EP2643839B1 - Soft magnetic metallic ribbon for electromechanic element - Google Patents

Soft magnetic metallic ribbon for electromechanic element Download PDF

Info

Publication number
EP2643839B1
EP2643839B1 EP11799328.7A EP11799328A EP2643839B1 EP 2643839 B1 EP2643839 B1 EP 2643839B1 EP 11799328 A EP11799328 A EP 11799328A EP 2643839 B1 EP2643839 B1 EP 2643839B1
Authority
EP
European Patent Office
Prior art keywords
metal strip
strip
soft magnetic
roughness
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11799328.7A
Other languages
German (de)
French (fr)
Other versions
EP2643839A1 (en
Inventor
Giselher Herzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuumschmelze GmbH and Co KG
Original Assignee
Vacuumschmelze GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuumschmelze GmbH and Co KG filed Critical Vacuumschmelze GmbH and Co KG
Publication of EP2643839A1 publication Critical patent/EP2643839A1/en
Application granted granted Critical
Publication of EP2643839B1 publication Critical patent/EP2643839B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15308Amorphous metallic alloys, e.g. glassy metals based on Fe/Ni
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0213Manufacturing of magnetic circuits made from strip(s) or ribbon(s)
    • H01F41/0226Manufacturing of magnetic circuits made from strip(s) or ribbon(s) from amorphous ribbons
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents

Definitions

  • the application relates to a soft magnetic metal strip for electromechanical components, in particular AC residual current switch.
  • the EP 2 015 321 A1 discloses a magnetic core for a current transformer composed of an amorphous alloy, the composition being represented by the general formula Fe 100-xz Ni x X ' z , where X' is composed of Si and B.
  • a method for manufacturing a magnetic core for soft magnetic alloy AC fault current circuit breaker is disclosed in U.S.P. US 5,922,143 disclosed.
  • An amorphous band of an iron-based alloy is produced by a rapid solidification technology, wound into a magnetic core and then heat-treated to produce a nanocrystalline structure.
  • This magnetic core is less affected by mechanical stresses so that the desired permeability value is more reliably achieved.
  • the object of the application is to provide a soft magnetic metal strip for electromechanical components, which is particularly suitable for applications at 50 Hz, such as AC fault current switches, which can be produced reproducibly.
  • a soft magnetic metal strip is created for electromechanical components.
  • the soft magnetic metal strip has a nanocrystalline or an amorphous structure and ratios of strip thickness to roughness d / Ra of ⁇ 5 d / Ra ⁇ 25, where Ra is the center roughness value.
  • the metal band has a fish scale pattern with a structure arranged transversely and obliquely to the band longitudinal direction.
  • Magnetization properties of this soft magnetic metal strip are dependent on a strip thickness d and a roughness Ra.
  • a ratio of belt thickness to roughness d / Ra of ⁇ 5 d / Ra ⁇ 25 enables the improvement of the permeability in AC applications as well as the reliable generation of this improved permeability.
  • the roughness Ra of this ratio is the measured roughness of the underside of the soft magnetic metal strip, the lower surface being the side of the soft magnetic metal strip which lies on a casting wheel during the solidification of a melt.
  • This soft magnetic metal strip has the advantage that electromechanical components with short response times such as fault current switch or speed sensors can be realized with a toroidal core, which can trigger a switching operation at low coercive force of a few 10 milliamps per centimeter or signal the Vorbeidrenhen a permanent magnet to speed measurements instead to enable Hall generators.
  • the soft magnetic metal strip has a nanocrystalline or amorphous structure.
  • the soft magnetic metal strip is characterized by a nearly rectangular hysteresis loop and low eddy current losses, both of which can be used for fast-reacting electromechanical devices such as fault current switches used at 50 Hz.
  • the soft magnetic metal strip contributes a maximum value of the magnetic induction values With an average roughness of approximately 1 ⁇ m, this means a strip thickness d of the soft magnetic metal strip between 10 ⁇ m ⁇ d ⁇ 20 ⁇ m.
  • the metal band may have a ratio Br / Bm> 80%, where Bm is measured at 200 mA / cm.
  • the metal band has a fish scale pattern with a structure arranged transversely and obliquely to the band longitudinal direction. Such a pattern can be selectively adjusted, for example, by reducing the casting pressure and / or increasing the casting wheel speed.
  • Other options for selectively influencing the surface topology of the strip include, for example, surface structuring of the casting roll or subsequent laser scribing of the soft magnetic metal strip.
  • the metal strip thermally at a temperature between 500 ° C and 600 ° C for a period of 0.5 hours to 2 hours in a longitudinal field of 5 A / cm to 15 A / cm.
  • the metal strip has a quasi-stationary coercive force independent of a strip quality in terms of strip thickness and roughness, and an AC-determined coercive force of the strip metal increases linearly with a strip thickness-to-roughness ratio d / Ra.
  • the metal strip according to any one of the preceding embodiments may be wound to indicate a magnetic core.
  • This magnetic core can be used in various applications, for example in applications at frequencies of less than 1000Hz, such as an AC fault current switch, since the magnetic core has good permeability even at 50 Hz, or in distribution transformers.
  • this soft magnetic metal strip is used for ac-sensitive electromechanical components with a soft-magnetic annular band core.
  • the soft-magnetic metal strip can be used for residual current switches with a residual current limit value I max ⁇ 30 mA.
  • An AC-sensitive leakage circuit breaker comprising a magnetic core made of a wound soft magnetic strip according to one of the preceding embodiments.
  • the magnetic core of the ac-sensitive leakage circuit breaker has a ratio Br / Bm> 80%.
  • a distribution transformer comprising a magnetic core of a wound soft magnetic ribbon according to one of the preceding embodiments.
  • the magnetic core of the distribution transformer may have a ratio Br / Bm> 80% at a frequency of less than 1000 Hz, in particular at 50 Hz.
  • the toroidal cores were tempered longitudinally in a production furnace under hydrogen atmosphere.
  • the exact starting conditions were: 1h holding time at 540 ° C in the longitudinal field (alternating field of about 10 A / cm), cooling at 1 K / min.
  • the mean band thickness was determined from the weight of the meter and the roughness at the band underside (transverse to the band direction) was measured.
  • Example 1 is based on investigations with respect to roughness and strip thickness with the alloy Fe 75.5 Cu 1 Nb 3 Si 12.5 B 8 as batch KA 1283
  • the ratio of strip thickness to surface roughness d / R a ranges from about 10 to 60.
  • the FIG. 2 shows the associated variation of strip thickness d and roughness Ra. It is in FIG. 2 recognizable that the thinner tapes usually have an absolutely greater roughness.
  • FIG. 3 shows the commutation curve measured at 1 Hz (sinusoidal field strength) (B max over H) and the associated amplitude permeability ⁇ .
  • FIG. 4 shows the measured at 50 Hz (sinusoidal field strength) commutation curve (B max over H), and the associated amplitude permeability ⁇ .
  • the comparison of the 1 Hz and 50 Hz characteristic curves shows that the 50 Hz characteristic is almost completely determined by anomalous eddy currents. As already explained above, the classical eddy current contributions are negligible. It is noticeable that in particular the thin and rough bands deliver by far better 50Hz magnet values than the thicker smooth bands.
  • FIG. 5 shows the dynamic coercive force H c (as defined in FIG. 1 ) As a function of the ratio d / R a.
  • the swirl current-determined 50 Hz values increase linearly with d / R a , which corresponds to the theoretical expectations set out above.
  • the extrapolation of the 50 Hz values for d / R a ⁇ 0 leads to a value that roughly corresponds to the quasistatic coercive field strength.
  • the induction amplitude B 10 is relevant for an exciting field amplitude of 10 mA / cm.
  • the consequences of the relationship d / R a for this size are in FIG. 6 shown.
  • B 10 increases significantly with decreasing strip thickness and increasing roughness.
  • the maximum value of B 10 ie B 10 approximately equal to B s , is expected when the dynamic coercive force H c becomes less than 10 mA / cm. This is realized eg for smaller frequencies.
  • Example 2 is based on investigations with regard to roughness and strip thickness with the alloy Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 from various batches, as well as investigations of further influencing parameters.
  • the 50 Hz magnet values in the present case (Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 ) are somewhat more favorable than those of the alloy Fe 75.5 Cu 1 Nb 3 Si 12.5 B 8 . This is most clearly expressed when comparing the B 10 values at the same d / R a ratio (cf. FIG. 8 and 10 ).
  • the alloy with Si 13.5 atomic% has more favorable basic requirements both for the pure soft magnetic properties and for the dynamic properties.
  • FIG. 11 shows these changes as a function of the exciting field together with the BH commutation curve in comparison with Ultraperm 200. It can be seen that the changes of the soft magnetic nanocrystalline metal strip are significantly larger than in the case of the ultracrystalline Ultraperm 200 metal strip of a NiFe alloy.
  • Example 3 is based on tests on an amorphous comparison material VITROVAC 6030 Z (Z stands for material with a rectangular hysteresis loop) with regard to roughness and strip thickness.
  • VITROVAC 6030 Z make it clear that the improvement of the dynamic properties by reducing the strip thickness and in the case of amorphous metal strips with rectangular hysteresis loops are set by raising the band roughness limits.
  • the present investigations show that the 50 Hz properties of amorphous and nanocrystalline materials with a rectangular hysteresis loop are decisively determined by the ratio of strip thickness d to surface roughness R a .
  • the influence of d / R a is at least as important as the influence of the uniaxial anisotropy K u induced in the direction of the ribbon.
  • d / Ra gained nearly a crucial role because this parameter is much more difficult to master than the well-defined by the alloy composition and annealing treatment induced anisotropy K u.
  • the physical cause for the improvement in magnet values with increasing roughness and decreasing ribbon thickness could be due to dynamic domain refinement in the nanocrystalline metal ribbon.
  • the latter presumably results from the closure domain structures present around surface defects (such as air pockets on the underside of the belt, coarser crystalline precipitates, etc.) and comparable magnetization inhomogeneities.
  • H dB / dt The power dissipation is generally given by H dB / dt, where the rate of magnetization reversal dB / dt is proportional to f ⁇ B.
  • H is the external field needed to compensate for locally generated eddy current fields. From equation (1) follows for this: H - H c stat B ⁇ Vo ⁇ f ⁇ B ⁇ ⁇ el ⁇ n 0
  • H c stat (B) denotes the course of the quasistatic hysteresis loop, which is mainly determined by coercive field mechanisms.
  • Equations (1) and (2) The ultimate critical parameters in Equations (1) and (2) are the domain density n o , as well as the nucleation field strength V o . To clarify below is how both sizes are related to the surface roughness and the strip thickness.
  • H c is determined by pinning to surface defects
  • the coercitive field strength is essentially determined by pinning on the surface defects.
  • the minimum field strength V o for involving a new, previously pinned domain in the magnetization process is then analogous to H c V 0 ⁇ H c ⁇ R a ⁇ ⁇ d A ⁇ K J s given. Then follows from Eq. (2) for the eddy current field H - H c stat B ⁇ ⁇ ⁇ d R a ⁇ K u ⁇ f ⁇ B ⁇
  • H c stat in accordance with equation (5a) is proportional to R a / d, that is ultimately more dependent on R a / d than the anomalous eddy current losses. This results in inferior magnet values again due to the increasing hysteresis losses for bands that are too rough.
  • H c is independent of surface defects
  • H c is determined by nucleation or by pinning to intrinsic Anisotropiefluktuationen. Then V 0 ⁇ H c ⁇ K / J s with which the eddy current field as H - H c stat B ⁇ ⁇ ⁇ d R a K 3 / 2 ⁇ f ⁇ B ⁇ follows.
  • K 1 the average crystal anisotropy
  • the 50 Hz characteristic of nanocrystalline (as well as amorphous) materials with a rectangular hysteresis loop is decisively characterized by anomalous eddy current losses.
  • the above investigations indicate that the ratio of the strip thickness d to the surface roughness R a forms a significant influencing parameter, which can go far beyond the influence of the alloy composition.
  • the best magnet values were found for ratios d / R a ⁇ 20, ie for thin bands (around 20 ⁇ m and smaller) with a relatively rough surface (R a around 1 ⁇ m or slightly larger).

