchanger.
  • the device may include a arranged in the flue gas line flue gas flap, with which the flow of flue gas can be prevented from the heat exchanger to the other heat exchanger or in the bypass line. Also in the flue gas line between the combustion device and the heat exchanger, a flue gas flap may be provided.
  • a conduit with a flap for supplying fresh air into the heat exchanger. In this way it can be ensured that the heat exchanger and fresh air can be cooled.
  • the device is advantageously formed with a chimney for releasing cooled flue gas.
  • the RC system in the device according to the invention can be designed both as a small or large home plant, as a large industrial plant or as a power plant for municipalities.
  • a home installation is understood to mean a system with which the energy supply including the air conditioning of office buildings, garages, and hospitals can be guaranteed.
  • a plant is referred to the industrial manufacturing equipment, especially manufacturing equipment of the automotive industry, z. B.
  • the device according to the invention has a simple apparatus design. The corresponding investment costs are therefore low.
  • a device according to the invention can Therefore, work with low operating costs.
  • a device according to the invention is particularly suitable for operation in low power ranges for energy and heat.
  • the in the Fig. 1 shown apparatus 10 for generating electrical or mechanical energy has a combustion device 1 for organic substances, in particular biomass, z.
  • wood wood chips or other dried plant remains such as straw or grasses.
  • the wood used in the device can be derived directly from its growth location, ie a forest or a plantation. In principle, it can also come from a waste wood or recycling wood recycling.
  • Other verwenbare organic substances may in particular be liquid. It may be z.
  • Other useful organic substances may also be gaseous and z.
  • B. have the form of combustible gases resulting from the decomposition of plants, food waste and garbage, in particular of household waste or manure in animal husbandry.
  • the combustion device 1 When burning biomass, the combustion device 1 generates flue gas containing heat.
  • the device 10 there is an ORC system 2.
  • the ORC system 2 has a circuit 5 for a fluid working medium, which is guided for the absorption of heat by acting as a working medium evaporator heat exchanger 21.
  • Butane, toluene or silicone oil are preferably used as the working medium.
  • the heat exchanger 21 is connected to the combustion device 1 via a flue gas line 33, 34 in order to transfer the heat of the flue gas generated during combustion to the working medium of the ORC system 2.
  • the ORC system 2 includes a turbine 27 coupled thereto generator 25.
  • the ORC system 2 has a recuperator 23 and a working fluid condenser 24.
  • In the OCR system 2 there is a acting as a working fluid pump feed pump 22.
  • the feed pump 22 is the fluid working fluid in the liquid state of aggregation brought to operating pressure.
  • the liquid working medium flows through the heat exchanger 21.
  • the heat is transferred from the flue gas of the combustion device 1 to the working fluid.
  • the working fluid evaporates.
  • saturated steam or dry steam is then provided.
  • the energy input in the heat exchanger 21 thereby increase the specific volume and the temperature of the vapor.
  • the pressurized vaporous working fluid is released almost isentropically to a lower pressure.
  • recuperator 23 heat is withdrawn from the vaporous working medium stream leaving the turbine 27.
  • pressurized liquid working fluid is passed through the recuperator.
  • recuperator 23 then decreases the temperature of the vaporous working fluid from the turbine 27 to the condensation temperature.
  • the working fluid in the circuit 5 is moved by a downstream, acting as a working fluid condenser heat exchanger 24.
  • the acting as working fluid condenser heat exchanger 24 is connected to a cooling water circuit 4.
  • the cooling water circuit 4 includes a feed pump 42.
  • the heat released in the condensation in the heat exchanger 24 heat is fed into a not-shown heat network.
  • the working fluid In the acting as a working fluid condenser heat exchanger 24, the working fluid is condensed. It goes completely into the liquid state of aggregation. With the working as a pump pump feed pump 22, the condensed working fluid is then brought back to operating pressure. In the circuit 5, it is then returned to the heat exchanger 21 acting as an evaporator. The cycle for the working fluid in the ORC system 2 is thus closed.
  • the heat output of the combustion device 1 is varied by changing the fuel and air supply.
  • the combustion device 1 can be controlled or regulated according to the power required by the generator 25 supplied power network or the heat demand of the fed with the cooling water circuit 4 heat network.
  • a further flue gas line 35 is formed.
  • the further flue gas line 35 is connected with respect to the combustion device 1 before acting as a working medium evaporator 21 heat exchanger of the ORC system and behind the heat exchanger 41 to the flue gas line 34.
  • Via the further flue gas line 35 it is possible to at least partially recirculate the flue gas guided through the heat exchanger 21 into the flue-gas line 34. This serves to mix the flue gas generated during combustion in the combustion device 1 with flue gas, which has already been passed through the heat exchanger 21. This flue gas is therefore cooled relative to the temperature level of the exiting the combustion device exhaust gas.
  • the temperature of the flue gas can be lowered, which is moved in the flue gas line 34 to the heat exchanger 21.
  • ambient air is introduced at a temperature of less than 50 ° C before the heat exchanger 21 in the flue gas duct 34.
  • the device 10 there is a line 9 with a controllable flap 63 through which fresh air can be supplied into the flue-gas line 34 between the heat exchanger 21 acting as working-medium evaporator and the heat exchanger 41.
  • a flue gas fan 32 On the outlet side of the heat exchanger 41 is located in the flue gas duct 34, a flue gas fan 32.
  • the flue gas blower 32 By means of the flue gas blower 32, the flue gas is conveyed in the flue gas duct 34 to a chimney 31. Through the chimney 31, the flue gas generated in the device 10 is possibly discharged to further emission control systems and then into the environment.
  • Typical temperatures of the flue gas provided by the combustor 1 in the flue gas duct 33 are in a range of 900 ° C to 1000 ° C.
  • an inlet temperature for the flue gas 34 can be achieved in acting as a working medium evaporator heat exchanger 21, which according to the invention can be 300 ° C to 600 ° C, which is in particular in a range of 550 ° C. This ensures that the working fluid in the ORC system 2 can be brought to a favorable working temperature and the heat exchanger acting as an evaporator 21 as well as the working fluid is not thermally stressed excessively.
  • the guided through the heat exchanger 21 flue gas is sucked with a flue gas fan 32 and conveyed by a direction corresponding to the arrows 51 flow direction to the chimney 31.
  • a pressure drop occurs at the heat exchanger 21.
  • the pressure of the flue gas at the outlet side of the flue gas blower 32 is greater than at the inlet side of the heat exchanger 21. This circumstance causes flue gas to flow via the further flue gas line 35 with a flow direction corresponding to the arrows 53, which has already been cooled in the heat exchangers 21, 41 , This flue gas is fed through the further flue gas line 35 in the flue gas duct 34 before the heat exchanger 21 again.
  • bypass line 7 which connects the flue gas line 34 with the Raugas Arthur 35.
  • flue gas guided through the heat exchanger can be fed into the further flue gas line 35 or guided via the flue gas from the further flue-gas line 35 to the further heat exchanger 41.
  • an adjustable flue gas flap 62 is arranged in the bypass line 7. By opening and closing the flue gas flap 63, the bypass line 7 can be released and locked.
  • the flue gas line 34 includes a flue damper 61. With the flue damper 61, the flow of flue gas from the combustion device 1 set by the flue gas line 34 from the heat exchanger 21 to the other heat exchanger 41 or in the bypass line 7 and possibly also be prevented.
  • a further flue gas flap 64 In the further flue gas line 34 is located between the combustion device 1 and the heat exchanger 21, a further flue gas flap 64. With the flue gas flap 64, the flue gas flow through the flue gas line 35 can be adjusted.
  • the flue gas flap 61 is closed in the devices 10, 20 and 30, respectively.
  • the bypass line 7 is released by opening the flue gas flap 62, the flue gas fan 32 then causes the arrows 52 corresponding Rausgasströmung to the chimney 31.
  • the flap 63 is opened in the line 9 for the supply of fresh air, while the acting as working medium evaporator heat exchanger 21 are cooled in a respect to the normal operation flowing cold flue gas or with ambient air.
  • the flaps 61, 62, 63, 64 in a valve can also be functionally combined.
  • the in the Fig. 2 The device 20 shown corresponds in its construction to the structure of the device 10 Fig. 1 , Corresponding elements of the figures are therefore provided here with identical reference numerals. The corresponding description can be referenced accordingly.
  • a recirculation fan acting circulation blower 36 By means of the circulation blower 36, flue gas guided through the heat exchanger 21 is drawn in and conveyed into the further flue gas line 35.
  • the device 20 it is possible to adjust or regulate a temperature of the flue gas stream 34 before acting as a working medium evaporator heat exchanger 21 of the ORC system 2 by the mass flow of the cold flue gas in the further flue gas duct 35 by varying the speed of the circulation blower 36 and is changed by adjusting the arranged in the flue gas line 34 in front of the heat exchanger 31 flue gas flap 61 '.
  • This also makes it possible to achieve a process-optimal inlet temperature for the flue gas in the flue gas line 34 when entering the heat exchanger 21.
  • the in the Fig. 3 shown device 30 corresponds in its structure to the structure of the device 10 from Fig. 1 , Corresponding elements of the figures are therefore provided here with identical reference numerals. The corresponding description can be referenced accordingly.
  • the ORC system 2 is formed with a further heat exchanger 26 through which a part of the working means is guided in order to heat this also with already cooled by the heat exchanger 21 flue gas.
  • the heat exchanger 41 of the water circuit 4 of the devices 10, 20 and 30 is always traversed by flue gas both during operation and in the event of a fault. In a modified embodiment, however, it may be provided to bypass the heat exchanger 41 in case of failure via a bypass and then direct the hot flue gases directly into downstream emission control systems and subsequently through the chimney 21.
  • the invention relates to the conversion of thermal energy into electrical or mechanical energy with all features of the independent claims.
  • flue gas is generated with a combustion device 1 for a solid, gaseous or liquid medium, in particular biomass, which contains heat.
  • This heat is supplied by a working as a working medium evaporator heat exchanger 21 of an RC system 2, which contains a circuit 5 for a working fluid.
  • the heat of the flue gas generated during the combustion is transferred to the working fluid of the RC system 2, by passing the flue gas through the heat exchanger 21.

