EP2626532A1 - Method for operating a gas turbine - Google Patents

Method for operating a gas turbine Download PDF

Info

Publication number
EP2626532A1
EP2626532A1 EP12154233.6A EP12154233A EP2626532A1 EP 2626532 A1 EP2626532 A1 EP 2626532A1 EP 12154233 A EP12154233 A EP 12154233A EP 2626532 A1 EP2626532 A1 EP 2626532A1
Authority
EP
European Patent Office
Prior art keywords
gas turbine
gas
steam
turbine
fuel gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP12154233.6A
Other languages
German (de)
French (fr)
Inventor
Tjark Eisfeld
Thorsten Engler
Christian Gindorf
Andreas Heilos
Marie Hu
Carsten Kaufmann
Irene Somoza Parada
Jan Wilkes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP12154233.6A priority Critical patent/EP2626532A1/en
Publication of EP2626532A1 publication Critical patent/EP2626532A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/22Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being gaseous at standard temperature and pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the invention relates to a method for operating a gas turbine.
  • a gas turbine is an internal combustion engine, consisting of the gas turbine in the narrower sense (expander) with an upstream compressor and a combustion chamber in between, to which a fuel gas, typically natural gas is supplied.
  • the principle of operation is based on the Joule process, in which air is compressed via the blading of one or more compressor stages, which is then mixed in the combustion chamber with a fuel gas, ignited and burnt. The result is a hot gas (mixture of fuel gas and air), which relaxes in the subsequent turbine part, with thermal converts to mechanical energy and first drives the compressor. The remaining portion is usually used to drive a generator, a propeller, a rotor, a compressor or a pump. In jet engines on the other hand, the thermal energy accelerates the hot gas flow, which generates the thrust.
  • Stationary gas turbines are commonly used in gas and steam turbine (GUD) power plants.
  • electricity is generated with one to four gas turbines and one steam turbine, whereby either each turbine drives a generator (multi-shaft system) or a gas turbine with the steam turbine (uncouplerable) on a common shaft the generator (single-shaft system).
  • the hot exhaust gases of the gas turbines are used in a waste heat steam boiler for generating water vapor.
  • the steam is then released via a steam turbine process.
  • GUD power plants are very flexible in power plant management: thanks to short start times and the possibility Fast load changes make them ideal mid-load power plants. These power plants are therefore primarily operated in the middle load range, but if necessary also in the area of the peak current.
  • gas turbines tend to increase CO emissions as a matter of principle.
  • the cause is essentially a reduction of the turbine inlet temperature, with which the desired partial load is set.
  • the burnout and thus the CO emissions are directly related to this temperature reduction.
  • it is often aimed specifically at thermodynamic parameters. So z.
  • the turbine inlet temperature can be increased by raising the exhaust gas temperature or the compressor inlet temperature can be increased associated with a reduction of the Ansaugmassenstroms.
  • the continuous operation of the gas turbine is nevertheless limited to low loads. Below these minimum loads, the power plant operator only has to shut down the system. Restarting with sufficient demand for power is quickly possible, but generally costs the life of the thermally stressed components.
  • This object is achieved according to the invention by partially reforming the gas turbine supplied fuel gas before the supply to the gas turbine with the addition of water vapor.
  • the invention is based on the consideration that an increase in operational flexibility and low CO emissions in the partial load range could be achieved by improving the burnout of the fuel gas.
  • the burn-out is influenced by design-related and process-related variables. Essentially, these are mixing, quenching effects when mixed with cooling air streams, the available residence time in the combustion chamber and the fuel properties. In addition to the already known thermodynamic measures could therefore be a constructive increase in the residence time z.
