EP2655995B1 - Method for operating a furnace in a system for processing metal - Google Patents

Method for operating a furnace in a system for processing metal Download PDF

Info

Publication number
EP2655995B1
EP2655995B1 EP11804698.6A EP11804698A EP2655995B1 EP 2655995 B1 EP2655995 B1 EP 2655995B1 EP 11804698 A EP11804698 A EP 11804698A EP 2655995 B1 EP2655995 B1 EP 2655995B1
Authority
EP
European Patent Office
Prior art keywords
flow path
recuperator
furnace
heat exchanger
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11804698.6A
Other languages
German (de)
French (fr)
Other versions
EP2655995A1 (en
Inventor
Ulrich Sommers
Markus Pieper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Siemag AG filed Critical SMS Siemag AG
Publication of EP2655995A1 publication Critical patent/EP2655995A1/en
Application granted granted Critical
Publication of EP2655995B1 publication Critical patent/EP2655995B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B9/00Furnaces through which the charge is moved mechanically, e.g. of tunnel type; Similar furnaces in which the charge moves by gravity
    • F27B9/30Details, accessories, or equipment peculiar to furnaces of these types
    • F27B9/3005Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases
    • F27B9/3011Details, accessories, or equipment peculiar to furnaces of these types arrangements for circulating gases arrangements for circulating gases transversally

Definitions

  • the invention relates to a method for operating a furnace for passing a continuously cast slab in a plant for metal processing, in particular in a continuous casting in which exhaust gas from the furnace along a flow path is passed through at least one recuperator, wherein in the recuperator by means of the heat energy contained in the exhaust gas Preheated fresh air for the furnace and the heated air is supplied to the furnace and wherein the exhaust gas is passed in the flow direction behind the recuperator in a fireplace. Furthermore, the invention relates to a plant for metal processing, in particular a continuous casting plant,
  • CSP plants C compact S trip P roduction
  • Such systems require at least one furnace, in which hot air is to be entered, which is heated by burners. Through the oven, the continuously cast slab is passed to be heated to a desired or required temperature.
  • recuperators In order to reduce the energy required for heating the furnace air, it is known to use recuperators, wherein in a preferred embodiment of the plant three recuperators per oven are used. In the recuperator energy recovery takes place from the hot exhaust gas of the furnace, ie in the recuperator the exhaust heat is withdrawn and used to preheat the furnace air.
  • the combustion air to be supplied to the furnace is heated in the recuperator from the hall temperature (about 30 ° C.) to about 450 ° C.
  • the exhaust gas is cooled from about 900 ° C to about 700 ° C.
  • Fig. 1 such a system is shown.
  • Hot exhaust gas A is discharged from the furnace and fed to a recuperator 2 via a flow path S.
  • the fresh air F enters the oven 1.
  • the fresh air F becomes known heated by a burner (not shown) to the required temperature.
  • a preheating of the fresh air F by a heat transfer between the exhaust A and the fresh air F takes place.
  • preheated combustion air can escape into the environment via a hot air outlet 13. This is done by way of a controlled valve 14. By discharging combustion air via the hot air outlet 13, the pressure p in the flow path S "drops, but the pressure p is regulated to a desired value
  • the US 4 528 012 A discloses for a glass melting furnace a solution in which residual heat is used to recover energy by means of the Brayton process.
  • the US 4,340,207 describes a heat recovery process for a cupola furnace.
  • the invention is in the light of the task of proposing a method for operating a furnace in a plant for metal processing and such a system, with or with the improved energy efficiency can be achieved. So it should be achieved an improved use of energy.
  • the solution of this problem by the invention according to the method is characterized in that in the flow path for the exhaust gas from the furnace or parallel to the flow path, a heat exchanger is arranged, fed to the water and in which the water is heated, wherein steam generated in the heat exchanger is used to to operate a power generation plant.
  • a first preferred embodiment of the invention provides that in the flow path of the exhaust gas, the recuperator and the heat exchanger are arranged in series, wherein the exhaust gas is first passed through the recuperator and then through the heat exchanger.
  • recuperator and the heat exchanger are arranged in series, but then the exhaust gas is first passed through the heat exchanger and then through the recuperator.
  • a further alternative embodiment of the proposed idea is that the heat exchanger is arranged in a second flow path parallel to the flow path, with exhaust gas being conducted at least temporarily through the flow path and through the second flow path at the same time.
  • From the flow path of the preheated air for the furnace can also be controlled or regulated hot air to be discharged to the environment.
  • the air pressure in the flow path of the preheated air for the furnace can be controlled or maintained at a predetermined value, wherein for controlling or regulating the air pressure, the volume flow of fresh air is influenced, which is supplied to the recuperator.
  • the proposed plant for metal processing in particular the continuous casting, is characterized according to the invention in that a heat exchanger is arranged in the flow path or parallel to the flow path, wherein means for supplying water are present in an inlet of the heat exchanger, wherein a plant for generating electricity is present which are connected to a drain of the heat exchanger.
  • the plant for power generation includes in particular a steam turbine.
  • a second flow path is arranged parallel to the flow path, wherein the heat exchanger is arranged in the second flow path and wherein at a branch point in which the second flow path branches off from the flow path, a controllable valve is arranged, which is formed, the exhaust gas with a predetermined amount in the two flow paths to guide.
  • the exhaust gas is thus divided by the controllable valve in two flow paths.
  • the waste heat of the kiln exhaust gas can be converted directly into electricity but also provided to the hot water supply of a consumer.
  • the invention makes it possible to lower the temperature of the combustion air advantageously by passing hot exhaust gases through an additional valve through a second recuperator. As a result, components can be protected and the energy of the hot exhaust gases can still be used. In addition, this can preferably be dispensed with the reduction of the combustion air temperature. The system thus runs more stable overall.
  • FIGS. 2 to 4 Three different detailed concepts are presented how a furnace 1 of a continuous casting plant can be operated in order to achieve an improved energy balance. They all based on the idea that in addition to at least one recuperator 2, a heat exchanger 4 is available, can be used with the residual heat from the exhaust gas A of the furnace 1 to produce either in a plant 5 for electricity generation electricity (is in the figures shown) or to use the residual heat to provide hot water to a consumer available (is not shown).
  • recuperators used, reference is made to the state of the art. They each have a separate room for the two media between which heat is to be exchanged. Plate heat exchangers, in particular spiral heat exchangers, tube heat exchangers, jacket tube heat exchangers or countercurrent layer heat exchangers can be used.
  • a heat exchanger 4 is connected in series with the recuperator 2, that is, the heat exchanger 4 is arranged in the flow path S, which leads from the furnace 1 to the chimney 3.
  • the exhaust gas A is passed through the recuperator 2 and then the already cooled to about 700 ° C exhaust gas A through the heat exchanger 4.
  • the above mentioned for the recuperator embodiments in question are also possible.
  • the heat exchanger 4 is supplied with water W via an inlet 6.
  • the water W is heated and is converted into steam, which is supplied via a drain 7 of a plant 5 for power generation, comprising a steam turbine.
  • the conversion of the energy in the steam into electricity is well known as such and need not be further deepened here.
  • the solution according to Fig. 3 is according to Fig. 2 very similar.
  • the heat exchanger 4 is arranged here for the heating of the water W here first after the furnace 1; the recuperator 2 follows only behind the heat exchanger 4, as seen in the flow direction in the flow path S. Via a valve 15 hot exhaust gas can be routed to the recuperator 2 around the heat exchanger 4, if required.
  • the solution shown is also characterized by the fact that it is possible to first cool the exhaust gas A by heating water and converting it to steam and only then to supply the recuperator 2. Therefore, in Fig. 3 the preferred case outlines that the supply of cooling air K by means of fan 11 and switchable valve 12 is dispensed with; The pre-cooling of the exhaust gas A thus takes place through the heat exchanger 4.
  • the arrangement in question 11, 12 also in the solution according to Fig. 3 can be provided.
  • Fig. 4 a further alternative embodiment of the inventive concept is illustrated.
  • the heat exchanger 4 is arranged in a flow path S parallel to the second flow path S '.
  • Parallel is to be understood here as meaning that the flow paths S and S 'are supplied with exhaust gas A from the furnace and run independently of one another.
  • the exhaust gas A is thereafter at least temporarily passed through the flow path S and through the second flow path S 'simultaneously.
  • the second flow path S ' is thus arranged parallel to the flow path S, in which the heat exchanger 4 is placed.
  • the second flow path S ' branches off.
  • a controllable valve 9 is arranged. With the valve 9 can be specified to what extent exhaust gas is passed to the heat exchanger 4. Is the valve 9 closed, ie exhaust gas A is passed only through the flow path S, is exactly the situation before, as it corresponds to the prior art.
  • the supply of exhaust gas A to the heat exchanger 4 can thus be prevented via the valve 9, 15 and all exhaust gas A can be guided via the recuperator 2.
  • the combustion air can be reduced by using the valve 15, the hot exhaust gas is passed through the second recuperator. This protects the components and still allows the energy to be used. In addition, the indirect control to lower the combustion temperature by means of the hot air outlet is avoided, making the system more stable.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Air Supply (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben eines Ofens zur Durchleitung einer stranggegossenen Bramme in einer Anlage zur Metallverarbeitung, insbesondere in einer Stranggießanlage, bei dem Abgas aus dem Ofen entlang eines Strömungsweges durch mindestens einen Rekuperator geleitet wird, wobei im Rekuperator mittels der im Abgas enthaltenen Wärmeenergie Frischluft für den Ofen vorgewärmt und die erwärmte Luft dem Ofen zugeführt wird und wobei das Abgas in Strömungsrichtung hinter dem Rekuperator in einen Kamin geleitet wird. Des weiteren betrifft die Erfindung eine Anlage zur Metallverarbeitung, insbesondere eine Stranggießanlage,The invention relates to a method for operating a furnace for passing a continuously cast slab in a plant for metal processing, in particular in a continuous casting in which exhaust gas from the furnace along a flow path is passed through at least one recuperator, wherein in the recuperator by means of the heat energy contained in the exhaust gas Preheated fresh air for the furnace and the heated air is supplied to the furnace and wherein the exhaust gas is passed in the flow direction behind the recuperator in a fireplace. Furthermore, the invention relates to a plant for metal processing, in particular a continuous casting plant,