Description

Die Erfindung betrifft eine Vorrichtung zur Erzeugung von elektrischer oder mechanischer Energie mit einer Verbrennungseinrichtung für ein festes, gasförmiges oder flüssiges Medium, insbesondere Biomasse, die bei der Verbrennung Rauchgas erzeugt, das Wärme enthält, und mit einer RC-Anlage, die einen Kreislauf für ein Arbeitsmittel aufweist, das für das Aufnehmen von Wärme durch einen als Arbeitsmittelverdampfer wirkenden Wärmetauscher geführt ist.The invention relates to a device for generating electrical or mechanical energy with a combustion device for a solid, gaseous or liquid medium, in particular biomass, which generates during combustion flue gas containing heat, and with an RC system, which is a circuit for a Having working means, which is guided for the absorption of heat by acting as a working medium evaporator heat exchanger.

Eine solche Vorrichtung zur Energieerzeugung ist sowohl in der deutschen Gebrauchsmusteranmeldung DE 20 2011 001 111.9 mit der Gebrauchsmusterschrift DE 20 2011 001 111 U1 als auch in der deutschen Gebrauchsmusteranmeldung DE 20 2010 017 143.1 mit der Gebrauchsmusterschrift DE 20 2010 017 143 U1 beschrieben, auf die hiermit Bezug genommen und deren Offenbarungen in die Beschreibung dieser Erfindung in vollem Umfang einbezogen wird. Des Weiteren zeigt auch das Dokument EP 1 221 573 eine Verbrennungseinrichtung mit ORC-Anlage.Such a device for power generation is both in the German utility model application DE 20 2011 001 111.9 with the utility model DE 20 2011 001 111 U1 as well as in the German utility model application DE 20 2010 017 143.1 with the utility model DE 20 2010 017 143 U1 to which reference is hereby made and the disclosures of which are fully incorporated into the description of this invention. Furthermore, the document also shows EP 1 221 573 a combustion device with ORC system.

Eine Verbrennungseinrichtung im Sinne der Erfindung ist dabei ein System, in dem durch Zufuhr von Luft ein festes, flüssiges oder gasförmiges Medium als Brennstoff oxidiert wird und hierdurch Abgase in Form von gasförmigen Verbrennungsprodukten entstehen. Aufgrund der in dem Brennstoff gespeicherten chemischen Energie wird bei der Oxidation des Brennstoffs Wärme freigesetzt. Die bei der Verbrennung entstehenden gasförmigen Verbrennungsprodukte werden vorliegend als Rauchgas bezeichnet. Die Temperatur dieses Rauchgases kann bis zu 1000 °C betragen oder auch darüber liegen.A combustion device according to the invention is a system in which by the supply of air, a solid, liquid or gaseous medium is oxidized as fuel and thereby exhaust gases in the form of gaseous combustion products. Due to the chemical energy stored in the fuel, heat is released in the oxidation of the fuel. The resulting during combustion gaseous combustion products are referred to herein as flue gas. The temperature of this flue gas can be up to 1000 ° C or even higher.

Unter einer RC-Anlage (RC = Rankine Cycle) ist eine Anlage zu verstehen, in der mit einem thermodynamischen Kreisprozess unter Verwendung eines in einem Kreislauf geführten Arbeitsmittels, z. B. Wasser bzw. Wasserdampf, Wärme in mechanische oder elektrische Energie gewandelt wird.An RC system (RC = Rankine Cycle) is understood to mean a system in which a thermodynamic cycle using a circulating working medium, for. As water or water vapor, heat is converted into mechanical or electrical energy.

Eine ORC-Anlage (ORC = Organic Rankine Cycle) ist eine RC-Anlage, die mit einem thermodynamischen Kreisprozess aus Wärme mechanische oder elektrische Energie erzeugt. In einer ORC-Anlage gibt es hierzu einen Arbeitsmittelkreislauf, der einem Wasserdampfkreislauf ähnlich ist. Als Arbeitsmittel enthält der Arbeitsmittelkreislauf hier jedoch nicht Wasserdampf, sondern üblicherweise organische Medien, z. B. Butan, Toluol, Silikonöl oder auch Ammoniak, die eine in Bezug auf Wasser niedrige Verdampfungstemperatur haben. Das Arbeitsmittel in einer ORC-Anlage wird in der Regel über eine Pumpe mit Druck beaufschlagt. Das mit Druck beaufschlagte Arbeitsmittel wird dann in einem Verdampfer erwärmt. Dabei wird das Arbeitsmittel verdampft und gegebenenfalls überhitzt. Das verdampfte bzw. überhitzte Arbeitsmittel gelangt dann zu einer Dampfturbine. Hier wird das Arbeitsmittel unter Erzeugung von mechanischer Energie auf einen niedrigeren Druck entspannt und anschließend kondensiert. In dem Kreislauf wird das Arbeitsmittel dann wieder dem Verdampfer zugeführt, wo es von neuem erwärmt und wieder verdampft bzw. überhitzt wird. Es sei bemerkt, dass in einer ORC-Anlage als Arbeitsmittel auch Medien eingesetzt werden können, deren Verdampfungstemperatur höher ist als diejenige von Wasser. ORC-Anlagen können für das Erzeugen von elektrischer oder mechanischer Energie aus Wärme insbesondere dann vorteilhaft eingesetzt werden, wenn das zur Verfügung stehende Temperaturgefälle zwischen einer Wärmequelle und einer Wärmesenke zu niedrig ist, um eine Wärmekraftmaschine, etwa eine Turbine, mit Wasserdampf zu betreiben.An ORC system (ORC = Organic Rankine Cycle) is an RC system that uses a thermodynamic cycle of heat to generate mechanical or electrical energy. In an ORC system, there is a working fluid circuit that is similar to a steam cycle. As a working medium of the working fluid circuit here, however, does not contain water vapor, but usually organic media, eg. As butane, toluene, silicone oil or ammonia, which have a low evaporation temperature in relation to water. The working fluid in an ORC system is usually pressurized by a pump. The pressurized working fluid is then heated in an evaporator. The working fluid is evaporated and optionally overheated. The vaporized or superheated working fluid then passes to a steam turbine. Here, the working fluid is expanded to generate mechanical energy to a lower pressure and then condensed. In the cycle, the working fluid is then returned to the evaporator, where it is reheated and re-evaporated or overheated. It should be noted that in an ORC system as a working medium and media can be used, the evaporation temperature is higher than that of water. ORC systems can be advantageously used for generating electrical or mechanical energy from heat, especially when the available temperature gradient between a heat source and a heat sink is too low to operate a heat engine, such as a turbine, with water vapor.

ORC-Anlagen werden nicht nur mit Wärme aus Verbrennungseinrichtungen betrieben. Die für das Betreiben einer ORC-Anlage erforderliche Wärme kann auch geothermisch gewonnen werden oder aus Solarkraftwerken stammen. ORC-Anlagen können darüber hinaus auch mit der Abwärme von Verbrennungskraftmaschinen (z.B. Hubkolbenmotoren) betrieben werden.ORC plants are not only operated with heat from incinerators. The heat required for operating an ORC plant can also be obtained geothermally or come from solar power plants. In addition, ORC systems can also be operated with the waste heat of internal combustion engines (eg reciprocating engines).