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Hard Magnetic Materials (AREA)

Description

Die Anmeldung betrifft ein weichmagnetisches Metallband für elektromechanische Bauelemente, insbesondere Wechselstromfehlstromschalter.The application relates to a soft magnetic metal strip for electromechanical components, in particular AC residual current switch.

Die EP 2 015 321 A1 offenbart einen Magnetkern für einen Stromtransformator, der aus einer amorphen Legierung zusammensetzt ist, wobei die Zusammensetzung durch die allgemeinen Formel Fe100-x-zNixX'z dargestellt wird, wobei X' aus Si und B zusammensetzt ist.The EP 2 015 321 A1 discloses a magnetic core for a current transformer composed of an amorphous alloy, the composition being represented by the general formula Fe 100-xz Ni x X ' z , where X' is composed of Si and B.

Ein Verfahren zum Herstellen eines Magnetkerns für Wechselstromfehlstromschalter aus weichmagnetischen Legierungen ist in der US 5,922,143 offenbart. Ein amorphes Band aus einer Eisen-basierten Legierung wird mit einer Rascherstarrungstechnologie hergestellt, gewickelt zu einem Magnetkern und anschließend wärmebehandelt, um ein nanokristallines Gefüge zu erzeugen.A method for manufacturing a magnetic core for soft magnetic alloy AC fault current circuit breaker is disclosed in U.S.P. US 5,922,143 disclosed. An amorphous band of an iron-based alloy is produced by a rapid solidification technology, wound into a magnetic core and then heat-treated to produce a nanocrystalline structure.

Dieser Magnetkern ist weniger beeinträchtigt von mechanischen Spannungen, so dass der gewünschte Permeabilitätswert zuverlässiger erreicht wird. Es besteht jedoch noch Bedarf für weitere Verbesserungen.This magnetic core is less affected by mechanical stresses so that the desired permeability value is more reliably achieved. However, there is still a need for further improvements.

Aufgabe der Anmeldung ist es, ein weichmagnetisches Metallband für elektromechanische Bauelemente, das insbesondere für Anwendungen bei 50 Hz, wie AC Fehlstromschaltern geeignet ist, zu schaffen, das sich reproduzierbar herstellen lässt.The object of the application is to provide a soft magnetic metal strip for electromechanical components, which is particularly suitable for applications at 50 Hz, such as AC fault current switches, which can be produced reproducibly.

Erfindungsgemäß wird ein weichmagnetisches Metallband für elektromechanische Bauelemente geschaffen. Das weichmagnetische Metallband weist eine nanokristalline oder eine amorphe Struktur und Verhältnisse von Banddicken zu Rauigkeiten d/Ra von ≤ 5 d/Ra ≤ 25 auf, wobei Ra der Mittenrauheitswert ist. Das Metallband weist ein Fischschuppenmuster mit einer quer und schräg zur Bandlängsrichtung angeordneten Struktur auf.According to the invention, a soft magnetic metal strip is created for electromechanical components. The soft magnetic metal strip has a nanocrystalline or an amorphous structure and ratios of strip thickness to roughness d / Ra of ≦ 5 d / Ra ≦ 25, where Ra is the center roughness value. The metal band has a fish scale pattern with a structure arranged transversely and obliquely to the band longitudinal direction.

Magnetisierungseigenschaften dieses weichmagnetischen Metallbands sind von einer Banddicke d und einer Rauigkeit Ra abhängig. Ein Verhältnis von Banddicken zu Rauigkeiten d/Ra von ≤ 5 d/Ra ≤ 25 ermöglicht die Verbesserung der Permeabilität bei Wechselstromanwendungen sowie das zuverlässige Erzeugen dieser verbesserten Permeabilität.Magnetization properties of this soft magnetic metal strip are dependent on a strip thickness d and a roughness Ra. A ratio of belt thickness to roughness d / Ra of ≦ 5 d / Ra ≦ 25 enables the improvement of the permeability in AC applications as well as the reliable generation of this improved permeability.

Die Rauigkeit Ra dieses Verhältnisses ist die gemessene Rauigkeit der Unterseite des weichmagnetischen Metallbands, wobei die Unterseite die Seite des weichmagnetischen Metallbands ist, die bei der Erstarrung einer Schmelze auf einem Gießrad liegt.The roughness Ra of this ratio is the measured roughness of the underside of the soft magnetic metal strip, the lower surface being the side of the soft magnetic metal strip which lies on a casting wheel during the solidification of a melt.

Dieses weichmagnetische Metallband hat den Vorteil, dass elektromechanische Bauelemente mit kurzen Ansprechzeiten wie Fehlerstromschalter oder Drehzahlsensoren mit einem Ringbandkern realisiert werden können, die bei geringer Koerzitivfeldstärke von wenigen 10 Milliampere pro Zentimeter einen Schaltvorgang auslösen können bzw. das Vorbeidrehen eines Permanentmagneten signalisieren können, um Drehzahlmessungen anstelle von Hallgeneratoren zu ermöglichen.This soft magnetic metal strip has the advantage that electromechanical components with short response times such as fault current switch or speed sensors can be realized with a toroidal core, which can trigger a switching operation at low coercive force of a few 10 milliamps per centimeter or signal the Vorbeidrenhen a permanent magnet to speed measurements instead to enable Hall generators.

Das weichmagnetische Metallband weist eine nanokristalline oder amorphe Struktur auf. Das weichmagnetische Metallband zeichnet sich durch eine nahezu rechteckige Hystereseschleife und niedrige Wirbelstromverluste aus, was beides für schnellreagierende elektromechanische Bauelemente, wie Fehlstromschalter, die bei 50 Hz verwendet werden, genutzt werden kann.The soft magnetic metal strip has a nanocrystalline or amorphous structure. The soft magnetic metal strip is characterized by a nearly rectangular hysteresis loop and low eddy current losses, both of which can be used for fast-reacting electromechanical devices such as fault current switches used at 50 Hz.

In einer Ausführungsform weist das weichmagnetische Metallband einen Maximalwert der magnetischen Induktionswerte bei Bei einer mittleren Rauigkeit von etwa 1 µm bedeutet dies eine Banddicke d des weichmagnetischen Metallbands zwischen 10 µm ≤ d ≤ 20 µm.In one embodiment, the soft magnetic metal strip contributes a maximum value of the magnetic induction values With an average roughness of approximately 1 μm, this means a strip thickness d of the soft magnetic metal strip between 10 μm ≦ d ≦ 20 μm.

Das Metallband kann ein Verhältnis Br/Bm > 80% aufweisen, wobei Bm bei 200 mA/cm gemessen ist.The metal band may have a ratio Br / Bm> 80%, where Bm is measured at 200 mA / cm.

Das Metallband weist ein Fischschuppenmuster mit einer quer und schräg zur Bandlängsrichtung angeordneten Struktur auf. Solch ein Muster kann zum Beispiel durch Reduktion des Gießdruckes und/oder Erhöhung der Gießradgeschwindigkeit gezielt eingestellt werden. Weitere Möglichkeiten, die Oberflächentopologie des Bandes gezielt zu beeinflussen, bieten zum Beispiel eine Oberflächenstrukturierung der Gießwalze oder nachträgliches Laser-Scribing des weichmagnetischen Metallbands.The metal band has a fish scale pattern with a structure arranged transversely and obliquely to the band longitudinal direction. Such a pattern can be selectively adjusted, for example, by reducing the casting pressure and / or increasing the casting wheel speed. Other options for selectively influencing the surface topology of the strip include, for example, surface structuring of the casting roll or subsequent laser scribing of the soft magnetic metal strip.

Durch entsprechende Vergleichsversuche konnte ermittelt werden, dass der Einfluss dieser geometrischen Parameter stärker ist, als der Einfluss der Legierungszusammensetzung des Metallbands mit Legierungsbestandteilen von Silizium, Bor, Niob und Kupfer in über 73 Atomgew.% Eisen.Comparative tests have shown that the influence of these geometric parameters is stronger than the influence of the alloy composition of the metal strip with alloy constituents of silicon, boron, niobium and copper in more than 73 atomic% iron.

