EP2633528B1 - Resist structure for producing an x-ray optical grating structure - Google Patents

Resist structure for producing an x-ray optical grating structure Download PDF

Info

Publication number
EP2633528B1
EP2633528B1 EP11770377.7A EP11770377A EP2633528B1 EP 2633528 B1 EP2633528 B1 EP 2633528B1 EP 11770377 A EP11770377 A EP 11770377A EP 2633528 B1 EP2633528 B1 EP 2633528B1
Authority
EP
European Patent Office
Prior art keywords
webs
resist structure
resist
stabilising
bars
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11770377.7A
Other languages
German (de)
French (fr)
Other versions
EP2633528A1 (en
Inventor
Jürgen Mohr
Arndt Last
Vladimir Nazmov
Markus Simon
Thomas Grund
Johannes Kenntner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Karlsruher Institut fuer Technologie KIT
Original Assignee
Karlsruher Institut fuer Technologie KIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Karlsruher Institut fuer Technologie KIT filed Critical Karlsruher Institut fuer Technologie KIT
Publication of EP2633528A1 publication Critical patent/EP2633528A1/en
Application granted granted Critical
Publication of EP2633528B1 publication Critical patent/EP2633528B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K2207/00Particular details of imaging devices or methods using ionizing electromagnetic radiation such as X-rays or gamma rays
    • G21K2207/005Methods and devices obtaining contrast from non-absorbing interaction of the radiation with matter, e.g. phase contrast

Definitions

  • the present invention relates to a resist pattern for producing an X-ray optical grating structure.
  • X-rays are used.
  • optical gratings are used whose structure and in particular their aspect ratio special requirements are made, since the quality of the imaging technique referred to in the jargon as Differential Phase Contrast Imaging (DPCI) with X-ray depends decisively on the height of the optical grating structures.
  • DPCI Differential Phase Contrast Imaging
  • the absorption of the material deposited in the struc- ture gaps in the resist structure should be in the range greater than 80%.
  • X-ray energy for which the tomographic structure is optimally designed and referred to as design energies, ranges from 20 keV to 60 keV, with the polychromatic radiation of the x-ray tube also allowing energies up to about 10 keV above the design energy are present. This means that the thickness of the absorbing gold must be at least 100 microns and thus the height of the resist structure over 100 microns.
  • the DE 10 2009 019 595 A1 discloses a resist pattern for making an X-ray optical grating structure comprising a plurality of lands and beams stabilizing the lands, the lands being perpendicular to the substrate and beams being interposed between the lands.
  • the WO 2009/116956 A1 discloses a metamaterial having an array of s-shaped resonators whose ends are supported by a frame.
  • the preparation of the metamaterial is carried out by means of a 3-level UV / X-ray lithography within the framework of the LIGA process.
  • the object of the invention is to propose a resist structure for producing a roentgen optical lattice structure which avoids the disadvantages and limitations listed.
  • the production of X-ray optical grating structures with aspect ratios of over 500 is to be made possible without the grid bars bending or the stabilizing structure having an adverse effect on the visibility.
  • the invention is based on the idea that stabilizing beams are introduced into the resist structure.
  • the webs of the Resis Jardin are attached at a first angle ⁇ on the substrate and the stabilizing beam with a second angle ⁇ .
  • between ⁇ and ⁇ at least a distance of 20 ° and at most a distance of 70 °, preferably from 40 ° to 50 °, in order to obtain the best possible stabilizing effect.
  • the ratio of the height h of the webs to the width b 'of the web gaps has a value of 10 to 500.
  • each stabilizing beam penetrates at least two webs.
  • the total height of the stabilizing beam is at most 20% of the lattice height and preferably at most 10% of the lattice height and thus has only a slight influence on the visibility.
  • Such resist structures are suitable for the production of X-ray optical grating structures.
  • the stabilizing effect of the bars is completely preserved, since the arrangement of the bars results in a stabilization of the entire area.
  • Another advantage is that the height of the stabilizing beams can be repeated at will and thus significantly higher structures than previously possible.
  • N xd For N structures arranged one above another, there is a height change of N xd, which corresponds to a few% of the total height and has only a marginal effect on the visibility.
  • the present resist structure has further stabilizing beams arranged at an angle ⁇ 'and wherein the angle ⁇ ' does not have the same value as one of the angles ⁇ or ⁇ ⁇ .
  • the resist structure consists of a negative resist material.
  • gratings for phase-contrast X-ray imaging at any height with approximately constant visibility be realized over the entire surface of the grid structure. This makes it possible to realize structures with energies of more than 40 keV, which have an absorption of 80% and more. This and the uniformity of the absorption allows a much better resolution in the phase contrast image.
  • the described resist structures are also suitable for the production of gratings for neutron imaging.
  • Fig. 1 schematically shows an embodiment of a resist structure
  • the resist structures shown in the example are particularly suitable for the production of X-ray optical grating structures made of gold.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