In Vorrichtungen zum Erzeugen von Energie, die eine Verbrennungseinrichtung enthalten und in denen es eine ORC-Anlage gibt, wird die in der Verbrennungseinrichtung erzeugte Wärme herkömmlich unter Verwendung von Zwischenwärmeträgern von der Verbrennungseinrichtung auf die ORC-Anlage übertragen.In devices for generating energy, which contain a combustion device and in which there is an ORC system, the heat generated in the combustion device is conventionally transferred from the combustion device to the ORC system using intermediate heat carriers.

Hier besteht bisweilen das Problem, dass die Temperatur verwendeter Rauchgase so hoch ist, dass das in ORC-Anlagen eingesetzte Arbeitsmittel aufgrund von übermäßiger thermischer Belastung Schaden nehmen kann, wenn es mit den Rauchgasen in einen gemeinsamen Wärmetauscher gelangt.Here sometimes there is the problem that the temperature of the flue gases used is so high that the work equipment used in ORC systems can be damaged due to excessive thermal load when it comes with the flue gases in a common heat exchanger.

Zwischenwärmeträger in Form von Thermoöl für die Wärmeübertragung werden in industriellen Anlagen verbreitet eingesetzt. In geschlossenen Kreisläufen mit Wärmetauschern für die Wärmeübertragung werden sie sowohl für ein Beheizen als auch zum Kühlen verwendet. Die Viskosität, die Erstarrungs- und Siedepunkte sowie die Entflammbarkeit des betreffenden Thermoöls sind hier in der Regel an einen Temperaturbereich angepasst, in dem die Wärme übertragen werden soll.Intermediate heat carriers in the form of thermal oil for heat transfer are widely used in industrial plants. In closed circuits with heat exchangers for heat transfer they are used for both heating and cooling. The viscosity, the solidification and boiling points as well as the flammability of the relevant thermal oil are generally adapted here to a temperature range in which the heat is to be transferred.

Um eine RC-Anlage mit der Wärme aus einer Verbrennungseinrichtung zu betreiben, ist es bekannt, als Zwischenwärmeträger eingesetztes Thermoöl auf ca. 300 °C zu erwärmen. Damit die chemische Struktur des Thermoöls bei dieser Temperatur nicht zerstört wird, muss es jedoch in einem Leitungssystem fortlaufend durch Wärmetauscher gepumpt werden. Dies verursacht allerdings einen nicht unerheblichen Energieverbrauch und reduziert den Wirkungsgrad der Anlage.In order to operate an RC system with the heat from a combustion device, it is known to heat thermal oil used as an intermediate heat transfer medium to about 300 ° C. However, to ensure that the chemical structure of the thermal oil is not destroyed at this temperature, it must be continuously pumped through heat exchangers in a piping system. However, this causes a significant energy consumption and reduces the efficiency of the system.

Aufgabe der Erfindung ist es, eine Vorrichtung für das Erzeugen von elektrischer oder mechanischer Energie mit einer RC-Anlage bereitzustellen, die Wärme aus einer Verbrennungseinrichtung erhält und die zuverlässig mit hohem Wirkungsgrad betrieben werden kann.The object of the invention is to provide a device for generating electrical or mechanical energy with an RC system that receives heat from a combustion device and that can be reliably operated with high efficiency.

Diese Aufgabe wird durch eine Vorrichtung der eingangs genannten Art gelöst, bei welcher der Wärmetauscher mit der Verbrennungseinrichtung über eine Rauchgasleitung verbunden ist, um die Wärme des bei der Verbrennung erzeugten Rauchgases auf das Arbeitsmittel der RC-Anlage zu übertragen.This object is achieved by a device of the type mentioned, in which the heat exchanger is connected to the combustion device via a flue gas line to transmit the heat of the flue gas generated during combustion to the working fluid of the RC system.

Damit ist es insbesondere möglich, die für das Umwälzen von Thermoöl erforderliche Energie zu reduzieren und ggf. auf einen gesonderten Zwischenkreislauf zu verzichten.This makes it possible, in particular, to reduce the energy required for the circulation of thermal oil and possibly to dispense with a separate intermediate circuit.

Indem der Wärmetauscher mit Rauchgas beaufschlagt wird, das wenigstens teilweise mit Rauchgas vermischt ist, das mit dem Wärmetauscher bereits abgekühlt wurde, kann ein übermäßiges thermisches Belasten von Wärmetauscher und Arbeitsmittel in der RC-Anlage vermieden werden.By supplying the heat exchanger with flue gas that is at least partially mixed with flue gas that has already been cooled by the heat exchanger, excessive thermal loading of the heat exchanger and working fluid in the RC system can be avoided.

Von Vorteil ist es, wenn das Temperaturniveau des durch den Wärmetauscher geführten Rauchgases abgesenkt wird und wenn ein Teil des somit abgekühlten Rauchgases über eine weitere Rauchgasleitung vor dem Wärmetauscher in die Rauchgasleitung zurückgeführt werden kann. Hierdurch lässt sich das bei der Verbrennung erzeugte Rauchgas mit bereits abgekühltem Rauchgas vermischen und im Wärmetauscher ein niedrigeres Temperaturniveau einstellen. Das Temperatumiveau im Wärmetauscher wird bevorzugt durch Änderung der Menge an rückgeführtem Abgas eingestellt. Erfindungsgemäß kann als Temperatur des abgekühlten Abgases eine Temperatur von 150 °C bis 300 °C gewählt werden.It is advantageous if the temperature level of the guided through the heat exchanger flue gas is lowered and if a part of the thus cooled flue gas can be returned via a further flue gas line in front of the heat exchanger in the flue gas line. As a result, the flue gas generated during combustion can be mixed with already cooled flue gas and set a lower temperature level in the heat exchanger. The temperature level in the heat exchanger is preferably adjusted by changing the amount of recirculated exhaust gas. According to the invention can be selected as the temperature of the cooled exhaust gas, a temperature of 150 ° C to 300 ° C.

Um elektrische oder mechanische Energie zu erzeugen, wird durch Verbrennen eines festen, gasförmigen oder flüssigen Mediums, insbesondere durch Verbrennen von Biomasse Rauchgas erzeugt, das Wärme enthält. Die Wärme des Rauchgases wird dabei einem als Arbeitsmittelverdampfer wirkenden Wärmetauscher in einer RC-Anlage zugeführt. Erfindungsgemäß wird das erzeugte Rauchgas hierfür durch den Wärmetauscher geleitet.In order to generate electrical or mechanical energy, flue gas is generated by burning a solid, gaseous or liquid medium, in particular by burning biomass, which contains heat. The heat of the flue gas is fed to a heat exchanger acting as working medium evaporator in an RC system. According to the invention, the generated flue gas is passed through the heat exchanger for this purpose.

Das durch den Wärmetauscher geführte Rauchgas kann dabei mit einem Rauchgasgebläse angesaugt und durch die weitere Rauchgasleitung in die Rauchgasleitung eingespeist werden. Von Vorteil ist es insbesondere, wenn in der weiteren Rauchgasleitung ein Zirkulationsgebläse angeordnet ist, das durch den Wärmetauscher geführtes Rauchgas ansaugt und in die weitere Rauchgasleitung fördert.The guided through the heat exchanger flue gas can be sucked with a flue gas blower and fed through the other flue gas line in the flue gas line. It is particularly advantageous if a circulation blower is arranged in the further flue gas line, which sucks the flue gas passed through the heat exchanger and conveys it into the further flue gas line.

Die RC-Anlage enthält einen als Arbeitsmittelkondensator wirkenden Wärmetauscher, der mit einem Kühlwasserkreislauf verbunden ist, um über den Kühlwasserkreislauf die Kondensationswärme des Arbeitsmittels abzuführen. Der Kühlwasserkreislauf ist dabei auch durch einen weiteren Wärmetauscher geführt, der dem durch den Wärmetauscher geleiteten Rauchgas Wärme entzieht. Damit kann die Temperatur von abgekühltem Rauchgas, das durch die weitere Rausgasleitung in die Rauchgasleitung zurückgeführt wird, noch weiter abgekühlt werden.The RC system includes a working as a working fluid condenser heat exchanger, which is connected to a cooling water circuit to dissipate via the cooling water circuit, the heat of condensation of the working fluid. The cooling water circuit is also guided by a further heat exchanger which extracts heat from the flue gas passed through the heat exchanger. Thus, the temperature of cooled flue gas, which is returned by the further Rausgasleitung in the flue gas duct, can be cooled even further.

Die RC-Anlage kann insbesondere eine Speisepumpe enthalten, die das Arbeitsmittel von dem als Arbeitsmittelkondensator wirkenden Wärmetauscher zu dem Wärmetauscher bewegt. Mit der Speisepumpe kann das Arbeitsmittel durch einen in dem Kreislauf für das Arbeitsmittel vor dem Wärmetauscher angeordneten Rekuperator gefördert werden.In particular, the RC system may include a feed pump that moves the working fluid from the heat exchanger operating as a working fluid condenser to the heat exchanger. With the feed pump, the working fluid can be conveyed through a recuperator arranged in the circuit for the working fluid upstream of the heat exchanger.

