EP2640952A2 - Nacelle pour un turboréacteur double flux d'un aéronef - Google Patents

Nacelle pour un turboréacteur double flux d'un aéronef

Info

Publication number
EP2640952A2
EP2640952A2 EP11831835.1A EP11831835A EP2640952A2 EP 2640952 A2 EP2640952 A2 EP 2640952A2 EP 11831835 A EP11831835 A EP 11831835A EP 2640952 A2 EP2640952 A2 EP 2640952A2
Authority
EP
European Patent Office
Prior art keywords
flap
nacelle
movable
section
intermediate flap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11831835.1A
Other languages
German (de)
English (en)
Inventor
Hervé HURLIN
Olivier Kerbler
Olivier Gilo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Nacelles SAS
Original Assignee
Aircelle SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aircelle SA filed Critical Aircelle SA
Publication of EP2640952A2 publication Critical patent/EP2640952A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • F02K1/12Varying effective area of jet pipe or nozzle by means of pivoted flaps
    • F02K1/123Varying effective area of jet pipe or nozzle by means of pivoted flaps of two series of flaps, both having their flaps hinged at their upstream ends on a fixed structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • B64D33/04Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for of exhaust outlets or jet pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/06Varying effective area of jet pipe or nozzle
    • F02K1/12Varying effective area of jet pipe or nozzle by means of pivoted flaps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K1/00Plants characterised by the form or arrangement of the jet pipe or nozzle; Jet pipes or nozzles peculiar thereto
    • F02K1/54Nozzles having means for reversing jet thrust
    • F02K1/76Control or regulation of thrust reversers
    • F02K1/763Control or regulation of thrust reversers with actuating systems or actuating devices; Arrangement of actuators for thrust reversers

