EP2641995B1 - Purge valve in a plasma deposition apparatus - Google Patents

Purge valve in a plasma deposition apparatus Download PDF

Info

Publication number
EP2641995B1
EP2641995B1 EP12199757.1A EP12199757A EP2641995B1 EP 2641995 B1 EP2641995 B1 EP 2641995B1 EP 12199757 A EP12199757 A EP 12199757A EP 2641995 B1 EP2641995 B1 EP 2641995B1
Authority
EP
European Patent Office
Prior art keywords
container
honeycomb
suction valve
electrical shielding
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP12199757.1A
Other languages
German (de)
French (fr)
Other versions
EP2641995A1 (en
Inventor
Jochen Krüger
Andreas Kraus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krones AG
Original Assignee
Krones AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krones AG filed Critical Krones AG
Publication of EP2641995A1 publication Critical patent/EP2641995A1/en
Application granted granted Critical
Publication of EP2641995B1 publication Critical patent/EP2641995B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32394Treating interior parts of workpieces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means

Definitions

  • PECVD plasma-enhanced chemical vapor deposition / plasma enhanced chemical vapor deposition
  • barrier layers are needed, for example, to reduce the transmission rates of gases through the plastic wall of a container. In this way, for example, the loss of CO 2 from the charged product or the entry of oxygen into the product can be minimized. Also, the product can be protected from substances that come from the container material and can change the color or taste of the product.
  • the interior of the container is evacuated to a pressure in the range of 1-10 Pa.
  • a process gas is then introduced via a gas lance, from which the layer is formed, the so-called "precursor", whereby the pressure inside the container to 10 - can increase 30 Pa or more.
  • This gas or gas mixture can then be partially or completely placed in a plasma state with the aid of electromagnetic radiation, eg microwave or radio frequency, for example 13.56 MHz, or other electric fields and thereby decomposed into its components.
  • electromagnetic radiation eg microwave or radio frequency, for example 13.56 MHz, or other electric fields and thereby decomposed into its components.
  • a high frequency which is radiated from a flat electrode outside the container, coupled to an electrically conductive gas lance and ignites at favorable pressure conditions in the container between 10 and 30 Pa, a plasma inside the container to be coated.
  • Portions of the process gas supplied via suitable holes in the gas lance to the container interior are plasma assisted in the gas phase or at the surface of the substrate to be coated, e.g. the inner wall of a plastic bottle, and condense on this surface to a closed layer.
  • this area is kept at a higher pressure, for example 3000 to 4000 Pa, than it prevails in the container.
  • the container can be pressed against a valve and the container interior can be sucked out to the process pressure of 1 to 30 Pa via it.
  • a problem that has been found in practice is that the plasma can burn not only in the container but also undesirably in the exhaust valve itself. This plasma consumes an undefined and indefinable amount of energy, which is then no longer available in the container to decompose the process gases. It is not easy to compensate for this loss of energy, for example, by a higher RF power, as this can lead to higher voltages at the electrodes. These higher voltages, in turn, may favor the occurrence of plasma discharges outside the container, further reducing the electrical power available within the container itself.
  • valves are made of plastic, they represent in principle a geometric extension of the bottle mouth. When coupled with high frequency, however, a plasma ignites there as well as in the container itself. If you construct the valve made of metal and ground the individual components, so inside a plasma can still form, as you can generate a hollow cathode in this way. Such hollow cathode plasmas In addition, they have a particularly intense plasma density, which can heat the valve components particularly hard and thus damage them.
  • a device according to the invention for coating a container, for example a plastic bottle, by means of plasma treatment contains at least one gas lance for supplying process gas into the container and at least one suction valve for sucking air or gas out of the container interior.
  • the suction valve has at least one recess, e.g. arranged centrally, for receiving or introducing the at least one gas lance into the container, and the suction valve has at least one grounded gas-permeable electrical shielding element, wherein the at least one grounded, gas-permeable electrical shielding element almost completely prevents the ignition and / or burning of plasma in the suction valve and / or suppressed.
  • the avoidance or minimization of plasma ignitions and / or plasma burns in the suction valve has, inter alia, the advantage that the suction valve is thermally less stressed, e.g. can be dispensed with an active cooling, and thus a longer life of the suction valve can be achieved.
  • the minimization of unwanted plasma ignition and / or plasma burning in the suction valve or outside of the container area to be coated has the advantage that an energy loss for the plasma used for the coating can be reduced.
  • the electrical shielding element around the at least one recess for receiving or introducing the at least one gas lance can have gas-permeable cavity structures.
  • these gas-permeable cavity structures may have average diameters which are equal to or less than the Debye length of the plasma generated in the coating in order to achieve an effective electrical shielding effect for minimizing plasma ignition and firing in the exhaust.
  • the electrical shielding element may, for example, have a multiplicity of different structures.
  • an electrical shielding element not belonging to the invention has a gas-permeable open-pore porous structure, with pores whose average pore diameter e.g. between 0.01 to 6 mm, preferably 3 to 4 mm.
  • said gas-permeable cavity structure, or said gas-permeable open-pored porous structure of the electrical shielding of metallic foam such as aluminum foam, or electrically conductive ceramic foam, for example, Al 2 O 3 / TiN or electrically conductive composite ceramic with carbon fibers, or electrically Conductive plastic or polymer foam, or may consist of a combination of said foams.
  • An electric shielding element not belonging to the invention around the at least one recess for receiving or introducing the at least one gas lance can also have at least one net-like lattice structure with mean net mesh diameters of e.g. between 0.01 to 6 mm, preferably 0.2 to 0.5 mm.
  • the suction valve may have a plurality of electrical shielding elements with net-like lattice structure, which may be arranged in several layers with intervals between 0.01 to 6 mm, preferably 0.5 to 1 mm, in the suction, for example, an ignition and / or establishment of a plasma between the layers to be able to prevent.
  • an electric shielding element not belonging to the invention consists of the at least one recess for receiving or introducing the at least one gas lance of concentrically arranged walls with radial intermediate partitions, with mean wall spacings of the concentrically arranged walls, e.g. between 0.01 to 6 mm, preferably 3 to 4 mm, and mean spacings of the radial partition walls, e.g. between 0.01 to 6 mm, preferably 3 to 4 mm.
  • the electrical shielding element to the at least one recess for receiving or importing the at least one gas lance, according to the invention is formed as a honeycomb structure, with average honeycomb diameters of the honeycomb tubes, for example, between 0.01 to 6 mm, preferably 3 to 4 mm.
  • the mean length of the honeycomb tubes is greater than the mean honeycomb diameter of the honeycomb tubes, and e.g.
  • the average length of the honeycomb tubes may exceed the mean honeycomb diameter of the honeycomb tubes by a factor of 4.0, 6.0, 10.0 or more, preferably 5 to 10. This has the advantage, inter alia, that the risk of plasma breakthrough along the longitudinal axis of the suction valve can be minimized.
  • the shapes of the cross sections of the honeycomb tubes may be of regular polygonal shape, e.g. Triangle, square, pentagon, hexagon, convex and / or non-convex inner wall form, star-shaped polygon shape, round shapes, e.g. Circular shape, elliptical shape, or a combination of said shapes.
  • hexagonal cross-sections are claimed here in accordance with the invention in order to be able to achieve an optimized ratio of honeycomb material, honeycomb volume and honeycomb stability.
  • an electrical shielding element and metal plates which may have a plurality of holes, with average bore diameters of 0.01 to 6 mm, preferably 3 to 4 mm.
  • the length of the holes may be a multiple of the average bore diameter, preferably by a factor of 5 to 10, exceeding the average bore diameter.
  • the electrical shielding element may consist of metal, for example aluminum, electrically conductive ceramic, eg Al 2 O 3 / TiN, electrically conductive composite ceramic with carbon fibers, electrically conductive plastic equipped, or consist of a combination of said materials.
  • the flow resistance of the suction valve during the extraction of air or gas from the container depends primarily on the open cross-section of the suction valve, the frictional resistance on the inner wall of the suction valve and the air flow in the valve.
  • the speed with which the container interior can be sucked to the desired process pressure is limited mainly by the opening cross-section of the container itself.
  • the opening cross-section of the suction valve can therefore be at least as large as the opening cross-section of the container.
  • the flow resistance of the suction valve during suction may be equal to or less than the flow resistance through the container mouth or container opening.
  • the container interior can be evacuated sufficiently quickly, for example in less than 500 ms, to a desired process pressure, for example between 1 to 30 Pa, in order to be able to treat or coat the containers at the speed at which they are the go through the production process, for example on conveyor belts, or holding clamps of a carousel.
  • the electrical shielding element may be formed in one piece or in several parts and take in its height at least 10%, 20%, 30% or 60% or more of the height of the suction valve.
  • the suction valve can also have a plurality of electrical shielding elements and take in the sum of the heights of the individual electrical shielding elements at least 10%, 20%, 30% or 60% or more of the height of the suction valve.
  • the electrical shielding element may thus be e.g. consist of a combination of honeycomb structure, porous porous foam, or grids, wherein the vertical distance between the different parts, less than 1, 2 mm, preferably less than 0.5 mm, may be.
  • a gas lance is introduced into the interior of the container through a recess in a suction valve located on the container opening.
  • the container interior is set to process pressure, e.g. 1 to 30 Pa, evacuated.
  • a process gas fed in via the gas lance is partially or completely converted into a plasma and, via plasma-assisted vapor deposition, the interior of the container is coated, e.g. with a gas barrier layer.
  • an electric shielding element located in the suction valve will almost completely prevent and / or suppress ignition and / or burning of plasma in the suction valve or in a region which is not to be coated.
  • a container 104 with a suction valve 100 is shown.
  • a gas lance 103 can be introduced here via a recess 102 in the suction valve 100 into the container.
  • the suction valve 100 can have an electrical shielding element 101 which has a height 105 which can extend, for example, over almost the entire height 106 of the suction valve 100.
  • the Fig. 2 shows by way of example the mouth of a container 212 on which a suction valve 200 is seated.
  • a gas lance 201 may be inserted through a recess 211 of the suction valve 200 into the container 212.
  • the suction valve 200 may have a plurality of electrical shielding elements 203, 204, 205, the different heights 206, 207 and 208 and distances 209, 210, for example, distances 209, 210 between 0.01 to 6 mm, preferably 0.5-1 mm from each other can.
  • the sum of the individual heights 206, 207 and 208 of the electrical shielding elements 203, 204, 205 may occupy at least 10%, 20%, 30% or 60% or more of the height 202 of the suction valve 200.
  • the electrical shielding elements 203, 204, 205 may be different in material and construction, e.g., the electric shielding member 205 may be made of open-pore porous metal foam, the electric shielding member 204 may be made of a honeycomb structure, and the electric shielding member 203 may be made of a mesh structure.
  • the Figure 3 shows by way of example the mouth of a container 305 on which a suction valve 300 is seated.
  • a gas lance 301 may be inserted into the container 305 through a recess 304 of the suction valve 300.
  • the gas lance 301 can additionally be fixed by a holder 303.
  • the suction valve 300 may have an electrical shielding element 302 made of a honeycomb structure, wherein the average length of the honeycomb tubes 306 may be larger than the honeycomb diameter by a factor of 1.5, 2.0, 4.0, 6.0, 10.0 or more, preferably 5 to 10 Honeycomb tubes 306.
  • the honeycomb diameter 307 of the honeycomb tubes 306 may be between 0.01 to 6 mm, preferably 3 to 4 mm. See also Fig. 4 , where by way of example the honeycomb diameter 401 and the length 402 of a honeycomb tube in a honeycomb structure 403 are shown.
  • FIGS. 5a, 5b, 5c, 5d exemplify various cross-sectional shapes of various exemplary electrical shielding.
  • the electrical shielding element 500 has an open-pore porous structure around the recess 501, wherein the pores 502 may have mean pore diameters of from 0.01 to 6 mm, preferably from 3 to 4 mm.
  • the electrical shielding element 600 has a structure of concentric walls 602 with radial intermediate partitions 603 around the recess 601, wherein the mean distance between the concentric walls 602 and the radial intermediate partitions 603 can be between 0.01 to 6 mm, preferably 3 to 4 mm.
  • the electric shielding element 700 has a mesh structure with net meshes 702 around the recess 701, whose mean mesh diameter may be between 0.01 to 6 mm, preferably 0.2 to 0.5 mm.
  • the geometry of the net meshes 702 can be regular or irregular.
  • Fig. 5d 10 shows, by way of example, an electrical shielding element 800 with a honeycomb structure around the recess 801, with mean honeycomb diameters of the honeycomb tubes 802, which may be, for example, between 0.01 to 6 mm, preferably 3 to 4 mm.
  • the honeycomb cross-section may be as shown pentagonal, but there are other cross-sectional shapes possible, such as regular polygonal shape, eg triangle, square, convex and / or non-convex inner wall form, star-shaped polygon shape, round shapes, eg circular shape, ellipse shape, or a combination of said forms.
  • Hexagonal honeycomb cross-sectional structures are preferred in order, inter alia, advantageously to achieve an optimum ratio of honeycomb tube opening area to honeycomb wall cross-section, and also e.g. the honeycomb structure easily by folding and joining technique e.g. to produce from film material.
  • the exemplary circular outer contour of the electrical shielding element or the suction valve is a consequence of the adaptation to the usually circular container mouth shape. It is therefore easily possible, the geometry of the suction valve or the electrical shielding also to non-circular container openings, e.g. adjust rectangular container openings.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Chemical Vapour Deposition (AREA)
  • Nozzles (AREA)