Die vorliegende Erfindung betrifft eine Resiststruktur zur Herstellung einer röntgenoptischen Gitterstruktur.The present invention relates to a resist pattern for producing an X-ray optical grating structure.

Für viele Anwendungen, wie beispielsweise in der medizinischen Diagnostik oder der Materialanalyse, wird Röntgenstrahlung eingesetzt. Dabei kommen optische Gitter zum Einsatz, an deren Struktur und insbesondere an deren Aspektverhältnis besondere Anforderungen gestellt werden, da die Qualität der in der Fachsprache als differentielle Phasen-Kontrast-Imaging (DPCI) bezeichneten Bildgebungsmethode mit Röntgenstrahlung entscheidend von der Höhe der optischen Gitterstrukturen abhängt.For many applications, such as in medical diagnostics or material analysis, X-rays are used. Here, optical gratings are used whose structure and in particular their aspect ratio special requirements are made, since the quality of the imaging technique referred to in the jargon as Differential Phase Contrast Imaging (DPCI) with X-ray depends decisively on the height of the optical grating structures.

Um einen für medizintechnische Anwendungen relevanten hohen Kontrast zur erzielen, sollte die Absorption des in der Resiststruktur in den Stegspalten abgeschiedenen Materials (in der Regel Gold) im Bereich größer als 80 % liegen. Bei röntgentomographischen Untersuchungen mit Röntgenröhren liegen die Röntgenenergie, für die der tomografische Aufbau optimal ausgelegt ist und in der Fachsprache als Designenergien bezeichnet werden, je nach Anwendung im Bereich von 20 keV bis 60 keV, wobei durch die polychromatische Strahlung der Röntgenröhre auch Energien bis zu etwa 10 keV oberhalb der Designenergie vorhanden sind. Dies bedeutet, dass die Dicke des absorbierenden Goldes mindestens 100 µm und damit die Höhe der Resiststruktur auch über 100 µm betragen muss.In order to achieve a high contrast relevant for medical applications, the absorption of the material deposited in the struc- ture gaps in the resist structure (usually gold) should be in the range greater than 80%. Depending on the application, X-ray energy, for which the tomographic structure is optimally designed and referred to as design energies, ranges from 20 keV to 60 keV, with the polychromatic radiation of the x-ray tube also allowing energies up to about 10 keV above the design energy are present. This means that the thickness of the absorbing gold must be at least 100 microns and thus the height of the resist structure over 100 microns.

Aus dem Stand der Technik sind Verfahren bekannt, um Resiststrukturen mit Höhen von mehreren hundert Mikrometern herzustellen. In F. Pfeiffer et al., Nature Physics, 2006, Advanced Online Publication, p.1 , werden die Möglichkeiten der Phasenkontrast-Röntgenbildgebung mit nicht-kohärenten Röntgenquellen beschrieben. Zur Realisierung dieser Bildgebungssysteme ist die Herstellung von Gitterstrukturen mit hohem Aspektverhältnis notwendig. Diese Anforderungen an die Dimensionen der absorbierenden Strukturen, sowie deren mechanische Stabilität werfen jedoch prozesstechnische Probleme auf.Methods are known in the art for producing resist structures with heights of several hundred microns. In Pfeiffer et al., Nature Physics, 2006, Advanced Online Publication, p.1 , the possibilities of phase-contrast X-ray imaging with non-coherent X-ray sources are described. For the realization of these imaging systems, the production of lattice structures with a high aspect ratio is necessary. These dimensions requirements However, the absorbent structures, as well as their mechanical stability raise process engineering problems.