Das gattungsgemäß Verfahren wird insbesondere in Stranggießanlagen eingesetzt, die als sog. CSP-Anlagen ausgeführt sein können (Compact Strip Production). Derartige Anlagen benötigen mindestens einen Ofen, in dem heiße Luft einzugeben ist, die mit Brennern erhitzt wird. Durch den Ofen wird die stranggegossene Bramme geleitet, um auf eine gewünschte bzw. benötigte Temperatur erwärmt zu werden.The generic method is used in particular in continuous casting, which can be designed as so-called. CSP plants ( C compact S trip P roduction). Such systems require at least one furnace, in which hot air is to be entered, which is heated by burners. Through the oven, the continuously cast slab is passed to be heated to a desired or required temperature.

Um den Energieaufwand für die Erhitzung der Ofenluft zu reduzieren, ist es bekannt, Rekuperatoren einzusetzen, wobei bei einer bevorzugten Ausgestaltung der Anlage drei Rekuperatoren pro Ofen eingesetzt werden. Im Rekuperator erfolgt die Energierückgewinnung aus dem heißen Abgas des Ofens, d. h. im Rekuperator wird dem Abgas Wärme entzogen und zur Vorwärmung der Ofenluft benutzt.In order to reduce the energy required for heating the furnace air, it is known to use recuperators, wherein in a preferred embodiment of the plant three recuperators per oven are used. In the recuperator energy recovery takes place from the hot exhaust gas of the furnace, ie in the recuperator the exhaust heat is withdrawn and used to preheat the furnace air.

Im Normalfall wird dabei die dem Ofen zuzuführende Verbrennungsluft im Rekuperator von Hallentemperatur (ca. 30 °C) auf ca. 450 °C erhitzt. Hierdurch wird das Abgas von ca. 900 °C auf ca. 700 °C abgekühlt.In the normal case, the combustion air to be supplied to the furnace is heated in the recuperator from the hall temperature (about 30 ° C.) to about 450 ° C. As a result, the exhaust gas is cooled from about 900 ° C to about 700 ° C.