Somit ergeben sich für ein Metallband einer Legierung, die Fe75,5Cu1Nb3Si12,5B8 aufweist, und ein Metallband, das eine Legierung mit Fe73,5Cu1Nb3Si13,5B9 aufweist, keine gravierenden Unterschiede, sodass beide Legierungen in den oben angegebenen Dicken zum Rauigkeitsverhältnis maximale Induktionswerte aufweisen. Vergleichsweise weisen Bandqualitäten von dünnerem und rauerem Metallband bessere Wechselstrommagnetwerte auf, gierung mit Fe73,5Cu1Nb3Si13.5B9 aufweist, keine gravierenden Unterschiede, so dass beide Legierungen in dem oben angegebenen Dicken zu Rauigkeitsverhältnis maximale Induktionswerte aufweisen. Vergleichsweise weisen Bandqualitäten von dünnerem und rauerem Metallband bessere Wechselstrommagnetwerte auf, als ein glattes mit einer gegen Null gehenden Rauigkeit und ein mehr als 50 µm dickes Metallband.Thus arise for a metal strip of an alloy comprising Fe 75.5 Cu 1 Nb 3 Si 12.5 B 8, and a metal belt having an alloy with Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9, no serious differences, so that both alloys have maximum induction values in the roughness ratio thicknesses given above. Comparatively, strip qualities of thinner and rougher metal strip have better AC magnetic values, The alloying with Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 shows no serious differences, so that both alloys have maximum induction values in the above-indicated thickness to roughness ratio. By comparison, strip qualities of thinner and rougher metal strip have better AC magnetic values than a smooth, zero-roughness, and more than 50 μm thick metal strip.

Dazu ist es von Vorteil, das Metallband thermisch bei einer Temperatur zwischen 500°C und 600°C für eine Dauer von 0,5 Std. bis 2 Std. in einem Längsfeld von 5 A/cm bis 15 A/cm zu glühen. Nach der Glühbehandlung weist das Metallband eine quasistationäre Koerzitivfeldstärke unabhängig von einer Bandqualität in Bezug auf Banddicke und Rauigkeit auf, wobei eine wechselstrombestimmte Koerzitivfeldstärke des Metallbands mit einem Verhältnis von Banddicke zu Rauigkeit d/Ra linear zunimmt.For this purpose, it is advantageous to heat the metal strip thermally at a temperature between 500 ° C and 600 ° C for a period of 0.5 hours to 2 hours in a longitudinal field of 5 A / cm to 15 A / cm. After the annealing treatment, the metal strip has a quasi-stationary coercive force independent of a strip quality in terms of strip thickness and roughness, and an AC-determined coercive force of the strip metal increases linearly with a strip thickness-to-roughness ratio d / Ra.

Das Metallband nach einem der vorhergehenden Ausführungsbespiele kann gewickelt werden, um einen Magnetkern anzugeben. Dieser Magnetkern kann bei verschiedenen Anwendungen verwendet werden, beispielsweise bei Anwendungen bei Frequenzen von kleiner als 1000Hz, wie bei einem Wechselstromfehlstromschalter, da der Magnetkern auch bei 50 Hz eine gute Permeabilität aufweist, oder bei Verteilertransformatoren.The metal strip according to any one of the preceding embodiments may be wound to indicate a magnetic core. This magnetic core can be used in various applications, for example in applications at frequencies of less than 1000Hz, such as an AC fault current switch, since the magnetic core has good permeability even at 50 Hz, or in distribution transformers.

Es ist vorgesehen, dass dieses weichmagnetische Metallband für wechselstromsensitive elektromechanische Bauelemente mit einem weichmagnetischen Ringbandkern verwendet wird. Das weichmagnetische Metallband kann wie oben bereits ausgeführt für Fehlerstromschalter mit einem Fehlerstromgrenzwert Imax ≤ 30 mA verwendet werden. Ferner ist auch eine Verwendung des weichmagnetischen Metallbands für einen Drehzahlsensor in Zusammenwirken mit einer segmentierten Permanentmagnetenscheibe möglich.It is envisaged that this soft magnetic metal strip is used for ac-sensitive electromechanical components with a soft-magnetic annular band core. As already mentioned above, the soft-magnetic metal strip can be used for residual current switches with a residual current limit value I max ≦ 30 mA. Furthermore, a use of the soft magnetic metal strip for a speed sensor in cooperation possible with a segmented permanent magnet disc.

Ein wechselstromsensitiver Fehlstromschutzschalter wird auch angegeben, der einen Magnetkern aus einem gewickelten weichmagnetischen Band nach einem der vorherstehenden Ausführungsbeispiele aufweist.An AC-sensitive leakage circuit breaker is also disclosed, comprising a magnetic core made of a wound soft magnetic strip according to one of the preceding embodiments.

In einem Ausführungsbeispiel weist bei einer Frequenz von kleiner als 1000Hz, insbesondere bei 50 Hz, der Magnetkern des wechselstromsensitiven Fehlstromschutzschalters ein Verhältnis Br/Bm > 80% auf.In one embodiment, at a frequency of less than 1000 Hz, in particular at 50 Hz, the magnetic core of the ac-sensitive leakage circuit breaker has a ratio Br / Bm> 80%.

Ein Verteilertransformator wird auch angegeben, der einen Magnetkern aus einem gewickelten weichmagnetischen Band nach einem der vorherstehenden Ausführungsbeispiele aufweist.A distribution transformer is also disclosed, comprising a magnetic core of a wound soft magnetic ribbon according to one of the preceding embodiments.

Der Magnetkern des Verteilertransformators kann bei einer Frequenz von kleiner als 1000Hz, insbesondere bei 50 Hz, ein Verhältnis Br/Bm > 80% aufweisen.The magnetic core of the distribution transformer may have a ratio Br / Bm> 80% at a frequency of less than 1000 Hz, in particular at 50 Hz.

Der Erfindung liegen Diagramme nachfolgender Figuren zugrunde, die im einzelnen zeigen:

Fig. 1
zeigt ein Diagramm zur Definition einer dynamischen Koerzitivfeldstärke;
Fig. 2
zeigt ein Diagramm mit Werten von Banddicke und Rautiefe an verschiedenen Stellen eines untersuchten Metallbands;
Fig. 3
zeigt ein Diagramm mit Induktionsamplituden (Figur 3a) und Amplitudenpermeabilitäten (Figur 3b) als Funktion der erregenden Feldamplitude bei sinusförmiger Erregung mit 1 Hz für unterschiedliche Metallbandqualitäten;
Fig. 4
zeigt ein Diagramm mit Induktionsamplituden (Figur 4a) und Amplitudenpermeabilitäten (Figur 4b) als Funktion der erregenden Feldamplitude bei sinusförmiger Erregung mit 50 Hz für die Metallbandqualitäten aus Figur 3;
Fig. 5
zeigt ein Diagramm der dynamischen Koerzitivfeldstärke als Funktion des Verhältnisses von Banddicke und Rautiefe einer einzelnen Charge;
Fig. 6
zeigt ein Diagramm mit Induktionsamplituden bei einer erregenden Feldstärke von 10 mA/cm als Funktion des Verhältnisses von Banddicke und Rautiefe einer ersten Metallbandlegierung;
Fig. 7
zeigt ein Diagramm mit Werten von Banddicke und Rautiefe unterschiedlicher Chargen von Metallband;
Fig. 8
zeigt ein Diagramm mit Induktionsamplituden und Amplitudenpermeabilitäten als Funktion der erregenden Feldamplitude bei sinusförmiger Erregung mit 50 Hz für unterschiedliche Metallbandqualitäten im Vergleich einer nanokristallinen Legierung zu einer grobkristallinen NiFe-Legierung Ultraperm 10 mit der Kennlinie 020;
Fig. 9
zeigt ein Diagramm der dynamischen (50 Hz) und statischen (dc) Koerzitivfeldstärke als Funktion des Verhältnisses von Banddicke und Rautiefe unterschiedlicher Chargen;
Fig. 10
zeigt ein Diagramm mit Induktionsamplituden bei einer erregenden Feldstärke von 10 mA/cm als Funktion des Verhältnisses von Banddicke und Rautiefe einer zweiten Metallbandlegierung;
Fig. 11a
zeigt ein Diagramm mit Induktionsamplituden bei 50 Hz von drei nanokristallinen Metallbandqualitäten im Vergleich zu einem grobkristallinen Ultraperm 200 Metallband der NiFe-Legierung;
Fig. 11b
zeigt ein Diagramm der Änderungen der Induktionsamplituden nach einem Gleichfeldstoß und nach Klopfbelastung;
Fig. 12
zeigt ein Diagramm der dynamischen Koerzitivfeldstärke als Funktion des Verhältnisses von Banddicke und Rautiefe eines amorphen VITROVAC 6030 Z Bandmaterials;
Fig. 13
zeigt ein Diagramm mit Induktionsamplituden bei einer erregenden Feldstärke von 10 mA/cm als Funktion des Verhältnisses von Banddicke und Rautiefe eines amorphen VITROVAC 6030 Z Bandmaterials.
The invention is based on diagrams of the following figures, which show in detail:
Fig. 1
shows a diagram for defining a dynamic coercive field strength;
Fig. 2
shows a diagram with values of strip thickness and surface roughness at different points of a metal strip under investigation;
Fig. 3
shows a diagram with induction amplitudes ( FIG. 3a ) and amplitude permeabilities ( FIG. 3b ) when Function of the exciting field amplitude with sinusoidal excitation at 1 Hz for different metal strip qualities;
Fig. 4
shows a diagram with induction amplitudes ( FIG. 4a ) and amplitude permeabilities ( FIG. 4b ) as a function of the exciting field amplitude for sinusoidal excitation at 50 Hz for the metal strip qualities FIG. 3 ;
Fig. 5
Figure 12 is a plot of dynamic coercivity vs. function of the ratio of strip thickness and surface roughness of a single lot;
Fig. 6
Figure 10 shows a graph of induction amplitudes at an excitation field strength of 10 mA / cm as a function of the ratio of strip thickness and roughness of a first metal strip alloy;
Fig. 7
shows a diagram with values of strip thickness and surface roughness of different batches of metal strip;
Fig. 8
Figure 10 shows a graph of inductance amplitudes and amplitude permeabilities as a function of exciting field amplitude at 50 Hz sinusoidal excitation for different metal strip grades compared to a nanocrystalline alloy to a Coarse-Cr NiFe alloy Ultraperm 10 having the characteristic 020;
Fig. 9
shows a plot of dynamic (50 Hz) and static (dc) coercive field strength as a function of Ratio of strip thickness and surface roughness of different batches;
Fig. 10
Figure 10 shows a graph of induction amplitudes at an excitation field strength of 10 mA / cm as a function of the ratio of strip thickness and roughness of a second metal strip alloy;
Fig. 11a
Figure 4 shows a 50 Hz induction amplitudes plot of three nanocrystalline metal strip grades as compared to a Co-crystalline Ultraperm 200 metal strip of NiFe alloy;
Fig. 11b
Fig. 10 is a graph showing the changes of the induction amplitudes after a DC field impact and a knocking load;
Fig. 12
FIG. 12 is a graph of dynamic coercive force vs. function of the ratio of strip thickness and surface roughness of an amorphous VITROVAC 6030 Z strip material; FIG.
Fig. 13
Figure 10 shows a graph of induction amplitudes at an excitation field strength of 10 mA / cm as a function of the ratio of strip thickness and surface roughness of an amorphous VITROVAC 6030 Z strip material.