Definitions

  • the invention relates to a nacelle for a turbojet engine of an aircraft comprising in downstream section a fixed internal structure intended to surround a part of the turbojet engine and an external structure at least partially surrounding the fixed internal structure so as to delimit an annular vein.
  • An aircraft is driven by several turbojets each housed in a nacelle also housing a set of ancillary actuators related to its operation and providing various functions when the turbojet engine is in operation or stopped.
  • These ancillary actuating devices comprise in particular a mechanical thrust reverser actuation system.
  • a nacelle generally has a tubular structure along a longitudinal axis comprising an air inlet upstream of the turbojet engine, a median section intended to surround a fan of the turbojet engine, a downstream section housing thrust reversal means and intended to surround the chamber combustion of the turbojet engine.
  • the tubular structure is generally terminated by an ejection nozzle whose outlet is located downstream of the turbojet engine.
  • the modern nacelles are intended to house a turbofan engine capable of generating, through the blades of the rotating fan, a hot air flow (also called “primary flow”) from the combustion chamber of the rboreactant. r, and a cold air flow (“secondary flow”) flowing outside the turbojet through an annular passage, also called “annular vein”.
  • a turbofan engine capable of generating, through the blades of the rotating fan, a hot air flow (also called “primary flow”) from the combustion chamber of the rboreactant. r, and a cold air flow (“secondary flow”) flowing outside the turbojet through an annular passage, also called “annular vein”.
  • downstream is understood here to mean the direction corresponding to the direction of the flow of cold air entering the turbojet engine.
  • upstream refers to the opposite direction.
  • Said annular vein is formed in downstream section by an external structure, called Outer Fixed Structure (OFS) and a concentric internal structure, called Inner Fixed Structure (IFS), surrounding the structure of the engine itself downstream of the fan.
  • OFS Outer Fixed Structure
  • IFS Inner Fixed Structure
  • the internal and external structures belong to the downstream section.
  • the outer structure may comprise one or more sliding hoods along the longitudinal axis of the nacelle the inter n u position allowing the escape of the inverted air flow and a position preventing such an exhaust.
  • variable nozzle is formed of sliding movable elements and configured so as to allow a reduction of the ejection section of the air flow at the exit of the annular vein in order to optimize the section of the latter in depending on the flight phase in which the aircraft is located.
  • said movable elements do not make it possible to obtain good aerodynamic quality of the secondary vein. Poor aerodynamic quality leads to an increase in the specific consumption and the noise of the propulsion unit comprising the turbojet engine and the nacelle.
  • An object of the present invention is therefore to provide a nacelle whose ejection section of the cold air flow is variable by means not having the aforementioned drawbacks.
  • the subject of the present invention is a nacelle for a turbojet engine of an aircraft comprising in downstream section a fixed internal structure intended to surround a part of the turbojet engine and an external structure surrounding at least one in part the internal structure fixed so as to define an annular vein, the external structure comprising at least one inner flap disposed facing the annular vein, an outer flap not in contact with the annular vein overlying at least partially each inner flap in continuity aerodynamic with the rest of the external structure, and an intermediate flap disposed between each inner flap and each outer flap, said intermediate flap being movable in translation so as to enlarge or reduce the section of the annular vein, and each inner flap and each outer flap being movable in rotation so as to remain in constant contact with the v olet intermediate in all positions of the latter.
  • Each intermediate flap is mounted inside the external structure between an inner flap and an outer flap.
  • the intermediate flap is deployable between a nominal position corresponding to the normal operating position of the nacelle, an extended position corresponding to the position enlarging the section of the annular vein and a retracted position corresponding to the position decreasing the section of the annular vein .
  • the outer flap remains in constant contact with the intermediate flap.
  • the association of the intermediate and outer movable flaps while remaining in constant contact makes it possible to vary the outlet section of the ejection nozzle by changing the shape of the trailing edge of the downstream part of the external structure of the secondary vein. .
  • the secondary vein then has a very good aerodynamic quality.
  • the nacelle of the invention comprises one or more of the following optional features considered alone or according to all the possible combinations:
  • At least one intermediate flap is movable in translation through a slide or rollers cooperating with a rail system belonging to a frame supporting said intermediate flap which allows to move simply and reliably each intermediate flap;
  • At least one intermediate flap is set in motion by one or more electric or hydraulic cylinders which allows a simple and effective way to set in motion each intermediate flap;
  • the frame associated with an intermediate flap is movable relative to the external structure which allows to drive all the intermediate flap and reduce the effort to the frame;
  • the frame is movable in translation by means of one or more cylinders along an axis substantially collinear with a longitudinal axis of the nacelle and the translational movement is transmitted to the intermediate flap by a connecting rod system;
  • the frame is rotatable by means of one or more cylinders about an axis substantially collinear with a longitudinal axis of the nacelle and the movement is transmitted to the intermediate flap via a hinge system, in particular one or more horns;
  • each inner flap and each outer flap are in permanent contact with the intermediate flap by means of a rail system or a spring system which allows permanent and reliable contact of the intermediate flap with the outer and inner flaps;
  • each inner flap, each outer flap and each intermediate flap comprise contact surfaces coated with an anti-friction coating, which makes it possible to avoid wear of the flaps.
  • FIG. 1 is a partial schematic section of an embodiment of a nacelle of the invention
  • FIG. 2 is a diagrammatic longitudinal section of a downstream section of an embodiment of a nacelle of the invention in which the inner, outer and intermediate flaps are in the nominal position;
  • FIG. 3 is a perspective view of the embodiment of FIG. 2;
  • FIG. 4 is a perspective view of the rear of the nacelle according to the embodiment of Figure 2;
  • FIG. 5 is a schematic longitudinal section of a downstream section of an embodiment of a nacelle of the invention wherein the inner, outer and intermediate flaps are in the retracted position;
  • FIG. 6 is a perspective view of the embodiment of FIG. 5;
  • FIG. 7 is a perspective view of the rear of the nacelle according to the embodiment of Figure 5;
  • FIG. 8 is a schematic longitudinal section of a downstream section of an embodiment of a nacelle of the invention wherein the inner, outer and intermediate flaps are in the deployed position;
  • Fig. 9 is a perspective view of the embodiment of Fig. 8.
  • FIG. 10 is a perspective view of the rear of the nacelle according to the embodiment of FIG. 8;
  • FIG. 1 1 is a schematic section of an embodiment of the actuation of the intermediate flap of the nacelle of the invention
  • FIG. 12 is a diagrammatic section of a variant of the embodiment of FIG.
  • a nacelle 1 As represented in FIG. 1, a nacelle 1 according to the invention has a substantially tubular shape along a longitudinal axis ⁇ .
  • the nacelle of the invention 1 comprises an upstream section 2 with an inlet lip 13 of air forming an air inlet 3, a median section 4 surrounding a fan 5 of a turbojet engine 6 and a downstream section 7
  • the downstream section 7 comprises an internal structure 8 (generally called "IFS") surrounding the the upstream part of the turbojet engine 6, an external structure (OFS) 9 capable of supporting a movable cowl comprising means of thrust reversal.