Description

Stand der TechnikState of the art

Zur Verminderung der Durchlässigkeit von Behälter-/Hohlkörperwänden, z.B. in Bezug auf unerwünschte Stoffe, ist es vorteilhaft, diese mit einer Barriereschicht zu versehen, beispielsweise durch plasmaunterstützte chemische Gasphasenabscheidung / Plasma Enhanced Chemical Vapor Depositon (PECVD), wie z.B. in der EP0881197A2 beschrieben. Weitere Beispiele für bekannte plasmaunterstützte Beschichtungsprozesse von Hohlkörpern sind in der EP1602748A1 und der US2010/0298738 beschrieben. Darüber hinaus beschreibt Monti G. et al. in "Metal foams for electromagnetic shielding: a plasma model", 3RD EUROPEAN CONFE-RENCE ON ANTENNAS AND PROPAGATION - EUCAP 2009, 23. - 27. MÄRZ 2009, BERLIN [DE], IEEE, PISCATAWAY, NJ [US], (20090323), ISBN 978-1-4244-4753-4, Seiten 2123 - 2126 ) elektromagnetische Abschirmungseigenschaften metallischer Schäume, welche sich unter Umständen als mögliche Abschirmungsmaterialien bei Plasmabehandlungsprozessen eignen können.To reduce the permeability of container / hollow body walls, for example with respect to undesirable substances, it is advantageous to provide them with a barrier layer, for example by plasma-enhanced chemical vapor deposition / plasma enhanced chemical vapor deposition (PECVD), such as in the EP0881197A2 described. Further examples of known plasma-assisted coating processes of hollow bodies are given in US Pat EP1602748A1 and the US2010 / 0298738 described. In addition, describes Monti G. et al. 3RD EUROPEAN CONFE-RENCE ON ANTENNAS AND PROPAGATION - EUCAP 2009, 23-27 MARCH 2009, BERLIN [IE], IEEE, PISCATAWAY, NJ [US], (20090323 ), ISBN 978-1-4244-4753-4, pages 2123-2126 ) electromagnetic shielding properties of metallic foams, which may be suitable as possible shielding materials in plasma treatment processes.