  • B. reduce the CO content by increasing the length of the combustion chamber. However, this has a negative effect on the NOx emissions at high combustion chamber temperatures, so that this option is eliminated.
  • the fuel composition should be changed to reduce CO emissions. This is particularly easy possible, in which the fuel gas is partially reformed with the addition of water vapor. The resulting mixture of carbon monoxide, hydrogen, natural gas and water has an increased reactivity, which accelerates the burnout of the carbon monoxide formed in the flame front.
  • the reforming is carried out in a tubular reactor, the fuel gas is supplied to the previously added steam.
  • the tubular reactor is particularly well suited to provide the temperature and pressure parameters required for reforming.
  • the reforming can be operated both with and without a catalyst.
  • the tubular reactor is heated by means of the exhaust gases of the gas turbine.
  • the heating of the tubular reactor can either be done directly with gas turbine exhaust gas or the tubular reactor is located at a suitable point in one of the gas turbine downstream heat recovery steam generator. This is particularly efficient, since no additional heating is necessary.
  • the exhaust gases provide a temperature of about 400 to 650 ° C available. Although these temperatures may not be sufficient for a complete reforming of the fuel gas. However, a full implementation is not required for the application in a gas turbine and also not desirable. Rather, sufficient enrichment with hydrogen, so that the reactivity is increased, on the other hand, but no risk of operation by flashback arises.
  • the fuel gas is passed before being fed to the gas turbine and after reforming in a heat exchanger.
  • the heat content of the reformed fuel gas can be used to increase efficiency, for example, to generate steam or to preheat the fuel gas.
  • the addition of water vapor by means of a jet pump wherein the water vapor is used as a driving medium and the fuel gas is used as the suction medium.
  • the steam is advantageously taken from a waste heat steam generator associated with the gas turbine.
  • This steam typically has a comparatively high pressure, which can be advantageously used to increase the pressure of the reformed fuel gas and / or the use in a jet pump.
  • the gas turbine is operated below 70% of its maximum power. Especially in such comparatively low load ranges, it is possible to operate the gas turbine still emissions compliant by reforming the fuel gases.
  • a gas turbine is operated with the described method and a power plant comprises such a gas turbine.
  • the power plant is advantageously designed as a gas and steam turbine power plant. As a result, multiple synergy effects can be achieved with respect to the method described. So z. B. the water vapor can be used from the steam cycle.
  • the advantages achieved by the invention are in particular that by the partial reforming of the fuel gas with supply of water vapor even at low loads of a gas turbine, d. H. At reduced flame temperatures and the typical residence times available in gas turbine combustors, carbon monoxide has reacted to below the required limit values. As a result, the gas turbine can continue to operate even at low loads and there is no life-reducing and startup necessary.
  • the process control with the parameters residence time and steam / natural gas ratio is to be dimensioned so that a safe operation without flashback is possible with the designed for natural gas operation burners.
  • the reformed fuel gas can be mixed either into the main gas stream, the premix gas stream, into the pilot gas stream or specifically into individual combustion stages. Due to the restriction to individual combustion stages, even with low mass flows one obtains a clear influence on the emission data.
  • the combined cycle power plant 1 includes a gas turbine 2 and arranged with the gas turbine 2 on a common shaft 4 generator 6.