  • IFS internal structure surrounding the upstream part of the turbojet engine 6
  • OFFS external structure
  • IFS 8 and OFS 9 defines an annular vein 10 allowing the passage of an air flow 12 penetrating the nacelle 1 of the invention at the level of the air inlet 3.
  • the nacelle 1 of the invention ends with an ejection nozzle 21 comprising an external module 22 and an internal module 24.
  • the internal and external modules 24 24 define a flow channel of a hot air flow 25 exiting turbojet engine 6.
  • the OFS 9 comprises at least one inner flap 101 arranged facing the annular vein 10, an external flap 103 not in contact with the annuliary vein 10 at least partially covering each flap internal 101 in aerodynamic continuity with the rest of the OFS 9.
  • An intermediate flap 105 is disposed between each inner flap 101 and each outer flap 1 03. Said intermediate flap 105 is movable in translation so as to enlarge or reduce the section of the annular vein 1 0.
  • the outer flap 103 and the inner louver 1 01 associated with it are rotatable so as to remain in permanent contact with the intermediate flap 105 in all positions thereof.
  • the nacelle 1 of the invention comprises as many internal flaps 101 as external flaps 103 and intermediate flaps 105.
  • the nacelle 1 of the invention may thus comprise a plurality of internal flaps 101 each associated with an outer flap 103 and to an intermediate flap 105.
  • the flaps 101, 103, and 105 are distributed over the circumference of said nacelle 1.
  • Each outer flap 1 03 pivots about a pivot axis
  • pivot axis 109 fixed relative to the OFS 9, said pivot axis 109 being contained in a radial plane substantially perpendicular to the longitudinal axis ⁇ of the nacelle 1 of the invention
  • Each inner flap 101 rotates relative to the OFS 9 around an axis substantially collinear with the pivot axis 109 of the outer flap.
  • Each intermediate flap 105 is movable along a trajectory indicated in dotted line 1 07 in FIGS. 2, 5 and 8.
  • said trajectory 1 07 of the intermediate flap is substantially collinear with the longitudinal direction of the vein an n ul 1 0.
  • "Longitudinal direction" here means the direction substantially collinear with the IFS 8 when it extends from upstream to downstream to the zone of the widest IFS 8.
  • Each intermediate flap 105 is deployable between a nominal position (FIGS. 2 to 4) corresponding to the normal operating position of the nacelle 1 of the invention, an extended position corresponding to the position enlarging the section of the annular duct 10 (see FIGS.
  • each outer flap 103 remains in permanent contact with the intermediate flap 105 associated therewith.
  • the association of the intermediate flaps 105, internal 110 and outer 103 moving while remaining in constant contact allows to vary the outlet section of the exhaust nozzle by changing the shape of the trailing edge of the downstream portion of SFO 9 of the secondary vein.
  • the secondary vein 10 then has a very good aerodynamic qual ity i u i can improve the specific consumption and reduce the noise generated by the propellant comprising the turbojet engine 6 and nacelle 1 of the invention.
  • the intermediate flap 105 is in nominal position corresponding to the configuration of the downstream section of the OFS 9 when the nacelle 1 of the invention is in the cruising position, namely not at the landing, takeoff or acceleration phase.
  • the section of the annular vein 10 has a nominal height h 0 .
  • the intermediate section 105 is in the retracted position corresponding to the reduction configuration of the section of the annular passage 10.
  • the cross r h height of the annular flow path 10 is less than at nominal height h 0 .
  • This position corresponds to the configuration where the powertrain generates a high thrust, especially when the aircraft is downhill.
  • the outer flap 101 and the inner flap 101 rest at their free end 120 and 1 21 on the surface of the intermediate shutter 105, close to or on the free end 122 of said intermediate flap. 105.
  • the outer flap 1 03 and the inner flap 1 01 pivot about their axis 109 concomitantly with the movement downstream of the intermediate flap 105 out of the OFS 9.
  • the intermediate section 105 is in the deployed position corresponding to the configuration of increasing the section of the annular passage 10.
  • the cross r h height of the annular flow path 10 is greater than the nominal height h 0 .
  • This position corresponds to the configuration where the nacelle 1 of the invention has an output section of the maximum annular vein 10 corresponding to a strong thrust of the propulsion unit, especially at takeoff.
  • the outer flap 101 and the inner flap 101 are at their free end 120 and 211 on the surface of the intermediate shutter 105, long distance from the free end 122 of said intermediate flap.
  • outer flap 101 and the inner flap 101 pivot about their axis 109 concomitantly with the displacement upstream of the intermediate flap 105 towards the inside of the OFS 9.
  • the intermediate flap 105 may be movable in translation by means of a slideway 130 or rollers co-operating with a system of rails 132 belonging to a frame 134 supporting said intermediate flap 105, which makes it possible to simply and reliably move each intermediate flap 105 (see figures 3, 6 and 9).
  • the rail has a direction substantially collinear to the trajectory 107 of the intermediate flap.
  • the position of the slide or the roller in the rail allows an advance of the intermediate flap 105 or a decline of the latter along the path 107.
  • the frame 1 34 of the intermediate flap can be fixed on the OFS 9, in particular on a fixed flap 101.
  • the intermediate flap 105 can be moved in a simple and effective way and autonomously by one or more electric or hydraulic cylinders (not shown).
  • the associated frame 134 to one or intermediate flaps 105 may also be movable relative to the OFS 9 which allows to drive the or all the intermediate flaps 105.
  • the frame 134 can be movable in translation by means of one or more cylinders 140 along an axis substantially collinear with a longitudinal axis ⁇ of the nacelle 1 of the invention and the movement of translation is transmitted to the associated intermediate flap 105 by a connecting rod system 142.
  • the frame 1 34 may be rotatable by means of one or more jacks 150 about an axis substantially collinear with a longitudinal axis ⁇ of the nacelle 1 of the invention and the movement is transmitted to the flap intermediate 105 associated via a hinge system, including one or more puppets 152.
  • Each inner flap 1 01 and each outer flap 103 is in permanent contact with the intermediate flap 105 associated via a rail system or a spring system (not shown) which allows i permanent and reliable contact flap intermediate with the inner and outer flaps.
  • Means for ensuring the permanent contact of said inner flaps 1 01 and outer 1 03 movable with the intermediate flap 1 05 may be to install one or more springs type torsion bar in the joint of each inner flap 1 01 and external 1 03 moving in rotation. These springs generate a strong continuous pressure of the inner and outer flaps 101 and 103 on the intermediate flap 105.
  • the inner flap 101, the outer flap 103 and the intermediate flap 105 may comprise contact surfaces coated with an anti-friction coating which makes it possible to avoid wear of the two flaps 105 and 103.
  • An anti-friction coating is PTFE (called “Teflon”) or the like.
  • the section of the annular duct 10 has a height h 0 allowed by the position of each intermediate flap 105 whose free end 122 exceeds that of the inner flaps 110 and external 01 03 that i i lu associates.
  • the intermediate flap 105 is set in motion along the path 107 downstream of the flaps 101 and 103 so that the free end 122 passes further. that of the inner shutters 1 01 and external 103 associated with it. Each intermediate flap 105 is therefore in the deployed position.
  • the intermediate shutter 1 05 is set in motion along the path 1 07 upstream of the flaps 1 01 and 1 03 to the inside of the OFS 9 so that the free end 122 is near or under that of the outer panel 103 associated with it.
  • Each intermediate flap 105 is in the retracted position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Wind Motors (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Springs (AREA)