Solche Barriereschichten werden z.B. benötigt, um die Transmissionsraten von Gasen durch die Kunststoffwand eines Behälters zu reduzieren. Auf diese Weise kann beispielsweise der Verlust von CO2 aus dem eingefüllten Produkt oder der Eintrag von Sauerstoff in das Produkt minimiert werden. Auch kann das Produkt so vor Stoffen geschützt werden, die aus dem Behältermaterial kommen und das Produkt farblich oder geschmacklich verändern können.Such barrier layers are needed, for example, to reduce the transmission rates of gases through the plastic wall of a container. In this way, for example, the loss of CO 2 from the charged product or the entry of oxygen into the product can be minimized. Also, the product can be protected from substances that come from the container material and can change the color or taste of the product.

Zur Beschichtung von Behältnissen mittels Plasmabehandlung, beispielsweise der Plasmainnenbeschichtung von Kunststoffflaschen, kann unter anderem ein sogenanntes Hochfrequenzplasma in sogenannten Niederdruck-Anlagen eingesetzt werden.For coating containers by means of plasma treatment, for example the plasma internal coating of plastic bottles, it is possible inter alia to use a so-called high-frequency plasma in so-called low-pressure systems.

Dabei wird zunächst das Innere des Behälters auf einen Druck im Bereich von 1-10 Pa evakuiert. In den Bereich der zu beschichtenden Oberfläche, z.B. dem Behälterinneren, wird dann über eine Gaslanze ein Prozessgas eingeleitet, aus dem die Schicht gebildet wird, der sogenannte "Precursor", wodurch sich der Druck im Inneren des Behälters auf 10 - 30 Pa oder mehr erhöhen kann.Initially, the interior of the container is evacuated to a pressure in the range of 1-10 Pa. In the area of the surface to be coated, e.g. The interior of the container, a process gas is then introduced via a gas lance, from which the layer is formed, the so-called "precursor", whereby the pressure inside the container to 10 - can increase 30 Pa or more.

Dieses Gas oder Gasgemisch kann dann mit Hilfe elektromagnetischer Strahlung, z.B. Mikrowelle oder Hochfrequenz, z.B. mit 13,56 MHz, oder anderer elektrischer Felder teilweise oder vollständig in einen Plasmazustand versetzt und dabei in seine Bestandteile zerlegt werden.This gas or gas mixture can then be partially or completely placed in a plasma state with the aid of electromagnetic radiation, eg microwave or radio frequency, for example 13.56 MHz, or other electric fields and thereby decomposed into its components.

Dabei koppelt zum Beispiel eine Hochfrequenz, die von einer flächigen Elektrode außerhalb des Behälters eingestrahlt wird, an eine elektrisch leitende Gaslanze an und zündet bei günstigen Druckbedingungen im Behälter zwischen 10 und 30 Pa ein Plasma im Inneren des zu beschichtenden Behälters.In this case, for example, a high frequency, which is radiated from a flat electrode outside the container, coupled to an electrically conductive gas lance and ignites at favorable pressure conditions in the container between 10 and 30 Pa, a plasma inside the container to be coated.

Teile des über geeignete Bohrungen in der Gaslanze dem Behälterinneren zugeführten Prozessgases reagieren plasmaunterstützt in der Gasphase oder an der Oberfläche des zu beschichtenden Substrates, z.B. der Innenwand einer Kunststoffflasche, und kondensieren an dieser Oberfläche zu einer geschlossenen Schicht.Portions of the process gas supplied via suitable holes in the gas lance to the container interior are plasma assisted in the gas phase or at the surface of the substrate to be coated, e.g. the inner wall of a plastic bottle, and condense on this surface to a closed layer.

Um zu verhindern, dass außerhalb der Flaschen ein Plasma zündet, wird dieser Bereich auf einem höheren Druck, beispielsweise 3000 bis 4000 Pa, gehalten als er im Behälter herrscht. Zu diesem Zweck kann der Behälter an ein Ventil gepresst und über dieses das Behälterinnere auf den Prozessdruck von 1 - 30 Pa abgesaugt werden.In order to prevent a plasma from being ignited outside the bottles, this area is kept at a higher pressure, for example 3000 to 4000 Pa, than it prevails in the container. For this purpose, the container can be pressed against a valve and the container interior can be sucked out to the process pressure of 1 to 30 Pa via it.

Ein Problem, das sich in der Praxis herausstellt ist, dass das Plasma nicht nur im Behälter, sondern auch unerwünschterweise im Absaugventil selbst brennen kann. Dieses Plasma verbraucht einen undefinierten und undefinierbaren Anteil an Energie, der dann nicht mehr im Behälter zur Verfügung steht, um die Prozessgase zu zersetzen. Dabei ist es nicht einfach, diesen Energieverlust beispielsweise durch eine höhere Hochfrequenzleistung zu kompensieren, da dies zu höheren Spannungen an den Elektroden führen kann. Diese höheren Spannungen können wiederum das Auftreten von Plasmaentladungen außerhalb des Behälters begünstigen, wodurch die im Behälter selbst zur Verfügung stehende elektrische Leistung noch weiter vermindert wird.A problem that has been found in practice is that the plasma can burn not only in the container but also undesirably in the exhaust valve itself. This plasma consumes an undefined and indefinable amount of energy, which is then no longer available in the container to decompose the process gases. It is not easy to compensate for this loss of energy, for example, by a higher RF power, as this can lead to higher voltages at the electrodes. These higher voltages, in turn, may favor the occurrence of plasma discharges outside the container, further reducing the electrical power available within the container itself.

Ein weiteres Problem sind die Temperaturen und die reaktiven Gase, die durch das Plasma im Ventil entstehen. Sie erschweren den Prozess weiterhin, da die Ventile aktiv gekühlt werden müssen, um sie vor Beschädigung zu schützen. Ferner werden Dichtungsmaterialien im Ventil durch die reaktiven Gase in Mitleidenschaft gezogen und bedürfen einer häufigen Erneuerung.Another problem is the temperatures and reactive gases generated by the plasma in the valve. They further complicate the process, as the valves must be actively cooled to protect them from damage. Furthermore, sealing materials in the valve are affected by the reactive gases and require frequent renewal.

Werden die Ventile aus Kunststoff gefertigt, so stellen sie prinzipiell von den Bedingungen her eine geometrische Verlängerung der Flaschenmündung dar. Bei Einkopplung von Hochfrequenz zündet allerdings dann dort ein Plasma genauso wie im Behälter selbst. Baut man das Ventil aus Metall und erdet die einzelnen Komponenten, so kann sich im Inneren dennoch ein Plasma ausbilden, da man auf diese Weise eine Hohlkathode erzeugen kann. Derartige Hohlkathodenplasmen weisen zudem eine besonders intensive Plasmadichte auf, was die Ventilkomponenten besonders stark aufheizen und so beschädigen kann.If the valves are made of plastic, they represent in principle a geometric extension of the bottle mouth. When coupled with high frequency, however, a plasma ignites there as well as in the container itself. If you construct the valve made of metal and ground the individual components, so inside a plasma can still form, as you can generate a hollow cathode in this way. Such hollow cathode plasmas In addition, they have a particularly intense plasma density, which can heat the valve components particularly hard and thus damage them.

Aufgabetask

Es ist somit Aufgabe der Erfindung, eine Vorrichtung zur Beschichtung von Behältern mittels Plasmabehandlung, beispielsweise der Beschichtung von Kunststoffflaschen, zu verbessern, insbesondere hinsichtlich der Minimierung von unerwünschtem Plasmazünden und/oder Plasmabrennen im Bereich der Behälteröffnung.It is therefore an object of the invention to improve an apparatus for coating containers by means of plasma treatment, for example the coating of plastic bottles, in particular with regard to the minimization of undesired plasma ignition and / or plasma burning in the region of the container opening.