In Fig. 1 ist eine solche Anlage dargestellt. Zu sehen ist zunächst der Ofen 1 einer Stranggießanlage (CSP-Ofen), durch den der stranggegossene Metallstrang zwecks Erwärmung geleitet wird. Aus dem Ofen wird heißes Abgas A abgeführt und über einen Strömungsweg S einem Rekuperator 2 zugeleitet. Durch den Rekuperator 2 führt auch ein weiterer Strömungsweg S" für Frischluft F, die mittels eines Ventilators 10 als Brennerluft gefördert wird. Über den weiteren Verlauf des Strömungswegs S" gelangt die Frischluft F in den Ofen 1. Dabei wird die Frischluft F in bekannter Weise mittels eines (nicht dargestellten) Brenners auf die benötigte Temperatur erhitzt. Allerdings erfolgt im Rekuperator 2 eine Vorwärmung der Frischluft F, indem ein Wärmeübergang zwischen dem Abgas A und der Frischluft F erfolgt.In Fig. 1 such a system is shown. First of all, the furnace 1 of a continuous casting plant (CSP furnace), through which the continuously cast metal strand is passed for the purpose of heating, can be seen. Hot exhaust gas A is discharged from the furnace and fed to a recuperator 2 via a flow path S. A further flow path S "for fresh air F, which is conveyed as burner air by means of a fan 10, also passes through the recuperator 2. Via the further course of the flow path S", the fresh air F enters the oven 1. In this process, the fresh air F becomes known heated by a burner (not shown) to the required temperature. However, in the recuperator 2, a preheating of the fresh air F by a heat transfer between the exhaust A and the fresh air F takes place.

Dabei ist es im gegebenen Falle nötig, den Rekuperator 2 und den (nicht dargestellten) Brenner vor zu hoher Temperatur des Abgases A zu schützen. Hierfür bieten sich zwei Mechanismen an, die in Fig. 1 skizziert sind.In this case, it is necessary to protect the recuperator 2 and the burner (not shown) from the exhaust gas A at too high a temperature. There are two mechanisms that can be used for this purpose Fig. 1 are sketched.

Über die Zufuhr von Kühlluft K (mit Umgebungstemperatur), die von einem Ventilator 11 gefördert wird, kann kalte Luft dem Abgas A beigemischt werden. Die Steuerung dieses Vorgangs erfolgt mittels eines schaltbaren Ventils 12. Die besagte Kühlung erfolgt, falls das Abgas A eine bestimmte Temperatur, z. B. 900 °C, übersteigt. Hierdurch wird die Temperatur des den Rekuperator 2 erreichenden Abgases A vermindert und der Rekuperator 2 so geschont bzw. geschützt.Through the supply of cooling air K (with ambient temperature), which is promoted by a fan 11, cold air can be added to the exhaust gas A. The control of this process by means of a switchable valve 12. The said cooling takes place, if the exhaust gas A a certain temperature, for. B. 900 ° C exceeds. As a result, the temperature of the recuperator 2 reaching exhaust gas A is reduced and the recuperator 2 so protected or protected.

Um die Brenner vor zu hoher Temperatur zu schützen (die dem Brenner zuzuführende Luft sollte nicht wärmer als ca. 450 °C sein), kann über einen Heißluftauslass 13 vorgewärmte Verbrennungsluft in die Umgebung entweichen. Dies erfolgt über ein gesteuertes Ventil 14. Durch das Ablassen von Verbrennungsluft über den Heißluftauslass 13 fällt der Druck p im Strömungsweg S" ab. Der Druck p wird allerdings über eine Regelung auf einem gewünschtenIn order to protect the burners from too high a temperature (the air to be supplied to the burner should not be warmer than approximately 450 ° C.), preheated combustion air can escape into the environment via a hot air outlet 13. This is done by way of a controlled valve 14. By discharging combustion air via the hot air outlet 13, the pressure p in the flow path S "drops, but the pressure p is regulated to a desired value

Niveau gehalten, was durch die Ansteuerung des Ventilators 10 erfolgt. Fällt der Druck p also ab, wird mehr Frischluft F vom Ventilator 10 gefördert und folglich mehr kalte Luft in den Rekuperator 2 gepumpt. Hierdurch fällt die Temperatur im Rekuperator 2.Level held, which is done by the control of the fan 10. If the pressure p thus decreases, more fresh air F is conveyed by the fan 10 and consequently more cold air is pumped into the recuperator 2. As a result, the temperature drops in the recuperator second

Im Stand der Technik sind diese Vorgehensweise des Wärmetauschens mittels eines Rekuperators zur Erwärmung der Ofenluft hinlänglich beschrieben und entsprechende Vorrichtungen bekannt. Es wird exemplarisch auf die US 2 192 108 A , auf die GB 974 836 A , auf die DE 11 62 391 B , auf die WO 2009/018476 A1 , auf die EP 0 078 446 A1 und auf die DE 697 12 009 T2 hingewiesen. Eine andere Lösung zeigt die ZA 200 304 880 A .In the prior art, this procedure of heat exchange by means of a recuperator for heating the furnace air are adequately described and corresponding devices known. It is exemplified on the US 2,192,108 A , on the GB 974 836A , on the DE 11 62 391 B , on the WO 2009/018476 A1 , on the EP 0 078 446 A1 and on the DE 697 12 009 T2 pointed. Another solution shows the ZA 200 304 880 A ,

Die US 4 528 012 A offenbart für einen Glasschmelzofen eine Lösung, bei der Restwärme genutzt wird, um mittels des Brayton-Prozesses Energie zurückzugewinnen. Die US 4 340 207 beschreibt für einen Kupolofen ein Verfahren zur Wärmerückgewinnung.The US 4 528 012 A discloses for a glass melting furnace a solution in which residual heat is used to recover energy by means of the Brayton process. The US 4,340,207 describes a heat recovery process for a cupola furnace.