Abstract

L'invention se rapporte à une nacelle (1 ) pour un turboréacteur double flux d'un aéronef comprenant en section aval une structure interne fixe (8) destinée à entourer une partie du turboréacteur double flux et une structure externe (9) entourant au moins en partie la structure interne fixe (8) de sorte à délimiter une veine annulaire (10), la structure externe (9) comprenant au moins un volet interne (101 ) disposé en regard de la veine annulaire (10), un volet externe (103) non en contact avec la veine annulaire (10) surmontant au moins partiellement chaque volet interne (101 ) en continuité aérodynamique avec le reste de la structure externe (9), ainsi qu'un volet intermédiaire (105) disposé entre chaque volet interne (101 ) et chaque volet externe (103), ledit volet intermédiaire (105) étant mobile en translation de sorte à agrandir ou à diminuer la section de la veine annulaire (10), et chaque volet interne (101 ) et chaque volet externe (103) étant mobiles en rotation de sorte à rester en contact permanent avec le volet intermédiaire (105) dans toutes les positions de ce dernier.

Description

Nacelle pour un turboréacteur double flux d'un aéronef
L'invention se rapporte à une nacelle pour un turboréacteur double flux d'un aéronef comprenant en section aval une structure interne fixe destinée à entourer une partie du turboréacteur double flux et une structure externe entourant au moins en partie la structure interne fixe de sorte à délimiter une veine annulaire.
Un aéronef est mu par plusieurs turboréacteurs logés chacun dans une nacelle abritant également un ensemble de dispositifs d'actionnement annexes liés à son fonctionnement et assurant diverses fonctions lorsque le turboréacteur est en fonctionnement ou à l'arrêt. Ces dispositifs d'actionnement annexes comprennent notamment un système mécanique d'actionnement d'inverseur de poussée.
Une nacelle présente généralement une structure tubulaire suivant un axe longitudinal comprenant une entrée d'air en amont du turboréacteur, une section médiane destinée à entourer une soufflante du turboréacteur, une section aval abritant des moyens d'inversion de poussée et destinée à entourer la chambre de combustion du turboréacteur. La structure tubulaire est généralement terminée par une tuyère d'éjection dont la sortie est située en aval du turboréacteur.
Les nacelles modernes sont destinées à abriter un turboréacteur double flux apte à générer, par l'intermédiaire des pales de la soufflante en rotation, un flux d'air chaud (également appelé « flux primaire ») issu de la chambre de combustion du tu rboréacteu r, et u n fl ux d 'a ir froid (« flux secondaire ») qui circule à l'extérieur du turboréacteur à travers un passage annulaire, également appelé « veine annulaire».
On entend ici par le terme « aval » la direction correspondant au sens du flux d'air froid pénétrant dans le turboréacteur. Le terme « amont » désigne la direction opposée.
Ladite veine annulaire est formée en section aval par une structure externe, dite Outer Fixed Structure (OFS) et une structure interne concentrique, dite Inner Fixed Structure (IFS), entourant la structure du moteur proprement dite à l'aval de la soufflante. Les structures interne et externe appartiennent à la section aval. La structure externe peut comporter un ou plusieurs capots coulissants suivant l'axe long itud inal de la nacel le entre u ne position permettant l'échappement du flux d'air inversé et une position empêchant un tel échappement.
Usuellement, la tuyère variable est formée d'éléments mobiles coulissants et configurés de sorte à permettre une diminution de la section d'éjection du flux d'air au niveau de la sortie de la veine annulaire afin d'optimiser la section de cette dernière en fonction de la phase de vol dans laquelle se trouve l'aéronef.
Cependant, lesdits éléments mobiles ne permettent pas d'obtenir une bonne qualité aérodynamique de la veine secondaire. Une mauvaise qualité aérodynamique entraîne une augmentation de la consommation spécifique et du bruit du groupe propulseur comprenant le turboréacteur et la nacelle.
Un but de la présente invention est donc de fournir une nacelle dont la section d'éjection du flux d'air froid est variable par des moyens ne présentant pas les inconvénients précités.
A cet effet, selon un premier aspect, la présente invention a pour objet une nacelle pour un turboréacteur double flux d'un aéronef comprenant en section aval une structure interne fixe destinée à entourer une partie du turboréacteur double flux et une structure externe entourant au moins en partie la structure interne fixe de sorte à délimiter une veine annulaire, la structure externe comprenant au moins un volet interne disposé en regard de la veine annulaire, un volet externe non en contact avec la veine annulaire surmontant au moins partiellement chaque volet interne en continuité aérodynamique avec le reste de la structure externe, ainsi qu'un volet intermédiaire disposé entre chaque volet interne et chaque volet externe, ledit volet intermédiaire étant mobile en translation de sorte à agrandir ou à diminuer la section de la veine annulaire, et chaque volet interne et chaque volet externe étant mobiles en rotation de sorte à rester en contact permanent avec le volet intermédiaire dans toutes les positions de ce dernier.
Chaque volet intermédiaire est monté à l'intérieur de la structure externe entre un volet interne et un volet externe. Le volet intermédiaire est déployable entre une position nom inale correspondant à la position de fonctionnement normale de la nacelle, une position déployée correspondant à la position agrandissant la section de la veine annulaire et une position rentrée correspondant à la position diminuant la section de la veine annulaire. Durant toutes les positions et le passage de ces dernières, le volet externe reste en contact permanent avec le volet intermédiaire.
L'association des volets intermédiaire et externe mobiles tout en restant en contact permanent permet de faire varier la section de sortie de la tuyère d'éjection en faisant évoluer la forme du bord de fuite de la partie aval de la structure externe de la veine secondaire. La veine secondaire présente alors une très bonne qualité aérodynamique.
Selon d'autres caractéristiques de l'invention, la nacelle de l'invention comporte l'une ou plusieurs des caractéristiques optionnelles suivantes considérées seules ou selon toutes les combinaisons possibles :
- au moins un volet intermédiaire est mobile en translation grâce à une glissière ou des galets coopérant avec un système de rails appartenant à un cadre supportant ledit volet intermédiaire ce qui permet de déplacer de manière simple et fiable chaque volet intermédiaire ;