Lösungsolution

Dies wird erfindungsgemäß durch eine Vorrichtung nach Anspruch 1 und durch ein Verfahren nach Anspruch 10 erreicht. Vorteilhafte Ausführungsformen und Weiterbildungen sind Gegenstand der Unteransprüche.This is inventively achieved by a device according to claim 1 and by a method according to claim 10. Advantageous embodiments and further developments are the subject of the dependent claims.

Eine erfindungsgemäße Vorrichtung zur Beschichtung eines Behälters, beispielsweise einer Kunststoffflasche, mittels Plasmabehandlung, beinhaltet wenigstens eine Gaslanze zum Zuführen von Prozessgas in den Behälter und wenigstens ein Absaugventil zum Absaugen von Luft bzw. Gas aus dem Behälterinneren.A device according to the invention for coating a container, for example a plastic bottle, by means of plasma treatment, contains at least one gas lance for supplying process gas into the container and at least one suction valve for sucking air or gas out of the container interior.

Das Absaugventil weist dabei wenigstens eine Aussparung, z.B. mittig angeordnet, zur Aufnahme oder Einfuhr der wenigstens einen Gaslanze in den Behälter auf, und das Absaugventil weist wenigstens ein geerdetes gasdurchlässiges elektrisches Abschirmungselement auf, wobei das wenigstens eine geerdete, gasdurchlässige elektrische Abschirmungselement das Zünden und/oder Brennen von Plasma im Absaugventil nahezu vollständig verhindert und/oder unterdrückt. Die Vermeidung bzw. Minimierung von Plasmazündungen und/oder Plasmabrennen im Absaugventil hat unter anderem den Vorteil, dass das Absaugventil thermisch weniger belastet wird, z.B. auf eine aktive Kühlung verzichtet werden kann, und somit eine längere Lebensdauer des Absaugventils erreicht werden kann. Darüber hinaus hat die Minimierung von unerwünschten Plasmazündungen und/oder Plasmabrennvorgängen im Absaugventil bzw. außerhalb des zu beschichtenden Behälterbereichs, den Vorteil dass ein Energieverlust für das zur Beschichtung eingesetzte Plasma reduziert werden kann.The suction valve has at least one recess, e.g. arranged centrally, for receiving or introducing the at least one gas lance into the container, and the suction valve has at least one grounded gas-permeable electrical shielding element, wherein the at least one grounded, gas-permeable electrical shielding element almost completely prevents the ignition and / or burning of plasma in the suction valve and / or suppressed. The avoidance or minimization of plasma ignitions and / or plasma burns in the suction valve has, inter alia, the advantage that the suction valve is thermally less stressed, e.g. can be dispensed with an active cooling, and thus a longer life of the suction valve can be achieved. In addition, the minimization of unwanted plasma ignition and / or plasma burning in the suction valve or outside of the container area to be coated has the advantage that an energy loss for the plasma used for the coating can be reduced.

Das elektrische Abschirmungselement um die wenigstens eine Aussparung zur Aufnahme oder Einfuhr der wenigstens einen Gaslanze, kann gasdurchlässige Hohlraumstrukturen aufweisen. Bevorzugterweise können diese gasdurchlässige Hohlraumstrukturen mittlere Durchmesser aufweisen die gleich oder kleiner der Debye-Länge des bei der Beschichtung erzeugten Plasmas sind, um eine effektive elektrische Abschirmungswirkung zur Minimierung von Plasmazünd- und Brennvorgängen im Absaugventil erreichen zu können.The electrical shielding element around the at least one recess for receiving or introducing the at least one gas lance can have gas-permeable cavity structures. Preferably, these gas-permeable cavity structures may have average diameters which are equal to or less than the Debye length of the plasma generated in the coating in order to achieve an effective electrical shielding effect for minimizing plasma ignition and firing in the exhaust.

Das elektrische Abschirmungselement kann beispielsweise eine Vielzahl unterschiedlicher Strukturen aufweisen.The electrical shielding element may, for example, have a multiplicity of different structures.

Insbesondere kann z.B. ein nicht zur Erfindung gehörendes elektrische Abschirmungselement eine gasdurchlässige offenporig poröse Struktur aufweisen, mit Poren deren mittlere Porendurchmesser z.B. zwischen 0.01 bis 6 mm, bevorzugt bei 3 bis 4 mm liegen.In particular, e.g. an electrical shielding element not belonging to the invention has a gas-permeable open-pore porous structure, with pores whose average pore diameter e.g. between 0.01 to 6 mm, preferably 3 to 4 mm.

Es ist dabei möglich, dass besagte gasdurchlässige Hohlraumstruktur, bzw. besagte gasdurchlässige offenporig poröse Struktur des elektrischen Abschirmungselementes aus metallischem Schaum, beispielsweise Aluminiumschaum, oder elektrisch leitendem keramischen Schaum, beispielsweise Al2O3/TiN oder elektrisch leitfähiger Verbundkeramik mit Kohlenstofffasern, oder aus elektrisch leitfähig ausgestattetem Kunststoff- oder Polymerschaum, oder aus einer Kombination genannter Schäume bestehen kann.It is possible that said gas-permeable cavity structure, or said gas-permeable open-pored porous structure of the electrical shielding of metallic foam, such as aluminum foam, or electrically conductive ceramic foam, for example, Al 2 O 3 / TiN or electrically conductive composite ceramic with carbon fibers, or electrically Conductive plastic or polymer foam, or may consist of a combination of said foams.

Ein nicht zur Erfindung gehöriges elektrisches Abschirmungselement um die wenigstens eine Aussparung zur Aufnahme oder Einfuhr der wenigstens einen Gaslanze, kann ebenso wenigstens eine netzartige Gitterstruktur aufweisen mit mittleren Netzmaschendurchmessern von z.B. zwischen 0.01 bis 6 mm, bevorzugt 0.2 bis 0.5 mm, liegen. Dabei ist z.B. auch denkbar, dass das Absaugventil eine Vielzahl elektrischer Abschirmungselemente mit netzartiger Gitterstruktur aufweisen kann, die in mehreren Lagen mit Abständen zwischen 0.01 bis 6 mm, bevorzugt 0.5 bis 1 mm, im Absaugventil angeordnet sein können, um beispielsweise ein Zünden und/oder Etablieren eines Plasmas zwischen den Lagen unterbinden zu können.An electric shielding element not belonging to the invention around the at least one recess for receiving or introducing the at least one gas lance can also have at least one net-like lattice structure with mean net mesh diameters of e.g. between 0.01 to 6 mm, preferably 0.2 to 0.5 mm. In this case, e.g. also conceivable that the suction valve may have a plurality of electrical shielding elements with net-like lattice structure, which may be arranged in several layers with intervals between 0.01 to 6 mm, preferably 0.5 to 1 mm, in the suction, for example, an ignition and / or establishment of a plasma between the layers to be able to prevent.

Ferner ist denkbar, dass ein nicht zur Erfindung gehöriges elektrisches Abschirmungselement um die wenigstens eine Aussparung zur Aufnahme oder Einfuhr der wenigstens einen Gaslanze aus konzentrisch angeordneten Wänden mit radialen Zwischentrennwänden besteht, mit mittleren Wandabständen der konzentrisch angeordneten Wänden, die z.B. zwischen 0.01 bis 6 mm, bevorzugt 3 bis 4 mm und mittleren Abständen der radialen Zwischentrennwänden, z.B. zwischen 0.01 bis 6 mm, bevorzugt 3 bis 4 mm liegen.Furthermore, it is conceivable that an electric shielding element not belonging to the invention consists of the at least one recess for receiving or introducing the at least one gas lance of concentrically arranged walls with radial intermediate partitions, with mean wall spacings of the concentrically arranged walls, e.g. between 0.01 to 6 mm, preferably 3 to 4 mm, and mean spacings of the radial partition walls, e.g. between 0.01 to 6 mm, preferably 3 to 4 mm.