Es hat sich herausgestellt, dass trotz der Vorwärmung der Ofenluft mittels des Ofenabgases im Rekuperator der Energieverbrauch noch zu hoch ist. Für die meisten Betriebspunkte hat das Abgas auch nach dem Rekuperator noch eine Temperatur von ca. 700 °C. Für einen konkreten Beispielsfall wurde ermittelt, dass die Energie des Abgases vor dem Rekuperator bis zu 18,5 MW beträgt. Hiervon werden 4,2 MW genutzt, um die Verbrennungsluft aufzuheizen. Die restlichen 14,3 MW Wärmeenergie, die das Abgas nach den Rekuperatoren noch hat, werden nicht genutzt. Weiterhin wird in einigen Betriebspunkten (beispielsweise in der Simulation bei leerem CSP-Ofen) zum Schutz der Brenner heiße Verbrennungsluft hinter dem Rekuperator abgelassen (wie oben bereits erläutert). Auch dadurch geht Wärmeenergie verloren.It has been found that despite the preheating of the furnace air by means of the kiln exhaust gas in the recuperator energy consumption is still too high. For most operating points, the exhaust gas still has a temperature of about 700 ° C even after the recuperator. For a specific example, it was determined that the energy of the exhaust gas before the recuperator is up to 18.5 MW. Of this, 4.2 MW are used to heat the combustion air. The remaining 14.3 MW thermal energy, which has the exhaust after the recuperators still are not used. Furthermore, in some operating points (for example in the simulation with empty CSP furnace) to protect the burner hot combustion air is discharged behind the recuperator (as already explained above). This also causes heat energy to be lost.

Der Erfindung liegt im Lichte dessen die Aufgabe zugrunde, ein Verfahren zum Betreiben eines Ofens in einer Anlage zur Metallverarbeitung und eine solche Anlage vorzuschlagen, mit dem bzw. mit der eine verbesserte Energieeffizienz erreicht werden kann. Es soll also eine verbesserte Nutzung der eingesetzten Energie erreicht werden.The invention is in the light of the task of proposing a method for operating a furnace in a plant for metal processing and such a system, with or with the improved energy efficiency can be achieved. So it should be achieved an improved use of energy.

Die Lösung dieser Aufgabe durch die Erfindung ist verfahrensgemäß dadurch gekennzeichnet, dass im Strömungsweg für das Abgas aus dem Ofen oder parallel zum Strömungsweg ein Wärmetauscher angeordnet ist, dem Wasser zugeführt und in dem das Wasser erwärmt wird, wobei im Wärmetauscher erzeugter Dampf verwendet wird, um eine Anlage zur Stromerzeugung zu betreiben.The solution of this problem by the invention according to the method is characterized in that in the flow path for the exhaust gas from the furnace or parallel to the flow path, a heat exchanger is arranged, fed to the water and in which the water is heated, wherein steam generated in the heat exchanger is used to to operate a power generation plant.

Eine erste bevorzugte Ausführungsform der Erfindung sieht dabei vor, dass im Strömungsweg des Abgases der Rekuperator und der Wärmetauscher in Reihe angeordnet sind, wobei das Abgas zunächst durch den Rekuperator und anschließend durch den Wärmetauscher geleitet wird.A first preferred embodiment of the invention provides that in the flow path of the exhaust gas, the recuperator and the heat exchanger are arranged in series, wherein the exhaust gas is first passed through the recuperator and then through the heat exchanger.

Alternativ dazu ist es aber auch möglich, dass wiederum im Strömungsweg des Abgases der Rekuperator und der Wärmetauscher in Reihe angeordnet sind, wobei dann aber das Abgas zunächst durch den Wärmetauscher und anschließend durch den Rekuperator geleitet wird.Alternatively, it is also possible that again in the flow path of the exhaust gas, the recuperator and the heat exchanger are arranged in series, but then the exhaust gas is first passed through the heat exchanger and then through the recuperator.

Eine weitere alternative Ausgestaltung der vorgeschlagenen Idee stellt darauf ab, dass der Wärmetauscher in einem zum Strömungsweg parallelen zweiten Strömungsweg angeordnet ist, wobei Abgas zumindest zeitweise gleichzeitig durch den Strömungsweg und durch den zweiten Strömungsweg geleitet wird.A further alternative embodiment of the proposed idea is that the heat exchanger is arranged in a second flow path parallel to the flow path, with exhaust gas being conducted at least temporarily through the flow path and through the second flow path at the same time.

In das Abgas kann in allen Fällen vor dessen Erreichen des Rekuperators und des Wärmetauscher gesteuert oder geregelt Kühlluft zugegeben werden.In the exhaust gas controlled cooling air can be added in all cases before reaching the recuperator and the heat exchanger.

Aus dem Strömungsweg der vorgewärmten Luft für den Ofen kann auch gesteuert oder geregelt Warmluft an die Umgebung abgelassen werden.From the flow path of the preheated air for the furnace can also be controlled or regulated hot air to be discharged to the environment.

Der Luftdruck im Strömungsweg der vorgewärmten Luft für den Ofen kann gesteuert oder geregelt auf einem vorgegebenen Wert gehalten werden, wobei zur Steuerung oder Regelung des Luftdrucks der Volumenstrom Frischluft beeinflusst wird, die dem Rekuperator zugeführt wird.The air pressure in the flow path of the preheated air for the furnace can be controlled or maintained at a predetermined value, wherein for controlling or regulating the air pressure, the volume flow of fresh air is influenced, which is supplied to the recuperator.

Die vorgeschlagene Anlage zur Metallverarbeitung, insbesondere die Stranggießanlage, zeichnet sich erfindungsgemäß dadurch aus, dass im Strömungsweg oder parallel zum Strömungsweg ein Wärmetauscher angeordnet ist, wobei Mittel zum Zuführen von Wasser in einen Zulauf des Wärmetauschers vorhanden sind, wobei eine Anlage zur Stromerzeugung vorhanden ist, die mit einem Ablauf des Wärmetauschers verbunden sind.The proposed plant for metal processing, in particular the continuous casting, is characterized according to the invention in that a heat exchanger is arranged in the flow path or parallel to the flow path, wherein means for supplying water are present in an inlet of the heat exchanger, wherein a plant for generating electricity is present which are connected to a drain of the heat exchanger.

Die Anlage zur Stromerzeugung umfasst dabei insbesondere eine Dampfturbine.The plant for power generation includes in particular a steam turbine.