In E. Reznikova et al., Soft X-ray lithography of high aspect ratio SU 8 submicron structures, Micro Syst. Techn., 14:1863-1688, 2008 , wird ein Verfahren beschrieben, das prinzipiell die Herstellung derartiger Strukturen erlaubt. Hierbei wird aber auch deutlich, dass es bei Strukturhöhen von größer 60 µm zu einer Verbiegung der unterschiedlich lang gewählten Stege kommt und somit das Aspektverhältnis begrenzt ist.In E. Reznikova et al., Soft X-ray lithography of high aspect ratio SU 8 submicron structures, Micro Syst. Techn., 14: 1863-1688, 2008 , a method is described which in principle allows the production of such structures. In this case, however, it is also clear that at structural heights of greater than 60 .mu.m to a bending of the differently long selected webs comes and thus the aspect ratio is limited.

In J. Kenntner, et al., Front- and backside structuring of gratings for phase contrast imaging with x-ray tubes, Proc. SPIE, Vol. 7804, S. 780408, S. 1-10, 2010 , werden Resiststrukturen gezeigt, mit denen versucht wurde, das Problem der Verbiegung der Gitterstege dadurch zu verhindern, dass die Gitterstege durch Füllbalken verbunden werden. Der Nachteil dieser Lösung ist, dass die Goldstege immer wieder durch quasi transparente Bereiche (Füllbalken) unterbrochen werden. Dies führt bei der Analyse der Visibility V mit einem Detektor, der eine Pixelgröße im Bereich weniger Gitterperioden und kleiner hat, zu schwankenden Visibility-Werten. Die Visibility V ist wie folgt definiert V = I max I min / I max + I min

Figure imgb0001
wobei Imax der maximale Intensitätswert ist und Imin der minimale Intensitätswert im erzeugten Röntgenbild ist.In J.Knowner, et al., Front and backside structuring of gratings for phase contrast imaging with x-ray tubes, Proc. SPIE, Vol. 7804, p. 780408, pp. 1-10, 2010 , Resist structures are shown with which it was attempted to prevent the problem of bending the grid bars by connecting the grid bars with filling bars. The disadvantage of this solution is that the gold bars are interrupted again and again by quasi transparent areas (filling bars). This results in fluctuating visibility values when analyzing the visibility V with a detector having a pixel size in the range of fewer grating periods and less. The visibility V is defined as follows V = I Max - I min / I Max + I min
Figure imgb0001
where I max is the maximum intensity value and I min is the minimum intensity value in the generated X-ray image.

Die DE 10 2009 019 595 A1 offenbart eine Resiststruktur zur Herstellung einer röntgenoptischen Gitterstruktur, umfassend eine Vielzahl von Stegen und die Stege stabilisierende Balken, wobei die Stege senkrecht zum Substrat angeordnet sind und Balken zwischen den Stegen eingebracht sind.The DE 10 2009 019 595 A1 discloses a resist pattern for making an X-ray optical grating structure comprising a plurality of lands and beams stabilizing the lands, the lands being perpendicular to the substrate and beams being interposed between the lands.

Aus G. Feiertag et al., Sloped Irradiation Techniques in Deep X-Ray Lithography for 3-D Shaping of Microstructures, Proc. SPIE 3048, S. 126-145, 1997 ) sind verschiedene dreidimensionale Resiststrukturen bekannt, die durch konsekutive Bestrahlungen eines Resists entlang +45° und -45° Richtungen hergestellt werden. W. Becker et al., Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, galvanoforming, and plastic moulding (LIGA process), Microelectr. Eng. 4, S. 35-56, 1986 , beschreiben Resiststrukturen mit hohem Aspektverhältnis, die ohne stabilisierende Balken ausgeführt sind. In J.A. van Kann et al., Resist material for proton micromachining, Nucl. Instr. & Meth. in Phys. Res. B, 158, S. 179-184, 1999 , werden Strukturen mittels hochenergetischer Protonen in einem direkten Schreibverfahren in einen Resist aus Polymethylmethacrylat (PMMA) eingeschrieben.Out G. Feiertag et al., Sloped Irradiation Techniques in Deep X-Ray Lithography for 3-D Shaping of Microstructures, Proc. SPIE 3048, Pp. 126-145, 1997 ), various three-dimensional resist structures are known which are prepared by consecutive exposures of a resist along + 45 ° and -45 ° directions. W. Becker et al., Fabrication of microstructures with high aspect ratios and great structural heights by synchrotron radiation lithography, electroforming, and plastic molding (LIGA process), Microelectr. Closely. 4, pp. 35-56, 1986 , describe high aspect ratio resist structures that are designed without stabilizing bars. In JA van Kann et al., Resist material for proton micromachining, Nucl. Instr. & Meth. In Phys. Res. B, 158, p. 179-184, 1999 , structures are written by means of high-energy protons in a direct writing process in a resist of polymethyl methacrylate (PMMA).