Das elektrische Abschirmungselement um die wenigstens eine Aussparung zur Aufnahme oder Einfuhr der wenigstens einen Gaslanze, ist erfindungsgemäß als Wabenstruktur ausgebildet , mit mittleren Wabendurchmessern der Wabenröhren, die z.B. zwischen 0.01 bis 6 mm, bevorzugt 3 bis 4 mm liegen.The electrical shielding element to the at least one recess for receiving or importing the at least one gas lance, according to the invention is formed as a honeycomb structure, with average honeycomb diameters of the honeycomb tubes, for example, between 0.01 to 6 mm, preferably 3 to 4 mm.

Die mittlere Länge der Wabenröhren ist dabei größer als der mittlere Wabendurchmesser der Wabenröhren, und z.B. kann die mittlere Länge der Wabenröhren um einen Faktor von 4.0, 6.0, 10.0 oder mehr, bevorzugt 5 bis 10 den mittleren Wabendurchmesser der Wabenröhren übertreffen. Dies hat unter anderem den Vorteil, dass das Risiko des Durchschlagens des Plasmas entlang der Längsachse des Absaugventils minimiert werden kann.The mean length of the honeycomb tubes is greater than the mean honeycomb diameter of the honeycomb tubes, and e.g. For example, the average length of the honeycomb tubes may exceed the mean honeycomb diameter of the honeycomb tubes by a factor of 4.0, 6.0, 10.0 or more, preferably 5 to 10. This has the advantage, inter alia, that the risk of plasma breakthrough along the longitudinal axis of the suction valve can be minimized.

Die Formen der Querschnitte der Wabenröhren können regelmäßige Polygonenform, z.B. Dreieck, Quadrat, Pentagon, Hexagon, konvexe und/oder nichtkonvexe Innenwandform, sternförmige Polygonenform, runde Formen, z.B. Kreisform, Ellipsenform, oder eine Kombination genannter Formen sein. Hier erfindungsgemäß beansprucht sind jedoch hexagonale Querschnitte, um ein optimiertes Verhältnis von Wabenstrukturmaterial, Wabenstrukturvolumen und Wabenstrukturstabilität erreichen zu können.The shapes of the cross sections of the honeycomb tubes may be of regular polygonal shape, e.g. Triangle, square, pentagon, hexagon, convex and / or non-convex inner wall form, star-shaped polygon shape, round shapes, e.g. Circular shape, elliptical shape, or a combination of said shapes. However, hexagonal cross-sections are claimed here in accordance with the invention in order to be able to achieve an optimized ratio of honeycomb material, honeycomb volume and honeycomb stability.

Ferner sind als elektrisches Abschirmungselement auch Metallplatten denkbar, die eine Vielzahl von Bohrungen, mit mittleren Bohrungsdurchmessern von 0.01 bis 6 mm, bevorzugt 3 bis 4 mm , aufweisen können. Die Länge der Bohrungen kann ein Vielfaches der mittleren Bohrungsdurchmesser sein, bevorzugt um einen Faktor 5 bis 10, den mittleren Bohrungsdurchmesser übertreffen.Furthermore, as an electrical shielding element and metal plates are conceivable, which may have a plurality of holes, with average bore diameters of 0.01 to 6 mm, preferably 3 to 4 mm. The length of the holes may be a multiple of the average bore diameter, preferably by a factor of 5 to 10, exceeding the average bore diameter.

Das elektrische Abschirmungselement kann dabei aus Metall, z.B. Aluminium, elektrisch leitfähiger Keramik, z.B. Al2O3/TiN, elektrisch leitfähiger Verbundkeramik mit Kohlenstofffasern, elektrisch leitfähig ausgestattetem Kunststoff, oder aus einer Kombination genannter Materialen bestehen.The electrical shielding element may consist of metal, for example aluminum, electrically conductive ceramic, eg Al 2 O 3 / TiN, electrically conductive composite ceramic with carbon fibers, electrically conductive plastic equipped, or consist of a combination of said materials.

Der Strömungswiderstand des Absaugventils beim Absaugen von Luft bzw. Gas aus dem Behälter hängt in erster Linie vom offenen Querschnitt des Absaugventils, dem Reibungswiderstand an der Innenwandung des Absaugentils und der Luftführung im Ventil ab. Die Geschwindigkeit, mit der das Behälterinnere auf den gewünschten Prozessdruck abgesaugt werden kann, ist vor allem durch den Öffnungsquerschnitt des Behälters selbst begrenzt.The flow resistance of the suction valve during the extraction of air or gas from the container depends primarily on the open cross-section of the suction valve, the frictional resistance on the inner wall of the suction valve and the air flow in the valve. The speed with which the container interior can be sucked to the desired process pressure is limited mainly by the opening cross-section of the container itself.

Bevorzugterweise kann der Öffnungsquerschnitt des Absaugventils daher mindestens genau so groß sein wie der Öffnungsquerschnitt des Behälters. Bevorzugterweise kann auch der Strömungswiderstand des Absaugventils beim Absaugen gleich oder kleiner ist als der Strömungswiderstand durch die Behältermündung bzw. Behälteröffnung sein.Preferably, the opening cross-section of the suction valve can therefore be at least as large as the opening cross-section of the container. Preferably, the flow resistance of the suction valve during suction may be equal to or less than the flow resistance through the container mouth or container opening.

Dies hat den Vorteil dass das Behälterinnere hinreichend schnell, z.B. in weniger als 500 ms, auf einen gewünschten Prozessdruck, z.B. zwischen 1 bis 30 Pa evakuiert werden kann, um die Behälter in der Geschwindigkeit zu behandeln bzw. zu beschichten zu können, in der sie die den Produktionsprozess, beispielsweise auf Förderbändern, oder Halteklammern eines Karussells durchlaufen.This has the advantage that the container interior can be evacuated sufficiently quickly, for example in less than 500 ms, to a desired process pressure, for example between 1 to 30 Pa, in order to be able to treat or coat the containers at the speed at which they are the go through the production process, for example on conveyor belts, or holding clamps of a carousel.

Das elektrische Abschirmungselement kann einteilig oder mehrteilig ausgebildet sein und in seiner Höhe mindestens 10 %, 20%, 30% oder 60% oder mehr der Höhe, des Absaugventils einnehmen.The electrical shielding element may be formed in one piece or in several parts and take in its height at least 10%, 20%, 30% or 60% or more of the height of the suction valve.

Das Absaugventil kann aber auch eine Vielzahl von elektrischen Abschirmungselementen aufweisen und in der Summe der Höhen der einzelnen elektrischen Abschirmungselemente mindestens 10 %, 20%, 30% oder 60% oder mehr der Höhe, des Absaugventils einnehmen. Das elektrische Abschirmungselement kann also z.B. aus einer Kombination von Wabenstruktur, offenporig porösem Schaum, oder Gitter bestehen, wobei der vertikale Abstand zwischen den verschiedenen Teilen, kleiner als 1, 2 mm, bevorzugterweise kleiner als 0.5 mm, sein kann.However, the suction valve can also have a plurality of electrical shielding elements and take in the sum of the heights of the individual electrical shielding elements at least 10%, 20%, 30% or 60% or more of the height of the suction valve. The electrical shielding element may thus be e.g. consist of a combination of honeycomb structure, porous porous foam, or grids, wherein the vertical distance between the different parts, less than 1, 2 mm, preferably less than 0.5 mm, may be.