  • the combined cycle power plant 1 is designed as a single-shaft system. On the shaft 6, therefore, a steam turbine 8 is arranged.
  • the steam turbine 8 is designed for a simple reheat, thus comprises three turbine stages, namely one high, medium and low pressure stage.
  • the steam cycle begins with the preheating of the feedwater in the preheater 10, which, like all the preheaters, evaporators and superheaters described below, are arranged in a waste heat steam generator 14 connected downstream of the exhaust gas channel 12 of the gas turbine 2.
  • the preheated feed water is distributed from there to the low-pressure steam drum 16 and the feedwater pump 18. From the feedwater pump 18, the feedwater is in turn passed through the medium-pressure preheater 20 in the medium-pressure steam drum 22 and parallel to the high-pressure preheater 24.
  • the high-pressure part of the heat recovery steam generator 14 is designed in the passage, d. H. There is no steam drum. Rather, the medium from the high pressure preheater 24 is passed directly into the combined high pressure evaporator and superheater 26. From there, it flows into a water-vapor separator 28, which ensures essentially only at low loads for a separation of remaining liquid medium. The steam from the water-steam separator 28 is reheated in the high-pressure superheater 30 again and then fed via the high-pressure steam line 32 of the high-pressure stage of the steam turbine 8.
  • the middle and low pressure stages of the heat recovery steam generator 14 are designed in circulation. Starting from the low pressure steam drum 16 is circulating, d. H.
  • the low-pressure evaporator 34 flows through in a circulating manner, analogously to the medium-pressure steam drum 22, starting from the medium-pressure evaporator 36.
  • the steam accumulating in the steam drums 16, 22 is conducted into the low-pressure superheater 38 or the medium-pressure superheater 40. With the steam from the low-pressure superheater 38, the low-pressure stage of the steam turbine 8 is fed via the low-pressure steam line 42.
  • the steam from the medium-pressure superheater 42 is mixed with the steam which has been expanded in the high-pressure stage of the steam turbine 8 and returned via the return line 44 and fed into the reheater 46. From here, the steam is fed via the medium-pressure steam line 48 to the medium-pressure stage of the steam turbine 8. In the steam turbine 8 incidentally accumulating steam is passed into the condenser 50, where it is liquefied and fed back to the feedwater pump 18 via a condensate pump 52 and the feedwater line 54.
  • the gas turbine 2 is acted upon by natural gas as fuel gas B.
  • the resulting in the gas turbine 2 exhaust gas is passed after the passage of the heat recovery steam generator 14 in a chimney 56 and from there into the environment. Accordingly, here are To comply with limit values with regard to the CO content of the exhaust gas.
  • the fuel gas B or optionally a part of the fuel gas B is fed to a mixing unit 58, in which it is mixed with extracted in the region of the medium pressure superheater 40 steam.
  • the water vapor / fuel gas mixture is then fed to a tubular reactor 60 arranged in the heat recovery steam generator 14.
  • the gas is partially reformed by the pressure prevailing there and the temperature prevailing there.
  • the partially reformed fuel gas is then passed into the burners of the gas turbine 2 via a heat exchanger 62, in which the fuel gas B previously supplied to the mixing unit 58 is preheated.
  • the heat exchanger 62 is connected in the feedwater line 54.
  • the embodiment according to FIG. 2 is only based on their differences to FIG. 1 described.
  • the mixing unit 58 is here replaced by a jet pump 64.
  • the steam is taken from the water-steam separator 28 of the high pressure stage of the heat recovery steam generator 14 and acts as a propellant in the jet pump. Thereby, the pressure of the reformed gas is increased and the embodiment according to FIG. 2 is also suitable for higher loads of the gas turbine 2.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