Die WO 2009/116956 A1 offenbart ein Metamaterial, das eine Anordnung von s-förmigen Resonatoren aufweist, deren Enden durch einen Rahmen gestützt sind. Die Herstellung des Metamaterials erfolgt mittels einer 3-Ebenen UV-/Röntgen-Lithographie im Rahmen des LIGA-Verfahrens. Ausgehend davon liegt die Aufgabe der Erfindung darin, eine Resiststruktur zur Herstellung einer röntgenoptischen Gitterstruktur vorzuschlagen, die die aufgeführten Nachteile und Einschränkungen vermeidet. Insbesondere soll die Herstellung von röntgenoptischen Gitterstrukturen mit Aspektverhältnissen von über 500 ermöglicht werden, ohne dass sich die Gitterstege verbiegen oder sich die stabilisierende Struktur nachteilig auf die Visibility auswirkt.The WO 2009/116956 A1 discloses a metamaterial having an array of s-shaped resonators whose ends are supported by a frame. The preparation of the metamaterial is carried out by means of a 3-level UV / X-ray lithography within the framework of the LIGA process. Proceeding from this, the object of the invention is to propose a resist structure for producing a roentgen optical lattice structure which avoids the disadvantages and limitations listed. In particular, the production of X-ray optical grating structures with aspect ratios of over 500 is to be made possible without the grid bars bending or the stabilizing structure having an adverse effect on the visibility.

Diese Aufgabe wird durch eine Resiststruktur mit den Merkmalen des Anspruchs 1 gelöst. Die abhängigen Ansprüche beschreiben vorteilhafte Ausgestaltungen.This object is achieved by a resist structure having the features of claim 1. The dependent claims describe advantageous embodiments.

Die Erfindung beruht auf dem Grundgedanken, dass stabilisierende Balken in die Resiststruktur eingebracht werden. Dabei sind die Stege der Resisstruktur mit einem ersten Winkel α auf dem Substrat angebracht und die stabilisierenden Balken mit einem zweiten Winkel β. In einer bevorzugten Ausgestaltung besteht zwischen α und β mindestens ein Abstand von 20° und höchstens ein Abstand von 70°, vorzugsweise von 40° bis 50°, um eine möglichst gute stabilisierende Wirkung zu erhalten.The invention is based on the idea that stabilizing beams are introduced into the resist structure. The webs of the Resisstruktur are attached at a first angle α on the substrate and the stabilizing beam with a second angle β . In a preferred embodiment, between α and β at least a distance of 20 ° and at most a distance of 70 °, preferably from 40 ° to 50 °, in order to obtain the best possible stabilizing effect.

In einer bevorzugten Ausgestaltung weist das Verhältnis der Höhe h der Stege zur Breite b' der Stegspalten einen Wert von 10 bis 500 auf.In a preferred embodiment, the ratio of the height h of the webs to the width b 'of the web gaps has a value of 10 to 500.

In einer bevorzugten Ausgestaltung liegt der Abstand zwischen zwei benachbarten stabilisierender Balken im Bereich zwischen der doppelten und der 20-fachen Spaltbreite, und der Umkreisdurchmesser d eines jeden Balkens beträgt zwischen 1 µm und 10 µm, bevorzugt von 2 µm bis 5 µm. Der Erfindung nach durchdringt jeder stabilisierende Balken mindestens zwei Stege.In a preferred embodiment, the distance between two adjacent stabilizing beams is in the range between twice and 20 times the slot width, and the perimeter diameter d of each beam is between 1 μm and 10 μm, preferably from 2 μm to 5 μm. According to the invention, each stabilizing beam penetrates at least two webs.