Eine Idee der Erfindung ist insbesondere, die Temperatur des Rauchgasstromes vor dem als Verdampfer für Arbeitsmittel wirkenden Wärmetauscher durch Veränderung des Massestromes des abgekühlten Rauchgases mittels Drosselung durch eine Rauchgasklappe in der weiteren Rauchgasleitung einzustellen, die das Rauchgas wenigstens teilweise zu dem Wärmetauscher zurückführt. Eine Idee der Erfindung ist auch, die Temperatur des Rauchgasstromes vor dem Arbeitsmittel-Wärmetauscher durch Änderung der Drehzahl eines in der weiteren Rauchgasleitung angeordneten Gebläses einzustellen, über die das Rauchgas wenigstens teilweise zu dem Wärmetauscher zurückgeleitet wird.An idea of the invention is in particular to adjust the temperature of the flue gas stream upstream of acting as evaporator for working heat exchanger by changing the mass flow of the cooled flue gas by throttling by a flue gas flap in the further flue gas line, which at least partially returns the flue gas to the heat exchanger. An idea of the invention is also the temperature of the flue gas stream before the working medium heat exchanger by changing the speed of a fan arranged in the further flue gas line over which the flue gas is at least partially returned to the heat exchanger.

In der Vorrichtung für das Erzeugen von elektrischer oder mechanischer Energie ist eine Bypassleitung vorgesehen, über die durch den Wärmetauscher geführtes Rauchgas in die weitere Rauchgasleitung eingespeist werden kann oder über die es möglich ist, Rauchgas aus der weiteren Rauchgasleitung zu dem weiteren Wärmetauscher zu führen. Die Vorrichtung kann eine in der Rauchgasleitung angeordnete Rauchgasklappe enthalten, mit der sich das Strömen von Rauchgas von dem Wärmetauscher zu dem weiteren Wärmetauscher oder in die Bypassleitung unterbinden lässt. Auch in der Rauchgasleitung zwischen der Verbrennungseinrichtung und dem Wärmetauscher kann eine Rauchgasklappe vorgesehen sein. Um die Strömung von Rauchgas in der Rauchgasleitung damit zu steuern, ist es günstig, eine Leitung mit einer Klappe für das Zuführen Frischluft in den Wärmetauscher vorzusehen. Auf diese Weise lässt sich gewährleisten, dass der Wärmetauscher auch Frischluft gekühlt werden kann. Die Vorrichtung wird vorteilhafterweise mit einem Kamin für das Freisetzen von abgekühltem Rauchgas ausgebildet.In the apparatus for generating electrical or mechanical energy, a bypass line is provided, can be fed via the guided through the heat exchanger flue gas in the further flue gas line or via which it is possible to lead flue gas from the further flue gas duct to the other heat exchanger. The device may include a arranged in the flue gas line flue gas flap, with which the flow of flue gas can be prevented from the heat exchanger to the other heat exchanger or in the bypass line. Also in the flue gas line between the combustion device and the heat exchanger, a flue gas flap may be provided. In order to control the flow of flue gas in the flue gas duct with it, it is convenient to provide a conduit with a flap for supplying fresh air into the heat exchanger. In this way it can be ensured that the heat exchanger and fresh air can be cooled. The device is advantageously formed with a chimney for releasing cooled flue gas.

Die RC-Anlage in der erfindungsgemäßen Vorrichtung kann sowohl als kleine oder auch große Hausanlage, als große industrielle Anlage oder auch als Kraftwerksanlage für Kommunen ausgelegt werden. Als Hausanlage wird dabei eine Anlage verstanden, mit der die Energieversorgung einschließlich der Klimatisierung von Bürogebäuden, Garagen, und Krankenhäusern gewährleistet werden kann. Als eine industrielle Anlage wird eine Anlage bezeichnet, die industrielle Fertigungsanlagen, insbesondere Fertigungsanlagen der Automobilindustrie, z. B. Lackieranlagen mit elektrischer Energie versorgt, für die nicht nur Strom sondern auch Wärme auf unterschiedlichen Temperaturniveaus bereitgestellt werden muss. Die erfindungsgemäße Vorrichtung hat einen einfachen apparativen Aufbau. Die entsprechenden Investitionskosten sind deshalb gering. Eine erfindungsgemäße Vorrichtung kann deshalb mit niedrigen Betriebskosten arbeiten. Eine erfindungsgemäße Vorrichtung eignet sich insbesondere für den Betrieb in niedrigen Leistungsbereichen für Energie und Wärme.The RC system in the device according to the invention can be designed both as a small or large home plant, as a large industrial plant or as a power plant for municipalities. A home installation is understood to mean a system with which the energy supply including the air conditioning of office buildings, garages, and hospitals can be guaranteed. As an industrial plant, a plant is referred to the industrial manufacturing equipment, especially manufacturing equipment of the automotive industry, z. B. Lackieranlagen supplied with electrical energy for which not only electricity but also heat at different temperature levels must be provided. The device according to the invention has a simple apparatus design. The corresponding investment costs are therefore low. A device according to the invention can Therefore, work with low operating costs. A device according to the invention is particularly suitable for operation in low power ranges for energy and heat.

Vorteilhafte Ausführungsformen der Erfindung sind in den Zeichnungen dargestellt und werden nachfolgend beschrieben.Advantageous embodiments of the invention are illustrated in the drawings and will be described below.

Es zeigen:

Fig. 1
eine erste Vorrichtung zum Erzeugen von Energie mit einer ORC-Anlage;
Fig. 2
eine zweite Vorrichtung zum Erzeugen von Energie mit einer ORC-Anlage und einem Zirkulationsgebläse; und
Fig. 3
eine dritte Vorrichtung zum Erzeugen von Energie mit einer ORC-Anlage und einem Wärmetauscher für das Aufheizen des Arbeitsmittels der ORC-Anlage mit bereits abgekühltem Rauchgas.
Show it:
Fig. 1
a first device for generating energy with an ORC system;
Fig. 2
a second device for generating energy with an ORC system and a circulation fan; and
Fig. 3
a third device for generating energy with an ORC system and a heat exchanger for heating the working fluid of the ORC system with already cooled flue gas.

Die in der Fig. 1 gezeigte Vorrichtung 10 zur Erzeugung von elektrischer oder mechanischer Energie hat eine Verbrennungseinrichtung 1 für organische Substanzen, insbesondere Biomasse, z. B. Holz, Hackschnitzel oder auch andere getrocknete Pflanzenreste wie etwa Stroh oder auch Gräser. Das in der Vorrichtung eingesetzte Holz kann direkt von seinem Wuchsstandort, d. h. einem Wald oder einer Plantage herrühren. Grundsätzlich kann es aber auch aus einer Restholz- oder Recyclingholzverwertung stammen. Andere verwenbare organische Substanzen können insbesondere flüssig sein. Dabei kann es sich z. B. um Öle und destillierte Substanzen handeln, die aus Pflanzen gewonnen sind. Weitere nutzbare organische Substanzen können auch gasförmig sein und z. B. die Form von brennbaren Gasen haben, die aus der Zersetzung von Pflanzen, Speiseresten und Müll, insbesondere von Hausmüll oder Mist in der Tierhaltung herrühren.The in the Fig. 1 shown apparatus 10 for generating electrical or mechanical energy has a combustion device 1 for organic substances, in particular biomass, z. As wood, wood chips or other dried plant remains such as straw or grasses. The wood used in the device can be derived directly from its growth location, ie a forest or a plantation. In principle, it can also come from a waste wood or recycling wood recycling. Other verwenbare organic substances may in particular be liquid. It may be z. For example, oils and distilled substances obtained from plants. Other useful organic substances may also be gaseous and z. B. have the form of combustible gases resulting from the decomposition of plants, food waste and garbage, in particular of household waste or manure in animal husbandry.

Bei Verbrennen von Biomasse erzeugt die Verbrennungseinrichtung 1 Rauchgas, das Wärme enthält. In der Vorrichtung 10 gibt es eine ORC-Anlage 2. Die ORC-Anlage 2 weist einen Kreislauf 5 für ein fluides Arbeitsmittel auf, das für das Aufnehmen von Wärme durch einen als Arbeitsmittelverdampfer wirkenden Wärmetauscher 21 geführt ist. Bevorzugt werden als Arbeitsmittel Butan, Toluol oder Silikonöl verwendet.When burning biomass, the combustion device 1 generates flue gas containing heat. In the device 10, there is an ORC system 2. The ORC system 2 has a circuit 5 for a fluid working medium, which is guided for the absorption of heat by acting as a working medium evaporator heat exchanger 21. Butane, toluene or silicone oil are preferably used as the working medium.