- au moins un volet intermédiaire est mis en mouvement par un ou plusieurs vérins électriques ou hydrauliques ce qui permet de manière simple et efficace de mettre en mouvement chaque volet intermédiaire ;
- le cadre associé à un volet intermédiaire est mobile par rapport à la structure externe ce qui permet d'entraîner tout le volet intermédiaire et de diminuer l'effort subi par le cadre ;
- le cadre est mobile en translation au moyen d'un ou de plusieurs vérins selon un axe sensiblement colinéaire à un axe longitudinal de la nacelle et le mouvement de translation est transmis au volet intermédiaire par un système de bielles;
- le cadre est mobile en rotation au moyen d'un ou de plusieurs vérins autour d'un axe sensiblement colinéaire à un axe longitudinal de la nacelle et le mouvement est transmis au volet intermédiaire par l'intermédiaire d'un système d'articulation, notamment un ou plusieurs guignols ;
- chaque volet interne et chaque volet externe est en contact permanent avec le volet intermédiaire grâce à un système de rails ou à un système de ressort ce qui permet un contact permanent et fiable du volet intermédiaire avec les volets externe et interne ;
- chaque volet interne, chaque volet externe et chaque volet intermédiaire comportent des surfaces en contact revêtues d'un revêtement anti-frottement ce qui permet d'éviter l'usure des volets. L'invention sera davantage comprise à la lecture de la description non limitative qui va suivre, faite en référence aux figures ci-annexées.
- la figure 1 est une coupe schématique partielle d'un mode de réalisation d'une nacelle de l'invention ;
- la figure 2 est une coupe longitudinale schématique d'une section aval d'un mode de réal isation d'une nacelle de l'invention dans laquelle les volets interne, externe et intermédiaire sont en position nominale ;
- la figure 3 est une vue en perspective du mode de réalisation de la figure 2 ;
- la figure 4 est une vue en perspective de l'arrière de la nacelle selon le mode de réalisation de la figure 2 ;
- la figure 5 est une coupe longitudinale schématique d'une section aval d'un mode de réalisation d'une nacelle de l'invention dans laquelle les volets interne, externe et intermédiaire sont en position rentrée ;
- la figure 6 est une vue en perspective du mode de réalisation de la figure 5 ;
- la figure 7 est une vue en perspective de l'arrière de la nacelle selon le mode de réalisation de la figure 5 ;
- la figure 8 est une coupe longitudinale schématique d'une section aval d'un mode de réalisation d'une nacelle de l'invention dans laquelle les volets interne, externe et intermédiaire sont en position déployée ;
- la figure 9 est une vue en perspective du mode de réalisation de la figure 8 ;
- la figure 10 est une vue en perspective de l'arrière de la nacelle selon le mode de réalisation de la figure 8 ;
- la figure 1 1 est une coupe schématique d'un mode de réalisation de l'actionnement du volet intermédiaire de la nacelle de l'invention ;
- la figure 12 est une coupe schématique d'une variante du mode de réalisation de la figure 1 1 .
Comme représenté sur la figure 1 , une nacelle 1 selon l'invention présente une forme sensiblement tubulaire selon un axe longitud inal Δ. La nacelle de l'invention 1 comprend une section amont 2 avec une lèvre d'entrée 1 3 d'air formant une entrée d'air 3, une section méd iane 4 entourant une soufflante 5 d'un turboréacteur 6 et une section aval 7. La section aval 7 comprend une structure interne 8 (généralement appelée « IFS ») entourant la partie amont du turboréacteur 6, u ne structu re externe (OFS) 9 pouvant supporter un capot mobile comportant des moyens d'inversion de poussée.
L'IFS 8 et l'OFS 9 délimite une veine annulaire 10 permettant le passage d'un flux d'air 12 pénétrant la nacelle 1 de l'invention au niveau de l'entrée d'air 3.
La nacelle 1 de l'invention se termine par une tuyère d'éjection 21 comprenant un module externe 22 et un module interne 24. Les modules interne 24 et externe 22 définissent un canal d'écoulement d'un flux d'air chaud 25 sortant du turboréacteur 6.
Comme représenté sur la figure 2, l'OFS 9 comprend au moins un volet interne 101 disposé en regard de la veine annulaire 10, un volet externe 103 non en contact avec l a ve i ne a n n u l a i re 1 0 su rmontant au moins partiellement chaque volet interne 101 en continuité aérodynamique avec le reste de l'OFS 9. Un volet intermédiaire 105 est disposé entre chaque volet interne 101 et chaque volet externe 1 03. Ledit volet intermédiaire 1 05 est mobile en translation de sorte à agrandir ou à diminuer la section de la veine annulaire 1 0. De plus, le volet externe 103 et le volet interne 1 01 qui lui est associé sont mobiles en rotation de sorte à rester en contact permanent avec le volet intermédiaire 105 dans toutes les positions de ce dernier.
Typiquement, la nacelle 1 de l'invention comporte autant de volets internes 101 que de volets externes 103 et de volets intermédiaires 105. La nacelle 1 de l'invention peut ainsi comporter une pluralité de volets internes 101 assocés chacun à un volet externe 103 et à un volet intermédiaire 105. Les volets 101 , 103, et 105 sont répartis sur la circonférence de ladite nacelle 1 .
Chaque volet externe 1 03 pivote autour d'un axe de pivotement
109 fixe par rapport à l'OFS 9, ledit axe de pivotement 109 étant contenu dans un plan radial sensiblement perpendiculaire à l'axe longitudinal Δ de la nacelle 1 de l'invention
Chaque volet interne 101 pivote par rapport à l'OFS 9 autour d'un axe sensiblement colinéaire à l'axe de pivotement 109 du volet externe.
Chaque volet intermédiaire 105 est mobile suivant une trajectoire indiquée en pointillé 1 07 da ns l es fig u res 2 , 5 et 8. Typiquement, ladite trajectoire 1 07 du volet intermédiaire est sensiblement colinéaire à la direction longitudinale d e l à veine an n ul aire 1 0. Par « direction longitudinale », on entend ici la direction sensiblement colinéaire à l'IFS 8 lorsque cette dernière s'élargit d'amont en aval jusqu'à la zone de l'IFS 8 la plus large. Chaque volet intermédiaire 105 est déployable entre une position nominale (figures 2 à 4) correspondant à la position de fonctionnement normale de la nacelle 1 de l'invention, une position déployée correspondant à la position agrandissant la section de la veine annulaire 10 (voir figures 5 à 7) et une position rentrée correspondant à la position diminuant la section de la veine annulaire 10 (voir les figures 8 à 10). Durant toutes les positions et le passage de l'une à l'autre, chaque volet externe 103 reste en contact permanent avec le volet intermédiaire 105 qui lui est associé.