Eine derartige Anordnung und Dimensionierung der Balken sowie die Wahl der Winkel bewirkt, dass in einem Stegspalt der Resiststruktur und damit in den späteren Stegen der Gitterstruktur die Gesamthöhe der stabilisierenden Balken maximal 20 % der Gitterhöhe und bevorzugt maximal 10 % der Gitterhöhe beträgt und somit die Visibility nur gering beeinflusst.Such an arrangement and dimensioning of the beams as well as the choice of the angle causes a web gap of the resist structure and thus in the later webs of the lattice structure, the total height of the stabilizing beam is at most 20% of the lattice height and preferably at most 10% of the lattice height and thus has only a slight influence on the visibility.

Derartige Resiststrukturen eignen sich für die Herstellung von röntgenoptischen Gitterstrukturen. Im Bereich des stabilisierenden Balkens wird die Höhe des in den Stegspalten abgeschiedenen Materials maximal um den Wert d' vermindert, der sich aus d ' = d * 1 / cosβ

Figure imgb0002
ergibt, wobei d der Umkreisdurchmesser des Balkens ist. Die stabilisierende Wirkung der Balken bleibt vollständig erhalten, da sich über die Anordnung der Balken eine Stabilisierung der gesamten Fläche ergibt.Such resist structures are suitable for the production of X-ray optical grating structures. In the area of the stabilizing beam, the height of the material deposited in the web gaps is reduced by a maximum of the value d ' resulting from d ' = d * 1 / cosβ
Figure imgb0002
where d is the perimeter diameter of the beam. The stabilizing effect of the bars is completely preserved, since the arrangement of the bars results in a stabilization of the entire area.

Ein weiterer Vorteil ist, dass sich die stabilisierenden Balken in der Höhe beliebig wiederholen und damit auch deutlich höhere Strukturen als bisher möglich sind. Für N Strukturen, die übereinander angeordnet sind, ergibt sich eine Höhenänderung von N x d, was wenige % der Gesamthöhe entspricht und sich nur unwesentlich auf die Visibility auswirkt.Another advantage is that the height of the stabilizing beams can be repeated at will and thus significantly higher structures than previously possible. For N structures arranged one above another, there is a height change of N xd, which corresponds to a few% of the total height and has only a marginal effect on the visibility.

In einer besonderen Ausgestaltung besitzt die vorliegende Resiststruktur zusätzlich zu den stabilisierenden Balken, die in einem Winkel β angeordnet sind, weitere stabilisierende Balken, die in einem Winkel β' angeordnet sind und wobei der Winkel β' nicht denselben Wert hat wie einer der Winkel α oder β.In a particular embodiment, in addition to the stabilizing beams arranged at an angle β , the present resist structure has further stabilizing beams arranged at an angle β 'and wherein the angle β ' does not have the same value as one of the angles α or β β .

In einer bevorzugten Ausgestaltung besteht die Resiststruktur aus einem Negativresistmaterial.In a preferred embodiment, the resist structure consists of a negative resist material.

Mit derartigen Strukturen können Gitter für die Phasenkontrast - Röntgenbildgebung in beliebiger Höhe mit annähernd konstanter Visibility über der gesamten Fläche der Gitterstruktur realisiert werden. Damit sind auch für Energien über 40 keV Strukturen realisierbar, die eine Absorption von 80 % und mehr aufweisen. Dies und die Gleichmäßigkeit der Absorption ermöglicht dabei eine weit bessere Auflösung im Phasenkontrastbild.With such structures, gratings for phase-contrast X-ray imaging at any height with approximately constant visibility be realized over the entire surface of the grid structure. This makes it possible to realize structures with energies of more than 40 keV, which have an absorption of 80% and more. This and the uniformity of the absorption allows a much better resolution in the phase contrast image.