Weiterhin kann vorgesehen sein, dass parallel zum Strömungsweg ein zweiter Strömungsweg angeordnet ist, wobei im zweiten Strömungsweg der Wärmetauscher angeordnet ist und wobei an einer Verzweigungsstelle, in der der zweite Strömungsweg vom Strömungsweg abzweigt, ein steuerbares Ventil angeordnet ist, das ausgebildet ist, das Abgas mit einer vorgegebenen Menge in die beiden Strömungswege zu leiten. Das Abgas wird also mittels des steuerbaren Ventils in zwei Strömungswege aufgeteilt.Furthermore, it can be provided that a second flow path is arranged parallel to the flow path, wherein the heat exchanger is arranged in the second flow path and wherein at a branch point in which the second flow path branches off from the flow path, a controllable valve is arranged, which is formed, the exhaust gas with a predetermined amount in the two flow paths to guide. The exhaust gas is thus divided by the controllable valve in two flow paths.

Mit dem vorgeschlagenen Verfahren bzw. der entsprechenden Vorrichtung ist es möglich, die Restenergie des Ofenabgases sehr viel besser zu nutzen. Es ergibt sich folglich eine verbesserte Energiebilanz. Die Abwärme des Ofenabgases kann dabei direkt in Elektrizität umgewandelt werden aber auch zur Warm-wasserversorgung eines Verbrauchers zur Verfügung gestellt werden.With the proposed method and the corresponding device, it is possible to use the residual energy of the furnace exhaust gas much better. This results in an improved energy balance. The waste heat of the kiln exhaust gas can be converted directly into electricity but also provided to the hot water supply of a consumer.

Die Erfindung ermöglicht es, die Temperatur der Verbrennungsluft vorteilhafterweise dadurch abzusenken, dass heiße Abgase über ein zusätzliches Ventil durch einen zweiten Rekuperator geleitet werden. Hierdurch können Bauteile geschützt und die Energie der heißen Abgase dennoch genutzt werden. Zudem kann hierdurch vorzugsweise auf die Senkung der Verbrennungslufttemperatur verzichtet werden. Das System läuft somit insgesamt stabiler.The invention makes it possible to lower the temperature of the combustion air advantageously by passing hot exhaust gases through an additional valve through a second recuperator. As a result, components can be protected and the energy of the hot exhaust gases can still be used. In addition, this can preferably be dispensed with the reduction of the combustion air temperature. The system thus runs more stable overall.

In den Zeichnungen sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigen:

Fig. 1
schematisch ein Anlagenschema für den Betrieb eines Ofens einer Stranggießanlage, das nach dem Stand der Technik ausgeführt ist,
Fig. 2
schematisch ein Anlagenschema für den Ofen, das nach einer ersten Ausführungsform der Erfindung arbeitet,
Fig. 3
schematisch ein Anlagenschema für den Ofen, das nach einer zweiten Ausführungsform der Erfindung arbeitet, und
Fig. 4
schematisch ein Anlagenschema für den Ofen, das nach einer dritten Ausführungsform der Erfindung arbeitet.
In the drawings, embodiments of the invention are shown. Show it:
Fig. 1
1 schematically shows a plant scheme for the operation of a furnace of a continuous casting plant, which is carried out according to the prior art,
Fig. 2
1 schematically shows a plant scheme for the furnace, which operates according to a first embodiment of the invention,
Fig. 3
schematically a plant scheme for the furnace, which operates according to a second embodiment of the invention, and
Fig. 4
schematically a plant scheme for the furnace, which operates according to a third embodiment of the invention.

In den Figuren 2 bis 4 sind drei verschiedene Detailkonzepte dargestellt, wie ein Ofen 1 einer Stranggießanlage betrieben werden kann, um eine verbesserte Energiebilanz zu erreichen. Sie stellen alle auf den Gedanken ab, dass neben mindestens einem Rekuperator 2 ein Wärmetauscher 4 zur Verfügung steht, mit dem Restwärme aus dem Abgas A des Ofens 1 genutzt werden kann, um entweder in einer Anlage 5 zur Stromerzeugung Elektrizität herzustellen (ist in den Figuren dargestellt) oder die Restwärme zu nutzen, um Warmwasser einem Verbraucher zur Verfügung zu stellen (ist nicht dargestellt).In the FIGS. 2 to 4 Three different detailed concepts are presented how a furnace 1 of a continuous casting plant can be operated in order to achieve an improved energy balance. They all based on the idea that in addition to at least one recuperator 2, a heat exchanger 4 is available, can be used with the residual heat from the exhaust gas A of the furnace 1 to produce either in a plant 5 for electricity generation electricity (is in the figures shown) or to use the residual heat to provide hot water to a consumer available (is not shown).

Der grundsätzliche Aufbau der Konzepte basiert zunächst auf demjenigen gemäß dem Stand der Technik, wie er in Fig. 1 dargestellt und oben beschrieben ist. Vom Ofen 1 wird hiernach Abgas A entlang eines Strömungsweges S in einen Rekuperator 2 geleitet. Dem Rekuperator 2 wird Frischluft F zugeführt, die entlang eines Strömungsweges S" durch den Rekuperator 2 und weiter in den Ofen 1 geleitet wird. Im Rekuperator 2 findet eine Wärmeübertragung vom Abgas A auf die Frischluft F statt, so dass die frische Ofenluft (Verbrennungsluft) vorgewärmt wird.The basic structure of the concepts is based first on that according to the state of the art as described in Fig. 1 shown and described above. From the furnace 1, exhaust gas A is then passed along a flow path S into a recuperator 2. The recuperator 2 fresh air F is supplied, along a flow path S "through the recuperator 2 and further into the furnace. 1 is directed. In the recuperator 2, a heat transfer from the exhaust gas A to the fresh air F takes place, so that the fresh furnace air (combustion air) is preheated.