In dem erfindungsgemäßen Verfahren zur Beschichtung eines Behälters, beispielsweise einer Kunststoffflasche, mittels Plasmabehandlung wird also eine Gaslanze durch eine Aussparung eines auf der Behälteröffnung sitzenden Absaugventils in das Innere des Behälters eingeführt. Über das Absaugventil wird das Behälterinnere auf Prozessdruck, z.B. 1 bis 30 Pa, evakuiert. Im Behalterinneren wird ein über die Gaslanze zugeführtes Prozessgas teilweise oder vollständig in ein Plasma umgesetzt und über plasmaunterstützte Gasphasenabscheidung das Innere des Behälters beschichtet, z.B. mit einer Gasbarriereschicht. Dabei wird ein sich im Absaugventil befindliches elektrisches Abschirmelement ein Zünden und/oder Brennen von Plasma im Absaugventil bzw. in einem Bereich, der nicht beschichtet werden soll, nahezu vollständig verhindern und/oder unterdrücken.In the method according to the invention for coating a container, for example a plastic bottle, by means of plasma treatment, therefore, a gas lance is introduced into the interior of the container through a recess in a suction valve located on the container opening. Via the suction valve, the container interior is set to process pressure, e.g. 1 to 30 Pa, evacuated. In the interior of the container, a process gas fed in via the gas lance is partially or completely converted into a plasma and, via plasma-assisted vapor deposition, the interior of the container is coated, e.g. with a gas barrier layer. In this case, an electric shielding element located in the suction valve will almost completely prevent and / or suppress ignition and / or burning of plasma in the suction valve or in a region which is not to be coated.

Beigefügte Figuren stellen beispielhaft dar:

  • Fig.1 : Behälter mit Gaslanze und Absaugventil.
  • Fig.2 : Absaugventil.
  • Fig.3 : Absaugventil.
  • Fig.4 : Wabenstruktur.
  • Fig.5 : Beispielhafte Querschnitte für elektrische Abschirmelemente.
Attached figures exemplify:
  • Fig.1 : Container with gas lance and exhaust valve.
  • Fig.2 : Exhaust valve.
  • Figure 3 : Exhaust valve.
  • Figure 4 : Honeycomb structure.
  • Figure 5 : Exemplary cross sections for electrical shielding elements.

In Fig. 1 ist beispielhaft ein Behälter 104 mit einem Absaugventil 100 dargestellt. Eine Gaslanze 103 kann hier über eine Aussparung 102 im Absaugventil 100 in den Behälter eingeführt werden. Das Absaugventil 100 kann dabei über ein elektrisches Abschirmelement 101 verfügen, welches eine Höhe 105 aufweist, die sich z.B. über nahezu die gesamte Höhe 106 des Absaugventils 100 erstrecken kann.In Fig. 1 For example, a container 104 with a suction valve 100 is shown. A gas lance 103 can be introduced here via a recess 102 in the suction valve 100 into the container. In this case, the suction valve 100 can have an electrical shielding element 101 which has a height 105 which can extend, for example, over almost the entire height 106 of the suction valve 100.

Die Fig. 2 zeigt beispielhaft die Mündung eines Behälters 212 auf dem ein Absaugventil 200 sitzt. Eine Gaslanze 201 kann durch eine Aussparung 211 des Absaugventils 200 in den Behälter 212 eingeführt werden. Das Absaugventil 200 kann dabei eine Vielzahl von elektrischen Abschirmungselementen 203, 204, 205 aufweisen, die verschiedene Höhen 206, 207 und 208 und Abstände 209, 210, z.B. Abstände 209, 210 zwischen 0.01 bis 6 mm, bevorzugt 0.5-1 mm, voneinander haben können. Die Summe der einzelnen Höhen 206, 207 und 208 der elektrischen Abschirmungselemente 203, 204, 205 können dabei mindestens 10 %, 20%, 30% oder 60% oder mehr der Höhe 202 des Absaugventils 200 einnehmen.The Fig. 2 shows by way of example the mouth of a container 212 on which a suction valve 200 is seated. A gas lance 201 may be inserted through a recess 211 of the suction valve 200 into the container 212. The suction valve 200 may have a plurality of electrical shielding elements 203, 204, 205, the different heights 206, 207 and 208 and distances 209, 210, for example, distances 209, 210 between 0.01 to 6 mm, preferably 0.5-1 mm from each other can. The sum of the individual heights 206, 207 and 208 of the electrical shielding elements 203, 204, 205 may occupy at least 10%, 20%, 30% or 60% or more of the height 202 of the suction valve 200.

Zudem können die elektrischen Abschirmungselemente 203, 204, 205 in Material und Aufbau verschieden voneinander sein, z.B. kann das elektrische Abschirmelement 205 aus offenporig porösem Metallschaum, das elektrische Abschirmelement 204 aus einer Wabenstruktur und das elektrische Abschirmelement 203 aus einer Gitternetzstruktur bestehen.In addition, the electrical shielding elements 203, 204, 205 may be different in material and construction, e.g. For example, the electric shielding member 205 may be made of open-pore porous metal foam, the electric shielding member 204 may be made of a honeycomb structure, and the electric shielding member 203 may be made of a mesh structure.

Die Fig.3 zeigt beispielhaft die Mündung eines Behälters 305 auf dem ein Absaugventil 300 sitzt. Eine Gaslanze 301 kann durch eine Aussparung 304 des Absaugventils 300 in den Behälter 305 eingeführt werden. Die Gaslanze 301 kann zusätzlich durch eine Halterung 303 fixiert werden. Das Absaugventil 300 kann über ein elektrisches Abschirmelement 302 aus einer Wabenstruktur verfügen, wobei wie die mittlere Länge der Wabenröhren 306 um einen Faktor von 1.5, 2.0, 4.0, 6.0, 10.0 oder mehr, bevorzugt 5 bis 10, größer sein kann als der Wabendurchmesser der Wabenröhren 306. Der Wabendurchmesser 307 der Wabenröhren 306 kann dabei zwischen 0.01 bis 6 mm, bevorzugt bei 3 bis 4 mm liegen. Siehe hierzu auch Fig. 4 , wo beispielhaft der Wabendurchmesser 401 und die Länge 402 einer Wabenröhre in einer Wabenstruktur 403 dargestellt ist.The Figure 3 shows by way of example the mouth of a container 305 on which a suction valve 300 is seated. A gas lance 301 may be inserted into the container 305 through a recess 304 of the suction valve 300. The gas lance 301 can additionally be fixed by a holder 303. The suction valve 300 may have an electrical shielding element 302 made of a honeycomb structure, wherein the average length of the honeycomb tubes 306 may be larger than the honeycomb diameter by a factor of 1.5, 2.0, 4.0, 6.0, 10.0 or more, preferably 5 to 10 Honeycomb tubes 306. The honeycomb diameter 307 of the honeycomb tubes 306 may be between 0.01 to 6 mm, preferably 3 to 4 mm. See also Fig. 4 , where by way of example the honeycomb diameter 401 and the length 402 of a honeycomb tube in a honeycomb structure 403 are shown.

Die Figuren 5a, 5b, 5c, 5d stellen beispielhaft verschiedene Querschnittsformen verschiedener beispielhafter elektrischer Abschirmelemente dar.The Figures 5a, 5b, 5c, 5d exemplify various cross-sectional shapes of various exemplary electrical shielding.

In Fig. 5a weist das elektrische Abschirmelement 500 z.B. eine offenporig poröse Struktur um die Aussparung 501 herum auf, wobei die Poren 502 mittlere Porendurchmesser zwischen 0.01 bis 6 mm, bevorzugt von 3 bis 4 mm aufweisen können.In Fig. 5a For example, the electrical shielding element 500 has an open-pore porous structure around the recess 501, wherein the pores 502 may have mean pore diameters of from 0.01 to 6 mm, preferably from 3 to 4 mm.

In Fig. 5b weist das elektrische Abschirmelement 600 z.B. eine Struktur aus konzentrischen Wänden 602 mit radialen Zwischentrennwänden 603 um die Aussparung 601 herum auf, wobei der mittlere Abstand zwischen den konzentrischen Wänden 602 und den radialen Zwischentrennwänden 603 jeweils zwischen 0.01 bis 6 mm, bevorzugt bei 3 bis 4 mm liegen kann.In Fig. 5b For example, the electrical shielding element 600 has a structure of concentric walls 602 with radial intermediate partitions 603 around the recess 601, wherein the mean distance between the concentric walls 602 and the radial intermediate partitions 603 can be between 0.01 to 6 mm, preferably 3 to 4 mm.