L'association des volets intermédiaire 1 05, interne 1 01 et externe 103 mobiles tout en restant en contact permanent permet de faire varier la section de sortie de la tuyère d'éjection en faisant évoluer la forme du bord de fuite de la partie aval de l'OFS 9 de la veine secondaire. La veine secondaire 10 présente alors une très bonne qual ité aérodynamique ce q u i permet d'améliorer la consommation spécifique et de diminuer le bruit généré par le groupe propulseur comprenant le turboréacteur 6 et la nacelle 1 de l'invention.
Comme représenté sur les figures 2 à 4, le volet intermédiaire 105 est en position nominale correspondant à la configuration de la section aval de l'OFS 9 lorsque la nacelle 1 de l'invention est en position de croisière, à savoir non à l'atterrissage, au décollage ou en phase d'accélération.
Dans cette position, le volet externe 1 03 et le volet interne 101 reposent au niveau de leur extrém ité l ibre 1 20 su r la su rface d u volet intermédiaire 105, à distance de l'extrémité libre 1 22 dudit volet intermédiaire 105.
Dans cette position nominale, la section de la veine annulaire 10 présente une hauteur nominale h0.
Comme représenté sur les figures 5 à 7, le volet intermédiaire 105 est en position rentrée correspondant à la configuration de diminution de la section de la veine annulaire 10. En d'autres termes, la hauteur hr transversale de la veine annulaire 10 est inférieure à la hauteur nominale h0. Cette position correspond à la configuration où le groupe propulseur génère u ne fa i ble poussée, notamment lorsque l'aéronef est en descente.
Dans cette position, le volet externe 1 03 et le volet interne 101 reposent au niveau de leur extrémité libre 120 et 1 21 sur la surface du volet interméd ia ire 1 05, à proxi m ité ou s u r l'extrémité libre 122 dudit volet intermédiaire 105. Pour ce faire, le volet externe 1 03 et le volet interne 1 01 pivotent autour de leur axe 109 de manière concomittante avec le déplacement en aval du volet intermédiaire 105 hors de l'OFS 9.
Comme représenté sur les figures 8 à 10, le volet intermédiaire 105 est en position déployée correspondant à la configuration d'augmentation de la section de la veine annulaire 10. En d'autres termes, la hauteur hr transversale de la veine annulaire 10 est supérieure à la hauteur nominale h0. Cette position correspond à la configuration où la nacelle 1 de l'invention présente une section de sortie de la veine annulaire 10 maximale correspondant à une forte poussée du groupe propulseur, notamment au décollage.
Dans cette position, le volet externe 1 03 et le volet interne 101 reposent au niveau de leur extrémité libre 120 et 1 21 sur la surface du volet interméd ia ire 1 05, à longue d istance de l'extrémité libre 122 dudit volet intermédiaire.
Comme précédemment, le volet externe 1 03 et le volet interne 101 pivotent autour de leur axe 109 de manière concomittante avec le déplacement en amont du volet intermédiaire 105 vers l'intérieure de l'OFS 9.
Le volet intermédiaire 1 05 peut être mobile en translation grâce à une glissière 130 ou à des galets coopérant avec un système de rails 132 appartenant à un cadre 134 supportant ledit volet intermédiaire 105 ce qui permet de déplacer de manière simple et fiable chaque volet intermédiaire 105 (voir fig ures 3, 6 et 9). Typiquement, le rail a une d irection sensiblement colinéaire à la trajectoire 1 07 du volet intermédiaire. Ainsi, la position de la glissière ou du galet dans le rail permet un avancement du volet intermédiaire 105 ou un recul de ce dernier suivant la trajectoire 107.
Le cadre 1 34 du volet intermédiaire peut être fixé sur l'OFS 9, en particulier sur un volet fixe 101 .
Le volet intermédiaire 1 05 peut être est m is en mouvement de manière simple et efficace et de façon autonome par un ou plusieurs vérins électriques ou hydrauliques (non représentés).
Le cadre associé 134 à un ou aux volets intermédiaires 105 peut être également mobile par rapport à l'OFS 9 ce qui permet d'entraîner le ou tous les volets intermédiaires 105.
Dans cette perspective, le cadre 134 peut être mobile en translation au moyen d'un ou de plusieurs vérins 140 selon un axe sensiblement colinéaire à un axe long itudinal Δ de la nacelle 1 de l'invention et le mouvement de translation est transmis au volet intermédiaire 105 associé par un système de bielles 142.
Dans une variante, le cadre 1 34 peut être mobile en rotation au moyen d'un ou de plusieurs vérins 150 autour d'un axe sensiblement colinéaire à un axe longitudinal Δ de la nacelle 1 de l'invention et le mouvement est transmis au volet intermédiaire 105 associé par l'intermédiaire d'un système d'articulation, notamment un ou plusieurs guignols 152.
Chaque volet interne 1 01 et chaque volet externe 103 est en contact permanent avec le volet intermédiaire 105 associé par l'intermédiaire d'un système de rails ou un système de ressort (non représentés) ce qu i permet un contact permanent et fiable du volet intermédiaire avec les volets interne et externe. Un moyen pour assurer le contact permanent desdits volets interne 1 01 et externe 1 03 mobiles avec le volet intermédiaire 1 05 peut être d'installer un ou plusieurs ressorts de type barre de torsion dans l'articulation de chaque volet interne 1 01 et externe 1 03 mobiles en rotation . Lesd its ressorts génèrent une forte pression continue des volets interne 101 et externe 103 sur le volet intermédiaire 105.
Le volet interne 101 , le volet externe 103 et le volet intermédiaire 105 peuvent comporter des surfaces en contact revêtues d'un revêtement anti- frottement ce qui permet d'éviter l'usure des deux volets 1 05 et 1 03. A titre d'exemple de revêtement anti-frottement, on peut citer le PTFE (appelé « téflon ») ou similaire.
Ainsi, en position nominale, la section de la veine annulaire 10 présente une hauteur h0 permis par la position de chaque volet intermédiaire 1 05 dont l'extrémité libre 122 dépasse celle des volets interne 1 01 et externe 1 03 qu i lu i sont associés. Lorsqu'il est nécessaire d'augmenter la hauteur hr par rapport à la hauteur nominale h0, le volet intermédiaire 105 est mis en mouvement selon la trajectoire 107 en aval des volets 101 et 103 de sorte que l'extrémité libre 122 dépasse davantage celle des volets interne 1 01 et externe 103 qui lui sont associés. Chaque volet intermédiaire 105 est donc en position déployée.
Si , au contraire, il est nécessaire de réduire la hauteur hr par rapport à la hauteu r nom inale h0, le volet i nterméd ia ire 1 05 est mis en mouvement selon la trajectoire 1 07 en amont des volets 1 01 et 1 03 vers l'intérieur de l'OFS 9 de sorte que l'extrémité libre 122 soit à proximité ou sous celle du volet externe 103 qui lui est associé. Chaque volet intermédiaire 105 est donc en position rentrée.
Bien entendu, les caractéristiques décrites dans le cadre des modes de réal isation décrits ci-dessus peuvent être prises isolément ou combinées entre elles sans sortir de la portée de la présente invention.