Im Rahmen der Fertigungsüberleitung der nanokristallinen Legierung Fe75,5Cu1Nb3Si12.5B8 wurde ein Stichversuch zum Einfluss von Banddicke und Bandrauigkeit auf die nach Wärmebehandlung erzielbare Magnetqualität durchgeführt. Hierzu wurde bei einer Bandcharge (KA 1283, Einsatz 7 kg, Bandbreite 15 mm) durch Erniedrigung der Walzengeschwindigkeit während des Schussverlaufes die Banddicke von ca. 16 µm (Mikrometer) auf ca. 35 µm variiert. Durch Absenkung des Gießdruckes gegen Schussende wurde schließlich versucht, die Bandrauigkeit bei gleichbleibender Dicke (um 35 µm) zu erhöhen. Aus dieser Charge wurden über den Schussverlauf hinweg Bandproben verschiedener Dicke und Rauigkeit entnommen und hieraus Ringbandkerne (RBK) mit der Abmessung 22 mm x 16 mm x Bandbreite für weitere magnetische Untersuchungen gewickelt.As part of the production transition of the nanocrystalline alloy Fe 75.5 Cu 1 Nb 3 Si 12.5 B 8 , a puncture test was carried out to investigate the influence of strip thickness and band roughness on the magnet quality achievable after heat treatment. For this purpose, in a batch of strip (KA 1283, use 7 kg, belt width 15 mm) by lowering the roller speed during the Schussverlaufes the band thickness of about 16 microns (microns) varies to about 35 microns. By lowering the casting pressure towards the end of the weft, it was finally attempted to increase the tape roughness with a constant thickness (by 35 μm). From this batch band samples of varying thickness and roughness were taken over the course of the shot and wound therefrom ring band cores (RBK) measuring 22 mm × 16 mm × bandwidth for further magnetic examinations.

In die Untersuchungen mit einbezogen waren auch eine Reihe von verschiedenen KA-Chargen der Legierung Fe73,5Cu1Nb3Si13.5B9, bei denen die Herstellparameter im Hinblick auf eine Verbesserung der Duktilität im Herstellzustand variiert wurden. Aus diesen Chargen wurden ebenfalls Ringbandkerne der Abmessung 22 mm x 16 mm x Bandbreite für die magnetischen Untersuchungen hergestellt.Included in the investigations were also a number of different KA batches of the alloy Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 , in which the production parameters were varied with a view to improving the ductility in the production state. From these batches ring wire cores measuring 22 mm x 16 mm x bandwidth were also produced for magnetic investigations.

Die Ringbandkerne wurden in einem Fertigungsofen unter Wasserstoff-Atmosphäre im Längsfeld angelassen. Die genauen Anlassbedingungen waren: 1h Haltezeit bei 540°C im Längsfeld (Wechselfeld von ca. 10 A/cm), Abkühlung mit 1 K/min.The toroidal cores were tempered longitudinally in a production furnace under hydrogen atmosphere. The exact starting conditions were: 1h holding time at 540 ° C in the longitudinal field (alternating field of about 10 A / cm), cooling at 1 K / min.

Gemessen wurden die quasistatischen Hystereseschleifen, sowie die 50Hz-Kommutierungskurven. Die 50Hz-Kennlinien wurden im "abnehmenden erregenden Feld gemessen", was einer Messung des entmagnetisierten Kernes entspricht. Aus den Kommutierungskurven wurde entsprechend Figur 1 die dynamische Koerzitivfeldstärke Hc ausgewertet, d.h. in den nachfolgenden Diagrammen der Figuren bezeichnet Hc(dyn) diejenige erregende Feldstärke, bei welcher gerade in etwa die Sättigung bzw. die Maximalpermeabilität erreicht wird.Measured were the quasistatic hysteresis loops, as well as the 50Hz commutation curves. The 50 Hz characteristics were measured in the "decreasing excitation field", which corresponds to a measurement of the demagnetized core. From the commutation curves was accordingly FIG. 1 the dynamic coercive field strength H c is evaluated, ie in the following diagrams of the figures, H c (dyn) designates that exciting field strength at which the saturation or maximum permeability is just about reached.

Zur Charakterisierung der Bandgeometrie wurde die mittlere Banddicke aus dem Metergewicht bestimmt sowie die Rauigkeit an der Bandunterseite (quer zur Bandrichtung) gemessen.To characterize the band geometry, the mean band thickness was determined from the weight of the meter and the roughness at the band underside (transverse to the band direction) was measured.

Beispiel 1example 1

Dem Beispiel 1 liegen Untersuchungen in Bezug auf Rauigkeit und Banddicke mit der Legierung Fe75,5Cu1Nb3Si12.5B8 als Charge KA 1283 zugrundeExample 1 is based on investigations with respect to roughness and strip thickness with the alloy Fe 75.5 Cu 1 Nb 3 Si 12.5 B 8 as batch KA 1283

Das Verhältnis von Banddicke zu Rautiefe d/Ra reicht von etwa 10 bis 60. Die Figur 2 zeigt die zugehörige Variation von Banddicke d und Rautiefe Ra. Es ist in Figur 2 erkennbar, dass die dünneren Bänder in der Regel auch eine absolut größere Rauigkeit aufweisen.The ratio of strip thickness to surface roughness d / R a ranges from about 10 to 60. The FIG. 2 shows the associated variation of strip thickness d and roughness Ra. It is in FIG. 2 recognizable that the thinner tapes usually have an absolutely greater roughness.

Die mittlere, quasistatisch gemessene Koerzitivfeldstärke beträgt H c = 7.5 ± 1 mA / cm ( bei H max = 50 mA / cm

Figure imgb0001
The mean, quasi-statically measured coercive force is H c = 7.5 ± 1 mA / cm ( at H Max = 50 mA / cm
Figure imgb0001

Das mittlere, quasistatisch gemessene Remanenzverhältnis liegt bei B r / B m = 0.97 ± 0.01 bei H max = 200 mA / cm .

Figure imgb0002
The mean, quasi-statically measured remanence ratio is B r / B m = 0.97 ± 12:01 at H Max = 200 mA / cm ,
Figure imgb0002

Figur 3 zeigt die bei 1 Hz (sinusförmige Feldstärke) gemessene Kommutierungskurve (Bmax über H), sowie die zugehörige Amplitudenpermeabilität µ. FIG. 3 shows the commutation curve measured at 1 Hz (sinusoidal field strength) (B max over H) and the associated amplitude permeability μ.

Bei den dickeren und glatteren Bändern sind andeutungsweise etwas bessere Magnetwerte zu erkennen. Insgesamt ist der hier festgestellte Einfluss von Banddicke und Bandrauigkeit auf die quasistatischen und 1Hz-Meßwerte jedoch nur gering und geht fast in der Messgenauigkeit unter. Im Gegensatz hierzu wurde in Vergleichsuntersuchungen an amorphen Werkstoffen wie VC 6150 Z und VC 6030 Z eine deutliche Verschlechterung von Hc und Br mit zunehmendem Verhältnis von Ra/d festgestellt.With the thicker and smoother bands suggestively better magnet values can be seen. Overall, the influence of strip thickness and band roughness determined here is on However, the quasi-static and 1Hz measured values are low and are almost lost in the measurement accuracy. In contrast, in comparative studies on amorphous materials such as VC 6150 Z and VC 6030 Z, a significant deterioration of H c and B r was observed with increasing ratio of R a / d.

Bei höheren Messfrequenzen sieht die Situation deutlich anders aus. Schon bei 50 Hz ergeben sich deutliche Unterschiede zwischen den verschiedenen Bandqualitäten. Figur 4 zeigt hierzu die bei 50 Hz (sinusförmige Feldstärke) gemessene Kommutierungskurve (Bmax über H), sowie die zugehörige Amplitudenpermeabilität µ. Der Vergleich der 1Hz- und 50Hz-Kennlinien zeigt, dass die 50Hz-Kennlinie praktisch vollständig durch anomale Wirbelströme bestimmt ist. Wie bereits oben erläutert wurde, sind die klassischen Wirbelstrombeiträge zu vernachlässigen. Es fällt auf, dass insbesondere die dünnen und rauen Bänder mit Abstand deutlich bessere 50Hz-Magnetwerte liefern als die dickeren glatten Bänder.At higher frequencies the situation looks very different. Even at 50 Hz, there are clear differences between the different band qualities. FIG. 4 shows the measured at 50 Hz (sinusoidal field strength) commutation curve (B max over H), and the associated amplitude permeability μ. The comparison of the 1 Hz and 50 Hz characteristic curves shows that the 50 Hz characteristic is almost completely determined by anomalous eddy currents. As already explained above, the classical eddy current contributions are negligible. It is noticeable that in particular the thin and rough bands deliver by far better 50Hz magnet values than the thicker smooth bands.

Figur 5 zeigt die dynamische Koerzitivfeldstärke Hc (gemäß Definition in Figur 1) in Abhängigkeit des Verhältnisses d/Ra. Die Werte für f = 1 Hz fallen mit den quasistatisch gemessenen Werten zusammen und zeigen, wie schon erwähnt, praktisch keine Abhängigkeit von d/Ra. Die wirbelstrombestimmten 50 Hz-Werte hingegen nehmen linear mit d/Ra zu, was den oben dargelegten theoretischen Erwartungen entspricht. Die Extrapolation der 50Hz-Werte für d/Ra ≥ 0 führt auf einen Wert, der in etwa der quasistatischen Koerzitivfeldstärke entspricht. FIG. 5 shows the dynamic coercive force H c (as defined in FIG. 1 ) As a function of the ratio d / R a. The values for f = 1 Hz coincide with the quasi-statically measured values and show, as already mentioned, virtually no dependence on d / R a . The swirl current-determined 50 Hz values, on the other hand, increase linearly with d / R a , which corresponds to the theoretical expectations set out above. The extrapolation of the 50 Hz values for d / R a ≥ 0 leads to a value that roughly corresponds to the quasistatic coercive field strength.