Der Wärmetauscher 21 ist mit der Verbrennungseinrichtung 1 über eine Rauchgasleitung 33, 34 verbunden, um die Wärme des bei der Verbrennung erzeugten Rauchgases auf das Arbeitsmittel der ORC-Anlage 2 zu übertragen.The heat exchanger 21 is connected to the combustion device 1 via a flue gas line 33, 34 in order to transfer the heat of the flue gas generated during combustion to the working medium of the ORC system 2.

Die ORC-Anlage 2 enthält eine Turbine 27 mit daran angekoppeltem Generator 25. Die ORC-Anlage 2 hat einen Rekuperator 23 sowie einen Arbeitsmittelkondensator 24. In der OCR-Anlage 2 gibt es eine als Arbeitsmittelpumpe wirkende Speisepumpe 22. Mit der Speisepumpe 22 wird das fluide Arbeitsmittel im flüssigen Aggregatszustand auf Betriebsdruck gebracht. Das flüssige Arbeitsmittel durchströmt den Wärmetauscher 21. Hier wird die Wärme aus dem Rauchgas der Verbrennungseinrichtung 1 auf das Arbeitsmittel übertragen. Dabei verdampft das Arbeitsmittel. Am Ausgang des Wärmetauschers 21 wird dann Sattdampf bzw. Trockendampf bereitgestellt. Durch den Energieeintrag in dem Wärmetauscher 21 nehmen dabei das spezifische Volumen und die Temperatur des Dampfes zu. In der Turbine 27 wird das mit Druck beaufschlagte dampfförmige Arbeitsmittel nahezu isentrop auf einen geringeren Druck entspannt. Aufgrund der Expansion in der Turbine 27 steigt das spezifische Volumen des Arbeitsmittels hierdurch. Die von dem Druckabfall an der Turbine 27 hervorgerufene Volumenvergrößerung des Arbeitsmittels hat eine Volumenänderungsarbeit zur Folge, die in der Turbine 27 mittels der Schaufeln in mechanische Energie gewandelt wird. An die Turbine 27 ist ein Generator 25 angeschlossen. Mit dem Generator 25 wird elektrische Energie in ein Stromnetz 28 eingespeist.The ORC system 2 includes a turbine 27 coupled thereto generator 25. The ORC system 2 has a recuperator 23 and a working fluid condenser 24. In the OCR system 2 there is a acting as a working fluid pump feed pump 22. With the feed pump 22 is the fluid working fluid in the liquid state of aggregation brought to operating pressure. The liquid working medium flows through the heat exchanger 21. Here, the heat is transferred from the flue gas of the combustion device 1 to the working fluid. The working fluid evaporates. At the output of the heat exchanger 21 saturated steam or dry steam is then provided. By the energy input in the heat exchanger 21 thereby increase the specific volume and the temperature of the vapor. In the turbine 27, the pressurized vaporous working fluid is released almost isentropically to a lower pressure. Due to the expansion in the turbine 27, the specific volume of the working fluid thereby increases. The increase in volume of the working fluid caused by the pressure drop across the turbine 27 results in a volume change work that is converted into mechanical energy in the turbine 27 by means of the blades. To the turbine 27, a generator 25 is connected. With the generator 25, electrical energy is fed into a power grid 28.

In dem Rekuperator 23 wird dem dampfförmigen Arbeitsmittelstrom, der die Turbine 27 verlässt, Wärme entzogen. Hierfür wird mit der Speisepumpe 22 mit Druck beaufschlagtes flüssiges Arbeitsmittel durch den Rekuperator geleitet. In dem Rekuperator 23 sinkt dann die Temperatur des dampfförmigen Arbeitsmittels aus der Turbine 27 auf Kondensationstemperatur. Im Anschluss an den Rekuperator 23 wird das Arbeitsmittel in dem Kreislauf 5 durch einen nachgeschalteten, als Arbeitsmittelkondensator wirkenden Wärmetauscher 24 bewegt.In the recuperator 23, heat is withdrawn from the vaporous working medium stream leaving the turbine 27. For this purpose, with the feed pump 22 pressurized liquid working fluid is passed through the recuperator. In the recuperator 23 then decreases the temperature of the vaporous working fluid from the turbine 27 to the condensation temperature. Following the recuperator 23, the working fluid in the circuit 5 is moved by a downstream, acting as a working fluid condenser heat exchanger 24.

Der als Arbeitsmittelkondensator wirkende Wärmetauscher 24 ist an einen Kühlwasserkreislauf 4 angeschlossen. Der Kühlwasserkreislauf 4 enthält eine Speisepumpe 42. In dem Kühlwasserkreislauf 4 gibt es einen Wärmetauscher 41, durch den das Rauchgas aus der Leitung 34 geführt wird. Über den Kühlwasserkreislauf 4 wird die bei der Kondensation in den Wärmetauscher 24 abgegebene Wärme in ein nicht weiter dargestelltes Wärmenetz gespeist.The acting as working fluid condenser heat exchanger 24 is connected to a cooling water circuit 4. The cooling water circuit 4 includes a feed pump 42. In the cooling water circuit 4, there is a heat exchanger 41, through which the flue gas is guided from the line 34. About the cooling water circuit 4, the heat released in the condensation in the heat exchanger 24 heat is fed into a not-shown heat network.

In dem als Arbeitsmittelkondensator wirkenden Wärmetauscher 24 wird das Arbeitsmittel kondensiert. Dabei geht es vollständig in den flüssigen Aggregatzustand über. Mit der als Arbeitsmittelpumpe wirkenden Speisepumpe 22 wird das kondensierte Arbeitsmittel dann erneut auf Betriebsdruck gebracht. In den Kreislauf 5 wird es dann wieder zu dem als Verdampfer wirkenden Wärmetauscher 21 geführt. Der Kreislauf für das Arbeitsmittel in der ORC-Anlage 2 ist damit geschlossen.In the acting as a working fluid condenser heat exchanger 24, the working fluid is condensed. It goes completely into the liquid state of aggregation. With the working as a pump pump feed pump 22, the condensed working fluid is then brought back to operating pressure. In the circuit 5, it is then returned to the heat exchanger 21 acting as an evaporator. The cycle for the working fluid in the ORC system 2 is thus closed.

Die Wärmeleistung der Verbrennungseinrichtung 1 wird durch Änderung von Brennstoff- und Luftzufuhr variiert. Die Verbrennungseinrichtung 1 kann so entsprechend dem Strom bedarf des mit dem Generator 25 versorgten Stromnetzes oder dem Wärmebedarf des mit dem Kühlwasserkreislauf 4 gespeisten Wärmenetzes gesteuert bzw. geregelt werden.The heat output of the combustion device 1 is varied by changing the fuel and air supply. The combustion device 1 can be controlled or regulated according to the power required by the generator 25 supplied power network or the heat demand of the fed with the cooling water circuit 4 heat network.

In der Vorrichtung 10 ist eine weitere Rauchgasleitung 35 ausgebildet. Die weitere Rauchgasleitung 35 ist in Bezug auf die Verbrennungseinrichtung 1 vor dem als Arbeitsmittelverdampfer 21 wirkenden Wärmetauscher der ORC-Anlage und hinter dem Wärmetauscher 41 an die Rauchsgasleitung 34 angeschlossen. Über die weitere Rauchgasleitung 35 ist es möglich, das durch den Wärmetauscher 21 geführte Rauchgas wenigstens teilweise in die Rauchgasleitung 34 zurückzuführen. Dies dient dazu, das bei der Verbrennung in der Verbrennungseinrichtung 1 erzeugte Rauchgas mit Rauchgas zu vermischen, das bereits durch den Wärmetauscher 21 geleitet wurde. Dieses Rauchgas ist deshalb gegenüber dem Temperaturniveau des aus der Verbrennungseinrichtung austretenden Abgases abgekühlt. Durch Rückführung von abgekühltem Rauchgas kann die Temperatur des Rauchgases abgesenkt werden, das in der Rauchgasleitung 34 zu dem Wärmetauscher 21 bewegt wird. In einem modifizierten Ausführungsbeispiel wird alternativ oder zusätzlich zu abgekühltem Rauchgas Umgebungsluft mit einer Temperatur von weniger als 50 °C vor dem Wärmetauscher 21 in die Rauchgasleitung 34 eingeführt.In the device 10, a further flue gas line 35 is formed. The further flue gas line 35 is connected with respect to the combustion device 1 before acting as a working medium evaporator 21 heat exchanger of the ORC system and behind the heat exchanger 41 to the flue gas line 34. Via the further flue gas line 35, it is possible to at least partially recirculate the flue gas guided through the heat exchanger 21 into the flue-gas line 34. This serves to mix the flue gas generated during combustion in the combustion device 1 with flue gas, which has already been passed through the heat exchanger 21. This flue gas is therefore cooled relative to the temperature level of the exiting the combustion device exhaust gas. By returning cooled flue gas, the temperature of the flue gas can be lowered, which is moved in the flue gas line 34 to the heat exchanger 21. In a modified embodiment, as an alternative or in addition to cooled flue gas ambient air is introduced at a temperature of less than 50 ° C before the heat exchanger 21 in the flue gas duct 34.