Zu den zum Einsatz kommenden Rekuperatoren wird auf den Stand der Technik verwiesen. Sie besitzen für die beiden Medien, zwischen denen Wärme auszutauschen ist, je einen getrennten Raum. Zum Einsatz kommen können Plattenwärmeübertrager, insbesondere Spiralwärmeübertrager, Rohrwärmeübertrager, Mantelrohrwärmeübertrager oder Gegenstrom-Schichtwärmeübertrager.Regarding the recuperators used, reference is made to the state of the art. They each have a separate room for the two media between which heat is to be exchanged. Plate heat exchangers, in particular spiral heat exchangers, tube heat exchangers, jacket tube heat exchangers or countercurrent layer heat exchangers can be used.

Gemäß der in Fig. 2 dargestellten Lösung wird nunmehr ein Wärmetauscher 4 in Reihe mit dem Rekuperator 2 geschaltet, d. h. der Wärmetauscher 4 ist im Strömungsweg S angeordnet, der von dem Ofen 1 zum Kamin 3 führt. Hierbei wird zunächst das Abgas A durch den Rekuperator 2 geleitet und anschließend das bereits etwa auf 700 °C abgekühlte Abgas A durch den Wärmetauscher 4. Auch für den Wärmetauscher kommen die oben für den Rekuperator genannten Ausgestaltungen in Frage.According to the in Fig. 2 now shown, a heat exchanger 4 is connected in series with the recuperator 2, that is, the heat exchanger 4 is arranged in the flow path S, which leads from the furnace 1 to the chimney 3. In this case, first the exhaust gas A is passed through the recuperator 2 and then the already cooled to about 700 ° C exhaust gas A through the heat exchanger 4. Also for the heat exchanger, the above mentioned for the recuperator embodiments in question.

Dem Wärmetauscher 4 wird Wasser W über einen Zulauf 6 zugeführt. Im Wärmetauscher 4 erhitzt sich das Wasser W und wird in Dampf umgewandelt, der über einen Ablauf 7 einer Anlage 5 zur Stromerzeugung zugeführt wird, die eine Dampfturbine umfasst. Die Umwandlung der sich im Dampf befindlichen Energie in Strom ist als solches hinlänglich bekannt und braucht hier nicht weiter vertieft zu werden.The heat exchanger 4 is supplied with water W via an inlet 6. In the heat exchanger 4, the water W is heated and is converted into steam, which is supplied via a drain 7 of a plant 5 for power generation, comprising a steam turbine. The conversion of the energy in the steam into electricity is well known as such and need not be further deepened here.

Wie in Fig. 2 zu sehen ist, kann auch hier - wie im Stand der Technik - eine Temperierung des Abgases A hinter dem Ofen 1 erfolgen, indem Kühlluft K über einen Ventilator 11 und ein schaltbares Ventil 12 beigemischt wird. Ebenfalls kann vorgesehen sein, dass über ein schaltbares Ventil 14 ein Heißluftauslass 13 geöffnet wird, um erwärmte Frischluft abzulassen und zwecks Aufrechterhaltung des Drucks p den Ventilator 10 entsprechend zu betätigen, so dass mehr kalte Frischluft F in den Strömungsweg S" gefördert wird.As in Fig. 2 can be seen, can also be done here - as in the prior art - a temperature of the exhaust gas A behind the furnace 1 by cooling air K via a fan 11 and a switchable valve 12 is mixed. It can also be provided that a hot air outlet 13 is opened via a switchable valve 14 in order to discharge heated fresh air and for the purpose of maintaining it of the pressure p to actuate the fan 10 accordingly, so that more cold fresh air F is conveyed into the flow path S ".

Die Lösung gemäß Fig. 3 ist derjenigen gemäß Fig. 2 sehr ähnlich. Der Unterschied besteht hier darin, dass der Wärmetauscher 4 für das Erhitzen des Wassers W hier als erstes nach dem Ofen 1 angeordnet ist; der Rekuperator 2 folgt erst hinter dem Wärmetauscher 4, gesehen in Strömungsrichtung im Strömungsweg S. Über ein Ventil 15 kann bei Bedarf heißes Abgas um den Wärmetauscher 4 herum zum Rekuperator 2 geleitet werden. Die dargestellte Lösung zeichnet sich auch dadurch aus, dass es möglich ist, das Abgas A zunächst durch Erhitzung von Wasser und Umwandlung desselben zu Dampf abzukühlen und erst dann dem Rekuperator 2 zuzuführen. Daher ist in Fig. 3 der bevorzugte Fall skizziert, dass auf die Zufuhr von Kühlluft K mittels Ventilator 11 und schaltbarem Ventil 12 verzichtet wird; das Vorabkühlen des Abgases A erfolgt also durch den Wärmetauscher 4. Allerdings sei erwähnt, dass die fragliche Anordnung 11, 12 auch bei der Lösung gemäß Fig. 3 vorgesehen werden kann.The solution according to Fig. 3 is according to Fig. 2 very similar. The difference here is that the heat exchanger 4 is arranged here for the heating of the water W here first after the furnace 1; the recuperator 2 follows only behind the heat exchanger 4, as seen in the flow direction in the flow path S. Via a valve 15 hot exhaust gas can be routed to the recuperator 2 around the heat exchanger 4, if required. The solution shown is also characterized by the fact that it is possible to first cool the exhaust gas A by heating water and converting it to steam and only then to supply the recuperator 2. Therefore, in Fig. 3 the preferred case outlines that the supply of cooling air K by means of fan 11 and switchable valve 12 is dispensed with; The pre-cooling of the exhaust gas A thus takes place through the heat exchanger 4. However, it should be mentioned that the arrangement in question 11, 12 also in the solution according to Fig. 3 can be provided.

In Fig. 4 ist eine weitere alternative Ausgestaltung des Erfindungskonzepts illustriert. Hier ist vorgesehen, dass der Wärmetauscher 4 in einem zum Strömungsweg S parallelen zweiten Strömungsweg S' angeordnet ist. "Parallel" ist hier so zu verstehen, dass die Strömungswege S und S' vom Ofen mit Abgas A versorgt werden und unabhängig voneinander verlaufen. Das Abgas A wird hiernach zumindest zeitweise gleichzeitig durch den Strömungsweg S und durch den zweiten Strömungsweg S' geleitet.In Fig. 4 a further alternative embodiment of the inventive concept is illustrated. Here it is provided that the heat exchanger 4 is arranged in a flow path S parallel to the second flow path S '. "Parallel" is to be understood here as meaning that the flow paths S and S 'are supplied with exhaust gas A from the furnace and run independently of one another. The exhaust gas A is thereafter at least temporarily passed through the flow path S and through the second flow path S 'simultaneously.