Für die mögliche Anwendung in 30mA-Fehlerstromschaltern ist die Induktionsamplitude B10 bei einer erregenden Feldamplitude von 10 mA/cm relevant. Die Konsequenzen des Verhältnisses d/Ra für diese Größe sind in Figur 6 dargestellt. B10 nimmt mit abnehmender Banddicke und zunehmender Rauigkeit deutlich zu. Der maximale Wert von B10, d.h. B10 ungefähr gleich Bs, ist zu erwarten, wenn die dynamische Koerzitivfeldstärke Hc kleiner als 10 mA/cm wird. Dies ist z.B. für kleinere Frequenzen realisiert.For the possible application in 30mA residual current circuit breakers, the induction amplitude B 10 is relevant for an exciting field amplitude of 10 mA / cm. The consequences of the relationship d / R a for this size are in FIG. 6 shown. B 10 increases significantly with decreasing strip thickness and increasing roughness. The maximum value of B 10 , ie B 10 approximately equal to B s , is expected when the dynamic coercive force H c becomes less than 10 mA / cm. This is realized eg for smaller frequencies.

Beispiel 2Example 2

Dem Beispiel 2 liegen Untersuchungen in Bezug auf Rauigkeit und Banddicke mit der Legierung Fe73,5Cu1Nb3Si13.5B9 aus verschiedenen Chargen, sowie Untersuchungen weiterer Einflussparameter zugrunde.Example 2 is based on investigations with regard to roughness and strip thickness with the alloy Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 from various batches, as well as investigations of further influencing parameters.

Die an verschiedenen Chargen der Legierung Fe73,5Cu1Nb3Si13.5B9 gewonnenen Ergebnisse sind in den Figuren 7-11 dargestellt. Es ergibt sich auch hier die eben diskutierte Abhängigkeit der Magnetwerte von Bandrauigkeit und Banddicke. Im Unterschied zum oben diskutierten Fall kommt hier der Einfluss der Rauigkeit etwas expliziter zum Ausdruck, da die mittlere Banddicke nicht so stark wie in Beispiel 1 variiert ( Figur 7 ).The results obtained on different batches of the alloy Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 are given in the Figures 7-11 shown. Here too, the just discussed dependence of the magnet values on the band roughness and band thickness arises. In contrast to the case discussed above, here the influence of the roughness is expressed somewhat more explicitly, since the mean strip thickness does not vary as strongly as in Example 1 ( FIG. 7 ).

Die Werte der statischen Koerzitivfeldstärke liegen bei etwa 3,5 mA/cm. Dieser im Vergleich zur Legierung des Beispiels 1 Fe75,5Cu1Nb3Si12.5B8 deutlich niedrigere Werte ist zum Teil dadurch bedingt, dass die statische Schleife nur mit etwa 20 mA/cm ausgesteuert wurde. Bei einer vergleichbaren Aussteuerung von Hmax = 50 mA/cm ergeben sich etwas höhere Hc-Werte um Hc = 5 mA/cm.Static coercivity values are about 3.5 mA / cm. This significantly lower value compared to the alloy of Example 1 Fe 75.5 Cu 1 Nb 3 Si 12.5 B 8 is partly due to the fact that the static loop was only controlled at approximately 20 mA / cm. With a comparable modulation of H max = 50 mA / cm, slightly higher H c values result around H c = 5 mA / cm.

Die 50Hz-Magnetwerte liegen im vorliegenden Fall (Fe73,5Cu1Nb3Si13.5B9) etwas günstiger als diejenigen der Legierung Fe75,5Cu1Nb3Si12.5B8. Dies kommt am deutlichsten beim Vergleich der B10-Werte bei demselben d/Ra-Verhältnis zum Ausdruck (vgl. Figur 8 und 10 ). Hierzu ist anzumerken, dass die Legierung mit 13,5 Atomgew.% Si und mit λs = 2x10-6 und Ku = 20 J/m3, sowohl eine um den Faktor zwei kleinere Magnetostriktionskonstante λs, als auch eine kleinere magnetfeldinduzierte Anisotropie Ku aufweist (die entsprechenden Werte für die Legierung mit 12,5 Atomgew.% Si sind: λs = 3,5x10-6 und Ku = 40 J/m3). Damit besitzt die Legierung mit Si 13,5 Atomgew.% sowohl für die reinen weichmagnetischen Eigenschaften wie auch für die dynamischen Eigenschaften günstigere Grundvorausetzungen.The 50 Hz magnet values in the present case (Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 ) are somewhat more favorable than those of the alloy Fe 75.5 Cu 1 Nb 3 Si 12.5 B 8 . This is most clearly expressed when comparing the B 10 values at the same d / R a ratio (cf. FIG. 8 and 10 ). It should be noted that the alloy contains 13.5 atomic% Si and λ s = 2x10 -6 and K u = 20 J / m 3 , both a smaller magnetostriction constant λ s by a factor of two, and a smaller magnetic field-induced anisotropy K u (the corresponding values for the 12.5 atomic weight% Si alloy are: λ s = 3.5x10 -6 and K u = 40 J / m 3 ). Thus, the alloy with Si 13.5 atomic% has more favorable basic requirements both for the pure soft magnetic properties and for the dynamic properties.

Bei genauerer Betrachtung der Figuren 9 und 10 fällt ein Ausreißer auf (gekennzeichnet durch ein Ausrufungszeichen); es handelt sich hierbei um ein Band aus einer Charge KA 1114. Auffällig sind die, trotz relativ kleinem d/Ra-Verhältnis, relativ schlechten dynamischen Eigenschaften, wie auch die im Vergleich zu den anderen Chargen mehr als doppelt so hohe statische Koerzitivfeldstärke. Ferner wies dieses Band auch eine bezüglich des Feldnullpunktes stark verschobene Hystereseschleife auf. Auffällig an der Bandgeometrie war eine mehr als 5 µm tiefe Längsriefe, die im Ra-Wert nicht enthalten war, d.h. es wurde bei der Messung nicht über diese Riefe hinweg gemessen. Diese Riefe rührt von Schlacketeilchen in der Düse her, was schließlich zu einer Spaltung des Bandes und letztlich zum vorzeitigen Schussabbruch führte.Upon closer inspection of the Figures 9 and 10 an outlier is noticed (marked by an exclamation mark); this is a band from a batch KA 1114. Noticeable are, despite relatively small d / R a ratio, relatively poor dynamic properties, as well as more than twice as high compared to the other batches static coercive field strength. Furthermore, this band also had a hysteresis loop greatly shifted with respect to the field zero point. A striking feature of the band geometry was a longitudinal pitch more than 5 μm deep, which was not included in the Ra value, ie it was not measured over this score during the measurement. This groove is due to slag particles in the nozzle, which eventually led to splitting of the belt and ultimately premature firing.

Bei Werkstoffen mit rechteckförmiger Hystereseschleife ist die Magnetisierungskennlinie relativ empfindlich von den genauen Messbedingungen und dem Zustand des Kernes vor der Messung abhängig. Die bislang diskutierten Kennlinien wurden im abnehmenden Magnetfeld gemessen (entspricht einer Messung des entmagnetisierten Kernes) an Kernen im Zustand "wie getempert, einige Tage danach". Im Vergleich zu einer derartigen Referenzkurve ergibt sich:

  1. 1. Eine Reduzierung der Induktionswerte um bis zu 50-100 mT nach Gleichfeldvorbelastung (im vorliegenden Fall ca. 1A/cm).
  2. 2. Eine Anhebung der Induktionswerte bis zu 100-200 mT nach Klopfen des Kernes.
For materials with a rectangular hysteresis loop, the magnetization characteristic is relatively sensitive to the exact measurement conditions and the state of the core before the measurement. The characteristics discussed so far were measured in a decreasing magnetic field (corresponds to a measurement of the demagnetized core) on cores in the state "as annealed, a few days after". In comparison to such a reference curve, it follows:
  1. 1. A reduction of the induction values by up to 50-100 mT after DC field stress (in the present case approx. 1A / cm).
  2. 2. Increasing the induction values up to 100-200 mT after knocking the core.

Figur 11 zeigt diese Änderungen als Funktion des erregenden Feldes zusammen mit der B-H-Kommutierungskurve im Vergleich mit Ultraperm 200. Es ist erkennbar, dass die Änderungen des weichmagnetischen nanokristallinen Metallbands deutlich größer als bei dem grobkristallinen Ultraperm 200 Metallband einer NiFe-Legierung sind. FIG. 11 shows these changes as a function of the exciting field together with the BH commutation curve in comparison with Ultraperm 200. It can be seen that the changes of the soft magnetic nanocrystalline metal strip are significantly larger than in the case of the ultracrystalline Ultraperm 200 metal strip of a NiFe alloy.

Bemerkenswert sind die Änderungen der Magnetwerte nach einem Klopfen des Metallbands. Während die hier untersuchten Chargen der Legierungszusammensetzung Fe73,5Cu1Nb3Si13.5B9 eine deutliche Änderung der Magnetwerte zeigten, war bei der Legierung Fe75,5Cu1Nb3Si12.5B8 (trotz höherer Magnetostriktion) wie auch bei Ultraperm 200 praktisch keine Änderung zu beobachten. Momentan kann das Phänomen nur als Hinweis verstanden werden, dass das Handling der Kerne die Magnetwerte fallweise beeinflussen kann.Noteworthy are the changes in the magnet values after a knock of the metal strip. While the alloy compositions Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 examined here showed a significant change in the magnet values, the alloy Fe 75.5 Cu 1 Nb 3 Si 12.5 B 8 (despite higher magnetostriction) was also a Ultraperm 200 virtually no change to watch. Currently, the phenomenon can only be understood as an indication that the handling of the cores can influence the magnet values on a case-by-case basis.

Der Einfluss eines Gleichfeldstoßes hingegen war wesentlich reproduzierbarer und bei allen untersuchten Kernen zu beobachten. Das Phänomen spiegelt den irreversiblen Charakter der zugrunde liegenden Magnetisierungsprozesse wieder (Pinning von Domänen-Wänden, Nachwirkungseffekte). Dieser Effekt kann beim Messen unter Umständen unkontrolliert auftreten, nämlich beim Ein- und Ausschalten des Stromes in einem bestimmten Arbeitspunkt, abhängig von der ohmschen Last im Primär- und Sekundärkreis. Ursächlich hierfür sind durch induktive Rückwirkung bedingte Stromstöße, die das Material kurzzeitig in die Sättigung fahren können.The influence of a DC field impact, however, was much more reproducible and observed in all cores studied. The phenomenon reflects the irreversible nature of the underlying magnetization processes (pinning of domain walls, after-effects). This effect may be uncontrolled when measuring, namely when switching the current on and off in a specific operating point, depending on the ohmic load in the primary and secondary circuits. This is due to inductive retroactivity-related surges that can temporarily drive the material into saturation.