In der Vorrichtung 10 gibt es eine Leitung 9 mit einer steuerbaren Klappe 63, durch die in die Rauchgasleitung 34 zwischen dem als Arbeitsmittelverdampfer wirkenden Wärmetauscher 21 und dem Wärmetauscher 41 Frischluft zugeführt werden kann. Austrittsseitig des Wärmetauschers 41 befindet sich in der Rauchgasleitung 34 ein Rauchgasgebläse 32. Mittels des Rauchgasgebläses 32 wird das Rauchgas in der Rauchgasleitung 34 zu einem Kamin 31 gefördert. Durch den Kamin 31 wird das in der Vorrichtung 10 erzeugte Rauchgas ggf. an weitere Abgasreinigungssysteme und anschließend in die Umwelt entlassen.In the device 10 there is a line 9 with a controllable flap 63 through which fresh air can be supplied into the flue-gas line 34 between the heat exchanger 21 acting as working-medium evaporator and the heat exchanger 41. On the outlet side of the heat exchanger 41 is located in the flue gas duct 34, a flue gas fan 32. By means of the flue gas blower 32, the flue gas is conveyed in the flue gas duct 34 to a chimney 31. Through the chimney 31, the flue gas generated in the device 10 is possibly discharged to further emission control systems and then into the environment.

Typische Temperaturen des von der Verbrennungseinrichtung 1 bereitgestellten Rauchgases in der Rauchgasleitung 33 liegen in einem Bereich von 900 °C bis 1000 °C. Nach einer Zumischung von abgekühltem Rauchgas, das vor dem Kamin 31 eine Temperatur von ca. 160 °C bis 180 °C haben kann, lässt sich eine Eintrittstemperatur für das Rauchgas 34 in den als Arbeitsmittelverdampfer wirkenden Wärmetauscher 21 erreichen, die erfindungsgemäß 300 °C bis 600 °C betragen kann, die insbesondere in einem Bereich von 550 °C liegt. Damit lässt sich gewährleisten, dass das Arbeitsmittel in der ORC-Anlage 2 auf eine günstige Arbeitstemperatur gebracht werden kann und der als Verdampfer wirkende Wärmetauscher 21 ebenso wie das Arbeitsmittel thermisch nicht übermäßig belastet wird.Typical temperatures of the flue gas provided by the combustor 1 in the flue gas duct 33 are in a range of 900 ° C to 1000 ° C. After admixture of cooled flue gas, which in front of the chimney 31 have a temperature of about 160 ° C to 180 ° C. can, an inlet temperature for the flue gas 34 can be achieved in acting as a working medium evaporator heat exchanger 21, which according to the invention can be 300 ° C to 600 ° C, which is in particular in a range of 550 ° C. This ensures that the working fluid in the ORC system 2 can be brought to a favorable working temperature and the heat exchanger acting as an evaporator 21 as well as the working fluid is not thermally stressed excessively.

In der Vorrichtung 10 wird das durch den Wärmetauscher 21 geführte Rauchgas mit einem Rauchgasgebläse 32 angesaugt und mit einer den Pfeilen 51 entsprechenden Strömungsrichtung zu dem Kamin 31 gefördert. Hierdurch entsteht an dem Wärmetauscher 21 ein Druckabfall. Der Druck des Rauchgases an der Austrittsseite des Rauchgasgebläses 32 ist größer als an der Eintrittsseite des Wärmetauschers 21. Dieser Umstand bewirkt, dass über die weitere Rauchgasleitung 35 mit einer den Pfeilen 53 entsprechenden Strömungsrichtung Rauchgas strömt, das in den Wärmetauschern 21, 41 bereits abgekühlt wurde. Dieses Rauchgas wird durch die die weitere Rauchgasleitung 35 in die Rauchgasleitung 34 vor dem Wärmetauscher 21 wieder eingespeist.In the device 10, the guided through the heat exchanger 21 flue gas is sucked with a flue gas fan 32 and conveyed by a direction corresponding to the arrows 51 flow direction to the chimney 31. As a result, a pressure drop occurs at the heat exchanger 21. The pressure of the flue gas at the outlet side of the flue gas blower 32 is greater than at the inlet side of the heat exchanger 21. This circumstance causes flue gas to flow via the further flue gas line 35 with a flow direction corresponding to the arrows 53, which has already been cooled in the heat exchangers 21, 41 , This flue gas is fed through the further flue gas line 35 in the flue gas duct 34 before the heat exchanger 21 again.

In der Vorrichtung 10 gibt es eine Bypassleitung 7, welche die Rauchgasleitung 34 mit der Raugasleitung 35 verbindet. Über die Bypassleitung 7 kann durch den Wärmetauscher geführtes Rauchgas in die weitere Rauchgasleitung 35 eingespeist oder über die Rauchgas aus der weiteren Rauchgasleitung 35 zu dem weiteren Wärmetauscher 41 geführt werden. In der Bypassleitung 7 ist eine einstellbare Rauchgasklappe 62 angeordnet. Durch Öffnen und Schließen der Rauchgasklappe 63 kann die Bypassleitung 7 freigegeben und gesperrt werden.In the device 10 there is a bypass line 7, which connects the flue gas line 34 with the Raugasleitung 35. Via the bypass line 7, flue gas guided through the heat exchanger can be fed into the further flue gas line 35 or guided via the flue gas from the further flue-gas line 35 to the further heat exchanger 41. In the bypass line 7, an adjustable flue gas flap 62 is arranged. By opening and closing the flue gas flap 63, the bypass line 7 can be released and locked.

Hinter dem Wärmetauscher 21 und nach der Anschlussstelle für die Leitung enthält die Rauchgasleitung 34 eine Rauchgasklappe 61. Mit der Rauchgasklappe 61 kann das Strömen von Rauchgas aus der Verbrennungseinrichtung 1 durch die Rauchgasleitung 34 von dem Wärmetauscher 21 zu dem weiteren Wärmetauscher 41 oder in die Bypassleitung 7 eingestellt und ggf. auch unterbunden werden. In der weiteren Rauchgasleitung 34 befindet sich zwischen der Verbrennungseinrichtung 1 und dem Wärmetauscher 21 eine weitere Rauchgasklappe 64. Mit der Rauchgasklappe 64 kann die Rauchgasströmung durch die Rauchgasleitung 35 eingestellt werden.Behind the heat exchanger 21 and after the connection point for the line, the flue gas line 34 includes a flue damper 61. With the flue damper 61, the flow of flue gas from the combustion device 1 set by the flue gas line 34 from the heat exchanger 21 to the other heat exchanger 41 or in the bypass line 7 and possibly also be prevented. In the further flue gas line 34 is located between the combustion device 1 and the heat exchanger 21, a further flue gas flap 64. With the flue gas flap 64, the flue gas flow through the flue gas line 35 can be adjusted.

In der Vorrichtungen 10 ist es möglich, die Temperatur des Rauchgasstromes 34 vor Eintritt in den Wärmetauscher 21 zu regeln bzw. einzustellen, indem der Massestromes des kalten Rauchgases in der weiteren Rauchgasleitung 35 durch Variieren der Öffnungsstellung, d. h. durch Drosselung der Rauchgasklappe 64 verringert oder vergrößert wird. Für die Temperatur des Rauchgasstromes in der Rauchgasleitung 34 kann so vor dem Wärmetauscher 21 ein prozessoptimaler Wert eingestellt werden.In the devices 10, it is possible to control the temperature of the flue gas stream 34 before entering the heat exchanger 21 by adjusting the mass flow of the cold flue gas in the further flue gas duct 35 by varying the open position, ie. H. is reduced or increased by throttling the flue gas flap 64. For the temperature of the flue gas stream in the flue gas duct 34, a process-optimal value can thus be set before the heat exchanger 21.