Wie zu erkennen ist, ist also parallel zum Strömungsweg S der zweite Strömungsweg S' angeordnet, in dem der Wärmetauscher 4 platziert ist. An einer Verzweigungsstelle 8 zweigt der zweite Strömungsweg S' ab. Hier ist ein steuerbares Ventil 9 angeordnet. Mit dem Ventil 9 kann vorgegeben werden, in welchem Umfang Abgas zum Wärmetauscher 4 geleitet wird. Ist das Ventil 9 geschlossen, d. h. wird Abgas A nur über den Strömungsweg S geleitet, liegt genau die Situation vor, wie sie dem Stand der Technik entspricht.As can be seen, the second flow path S 'is thus arranged parallel to the flow path S, in which the heat exchanger 4 is placed. At a branching point 8, the second flow path S 'branches off. Here is a controllable valve 9 is arranged. With the valve 9 can be specified to what extent exhaust gas is passed to the heat exchanger 4. Is the valve 9 closed, ie exhaust gas A is passed only through the flow path S, is exactly the situation before, as it corresponds to the prior art.

Für Betriebspunkte, in denen eine zusätzliche Wärmerückgewinnung aus dem Abgas A nicht gewünscht ist, kann also über das Ventil 9, 15 die Zufuhr von Abgas A zum Wärmetauscher 4 verhindert und alles Abgas A über den Rekuperator 2 geführt werden.For operating points in which additional heat recovery from the exhaust gas A is not desired, the supply of exhaust gas A to the heat exchanger 4 can thus be prevented via the valve 9, 15 and all exhaust gas A can be guided via the recuperator 2.

Anders ausgedrückt: Beim Stand der Technik muß Heißluft entweichen, um bei zu heißer Verbrennungsluft den Rekuperator und die Brenner zu schützen. Dadurch geht Energie verloren.In other words, in the prior art, hot air must escape to protect the recuperator and burners if the combustion air is too hot. As a result, energy is lost.

Bei den Verfahren, wie sie in Fig. 3 und 4 veranschaulicht sind, kann die Verbrennungsluft herabgesetzt werden, indem mithilfe des Ventils 15 das heiße Abgas durch den zweiten Rekuperator geleitet wird. Dadurch werden die Bauteile geschützt und trotzdem kann die Energie genutzt werden. Außerdem wird die indirekte Regelung zur Senkung der Verbrennungstemperatur mit Hilfe des Heißluftauslasses vermieden und dadurch das System stabiler.In the procedures as they are in Fig. 3 and 4 illustrated, the combustion air can be reduced by using the valve 15, the hot exhaust gas is passed through the second recuperator. This protects the components and still allows the energy to be used. In addition, the indirect control to lower the combustion temperature by means of the hot air outlet is avoided, making the system more stable.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Ofenoven
22
Rekuperatorrecuperator
33
Kaminfireplace
44
Wärmetauscherheat exchangers
55
Anlage zur StromerzeugungPlant for power generation
66
ZulaufIntake
77
Ablaufprocedure
88th
Verzweigungsstellebranching point
99
VentilValve
1010
Ventilatorfan
1111
Ventilatorfan
1212
schaltbares Ventilswitchable valve
1313
Heißluftauslasshot air outlet
1414
schaltbares Ventilswitchable valve
1515
VentilValve
AA
Abgasexhaust
FF
Frischluftfresh air
WW
Wasserwater
KK
Kühlluftcooling air
pp
Luftdruckair pressure
SS
Strömungswegflow
S'S '
zweiter Strömungswegsecond flow path
S"S "
Strömungsweg der vorgewärmten Luft für den OfenFlow path of preheated air for the oven

Claims (7)

  1. Method of operating a furnace (1) for passing through a continuously cast slab in a plant for metal processing, particularly in a continuous casting plant, in which the waste gas (A) is conducted out of the furnace (1) along a flow path (S) through at least one recuperator (2), wherein fresh air (F) for the furnace (1) is preheated in the recuperator (2) by means of the heat energy contained in the waste gas (A) and the heated air is fed to the furnace (1) and wherein the waste gas (A) is conducted into a flue (3) behind the recuperator (2) in flow direction, characterised in that arranged in the flow path (S) or parallel to the flow path is at least one heat exchanger (4) to which water (W) is fed and in which the water is heated, wherein steam generated in the heat exchanger (4) is used in order to operate the plant for power generation (5).
  2. Method according to claim 1, characterised in that the recuperator (2) and the heat exchanger (4) are arranged in series in the flow path (S) of the waste gas (A), wherein the waste gas (A) is initially conducted through the recuperator (2) and subsequently through the heat exchanger (4).
  3. Method according to claim 1, characterised in that the recuperator (2) and the heat exchanger (4) are arranged in series in the flow path (S) of the waste gas (A), wherein the waste gas (A) is initially conducted through the heat exchanger (4) and subsequently through the recuperator (2).
  4. Method according to claim 1, characterised in that the heat exchanger (4) is arranged in a second flow path (S) parallel to the flow path (S), wherein waste gas (A) is conducted at least at times simultaneously through the flow path (S) and through the second flow path (S').
  5. Method according to any one of claims 1 to 4, characterised in that cooling air (K) is added to the waste gas (A) under control or regulation before the waste gas reaches the recuperator (2) and the heat exchanger (4).
  6. Method according to any one of claims 1 to 5, characterised in that hot air is let off to the environment under control or regulation from the flow path of the preheated air for the furnace (1).
  7. Method according to any one of claims 1 to 6, characterised in that the air pressure (p) in the flow path of the preheated air for the furnace (1) is kept, by control or regulation to a predetermined value, wherein for control or regulation of the air pressure (p) the volume flow of fresh air (F) fed to the recupterator (2) is influenced.
EP11804698.6A 2010-12-22 2011-12-22 Method for operating a furnace in a system for processing metal Not-in-force EP2655995B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010063839 DE102010063839A1 (en) 2010-12-22 2010-12-22 Method for operating a furnace in a metalworking plant and metalworking plant
PCT/EP2011/073894 WO2012085258A1 (en) 2010-12-22 2011-12-22 Method for operating a furnace in a system for processing metal and system for processing metal