Praktisch gesehen bedeuten diese Effekte, dass die Induktionswerte bei nanokristallinen Werkstoffen mit rechteckförmiger Hystereseschleife in einem gegebenen Arbeitspunkt für ein- und denselben Kern momentan nur mit einer Toleranz von ca. ± 100 mT angegeben werden können.In practical terms, these effects mean that the induction values for nanocrystalline materials with a rectangular hysteresis loop at a given operating point for one and the same core can currently only be specified with a tolerance of about ± 100 mT.

Beispiel 3Example 3

Dem Beispiel 3 liegen Untersuchungen an einem amorphen Vergleichswerkstoff VITROVAC 6030 Z (Z steht für Werkstoff mit rechteckförmiger Hystereseschleife) in Bezug auf Rauigkeit und Banddicke zugrunde.Example 3 is based on tests on an amorphous comparison material VITROVAC 6030 Z (Z stands for material with a rectangular hysteresis loop) with regard to roughness and strip thickness.

Zum Vergleich mit dem nanokristallinen Material zeigen die Figuren 12 und 13 eine entsprechende Auswertung bei 50 Hz an VITROVAC 6030 Z gemessener Daten. Für d/Ra > 15 ergibt sich ein analoges Bild. Für d/Ra < 15 {d = 15 µm, Ra = 1,5 µm bis 3 µm) ist jedoch hier wieder eine Verschlechterung der Magnetwerte im Gegensatz zu dem linearen Anstieg bei nanokristallinen Metallbändern festzustellen. Dies ist im wesentlichen durch den Einfluss der Rauigkeit auf die quasistatische Koerzitivfeldstärke und die Remanenzmagnetisierung bedingt.For comparison with the nanocrystalline material show the Figures 12 and 13 a corresponding evaluation at 50 Hz on VITROVAC 6030 Z measured data. For d / R a > 15 an analogue picture results. For d / R a <15 {d = 15 μm, R a = 1.5 μm to 3 μm), however, a deterioration of the magnet values is observed here in contrast to the linear increase in nanocrystalline metal bands. This is essentially due to the influence of the roughness on the quasi-static coercive field strength and the remanence magnetization.

Die Ergebnisse für VITROVAC 6030 Z machen deutlich, dass der Verbesserung der dynamischen Eigenschaften durch Reduktion der Banddicke und im Falle von amorphen Metallbändern mit rechteckförmigen Hystereseschleifen durch Anhebung der Bandrauigkeit Grenzen gesetzt sind.The results for VITROVAC 6030 Z make it clear that the improvement of the dynamic properties by reducing the strip thickness and in the case of amorphous metal strips with rectangular hysteresis loops are set by raising the band roughness limits.

Die vorliegenden Untersuchungen zeigen, dass die 50Hz-Eigenschaften von amorphen und nanokristallinen Werkstoffen mit rechteckförmiger Hystereseschleife entscheidend vom Verhältnis Banddicke d zu Rautiefe Ra bestimmt werden. Dabei fällt dem Einfluss von d/Ra mindestens eine genauso wichtige Rolle zu wie dem früher festgestellten Einfluss der in Bandrichtung induzierten uniaxialen Anisotropie Ku. Im Hinblick auf die Fertigungssicherheit erlangt d/Ra fast eine entscheidende Rolle, da dieser Parameter wesentlich schwieriger zu beherrschen ist, als die durch die Legierungszusammensetzung und Anlassbehandlung wohl definierte induzierte Anisotropie Ku.The present investigations show that the 50 Hz properties of amorphous and nanocrystalline materials with a rectangular hysteresis loop are decisively determined by the ratio of strip thickness d to surface roughness R a . The influence of d / R a is at least as important as the influence of the uniaxial anisotropy K u induced in the direction of the ribbon. With regard to the production safety d / Ra, gained nearly a crucial role because this parameter is much more difficult to master than the well-defined by the alloy composition and annealing treatment induced anisotropy K u.

Die besten Magnetwerte wurden bislang an dünnen (15 bis 20 µm) und rauen Bändern (Ra = 1 bis 1.5 µm) mit d/Ra-Verhältnissen zwischen 10 und 20 beobachtet. Dabei weisen frühere Untersuchungen an VITROVAC 6030 Z jedoch auch darauf hin, dass bei zu kleinen d/Ra-Verhältnissen die Magnetwerte aufgrund anwachsender Hystereseverluste wieder verschlechtert werden. Die kritische Grenze für nanokristalline Legierungen wurde noch nicht erreicht.The best magnetic properties were previously (15 to 20 microns) to thin and rough bands (R a = 1 to 1.5 microns) with d / R ratios observed a 10 to 20 However, earlier studies on VITROVAC 6030 Z also indicate that the magnet values are deteriorated again due to increasing hysteresis losses if the d / R a ratios are too small. The critical limit for nanocrystalline alloys has not yet been reached.

Die physikalische Ursache für die Verbesserung der Magnetwerte mit zunehmender Rauigkeit und abnehmender Banddicke könnte auf dynamische Domänenverfeinerung in dem nanokristallinen Metallband zurückzuführen sein. Letzteres resultiert vermutlich aus den um Oberflächendefekten herum (wie Lufttaschen an der Bandunterseite, gröbere kristalline Ausscheidungen u.a.) vorhandenen Abschlussdomänenstrukturen und vergleichbaren Magnetisierungsinhomogenitäten.The physical cause for the improvement in magnet values with increasing roughness and decreasing ribbon thickness could be due to dynamic domain refinement in the nanocrystalline metal ribbon. The latter presumably results from the closure domain structures present around surface defects (such as air pockets on the underside of the belt, coarser crystalline precipitates, etc.) and comparable magnetization inhomogeneities.

Für gute Magnetwerte sollte nach möglichst dünnem Band (möglichst unter 20 µm mittlere Banddicke) mit "definierter" Rauigkeit (um oder über Ra = 1 µm) gestrebt werden.For good magnet values, the band should be as thin as possible (if possible below 20 μm average band thickness) with "defined" roughness (around or above R a = 1 μm).

Die Forderung nach rauerem Band führt zu einer Verbesserung der dynamischen Magnetwerte, wenn der Magnetisierungsprozess maßgeblich durch Wandverschiebungen getragen wird. Dies trifft voll für Werkstoffe mit rechteckförmiger Hystereseschleife und bedingt für runde Hystereseschleifen zu.The demand for rougher tape leads to an improvement in the dynamic magnet values, if the magnetization process is significantly supported by wall displacements. This is true for materials with rectangular hysteresis loop and conditionally for round hysteresis loops.

Eine mögliche Magnetisierungsprozess bei rechteckförmigen Hystereseschleifen besteht darin, dass die Magnetisierung über die Bewegung von 180°-Domänenwänden quer zur Bandlängsrichtung abläuft. Aufgrund der hiermit verbundenen starken räumlichen Lokalisierung der Magnetisierungsänderungen ergeben sich überhöhte, sogenannte anomale Wirbelstromverluste. Dabei ist die Überhöhung der Verluste umso größer, je weniger Domänen am Magnetisierungsprozess beteiligt sind.One possible magnetization process for rectangular hysteresis loops is that the magnetization proceeds across the movement of 180 ° domain walls transversely to the tape longitudinal direction. Due to the associated strong spatial localization of the magnetization changes, excessive, so-called anomalous eddy current losses result. In this case, the greater the increase in losses, the fewer domains involved in the magnetization process.

Die Untersuchung der Frequenzabhängigkeit zeigt, dass die Magnetisierungskennlinie von nanokristallinen ferromagnetischen Werkstoffen mit rechteckförmiger Hystereseschleife sehr gut im Rahmen der schon für amorphe Legierungen erfolgreich eingesetzten Theorie von Bertotti aus Bertolli, J. Magn. Mat., 1556, 1986, Seiten 54 bis 57 , beschrieben werden kann. Hiernach ergibt sich der Beitrag der anomalen Wirbelstromverluste als P Fe nano Vo ρ el n 0 f B ^ 3 / 2

Figure imgb0003
Dabei bezeichnen

  • ρel den spezifischen elektrischen Widerstand,
  • n o die Zahl der Domänen pro Flächeneinheit beim quasi - statischen Durchlaufen der Hystereseschleife,
  • V o einen Mindestwert, um den das äußere Feld erhöht werden muss, um eine neue Domäne zu bilden, bzw. eine gepinnte Wand in Bewegung zu setzen, Vo ist damit letztlich eng verknüpft mit der statischen Koerzitivfeldstärke,
  • f die Ummagnetisierungsfrequenz und
  • die Induktionsamplitude.
The investigation of the frequency dependence shows that the magnetization characteristic of nanocrystalline ferromagnetic materials with a rectangular hysteresis loop is very well within the already successful theory of amorphous alloys Bertotti from Bertolli, J. Magn. Mat., 1556, 1986, pages 54 to 57 , can be described. After this, the contribution of the anomalous eddy current losses results as P Fe nano α Vo ρ el n 0 f B ^ 3 / 2
Figure imgb0003
Designate
  • ρ el the specific electrical resistance,
  • n o the number of domains per unit area during the quasi-static traversal of the hysteresis loop,
  • V o is a minimum value by which the outer field must be increased in order to form a new domain, or to set a pinned wall in motion, V o is thus ultimately closely linked to the static coercivity,
  • f the Ummagnetisierungsfrequenz and
  • B is the induction amplitude.