Um in einem Störungsfall oder bei Inbetriebnahme oder Herunterfahren der Anlage den Rauchgasstrom 34 durch den ORC-Wärmetauscher 21 zu unterbrechen, wird in der Vorrichtungen 10, 20 und 30 jeweils die Rauchgasklappe 61 geschlossen. Indem die Bypassleitung 7 durch Öffnung der Rauchgasklappe 62 freigegeben wird, bewirkt das Rauchgasgebläse 32 dann eine den Pfeilen 52 entsprechende Rausgasströmung zu dem Kamin 31. Wenn zusätzlich auch noch die Klappe 63 in der Leitung 9 für das Zuführung von Frischluft geöffnet wird, kann dabei der als Arbeitsmittelverdampfer wirkende Wärmetauscher 21 in einer in Bezug auf den normalen Betrieb strömendes kaltes Rauchgas oder mit Umgebungsluft gekühlt werden. Es sei bemerkt, dass die Klappen 61, 62, 63, 64 in einer Armatur auch funktionell zusammengefasst werden können.In order to interrupt the flue gas flow 34 through the ORC heat exchanger 21 in the event of a malfunction or during commissioning or shutdown of the system, the flue gas flap 61 is closed in the devices 10, 20 and 30, respectively. By the bypass line 7 is released by opening the flue gas flap 62, the flue gas fan 32 then causes the arrows 52 corresponding Rausgasströmung to the chimney 31. If additionally also the flap 63 is opened in the line 9 for the supply of fresh air, while the acting as working medium evaporator heat exchanger 21 are cooled in a respect to the normal operation flowing cold flue gas or with ambient air. It should be noted that the flaps 61, 62, 63, 64 in a valve can also be functionally combined.

Die in der Fig. 2 gezeigte Vorrichtung 20 entspricht in ihrem Aufbau dem Aufbau der Vorrichtung 10 aus Fig. 1. Einander entsprechende Elemente der Figuren sind deshalb hier mit identischen Bezugszeichen versehen. Auf die zugehörige Beschreibung kann sinngemäß verwiesen werden. In der Vorrichtung 20 ist in der weiteren Rauchgasleitung 35 ein Rezirkulationsgebläse wirkendes Zirkulationsgebläse 36 angeordnet. Mittels des Zirkulationsgebläses 36 wird durch den Wärmetauscher 21 geführtes Rauchgas angesaugt und in die weitere Rauchgasleitung 35 gefördert.The in the Fig. 2 The device 20 shown corresponds in its construction to the structure of the device 10 Fig. 1 , Corresponding elements of the figures are therefore provided here with identical reference numerals. The corresponding description can be referenced accordingly. In the device 20 is arranged in the further flue gas line 35 a recirculation fan acting circulation blower 36. By means of the circulation blower 36, flue gas guided through the heat exchanger 21 is drawn in and conveyed into the further flue gas line 35.

In der Vorrichtung 20 ist es möglich, eine Temperatur des Rauchgasstromes 34 vor dem als Arbeitsmittelverdampfer wirkenden Wärmetauscher 21 der ORC-Anlage 2 einzustellen bzw. zu regeln, indem der Massestrom des kalten Rauchgases in der weiteren Rauchgasleitung 35 durch Variieren der Drehzahl des Zirkulationsgebläses 36 und durch Einstellen der in der Rauchgasleitung 34 vor dem Wärmetauscher 31 angeordneten Rauchgasklappe 61' verändert wird. Auch damit lässt sich eine prozessoptimale Eintrittstemperatur für das Rauchgas in der Rauchgasleitung 34 bei Eintritt in den Wärmetauscher 21 erreichen.In the device 20, it is possible to adjust or regulate a temperature of the flue gas stream 34 before acting as a working medium evaporator heat exchanger 21 of the ORC system 2 by the mass flow of the cold flue gas in the further flue gas duct 35 by varying the speed of the circulation blower 36 and is changed by adjusting the arranged in the flue gas line 34 in front of the heat exchanger 31 flue gas flap 61 '. This also makes it possible to achieve a process-optimal inlet temperature for the flue gas in the flue gas line 34 when entering the heat exchanger 21.

Die in der Fig. 3 gezeigte Vorrichtung 30 entspricht in ihrem Aufbau dem Aufbau der Vorrichtung 10 aus Fig. 1. Einander entsprechende Elemente der Figuren sind deshalb hier mit identischen Bezugszeichen versehen. Auf die zugehörige Beschreibung kann sinngemäß verwiesen werden. In der Vorrichtung 30 ist die ORC-Anlage 2 mit einem weiteren Wärmetauscher 26 ausgebildet, durch den ein Teil des Arbeitsmittels geführt ist, um dieses auch mit bereits durch den Wärmetauscher 21 abgekühltem Rauchgas aufzuheizen.The in the Fig. 3 shown device 30 corresponds in its structure to the structure of the device 10 from Fig. 1 , Corresponding elements of the figures are therefore provided here with identical reference numerals. The corresponding description can be referenced accordingly. In the device 30, the ORC system 2 is formed with a further heat exchanger 26 through which a part of the working means is guided in order to heat this also with already cooled by the heat exchanger 21 flue gas.

Es sei bemerkt, dass bei den anhand der Fig. 1 bis Fig. 3 vorstehend beschriebenen Vorrichtungen 10, 20, 30 eine Steigerung der Effizienz für das Umwandeln der Wärme von mit der Verbrennungseinrichtung 1 erzeugten Rauchgas in elektrische bzw. mechanische Energie erreicht werden kann, indem gegebenenfalls noch weitere Wärmetauscher angeordnet werden, die sich in dem Kreislauf für das Arbeitsmittel nach der Speisepumpe 22 der ORC-Anlage 2 befinden, und die dem Rauchgas in der Rauchgasleitung 34 Wärme entziehen.It should be noted that in the case of the Fig. 1 to Fig. 3 an increase in the efficiency for converting the heat of flue gas generated by the combustion device 1 into electrical or mechanical energy can be achieved by optionally further heat exchangers are arranged in the circuit for the working fluid are located after the feed pump 22 of the ORC system 2, and extract the heat from the flue gas in the flue gas duct 34.

Der Wärmetauscher 41 des Wasserkreislaufes 4 der Vorrichtungen 10, 20 und 30 wird sowohl im Betriebs- als auch im Störungsfall immer von Rauchgas durchströmt. In einer modifizierten Ausführungsform kann allerdings vorgesehen sein, auch den Wärmetauscher 41 im Störungsfall über einen Bypass zu umgehen und die heißen Rauchgase dann direkt in nachgeschaltete Abgasreinigungssysteme und nachfolgend durch den Kamin 21 zu leiten.The heat exchanger 41 of the water circuit 4 of the devices 10, 20 and 30 is always traversed by flue gas both during operation and in the event of a fault. In a modified embodiment, however, it may be provided to bypass the heat exchanger 41 in case of failure via a bypass and then direct the hot flue gases directly into downstream emission control systems and subsequently through the chimney 21.

Zusammenfassend sind insbesondere folgende bevorzugte Merkmale festzuhalten: Die Erfindung betrifft das Umwandeln von thermischer Energie in elektrische oder mechanische Energie mit allen Merkmalen der unabhängigen Ansprüche. Hierzu wird mit einer Verbrennungseinrichtung 1 für ein festes, gasförmiges oder flüssiges Medium, insbesondere Biomasse, Rauchgas generiert, das Wärme enthält. Diese Wärme wird durch einen als Arbeitsmittelverdampfer wirkenden Wärmetauscher 21 einer RC-Anlage 2 zugeführt, die einen Kreislauf 5 für ein Arbeitsmittel enthält. Erfindungsgemäß wird die Wärme des bei der Verbrennung generierten Rauchgases auf das Arbeitsmittel der RC-Anlage 2 übertragen, indem das Rauchgas durch den Wärmetauscher 21 geleitet wird.In summary, the following preferred features in particular should be noted: The invention relates to the conversion of thermal energy into electrical or mechanical energy with all features of the independent claims. For this purpose, flue gas is generated with a combustion device 1 for a solid, gaseous or liquid medium, in particular biomass, which contains heat. This heat is supplied by a working as a working medium evaporator heat exchanger 21 of an RC system 2, which contains a circuit 5 for a working fluid. According to the invention, the heat of the flue gas generated during the combustion is transferred to the working fluid of the RC system 2, by passing the flue gas through the heat exchanger 21.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Verbrennungseinrichtungincinerator
22
ORC-AnlageORC system
44
KühlwasserkreislaufCooling water circuit
55
Kreislaufcirculation
77
Bypassleitungbypass line
99
Leitungmanagement
10, 20, 3010, 20, 30
Vorrichtung zum Erzeugen von EnergieDevice for generating energy
21, 24, 2621, 24, 26
Wärmetauscherheat exchangers
2222
Speisepumpefeed pump
2323
Rekuperatorrecuperator
2727
Turbineturbine
2525
Generatorgenerator
2828
Stromnetzpower grid
3131
Kaminfireplace
3232
RauchgasgebläseFlue gas fan
33, 34, 3533, 34, 35
RauchgasleitungFlue gas line
3434
RauchgasstromFlue gas stream
3636
Zirkulationsgebläsecirculating fan
4141
Wärmetauscherheat exchangers
4242
Speisepumpefeed pump
51, 52, 5351, 52, 53
Pfeilarrow
61, 61', 62, 63, 6461, 61 ', 62, 63, 64
Klappeflap

Claims (13)