Die beschriebenen Resiststrukturen eignen sich aufgrund ihrer hohen Aspektverhältnisse auch für die Herstellung von Gittern zur Neutronenbildgebung.Due to their high aspect ratios, the described resist structures are also suitable for the production of gratings for neutron imaging.

Nachfolgend wird die Erfindung anhand eines Beispiels und der Figur näher erläutert.The invention will be explained in more detail below with reference to an example and the figure.

Fig. 1 zeigt schematisch eine Ausführungsform einer Resiststruktur, deren Stege 1 in einem Winkel α = 90° auf einem Substrat 2 angeordnet sind und ein Feld aus im Querschnitt runden Balken 3, das die Stege 1 stabilisiert. Die stabilisierenden Balken 3 sind in einem Winkel β = 45° auf dem Substrat 2 angebracht und schneiden die Stege 1 im der gezeigten Ausführform in einem Winkel von 45°. Fig. 1 schematically shows an embodiment of a resist structure, the webs 1 are arranged at an angle α = 90 ° on a substrate 2 and a field of cross-sectionally round bars 3, which stabilizes the webs 1 . The stabilizing beams 3 are mounted at an angle β = 45 ° on the substrate 2 and intersect the webs 1 in the embodiment shown at an angle of 45 °.

Die im Beispiel dargestellten Resiststrukturen eignen sich insbesondere zur Herstellung röntgenoptischer Gitterstrukturen aus Gold.The resist structures shown in the example are particularly suitable for the production of X-ray optical grating structures made of gold.

Claims (11)

  1. Resist structure for producing an X-ray optical grating structure, comprising a substrate (2), a plurality of webs (1) with a height h and a width b, as well as web gaps with a width b', and the bars (3) stabilising the webs (1), with a circumcircle diameter d, wherein the webs (1) and the bars (3) stabilising the webs (1) are arranged on the substrate (2), characterised in that
    the webs (1) are arranged at an angle α on the substrate (2), and the bars (3) stabilising the webs (1) are arranged at an angle β, wherein the angles α and β are not the same, and in that
    in a web gap of the resist structure, and therefore in the later webs of the X-ray optical grating structure, which exhibit a grating height which corresponds to the height of a material to be cut off in the web gaps, the total height of the stabilising beams amounts to maximum 20% of the grating height, and in that each stabilising bar penetrates through at least two webs.
  2. Resist structure according to claim 1, characterised in that the total height of the stabilising bars in a web gap amounts to a maximum of 10% of the grating height.
  3. Resist structure according to claim 1 or 2, characterised in that the angle α has a value of 90°
  4. Resist structure according to any one of claims 1 to 2, characterised in that the angles α and β exhibit a difference of at least 20° and up to a maximum of 70°
  5. Resist structure according to claim 4, characterised in that the angles α and β exhibit a difference of 40° to 50°.
  6. Resist structure according to any one of claims 1 to 5, wherein the height h of the webs (1) exhibits a ratio to the width b' of the web gaps of 10 to 500.
  7. Resist structure according to any one of claims 1 to 6, characterised in that the spacing between two stabilising bars (3) amounts to at least double the width b' and a maximum of 20 times the width b'.
  8. Resist structure according to any one of claims 1 to 7, characterised in that the circumcircle diameter d of the stabilising bars (3) is between 1 µm and 10 µm.
  9. Resist structure according to claim 8, characterised in that the circumcircle diameter d of the stabilising bars (3) is from 2 µm to 5 µm.
  10. Resist structure according to any one of claims 1 to 9, characterised in that the resist structure consists of a negative resist material.
  11. Resist structure according to any one of claims 1 to 10, characterised in that, in addition to the stabilising bars (3), which are arranged at an angle β, further stabilising bars are arranged at an angle β', and wherein the angle β' does not have the same value as one of the angles α or β.
EP11770377.7A 2010-10-28 2011-10-13 Resist structure for producing an x-ray optical grating structure Not-in-force EP2633528B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010049994A DE102010049994B3 (en) 2010-10-28 2010-10-28 Resist structure for producing an X-ray optical lattice structure
PCT/EP2011/005141 WO2012055495A1 (en) 2010-10-28 2011-10-13 Resist structure for producing an x-ray optical grating structure