In Fig. 5c weist das elektrische Abschirmelement 700 z.B. eine Gitternetzstruktur auf mit Netzmaschen 702 um die Aussparung 701 herum auf, deren mittlere Netzmaschendurchmesser zwischen 0.01 bis 6 mm, bevorzugt bei 0.2 bis 0.5 mm liegen können. Die Geometrie der Netzmaschen 702 kann dabei regelmäßig oder unregelmäßig sein.In Fig. 5c For example, the electric shielding element 700 has a mesh structure with net meshes 702 around the recess 701, whose mean mesh diameter may be between 0.01 to 6 mm, preferably 0.2 to 0.5 mm. The geometry of the net meshes 702 can be regular or irregular.

Fig. 5d zeigt beispielhaft ein elektrisches Abschirmelement 800 mit Wabenstruktur um die Aussparung 801 herum, mit mittleren Wabendurchmessern der Wabenröhren 802, die z.B. zwischen 0.01 bis 6 mm, bevorzugt bei 3 bis 4 mm, liegen können. Der Wabenquerschnitt kann dabei wie dargestellt fünfeckig sein, aber es sind auch andere Querschnittsformen möglich, wie regelmäßige Polygonenform, z.B. Dreieck, Quadrat, konvexe und/oder nichtkonvexe Innenwandform, sternförmige Polygonenform, runde Formen, z.B. Kreisform, Ellipsenform, oder eine Kombination genannter Formen. Fig. 5d 10 shows, by way of example, an electrical shielding element 800 with a honeycomb structure around the recess 801, with mean honeycomb diameters of the honeycomb tubes 802, which may be, for example, between 0.01 to 6 mm, preferably 3 to 4 mm. The honeycomb cross-section may be as shown pentagonal, but there are other cross-sectional shapes possible, such as regular polygonal shape, eg triangle, square, convex and / or non-convex inner wall form, star-shaped polygon shape, round shapes, eg circular shape, ellipse shape, or a combination of said forms.

Bevorzugt sind hexagonale Wabenquerschnittsstrukturen, um unter anderem vorteilhafterweise ein optimales Verhältnis von Wabenröhrenöffnungsquerschnitt zum Wabenröhrenwandungsquerschnitt zu erreichen, und auch z.B. die Wabenstruktur leicht mittels Falt- und Fügetechnischer Verfahren z.B. aus Folienmaterial herstellen zu können.Hexagonal honeycomb cross-sectional structures are preferred in order, inter alia, advantageously to achieve an optimum ratio of honeycomb tube opening area to honeycomb wall cross-section, and also e.g. the honeycomb structure easily by folding and joining technique e.g. to produce from film material.

Es sei angemerkt, dass die beispielhafte kreisrunde Außenkontur des elektrischen Abschirmelementes, bzw. des Absaugventils, eine Konsequenz der Anpassung an die üblicherweise kreisrunde Behältermündungsform ist. Es ist deshalb ohne weiteres möglich, die Geometrie des Absaugventils bzw. des elektrischen Abschirmelements auch an nicht kreisrunde Behälteröffnungen, z.B. rechtwinklige Behälteröffnungen anzupassen.It should be noted that the exemplary circular outer contour of the electrical shielding element or the suction valve is a consequence of the adaptation to the usually circular container mouth shape. It is therefore easily possible, the geometry of the suction valve or the electrical shielding also to non-circular container openings, e.g. adjust rectangular container openings.

Es folgen 2 Blatt mit 8 Figuren.This is followed by 2 sheets with 8 figures.

Die verwendeten Bezugszeichen sind dabei wie folgt belegt:

  • 100, 200, 300 Absaugventil
  • 101, 203, 204, 205, 302, 500, 600, 700, 800 elektrisches Abschirmelement
  • 102, 211, 304, 501, 601, 701, 801 Aussparung
  • 103, 201, 301 Gaslanze
  • 104, 212, 305 Behälter
  • 105, 206, 207, 208 Höhe elektrisches Abschirmelement
  • 209, 210 Abstand zwischen benachbarten elektrischen Abschirmelementen
  • 106, 202 Höhe Absaugventil
  • 303 Halterung für Gaslanze und/oder elektrisches Abschirmelement
  • 306, 802 Wabenröhre
  • 307, 401 Wabenröhrendurchmesser
  • 402 Länge Wabenröhre
  • 403 Wabenstruktur
  • 502 Poren
  • 602 konzentrische Wand
  • 603 radiale Zwischentrennwand
  • 702 Netzmaschen
The reference numbers used are assigned as follows:
  • 100, 200, 300 suction valve
  • 101, 203, 204, 205, 302, 500, 600, 700, 800 electrical shielding element
  • 102, 211, 304, 501, 601, 701, 801 recess
  • 103, 201, 301 Gas lance
  • 104, 212, 305 containers
  • 105, 206, 207, 208 height electrical shielding element
  • 209, 210 Distance between adjacent electrical shielding elements
  • 106, 202 height exhaust valve
  • 303 Support for gas lance and / or electrical shielding
  • 306, 802 honeycomb tube
  • 307, 401 honeycomb tube diameter
  • 402 length honeycomb tube
  • 403 honeycomb structure
  • 502 pores
  • 602 concentric wall
  • 603 radial intermediate partition
  • 702 net stitches

Claims (11)

  1. Apparatus for coating a container (104), e.g. a plastic bottle, by means of a plasma treatment, comprising at least one gas lance (103) for supplying process gas into the container (104) and at least one suction valve (100) for sucking off air from the interior of the container, wherein the suction valve (100) has at least one recess (102) for receiving or introducing the at least one gas lance into the container (104), and the suction valve (100) has at least one grounded, gas-permeable, electrical shielding element (101), and the at least one grounded, gas-permeable, electrical shielding element (101) prevents and/or suppresses nearly entirely the ignition and/or burning of plasma in the suction valve,
    characterized in that
    the electrical shielding element around the at least one recess for receiving or introducing the at least one gas lance has a honeycomb structure and wherein the average length of the honeycomb tubes is greater than the average honeycomb diameter of the honeycomb tubes.
  2. Apparatus according to claim 1, characterized in that the at least one recess (102) is centrally arranged.
  3. Apparatus according to one of the preceding claims, wherein the average honeycomb diameters of the honeycomb tubes are ranging between 0.01 and 6 mm, preferably between 3 and 4 mm.
  4. Apparatus according to one of the preceding claims, wherein the average length of the honeycomb tubes exceeds the average honeycomb diameter of the honeycomb tubes by a factor of 1.5, 2.0, 4.0, 6.0, 10.0 or more, preferably 5 to 10.
  5. Apparatus according to one of the preceding claims, characterized in that the cross-sections of the honeycomb tubes have regular polygon shapes, e.g. a triangle, square, pentagon, hexagon, convex and/or non-convex inner wall shape, a star-shaped polygon shape, round shapes, e.g. a circular shape, elliptical shape, or a combination of the aforementioned shapes.
  6. Apparatus according to one of the preceding claims, characterized in that the electrical shielding element is made of electrically conductive ceramics, e.g. Al2O3/TiN, of electrically conductive composite ceramics with carbon fibers, of a metal, e.g. aluminum, of a plastic material having electrically conductive properties, or of a combination of the aforementioned materials.
  7. Apparatus according to one of the preceding claims, characterized in that the flow resistance of the suction valve when sucking off is equal to or smaller than the flow resistance through the container opening.
  8. Apparatus according to one of the preceding claims, characterized in that the suction valve is configured to allow the interior of the container to be evacuated to a desired process pressure in less than 500 ms.
  9. Apparatus according to one of the preceding claims, characterized in that the electrical shielding element covers in respect of its height at least 10%, 20%, 30% or 60% or more of the height of the suction valve.
  10. Method for coating a container, e.g. a plastic bottle, by means of a plasma treatment, comprising:
    introducing a gas lance into the interior of the container, the gas lance being passed through or received in a recess in a suction valve sitting on the container opening,
    evacuating the interior of the container to a process pressure, for instance, of 1 to 30 Pa,
    supplying process gas into the interior of the container by the gas lance,
    and plasma-enhanced coating of the interior of the container by chemical vapor deposition, wherein an electrical shielding element in the suction valve has a honeycomb structure wherein the average length of the honeycomb tubes is greater than the average honeycomb diameter of the honeycomb tubes, and wherein the electrical shielding element prevents and/or suppresses nearly entirely the ignition and/or burning of plasma in the suction valve or in a region not to be coated.
  11. Method according to the preceding claim, wherein the average honeycomb diameters of the honeycomb tubes are ranging between 0.01 and 6 mm, preferably between 3 and 4 mm.
EP12199757.1A 2012-03-23 2012-12-28 Purge valve in a plasma deposition apparatus Not-in-force EP2641995B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012204689A DE102012204689A1 (en) 2012-03-23 2012-03-23 Suction valve in plasma coating device