  1. Apparatus (10, 20, 30) for the generation of electrical or mechanical power,
    having a combustion device (1) for a solid, gaseous or liquid medium, in particular biomass which, during combustion, generates flue gas which contains heat,
    having an RC system (2) which has a circuit (5) for a working medium which, in order to absorb heat, is guided through a first heat exchanger (21) which acts as a working-medium evaporator, and
    is connected to the combustion device (1) via a flue gas line (33, 34), in order to transfer the heat of the flue gas which is generated during the combustion to the working medium of the RC system (2), and which RC system (2) has a second heat exchanger (24) which acts as a working medium condenser and is connected to a cooling water circuit (4), in order to dissipate the condensation heat of the working medium via the cooling water circuit (4), and
    having a further flue gas line (35), via which at least part of the flue gas which is guided through the first heat exchanger (21) and is therefore cooled can be recirculated into the flue gas line (34), in order to mix the flue gas which is generated during the combustion with cooled flue gas,
    characterized in that
    the cooling water circuit (4) is guided through a further heat exchanger (41) which is arranged in the flue gas line (34) and removes heat from the flue gas which is guided through the further heat exchanger (41),
    a bypass line (7) being provided, via which flue gas which is guided through the first heat exchanger (21) can be fed into the further flue gas line (35), or via which flue gas can be guided out of the further flue gas line (35) to the further heat exchanger (41).
  2. Apparatus according to Claim 1, characterized in that the flue gas which is guided through the first heat exchanger (21) is sucked in by way of a flue gas fan (32) and can be fed into the flue gas line (34) through the further flue gas line (35).
  3. Apparatus according to Claim 1 or 2, characterized in that a circulation fan (36) is arranged in the further flue gas line (35), which circulation fan (36) sucks in flue gas, which is guided through the first heat exchanger (21), and conveys it into the further flue gas line (35).
  4. Apparatus according to one of Claims 1 to 3, characterized in that the RC system comprises a feed pump (22) which moves the working medium from the heat exchanger (24) which acts as a working medium condenser to the first heat exchanger (21).
  5. Apparatus according to Claim 4, characterized in that the feed pump (22) moves the working medium through a recuperator (23) which is arranged in the circuit for the working medium upstream of the first heat exchanger (21).
  6. Apparatus according to one of Claims 1 to 5, characterized by a flue gas valve (61), by way of which the flow of flue gas from the heat exchanger (21) to the further heat exchanger (41) or into the bypass line (7) can be suppressed.
  7. Apparatus according to one of Claims 1 to 6, characterized in that a flue gas valve (61) is arranged in the flue gas line (34) between the combustion device (1) and the first heat exchanger (21).
  8. Apparatus according to one of Claims 1 to 7, characterized by a line (9) with a valve (63) for feeding fresh air into the heat exchanger (21).
  9. Apparatus according to one of Claims 1 to 8, characterized by a chimney (31) for releasing cooled flue gas.
  10. Apparatus according to one of Claims 1 to 9, characterized in that the RC system is an ORC system.
  11. Method for the generation of electrical or mechanical power by way of an apparatus according to one of Claims 1 to 9, characterized in that flue gas which contains heat is generated by way of combustion of a solid, gaseous or liquid medium, in particular of biomass.
  12. Method according to Claim 11, characterized in that, during commissioning or running down or a disruption of the RC system (2), the flue gas is guided from the combustion device (1) through the further flue gas line (35) past the first heat exchanger (21) through the bypass line (7).
  13. Method according to Claim 11, characterized in that flue gas is fed to the first heat exchanger (21), which flue gas is mixed at least partially with flue gas which has already been cooled by way of the heat exchanger (21).
EP11811035.2A 2010-12-29 2011-12-29 Power generation device Active EP2659099B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE202010017143U DE202010017143U1 (en) 2010-12-29 2010-12-29 ORC direct evaporator for biomass furnaces
DE202011001111U DE202011001111U1 (en) 2011-01-05 2011-01-05 System for coupling Rankine processes to internal combustion engines and gas turbines
PCT/EP2011/074269 WO2012089826A2 (en) 2010-12-29 2011-12-29 Power generation device

Publications (2)

Publication Number Publication Date
EP2659099A2 EP2659099A2 (en) 2013-11-06
EP2659099B1 true EP2659099B1 (en) 2015-02-11

Family

ID=45509429

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11811035.2A Active EP2659099B1 (en) 2010-12-29 2011-12-29 Power generation device

Country Status (2)

Country Link
EP (1) EP2659099B1 (en)
WO (1) WO2012089826A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3008736B1 (en) * 2013-07-17 2015-08-28 Electricite De France COGENERATION BIOMASS COMBUSTION COMBUSTION SYSTEM, AND THERMAL TRANSFER METHOD
US20150083032A1 (en) * 2013-09-20 2015-03-26 Massachusetts Institute Of Technology Combustion System
CN117627745A (en) * 2023-11-27 2024-03-01 河北汉尧碳科新能科技股份有限公司 For CO 2 Captured power plant

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1221573B1 (en) * 2001-01-08 2007-07-04 Josef Jun. Stöger Process for recuperation of thermal and electrical energy from gases of biomass combustion
US7350471B2 (en) * 2005-03-01 2008-04-01 Kalex Llc Combustion system with recirculation of flue gas
EP2014880A1 (en) * 2007-07-09 2009-01-14 Universiteit Gent An improved combined heat power system
DE202010017143U1 (en) 2010-12-29 2011-03-10 Eckert, Frank ORC direct evaporator for biomass furnaces
DE202011001111U1 (en) 2011-01-05 2011-03-17 Eckert, Frank System for coupling Rankine processes to internal combustion engines and gas turbines

Also Published As

Publication number Publication date
WO2012089826A3 (en) 2012-11-15
EP2659099A2 (en) 2013-11-06
WO2012089826A2 (en) 2012-07-05

Similar Documents

Publication Publication Date Title
DE69927925T2 (en) Recovery of waste heat in an organic energy converter by means of an intermediate liquid circuit
EP0558899B1 (en) System for using the heat of the exhaust gases from a coal-fired boiler
DE112011104516B4 (en) System and method for regulating EGR cooling using a Rankine cycle
EP2455658B1 (en) Method and device for vaporization of organic working media
EP0526816B1 (en) Power plant with gas and steam turbines with solar steam generator
EP2342458B1 (en) Solar hybrid power plant with gas and steam power plant
EP2538040B1 (en) Combined heat and power device and associated method
EP0591163B1 (en) Combined gas and steam turbine plant
DE102011054744A1 (en) Heat exchanger for a combined cycle power plant
DE102018201172A1 (en) Incinerator with residual heat utilization
EP2409003A2 (en) Device and method for generating steam with a high level of efficiency
WO2008067855A2 (en) Method and apparatus for increasing the performance and efficiency of an orc power plant process
EP2368021A1 (en) Waste heat steam generator and method for improved operation of a waste heat steam generator
EP2659099B1 (en) Power generation device
DE102009044088A1 (en) Peak load management through combined cycle energy boost using peak cycle exhaust heat recovery
DE4126036A1 (en) Gas and steam turbine plant with solar heated system generator - with generator connected to heat exchanger in h.p. steam line from waste heat steam generator
DE202012001522U1 (en) Plant for energy-efficient conversion of waste heat from internal combustion engines into mechanical or electrical energy
DE102004051975B3 (en) Drying clarified sludge, useful for prepartion of fuel, using a drier supplied with a low temperature heat stream from an organic Rankine cycle
WO2003104629A1 (en) Gas turbine group
DE202010017143U1 (en) ORC direct evaporator for biomass furnaces
DE3841224A1 (en) Combined gas turbine/steam turbine power station
DE4300192C2 (en) Method for operating at least two interlinked waste heat processes and steam generation system for carrying out the method
WO2012137010A2 (en) Biomass plant
DE102007016557A1 (en) Utilization of waste heat from combustion engines for power generation
DE1201612B (en) Gas turbine heating plant

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130625

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140528

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141010

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 710004

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011005874

Country of ref document: DE

Effective date: 20150326

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150511

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150512

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150611

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011005874

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

26N No opposition filed

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20151229

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151229

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111229

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011005874

Country of ref document: DE

Representative=s name: PFIZ/GAUSS PATENTANWAELTE PARTMBB, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011005874

Country of ref document: DE

Owner name: DUERR SYSTEMS AG, DE

Free format text: FORMER OWNER: DUERR CYPLAN LTD., READING, BERKSHIRE, GB

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20230103

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231220

Year of fee payment: 13

Ref country code: IT

Payment date: 20231222

Year of fee payment: 13

Ref country code: FR

Payment date: 20231221

Year of fee payment: 13

Ref country code: DE

Payment date: 20231214

Year of fee payment: 13

Ref country code: AT

Payment date: 20231221

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20240102

Year of fee payment: 13