Die Verlustleistung ist allgemein durch H dB/dt gegeben, wobei die Ummagnetisierungsgeschwindigkeit dB/dt proportional zu f·B ist. H ist das äußere Feld, das nötig ist um die lokal erzeugten Wirbelstromfelder zu kompensieren. Aus Gleichung (1) folgt hierfür: H H c stat B Vo f B ^ ρ el n 0

Figure imgb0004
The power dissipation is generally given by H dB / dt, where the rate of magnetization reversal dB / dt is proportional to f · B. H is the external field needed to compensate for locally generated eddy current fields. From equation (1) follows for this: H - H c stat B α Vo f B ^ ρ el n 0
Figure imgb0004

Dabei bezeichnet Hc stat(B) den Verlauf der quasistatischen Hystereseschleife, der hauptsächlich durch Koerzitivfeldmechanismen bestimmt wird. Der Beitrag der sogenannten klassischen Wirbelströme wird hierbei vernachlässigt, was für nicht zu große Frequenzen (f < 1000 Hz) gerechtfertigt ist. Zum Beispiel liefert eine Abschätzung für f = 50 Hz und B = 1 T für das aus klassischen Wirbelströmen resultierende Wirbelstromfeld nur Bruchteile von mA/cm.Here H c stat (B) denotes the course of the quasistatic hysteresis loop, which is mainly determined by coercive field mechanisms. The contribution of the so-called classical eddy currents is neglected, which is justified for not too high frequencies (f <1000 Hz). For example, an estimate for f = 50 Hz and B = 1 T provides only fractions of mA / cm for the eddy current field resulting from classical eddy currents.

Die letztlich entscheidenden Parameter in Gleichung (1) und (2) sind die Domänendichte no, wie auch die Keimbildungsfeldstärke Vo. Zu klären ist im Nachfolgenden, wie beide Größen mit der Oberflächenrauigkeit und der Banddicke in Verbindung stehen.The ultimate critical parameters in Equations (1) and (2) are the domain density n o , as well as the nucleation field strength V o . To clarify below is how both sizes are related to the surface roughness and the strip thickness.

Bei in Bandebene liegender Magnetisierung bilden sich an geometrischen Abweichungen von einer ideal planen Oberfläche magnetische Oberflächenpole aus, was zu lokalen Streufeldern führt. Zur Reduktion der hiermit verbundenen Streufeldenergie bilden sich an den Oberflächendefekten Magnetisierungsinhomogenitäten, im Extremfall sind dies zipfelartige Abschlussdomänen z.B. an den Lufttaschen der Bandunterseite. Damit ist die Konsequenz einer langsameren Einmündung in die ferromagnetische Sättigung und insbesondere eine Reduktion des Remanenzverhältnisses gemäß J r / J s 1 1 2 N eff J s 2 2 μ 0 K

Figure imgb0005
verbunden, wobei N eff π 3 8 R a 2 λ d
Figure imgb0006
ein mittlerer durch die Oberflächenrauigkeit bedingter Entmagnetisierungsfaktor ist. Es bezeichnen ferner d die Banddicke, K die Anisotropie in Bandlängsrichtung und λ eine effektive Wellenlänge, die ein Maß für die Ausdehnung und den Abstand der Oberflächendefekte darstellt.In band-level magnetization, magnetic surface poles form on geometrical deviations from an ideal flat surface, resulting in local stray fields. In order to reduce the associated stray field energy, magnetization inhomogeneities are formed at the surface defects, in extreme cases these are jagged termination domains, for example at the air pockets of the underside of the band. Thus, the consequence of a slower entry into the ferromagnetic saturation and in particular a reduction of the remanence ratio according to J r / J s 1 - 1 2 N eff J s 2 2 μ 0 K
Figure imgb0005
connected, where N eff π 3 8th R a 2 λ d
Figure imgb0006
is a mean degaussing factor due to the surface roughness. Furthermore d denotes the band thickness, K the anisotropy in the band longitudinal direction and λ an effective wavelength, which represents a measure of the extent and the distance of the surface defects.

In diesem Fall sollte eine erhöhte Bandrauigkeit auch eine erhöhte Keimbildungswahrscheinlichkeit für neue Domänen mit sich ziehen. Untersuchungen der dynamischen Domänen-Struktur an FeSi-Blech und amorphen Metallen geben auch Hinweise darauf, dass mit steigender Frequenz neue Domänen vorzugsweise an Oberflächenunregelmäßigkeiten entstehen.In this case, increased band roughness should also entail an increased nucleation probability for new domains. Investigations of the dynamic domain structure FeSi sheet metal and amorphous metals are also indications that new domains are formed preferentially to surface irregularities with increasing frequency.

Zur Abschätzung des Einflusses von Ra auf die Domänendichte no kann z.B. von folgender stark vereinfachten Modellvorstellung ausgegangen werden:
Domänen, welche die Ummagnetisierung einleiten, bilden sich vorzugsweise an den Oberflächenunregelmäßigkeiten und besitzen somit in etwa deren effektive Ausdehnung λ. Für No Domänen ergibt sich damit ein Querschnittsanteil N0 ·λ/b = ηο·λ d (b = Bandbreite, n0 = N0 /(d)). Dieser Querschnittsanteil reduziert andererseits die Remanenzmagnetisierung und ist damit proportional zu 1 - Jr/Js. Damit folgt: n 0 1 J r / J s λ d R a 2 J s λ d 2 K

Figure imgb0007
To estimate the influence of R a on the domain density n o , for example, the following simplified model can be used:
Domains which initiate the remagnetization preferably form on the surface irregularities and thus have approximately their effective extent λ. For N o domains thus results in a cross-sectional portion N · λ 0 / b = ηο · λ d (b = bandwidth, n 0 = N 0 / (b · d)). On the other hand, this cross-sectional proportion reduces the remanence magnetization and is thus proportional to 1-J r / J s . With that follows: n 0 1 - J r / J s λ d α R a 2 J s λ d 2 K
Figure imgb0007

Zu einem hinsichtlich der Ra, d und K-Abhängigkeit ähnlichen Ausdruck gelangt man, wenn man von der mittleren Streufeldenergie 1/2 Neff Js 2 ausgeht und diese gleich der Domänenwandenergie setzt, die notwendig ist, um no Domänen pro Querschnitt zu erzeugen.An expression similar to the R a, d, and K dependence is obtained by assuming the average stray field energy 1/2 N e ff J s 2 and setting it equal to the domain wall energy necessary to give n o domains per cross section to create.

Außerdem sind für den Einfluss auf die Wirbelstromverluste noch die maßgeblichen Koerzitivfeldmechanismen zu berücksichtigen. Hier ist im wesentlichen zwischen zwei Fällen zu unterscheiden:In addition, the relevant coercitive field mechanisms still have to be considered for the influence on eddy current losses. Here, one can distinguish between two cases:

a) Ha) H cc ist durch Pinning an Oberflächendefekten bestimmtis determined by pinning to surface defects

Dabei ist die Koerzitivfeldstärke im Wesentlichen durch Pinning an den Oberflächendefekten bestimmt. Die Mindestfeldstärke Vo um eine neue, bislang gepinnte Domäne am Magnetisierungsprozess zu beteiligen, ist dann anlog zu Hc durch V 0 H c R a λ d A K J s

Figure imgb0008
gegeben. Dann folgt aus Gl. (2) für das Wirbelstromfeld H H c stat B λ d R a K u f B ^
Figure imgb0009
The coercitive field strength is essentially determined by pinning on the surface defects. The minimum field strength V o for involving a new, previously pinned domain in the magnetization process is then analogous to H c V 0 α H c α R a λ d A K J s
Figure imgb0008
given. Then follows from Eq. (2) for the eddy current field H - H c stat B α λ d R a K u f B ^
Figure imgb0009

Hierbei ist zu beachten, dass Hc stat entsprechend Gleichung (5a) proportional zu Ra/d ist, also letztlich stärker von Ra/d abhängig ist als die anomalen Wirbelstromverluste. Damit ergeben sich für zu raue Bänder, aufgrund der zunehmenden Hystereseverluste wieder schlechtere Magnetwerte.It should be noted that H c stat in accordance with equation (5a) is proportional to R a / d, that is ultimately more dependent on R a / d than the anomalous eddy current losses. This results in inferior magnet values again due to the increasing hysteresis losses for bands that are too rough.

b) Hb) H cc ist von Oberflächendefekten unabhängigis independent of surface defects

In diesem Fall ist Hc durch Keimbildung bzw. durch Pinning an intrinsischen Anisotropiefluktuationen bestimmt. Dann ist V 0 H c K / J s

Figure imgb0010
womit das Wirbelstromfeld als H H c stat B λ d R a K 3 / 2 f B ^
Figure imgb0011
folgt. Dieser Fall ist insbesondere für nanokristalline Werkstoffe wichtig, bei denen auf Grund der endlichen Korngröße die mittlere Kristallanisotropie (K1) einen entscheidenden Beitrag zu Hc liefern kann, im Gegensatz etwa zu amorphen Systemen. Bei konsequenter Rechnung wäre hier entsprechend der Term K3/2 durch Ku 1/2 <K1> zu ersetzen.In this case, H c is determined by nucleation or by pinning to intrinsic Anisotropiefluktuationen. Then V 0 α H c α K / J s
Figure imgb0010
with which the eddy current field as H - H c stat B α λ d R a K 3 / 2 f B ^
Figure imgb0011
follows. This case is particularly important for nanocrystalline materials in which the finite grain size, the average crystal anisotropy (K 1 ) can make a decisive contribution to H c , as opposed to amorphous systems. In the case of a consistent calculation, the term K 3/2 would have to be replaced by K u 1/2 <K 1 >.

In diesem Grenzfall ist die Koerzitivfeldstärke und somit sind auch die Hystereseverluste unabhängig von der Rauigkeit. Entsprechend ergibt sich eine effizientere Reduktion der Gesamtverluste mit zunehmender Rauigkeit, als im oben diskutierten Fall der amorphen Werkstoffe.In this limiting case, the coercive field strength and thus the hysteresis losses are independent of the roughness. Accordingly, there is a more efficient reduction in overall losses with increasing roughness than in the amorphous materials case discussed above.

Insgesamt scheinen sich die generellen Aussagen der obigen Modellrechnung mit dem nachfolgenden Experiment übereinzustimmen. Man muss sich aber dennoch der stark vereinfachenden Annahmen, die in obige Formeln eingehen, bewusst sein.Overall, the general statements of the above model calculation seem to agree with the following experiment. However, one must be aware of the simplistic assumptions that are made in the above formulas.