Claims

REVENDICATIONS
1. Nacelle (1 ) pour un turboréacteur (6) double flux d'un aéronef comprenant en section aval une structure interne fixe (8) destinée à entourer une partie du turboréacteur (6) double flux et une structure externe (9) entourant au moins en partie la structure interne fixe (8) de sorte à délimiter une veine annulaire (10), la structure externe (9) comprenant au moins un volet interne (101 ) disposé en regard de la veine annulaire (10), un volet externe (103) non en contact avec la veine annulaire (10) surmontant au moins partiellement chaque volet interne (101 ) en continuité aérodynamique avec le reste de la structure externe (9), ainsi qu'un volet intermédiaire (105) disposé entre chaque volet interne (101 ) et chaque volet externe (103), ledit volet intermédiaire (105) étant mobile en translation de sorte à agrandir ou à diminuer la section de la veine annulaire (10), et chaque volet interne (101 ) et chaque volet externe (103) étant mobiles en rotation de sorte à rester en contact permanent avec le volet intermédiaire (105) dans toutes les positions de ce dernier.
2. Nacelle (1 ) selon la revendication précédente, dans laquelle au moins un volet intermédiaire (105) est mobile en translation grâce à une glissière (130) ou à des galets coopérant avec un système de rails (132) appartenant à un cadre (134) supportant ledit volet intermédiaire (105).
3. Nacel le (1 ) selon l'une quelconque des revend ications précédentes, dans laquelle au moins un volet intermédiaire (105) est mis en mouvement par un ou plusieurs vérins électriques ou hydrauliques.
4. Nacelle (1 ) selon l'une quelconque des revend ications précédentes, dans laquelle le cadre (134) associé à u n volet intermédiaire
(105) est mobile par rapport à la structure externe (103).
5. Nacelle (1 ) selon la revendication précédente, dans laquelle le cadre (134) est mobile en translation au moyen d'un ou de plusieurs vérins (140) selon un axe sensiblement colinéaire à un axe longitudinal (Δ) de la nacelle (1 ) et le mouvement de translation est transmis au volet intermédiaire (105) par un système de bielles (142).
6. Nacelle (1 ) selon la revendication 4, dans laquelle le cadre (134) est mobile en rotation au moyen d'un ou de plusieurs vérins (150) autour d'un axe sensiblement colinéaire à un axe longitudinal (Δ) de la nacelle (1 ) et le mouvement est transmis au volet intermédiaire (105) par l'intermédiaire d'un système d'articulation.
7. Nacelle (1 ) selon la revendication précédente, dans laquelle le système d'articulation comporte un ou plusieurs guignols (152).
8. Nacel le (1 ) selon l'une quelconque des revend ications précédentes, dans laquelle chaque volet interne (101 ) et chaque volet externe (103) est en contact permanent avec le volet intermédiaire (105) grâce à un système de rails ou à un système de ressort.
9. Nacel le (1 ) selon l'une quelconque des revend ications précédentes, dans laquelle chaque volet interne (101 ), chaque volet externe (103) et chaque volet intermédiaire (105) comportent des surfaces en contact revêtues d'un revêtement anti-frottement.
EP11831835.1A 2010-11-16 2011-10-28 Nacelle pour un turboréacteur double flux d'un aéronef Withdrawn EP2640952A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1059393A FR2967399B1 (fr) 2010-11-16 2010-11-16 Nacelle pour turboreacteur double flux d'un aeronef
PCT/FR2011/052543 WO2012066210A2 (fr) 2010-11-16 2011-10-28 Nacelle pour un turboréacteur double flux d'un aéronef