Publications (2)

Publication Number Publication Date
EP2633528A1 EP2633528A1 (en) 2013-09-04
EP2633528B1 true EP2633528B1 (en) 2018-07-18

Family

ID=44802023

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11770377.7A Not-in-force EP2633528B1 (en) 2010-10-28 2011-10-13 Resist structure for producing an x-ray optical grating structure

Country Status (3)

Country Link
EP (1) EP2633528B1 (en)
DE (1) DE102010049994B3 (en)
WO (1) WO2012055495A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015217201B3 (en) * 2015-09-09 2017-01-05 Karlsruher Institut für Technologie Photoresist structure and process for its preparation
JP7216646B2 (en) 2016-12-15 2023-02-01 コーニンクレッカ フィリップス エヌ ヴェ Grating structure for X-ray imaging, X-ray imaging system with said grating structure, and method for manufacturing said grating structure
EP3745420A1 (en) 2019-05-27 2020-12-02 Koninklijke Philips N.V. Stabilized grating structures

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009116956A1 (en) * 2008-03-20 2009-09-24 National University Of Singapore A metamaterial and methods for producing the same
DE102009019595B4 (en) * 2009-04-30 2013-02-28 Forschungszentrum Karlsruhe Gmbh High aspect ratio grating, particularly for use as an X-ray optical grating in a CT system manufactured by a lithographic process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2012055495A1 (en) 2012-05-03
DE102010049994B3 (en) 2012-05-10
EP2633528A1 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
DE102009019595B4 (en) High aspect ratio grating, particularly for use as an X-ray optical grating in a CT system manufactured by a lithographic process
DE102010062133B4 (en) Collimator for a radiation detector and method for producing such a collimator and method for producing a beam detector having collimators
EP1107260B1 (en) X-ray absorbing grid
EP2241350B1 (en) Assembly for expanding the particle energy distribution of a particle beam, particle therapy assembly and method for expanding the particle energy distribution of a particle beam
EP0873566B1 (en) X-ray microscope with zone plates
WO2013160153A1 (en) X-ray device
WO2008074287A1 (en) Method for the production of a three-dimensional component
DE102005044650A1 (en) Scattering grid with a cell-like structure of radiation channels and method for producing such a scattered radiation grid
DE102011082878A1 (en) X-ray detector of a grid-based phase-contrast X-ray device and method for operating a grid-based phase-contrast X-ray device
DE102008061487B4 (en) Method for producing a comb-like collimator element for a collimator arrangement and collimator element
WO2011157500A1 (en) Gratings for x-ray imaging, consisting of at least two materials
EP2633528B1 (en) Resist structure for producing an x-ray optical grating structure
DE10323654A1 (en) Energy filtering device
DE102009037112B4 (en) Optical system for generating a light beam for treating a substrate
WO2020124106A1 (en) Method for producing a test element for diffusion tensor imaging
DE10305106B4 (en) Anti-scatter grid or collimator as well as arrangement with radiation detector and anti-scatter grid or collimator
DE102015201741A1 (en) Phase contrast grating and method for producing a phase contrast grating
EP2739356B1 (en) Improved energy modulator
EP3805475B1 (en) Holder for lattice framework
DE102013221818A1 (en) Imaging system and method for imaging
DE3041067C1 (en) Self-supporting grid
DE102012109130B4 (en) Methods and apparatus for producing three-dimensional structures
DE102009019647B4 (en) Diffraction grating and method of manufacture
DE102015217201B3 (en) Photoresist structure and process for its preparation
DE112021002039T5 (en) FOCUSED GRIDING DEVICES WITH HIGH ASPECT RATIO

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130307

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20170608

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180213

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG, CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011014478

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1020227

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180815

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181118

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181018

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011014478

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

26N No opposition filed

Effective date: 20190423

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181013

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181013

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1020227

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181013

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111013

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180718

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180718

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20201020

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20201022

Year of fee payment: 10

Ref country code: FR

Payment date: 20201020

Year of fee payment: 10

Ref country code: DE

Payment date: 20201022

Year of fee payment: 10

Ref country code: GB

Payment date: 20201022

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011014478

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20211101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20211013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211013

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031