Zusammenfassend ist festzustellen, dass die 50Hz-Kennlinie nanokristalliner (wie auch amorpher) Werkstoffe mit rechteckförmiger Hystereseschleife entscheidend von anomalen Wirbelstromverlusten geprägt ist. Die obigen Untersuchungen lassen es feststellen, dass hierbei das Verhältnis von Banddicke d zu Oberflächenrauigkeit Ra einen wesentlichen Einflussparameter bildet, der weit über den Einfluss der Legierungszusammensetzung hinausgehen kann. Die besten Magnetwerte wurden für Verhältnisse d/Ra < 20 gefunden, d.h. für dünne Bänder (um 20 µm und kleiner) mit relativ rauer Oberfläche (Ra um 1 µm oder etwas größer). Mit der Legierungszusammensetzung Fe73,5Cu1Nb3Si13.5B9 können so in dem für wechselstromsensitive 30 mA Fehlerstromschalter relevanten Arbeitspunkt bei Hc = 10 mA/cm etwa doppelt so hohe Induktionswerte wie bei grobkristallinen NiFe-Legierungen (wie Ultraperm 10, 200) erreicht werden. Die Möglichkeit, derartige Spitzenwerte zu erreichen und entscheidende Ansatzpunkte für ihre reproduzierbare Herstellung zu schaffen, kann somit erreicht werden.In summary, it can be stated that the 50 Hz characteristic of nanocrystalline (as well as amorphous) materials with a rectangular hysteresis loop is decisively characterized by anomalous eddy current losses. The above investigations indicate that the ratio of the strip thickness d to the surface roughness R a forms a significant influencing parameter, which can go far beyond the influence of the alloy composition. The best magnet values were found for ratios d / R a <20, ie for thin bands (around 20 μm and smaller) with a relatively rough surface (R a around 1 μm or slightly larger). With the alloy composition Fe 73.5 Cu 1 Nb 3 Si 13.5 B 9 , in the operating point relevant for ac-current-sensitive 30 mA fault current switch at Hc = 10 mA / cm, induction values approximately twice as high as with coarsely crystalline NiFe alloys (such as Ultraperm 10, 200 ) reached become. The possibility of achieving such peak values and creating decisive starting points for their reproducible production can thus be achieved.

Claims (14)

  1. Soft magnetic metal strip, wherein the soft magnetic metal strip has a nanocrystalline or amorphous structure, wherein the metal strip has strip thickness-to-roughness ratios d/Ra of 5 ≤ d/Ra ≤ 25, preferably 10 ≤ d/Ra ≤ 20, characterised in that
    the metal strip has a fish scale pattern with a structure arranged across and at an angle to the strip longitudinal direction.
  2. Metal strip according to claim 1 or claim 2, wherein the metal strip contains alloy constituents of silicon, boron, niobium and copper in more than 73 % iron by atomic weight.
  3. Metal strip according to any of claims 1 to 3, wherein the metal strip contains an alloy with FE75.5Cu1NB3Si12.5B8 or FE73.5Cu1NB3Si13.5B9.
  4. Metal strip according to any of the preceding claims, wherein the strip thickness lies between 5 µm < d < 20 µm and/or the roughness Ra lies between 0.6 µm < d < 2.5 µm, preferably between 1 µm < d < 2 µm.
  5. Metal strip according to any of the preceding claims, wherein Br/Bm is > 80%.
  6. Metal strip according to any of the preceding claims, wherein one surface of the metal strip has a surface topology of a surface structuring of a casting roller.
  7. Magnet core comprising a wound soft magnetic strip according to any of claims 1 to 6.
  8. Use of the soft magnetic strip according to any of claims 1 to 6 for earth leakage circuit breakers with a leakage current limit value Imax ≤ 30 mA.
  9. Use of the soft magnetic strip according to any of claims 1 to 6 for a speed sensor acting together with a segmented permanent magnet disc.
  10. Use of the soft magnetic strip according to any of claims 1 to 6 for AC-sensitive electromechanical components with a soft magnetic annular strip core.
  11. AC-sensitive earth leakage circuit breaker having a magnet core according to claim 7.
  12. AC-sensitive earth leakage circuit breaker according to claim 11, wherein the magnet core has a Br/Bm ratio > 80% at a frequency of less than 1000 Hz.
  13. Distribution transformer having a magnet core according to claim 7.
  14. Distribution transformer according to claim 13, wherein the magnet core has a Br/Bm ratio > 80% at a frequency of less than 1000 Hz.
EP11799328.7A 2010-11-23 2011-11-17 Soft magnetic metallic ribbon for electromechanic element Active EP2643839B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010060740A DE102010060740A1 (en) 2010-11-23 2010-11-23 Soft magnetic metal strip for electromechanical components
PCT/IB2011/055166 WO2012069967A1 (en) 2010-11-23 2011-11-17 Soft-magnetic metal strip for electromechanical components

Publications (2)

Publication Number Publication Date
EP2643839A1 EP2643839A1 (en) 2013-10-02
EP2643839B1 true EP2643839B1 (en) 2018-09-26

Family

ID=45375467

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11799328.7A Active EP2643839B1 (en) 2010-11-23 2011-11-17 Soft magnetic metallic ribbon for electromechanic element

Country Status (5)

Country Link
EP (1) EP2643839B1 (en)
KR (1) KR101477444B1 (en)
CN (1) CN103238190B (en)
DE (1) DE102010060740A1 (en)
WO (1) WO2012069967A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014217761A1 (en) * 2014-09-05 2016-03-10 Siemens Aktiengesellschaft Anisotropic soft magnetic material with moderate anisotropy and low coercive field strength and its production process
DE102019123500A1 (en) * 2019-09-03 2021-03-04 Vacuumschmelze Gmbh & Co. Kg Metal tape, method for producing an amorphous metal tape and method for producing a nanocrystalline metal tape

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3911480A1 (en) * 1989-04-08 1990-10-11 Vacuumschmelze Gmbh USE OF A FINE CRYSTALLINE IRON BASE ALLOY AS A MAGNETIC MATERIAL FOR FAULT CURRENT CIRCUIT BREAKERS
FR2755292B1 (en) 1996-10-25 1998-11-20 Mecagis PROCESS FOR MANUFACTURING A MAGNETIC CORE IN NANOCRYSTALLINE SOFT MAGNETIC MATERIAL
FR2764430B1 (en) * 1997-06-04 1999-07-23 Mecagis METHOD OF HEAT TREATMENT IN A MAGNETIC FIELD OF A COMPONENT MADE OF SOFT MAGNETIC MATERIAL
KR100606515B1 (en) * 1998-11-13 2006-07-31 바쿰슈멜체 게엠베하 운트 코. 카게 Magnetic core that is suitable for use in a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
DE10045705A1 (en) * 2000-09-15 2002-04-04 Vacuumschmelze Gmbh & Co Kg Magnetic core for a transducer regulator and use of transducer regulators as well as method for producing magnetic cores for transducer regulators
US6784588B2 (en) * 2003-02-03 2004-08-31 Metglas, Inc. Low core loss amorphous metal magnetic components for electric motors
JP5445889B2 (en) * 2005-09-16 2014-03-19 日立金属株式会社 Soft magnetic alloy, manufacturing method thereof, and magnetic component
CN100445410C (en) * 2005-09-27 2008-12-24 同济大学 Nano-crystal soft magnetic alloy material and its production
DE102006019613B4 (en) * 2006-04-25 2014-01-30 Vacuumschmelze Gmbh & Co. Kg Magnetic core, process for its preparation and its use in a residual current circuit breaker
JP2007299838A (en) * 2006-04-28 2007-11-15 Hitachi Metals Ltd Magnetic core for current transformer, current transformer using same, and electric power meter
CN101477868B (en) * 2008-10-15 2011-04-06 安泰科技股份有限公司 Iron based nanocrystalline magnet core for large power inverter power source and production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103238190A (en) 2013-08-07
EP2643839A1 (en) 2013-10-02
KR20130075780A (en) 2013-07-05
CN103238190B (en) 2017-02-15
DE102010060740A1 (en) 2012-05-24
KR101477444B1 (en) 2015-01-06
WO2012069967A1 (en) 2012-05-31

Similar Documents

Publication Publication Date Title
DE60015933T2 (en) MAGNETO-ACOUSTIC MARKER WITH SMALL DIMENSIONS AND HIGH SIGNAL AMPLITUDE FOR ELECTRONIC MONITORING OF ARTICLES
DE68920324T2 (en) Thin soft magnetic strip made of an alloy.
DE69018422T2 (en) Iron-based soft magnetic alloy, its manufacturing process and magnetic core made from it.
DE102017115791B4 (en) R-T-B-based rare earth permanent magnet
DE3835986C2 (en)
DE112010000836T5 (en) A soft magnetic alloy ribbon and manufacturing method therefor, and a soft magnetic alloy ribbon magnetic device
US8699190B2 (en) Soft magnetic metal strip for electromechanical components
DE202005022087U1 (en) Nanocrystalline core for current sensors, one- and two-stage energy meters and these integrating current probes
DE2835389A1 (en) MAGNETIC ALLOY
EP0762354B1 (en) Elongated bodies as security label for electromagnetic theft security systems
DE102012109744A1 (en) Alloy, magnetic core and method of making an alloy strip
DE68921856T2 (en) Soft magnetic Fe-based alloy.
DE3705893C2 (en)
DE102011002114A9 (en) Alloy, magnetic core and method of making an alloy strip
DE102007034925A1 (en) Method for producing magnetic cores, magnetic core and inductive component with a magnetic core
DE60011426T2 (en) MAGNETIC GLASS-TYPE ALLOYS FOR HIGH FREQUENCY APPLICATIONS
DE3710846A1 (en) TORQUE MEASURING DEVICE
EP2643839B1 (en) Soft magnetic metallic ribbon for electromechanic element
DE69118169T2 (en) AMORPHE FE-B-SI ALLOYS WITH IMPROVED AC MAGNETIC PROPERTIES AND IMPROVED HANDLING
WO1997021242A2 (en) Display element for use in a magnetic theft-prevention system
DE112014003755T5 (en) Amorphous Fe-based transformer magnetic core, process for its manufacture, and transformer
DE112019000590T5 (en) R-T-B BASED RARE EARTH PERMANENT MAGNET
EP1129459B1 (en) Use of a magnetic core for a current transformer, method for the production of a magnetic core and current transformer with a magnetic core
DE68908769T2 (en) Soft magnetic iron-based alloy.
DE2507105A1 (en) PERMANENT MAGNETIC MATERIAL WITH SAMARIUM, COBALT, COPPER AND IRON, METHOD FOR MANUFACTURING AND USING THE MATERIAL

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130624

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20171107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180417

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1046984

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014780

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181226

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190126

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014780

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

26N No opposition filed

Effective date: 20190627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181226

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1046984

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180926

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111117

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180926

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231123

Year of fee payment: 13

Ref country code: DE

Payment date: 20231127

Year of fee payment: 13