Publications (1)

Publication Number Publication Date
EP2640952A2 true EP2640952A2 (fr) 2013-09-25

Family

ID=44115615

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11831835.1A Withdrawn EP2640952A2 (fr) 2010-11-16 2011-10-28 Nacelle pour un turboréacteur double flux d'un aéronef

Country Status (8)

Country Link
US (1) US9243587B2 (fr)
EP (1) EP2640952A2 (fr)
CN (1) CN103210200B (fr)
BR (1) BR112013010648A2 (fr)
CA (1) CA2816255A1 (fr)
FR (1) FR2967399B1 (fr)
RU (1) RU2013126749A (fr)
WO (1) WO2012066210A2 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015054233A1 (fr) 2013-10-07 2015-04-16 Rohr, Inc. Structure fixe interne hybride à construction métallique et composite
FR3021704B1 (fr) * 2014-05-30 2016-06-03 Aircelle Sa Nacelle pour turboreacteur d'aeronef comprenant une tuyere secondaire a portes rotatives
GB201609071D0 (en) 2016-05-24 2016-07-06 Rolls Royce Plc Aircraft gas turbine engine nacelle
US10759541B2 (en) 2016-10-14 2020-09-01 Rohr, Inc. Nacelle bifurcation with leading edge structure

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791882A (en) * 1950-09-29 1957-05-14 Westinghouse Electric Corp Variable area nozzle for jet propulsion engine
US2779157A (en) * 1951-02-14 1957-01-29 Rohr Aircraft Corp Nozzle with variable discharge orifice
US3892358A (en) * 1971-03-17 1975-07-01 Gen Electric Nozzle seal
US3988889A (en) * 1974-02-25 1976-11-02 General Electric Company Cowling arrangement for a turbofan engine
US3972475A (en) * 1975-07-31 1976-08-03 United Technologies Corporation Nozzle construction providing for thermal growth
US4994660A (en) * 1989-04-11 1991-02-19 Hitachi, Ltd. Axisymmetric vectoring exhaust nozzle
FR2669679B1 (fr) * 1990-11-28 1994-04-29 Sud Ouest Conception Aeronauti Tuyere d'ejection de gaz pour moteur a reaction et moteur a reaction equipe d'une telle tuyere, en particulier moteur du type a flux separes.
US5806302A (en) * 1996-09-24 1998-09-15 Rohr, Inc. Variable fan exhaust area nozzle for aircraft gas turbine engine with thrust reverser
FR2873757B1 (fr) * 2004-07-28 2006-09-29 Snecma Moteurs Sa Tuyere convergente de turboreacteur
FR2902839B1 (fr) * 2006-06-21 2011-09-30 Aircelle Sa Inverseur de poussee formant une tuyere adaptative

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012066210A2 *

Also Published As

Publication number Publication date
RU2013126749A (ru) 2014-12-27
CN103210200A (zh) 2013-07-17
WO2012066210A2 (fr) 2012-05-24
FR2967399B1 (fr) 2012-11-02
BR112013010648A2 (pt) 2016-08-09
CA2816255A1 (fr) 2012-05-24
FR2967399A1 (fr) 2012-05-18
WO2012066210A3 (fr) 2012-10-26
US20130230391A1 (en) 2013-09-05
US9243587B2 (en) 2016-01-26
CN103210200B (zh) 2015-12-09

Similar Documents

Publication Publication Date Title
EP2078152B1 (fr) Inverseur de poussée à grilles pour moteur à réaction
EP2739841B1 (fr) Inverseur à grilles mobiles et tuyère variable par translation
WO2009136096A2 (fr) Nacelle de turboréacteur à double flux
EP2368032A1 (fr) Inverseur de poussee pour nacelle de turboreacteur a double flux
EP2663762B1 (fr) Porte pour inverseur de poussée d'une nacelle d'un aéronef
FR2933143A1 (fr) Nacelle pour aeronef comportant des moyens inverseurs de poussee et aeronef comportant au moins une telle nacelle
FR2959532A1 (fr) Nacelle de turboreacteur
FR2934326A1 (fr) Dispositif d'inversion de poussee
EP2737193B1 (fr) Ensemble propulsif d'aéronef
FR2966882A1 (fr) Inverseur de poussee pour turboreacteur d'aeronef a nombre d'actionneurs reduit
EP2640952A2 (fr) Nacelle pour un turboréacteur double flux d'un aéronef
WO2011073558A1 (fr) Dispositif d'inversion de poussée
EP2245289B1 (fr) Bord de fuite pour moteur d'aéronef, du type à chevrons mobiles
EP3488094B1 (fr) Système d'actionnement d'un panneau de nacelle de turboréacteur
WO2014016512A1 (fr) Dispositif d'entrainement de volets notamment pour tuyère adaptative
WO2009112749A2 (fr) Inverseur de poussée pour nacelle de turboréacteur à double flux
EP3717766B1 (fr) Inverseur de poussée d'une nacelle de moteur d'aéronef comprenant un panneau d'évitement d'un bec mobile de l'aile, et nacelle associée
WO2014195646A1 (fr) Inverseur de poussée d'une nacelle de turboréacteur, comprenant des grilles fixées aux capots mobiles
FR3027066A1 (fr) Inverseur de poussee pour nacelle de turboreacteur d'aeronef et nacelle associee

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130603

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160513

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160924