Publications (2)

Publication Number Publication Date
EP2641995A1 EP2641995A1 (en) 2013-09-25
EP2641995B1 true EP2641995B1 (en) 2018-07-04

Family

ID=47603141

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12199757.1A Not-in-force EP2641995B1 (en) 2012-03-23 2012-12-28 Purge valve in a plasma deposition apparatus

Country Status (4)

Country Link
US (1) US20130251916A1 (en)
EP (1) EP2641995B1 (en)
CN (1) CN103320767B (en)
DE (1) DE102012204689A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9972501B1 (en) * 2017-03-14 2018-05-15 Nano-Master, Inc. Techniques and systems for continuous-flow plasma enhanced atomic layer deposition (PEALD)
CN110106496B (en) * 2019-06-20 2021-04-09 哈尔滨工业大学 Atomic layer deposition system for deposition of hemispherical/conformal inner and outer surface heterogeneous film layers and using method thereof
US11087959B2 (en) 2020-01-09 2021-08-10 Nano-Master, Inc. Techniques for a hybrid design for efficient and economical plasma enhanced atomic layer deposition (PEALD) and plasma enhanced chemical vapor deposition (PECVD)
US11640900B2 (en) 2020-02-12 2023-05-02 Nano-Master, Inc. Electron cyclotron rotation (ECR)-enhanced hollow cathode plasma source (HCPS)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4450787A (en) * 1982-06-03 1984-05-29 Rca Corporation Glow discharge plasma deposition of thin films
US5102496A (en) * 1989-09-26 1992-04-07 Applied Materials, Inc. Particulate contamination prevention using low power plasma
US6112695A (en) * 1996-10-08 2000-09-05 Nano Scale Surface Systems, Inc. Apparatus for plasma deposition of a thin film onto the interior surface of a container
JPH10219430A (en) * 1997-02-05 1998-08-18 Minolta Co Ltd Compound thin film obtainable by magnetron sputtering method and method and apparatus for production the same
DE19722205A1 (en) 1997-05-27 1998-12-03 Leybold Systems Gmbh Method and device for coating plastic or glass containers by means of a PCVD coating method
BR9812701A (en) * 1997-09-30 2000-08-22 Tetra Laval Holdings & Finance Method and apparatus for the treatment of the inner surface of plastic bottles in a plasma-intensified process
US6362097B1 (en) * 1998-07-14 2002-03-26 Applied Komatsu Technlology, Inc. Collimated sputtering of semiconductor and other films
DE10004274A1 (en) * 2000-02-01 2001-08-02 Tetra Laval Holdings & Finance Apparatus to coat the inner surface of a hollow body comprises a feed pipe for process gas and a waste gas line outside of the hollow body connected to a waste gas pipe
US7030335B2 (en) * 2000-03-17 2006-04-18 Applied Materials, Inc. Plasma reactor with overhead RF electrode tuned to the plasma with arcing suppression
JP2003293135A (en) * 2002-03-29 2003-10-15 Mitsubishi Heavy Ind Ltd Apparatus for forming film on inner surface of plastic container, and method for manufacturing plastic container coated with film on inner surface thereof
JP4132982B2 (en) * 2002-05-28 2008-08-13 麒麟麦酒株式会社 DLC film coated plastic container manufacturing equipment
EP2503023B1 (en) * 2003-03-12 2016-02-24 Toyo Seikan Kaisha, Ltd. Processing gas supply member for a microwave plasma processing device
KR20120042748A (en) * 2009-05-13 2012-05-03 씨브이 홀딩스 엘엘씨 Outgassing method for inspecting a coated surface
US7985188B2 (en) * 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
DE102010000940A1 (en) * 2010-01-15 2011-07-21 Krones Ag, 93073 Device for plasma-treating a container for inner coating of the container, comprises an evacuatable treatment chamber, an electrode to generate plasma in the container, and a transport unit to move the container into the treatment chamber

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN103320767A (en) 2013-09-25
US20130251916A1 (en) 2013-09-26
EP2641995A1 (en) 2013-09-25
CN103320767B (en) 2016-02-24
DE102012204689A1 (en) 2013-09-26

Similar Documents

Publication Publication Date Title
EP2641995B1 (en) Purge valve in a plasma deposition apparatus
EP2041332B1 (en) Method and device for plasma-assisted chemical vapour deposition on the inner wall of a hollow body
DE4029268C2 (en) Process for DC voltage-assisted, reactive treatment of material and vacuum treatment system for implementation
DE19856307C1 (en) Apparatus for producing a free cold plasma jet
EP2626445B1 (en) Hollow cathode gas lance for internally coating containers
EP0887438B1 (en) Process for improving the inner surface of hollow bodies and device for carrying out the process
DE102012201955A1 (en) Power lance and plasma-enhanced coating with high-frequency coupling
WO2019243631A1 (en) Improved method and apparatus for atmospheric pressure plasma jet coating deposition on a substrate
DE19722205A1 (en) Method and device for coating plastic or glass containers by means of a PCVD coating method
EP2046506B1 (en) Method for the plasma treatment of a surface
DE102012206081A1 (en) Coating of containers with plasma nozzles
EP1290926B1 (en) High frequency plasma source
EP2876083B1 (en) Device and method of producing nano-structures consisting of carbon
DE202007018327U1 (en) Apparatus for generating a plasma
DE102010000940A1 (en) Device for plasma-treating a container for inner coating of the container, comprises an evacuatable treatment chamber, an electrode to generate plasma in the container, and a transport unit to move the container into the treatment chamber
EP0849769A2 (en) Process and device for externally coating lamps
EP2751826A2 (en) Apparatus for generating thermodynamically cold microwave plasma
DE19804838A1 (en) Plasma-assisted particle surface modification especially for sputter coating, activation and etching of catalyst particles
WO2011064084A1 (en) Device for generating plasma by means of microwaves
DE102013107659B4 (en) Plasma-chemical coating device
EP2964274B1 (en) Method and device for plasma-treating hollow bodies
DE102016209097A1 (en) plasma nozzle
DE10120405A1 (en) Device for generating a low-temperature plasma
CH686254A5 (en) Method for adjusting the processing rate distribution and caustic or plasma CVD system for its execution.
DE102012209650A1 (en) Plasma enhanced chemical vapor deposition enhanced plasma density method and apparatus for implementing the method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140321

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20170307

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1014603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012012974

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180704

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181005

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181004

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181104

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181218

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20181120

Year of fee payment: 7

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012012974

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20181220

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

26N No opposition filed

Effective date: 20190405

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181228

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1014603

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180704

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180704

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121228

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502012012974

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231