Publications (2)

Publication Number Publication Date
EP2655995A1 EP2655995A1 (en) 2013-10-30
EP2655995B1 true EP2655995B1 (en) 2014-05-28

Family

ID=45444609

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11804698.6A Not-in-force EP2655995B1 (en) 2010-12-22 2011-12-22 Method for operating a furnace in a system for processing metal

Country Status (3)

Country Link
EP (1) EP2655995B1 (en)
DE (1) DE102010063839A1 (en)
WO (1) WO2012085258A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901367A (en) * 2012-11-16 2013-01-30 重庆赛迪工业炉有限公司 Preheater system for rotary hearth furnace
CN104697348B (en) * 2015-03-27 2016-09-07 沈阳鑫博工业技术股份有限公司 Baking furnace fume waste-heat recovery device and method
DE102016112103B4 (en) 2016-07-01 2019-08-22 Thomas Kirchhöfer High temperature furnace with heat recovery

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2192108A (en) 1935-08-28 1940-02-27 Rekuperator Gmbh Steel smelting furnace
DE1162391B (en) 1958-12-17 1964-02-06 Schmidt Sche Heissdampf Method for utilizing the waste heat from shock or Waermoefen, Siemens-Martin-OEfen or the like.
GB974863A (en) * 1959-12-01 1964-11-11 Waagner Biro Ag Improvements relating to industrial furnaces
US3039005A (en) 1960-04-08 1962-06-12 Ibm Electro-optical device
US4340207A (en) 1977-02-14 1982-07-20 Dravo Corporation Waste heat recovery apparatus
DE3142860A1 (en) 1981-10-29 1983-05-11 Italimpianti (Deutschland) Industrieanlagen GmbH, 4000 Düsseldorf "METHOD AND DEVICE FOR PREHEATING"
US4528012A (en) 1984-01-30 1985-07-09 Owens-Illinois, Inc. Cogeneration from glass furnace waste heat recovery
US5235414A (en) 1990-05-21 1993-08-10 Control Data Corporation Non-obtrusive programming monitor
IT1287570B1 (en) 1996-10-11 1998-08-06 Demag Italimpianti Spa OVEN FOR PROCESSES AND TREATMENTS IN UNDERGROUND ATMOSPHERE
ZA200304880B (en) 2003-02-24 2004-05-04 Air Liquide Integrated heat recovery systems and methods for increasing the efficiency of an oxygen-fired furnace.
US20090035712A1 (en) 2007-08-01 2009-02-05 Debski Paul D Reheat Furnace System with Reduced Nitrogen Oxides Emissions

Also Published As

Publication number Publication date
EP2655995A1 (en) 2013-10-30
WO2012085258A1 (en) 2012-06-28
DE102010063839A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
DE60119023T2 (en) Method and device to supply a turbine with cooling air
EP2196633A1 (en) Power plant with a turbine unit and a generator
AT508086B1 (en) DEVICE FOR ENERGY CONVERSION ACCORDING TO THE ORC PRINCIPLE, ORC PLANT WITH SUCH A DEVICE AND METHOD FOR STARTING AND / OR OPERATING SUCH A DEVICE
DE10236324A1 (en) Turbine blade cooling method for gas storage power plants, involves allowing cooling gas into turbine recuperator at predetermined temperature in fresh gas path, at standard operating conditions
EP3240945B1 (en) Compressed air storage power plant and method for operating a compressed air storage power plant
EP2655995B1 (en) Method for operating a furnace in a system for processing metal
DE102008060774A1 (en) Scrap preheating process in steel production plants, comprises guiding furnace exhaust gas from melting unit into preheater, which flows through scrap column and preheats the furnace exhaust gas by guidable heat of the furnace exhaust gas
WO2010086085A2 (en) Method for operating an oxidation system and oxidation system
DE2716409A1 (en) PROCEDURE FOR PRE-HEATING COMBUSTION AIR TO BE SUPPLIED BY AN INCINERATION PLANT, AND PLANT FOR THE PROCESSING THEREOF
DE112017001695T5 (en) Plant and operating method for it
DD291803A5 (en) APPARATUS AND METHOD FOR CONTROLLING THE TEMPERATURE OF INTERMEDIATE HEATING STEAM IN STEAM BOILERS WITH A CIRCULATING SWITCH LAYER
EP2129985B1 (en) Method and device for heat recovery
DE3248623C1 (en) Method and device for preheating the combustion media, in particular for heating wind heaters for blast furnaces
DE102013110283A1 (en) Energy-efficient process for operating a glass melting plant
EP2964910B1 (en) Method for flexible operation of a power plant assembly
DE1201612B (en) Gas turbine heating plant
DE19705216C2 (en) Gas turbine plant
WO2012016809A1 (en) Single-casing steam turbine with reheating
DE202013102653U1 (en) tempering furnace
DE19523062A1 (en) Combined-cycle power plant
EP1703201B1 (en) Process for heat transfer
DE29708140U1 (en) Heat exchanging device for hot flue gases from combustion plants
WO2013034541A1 (en) Method for operating a regeneratively heated industrial oven, and regeneratively heated industrial oven
WO2009046757A1 (en) Method and apparatus for using the waste heat of an annular anode furnace
DE4220489C1 (en) Operating air heater plant - using boiler heated closed circuit to preheat air and fuel feeds to reducing high value combustion fuels

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130610

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131218

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 670374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011003244

Country of ref document: DE

Effective date: 20140710

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140528

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140828

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140829

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003244

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150303

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011003244

Country of ref document: DE

Effective date: 20150303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141222

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011003244

Country of ref document: DE

Representative=s name: HEMMERICH & KOLLEGEN, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502011003244

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AG, 40237 DUESSELDORF, DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141222

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111222

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20151222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20201222

Year of fee payment: 10

Ref country code: DE

Payment date: 20201211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201224

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011003244

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 670374

Country of ref document: AT

Kind code of ref document: T

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211222