The method involves partially reforming the fuel gas (B) supplied to a gas turbine (2) before addition of water vapor to the gas turbine, where the reforming takes place in a tubular reactor (60). The tube reactor is heated by the exhaust gases of the gas turbine, where the fuel gas is passed into a heat exchanger (62) before being fed into the gas turbine and after reforming. The addition of water vapor is performed by a jet pump, where the water vapor is taken to a heat recovery steam generator (14) associated with the gas turbine.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Gasturbine.The invention relates to a method for operating a gas turbine.

Eine Gasturbine ist eine Verbrennungskraftmaschine, bestehend aus der Gasturbine im engeren Sinne (Expander) mit einem vorgeschalteten Verdichter und einer dazwischengeschalteten Brennkammer, der ein Brenngas, typischerweise Erdgas zugeführt wird. Das Wirkungsprinzip beruht auf dem Joule-Prozess, bei dem über die Beschaufelung einer oder mehrerer Verdichterstufen Luft komprimiert wird, diese anschließend in der Brennkammer mit einem Brenngas gemischt wird, gezündet wird und verbrennt. So entsteht ein Heißgas (Mischung aus Brenngas und Luft), das im nachfolgenden Turbinenteil entspannt, wobei sich thermische in mechanische Energie umwandelt und zunächst den Verdichter antreibt. Der verbleibende Anteil wird üblicherweise zum Antrieb eines Generators, eines Propellers, eines Rotors, eines Kompressors oder einer Pumpe verwendet. Bei Strahltriebwerken dagegen beschleunigt die thermische Energie den heißen Gasstrom, was den Schub erzeugt.A gas turbine is an internal combustion engine, consisting of the gas turbine in the narrower sense (expander) with an upstream compressor and a combustion chamber in between, to which a fuel gas, typically natural gas is supplied. The principle of operation is based on the Joule process, in which air is compressed via the blading of one or more compressor stages, which is then mixed in the combustion chamber with a fuel gas, ignited and burnt. The result is a hot gas (mixture of fuel gas and air), which relaxes in the subsequent turbine part, with thermal converts to mechanical energy and first drives the compressor. The remaining portion is usually used to drive a generator, a propeller, a rotor, a compressor or a pump. In jet engines on the other hand, the thermal energy accelerates the hot gas flow, which generates the thrust.

Stationäre Gasturbinen kommen häufig in Gas- und Dampfturbinen-(GUD-)Kraftwerken zum Einsatz. Im GUD-Kraftwerk wird mit ein bis vier Gasturbinen und einer Dampfturbine Elektrizität erzeugt, wobei entweder jede Turbine jeweils einen Generator antreibt (Mehrwellenanlage) oder eine Gasturbine mit der Dampfturbine (abkuppelbar) auf einer gemeinsamen Welle den Generator (Einwellenanlage). Die heißen Abgase der Gasturbinen werden in einem Abhitze-Dampfkessel zur Erzeugung von Wasserdampf verwendet. Der Dampf wird anschließend über einen Dampfturbinenprozess entspannt.Stationary gas turbines are commonly used in gas and steam turbine (GUD) power plants. In the combined cycle power plant, electricity is generated with one to four gas turbines and one steam turbine, whereby either each turbine drives a generator (multi-shaft system) or a gas turbine with the steam turbine (uncouplerable) on a common shaft the generator (single-shaft system). The hot exhaust gases of the gas turbines are used in a waste heat steam boiler for generating water vapor. The steam is then released via a steam turbine process.

GUD-Kraftwerke sind im Kraftwerksmanagement sehr flexibel einsetzbar: Dank kurzer Startzeiten und der Möglichkeit schneller Laständerungen sind sie ideale Mittellast-Kraftwerke. Vorrangig werden diese Kraftwerke daher im Mittellastbereich, bei Bedarf jedoch auch im Bereich des Spitzenstroms betrieben.GUD power plants are very flexible in power plant management: thanks to short start times and the possibility Fast load changes make them ideal mid-load power plants. These power plants are therefore primarily operated in the middle load range, but if necessary also in the area of the peak current.

Gerade im Teillastbetrieb neigen Gasturbinen jedoch prinzipbedingt zu erhöhten CO-Emissionen. Die Ursache ist im Wesentlichen eine Reduktion der Turbineneintrittstemperatur, mit der die gewünschte Teillast eingestellt wird. Der Ausbrand und damit die CO-Emissionen stehen in unmittelbarem Zusammenhang mit dieser Temperaturabsenkung. Dementsprechend wird zur Verringerung der CO-Emissionen häufig gezielt auf thermodynamische Parameter abgestellt. So kann z. B. der Brennereintrittsluftmassenstrom reduziert werden (durch Abblasen von Verdichterluft vor der Brennkammer oder Reduzierung des angesaugten Luftmassenstroms durch Schließen der Verdichterleitschaufeln), die Turbineneintrittstemperatur durch Anheben der Abgastemperatur erhöht werden oder die Verdichtereintrittstemperatur verbunden mit einer Reduktion des Ansaugmassenstroms erhöht werden.However, especially in part-load operation, gas turbines tend to increase CO emissions as a matter of principle. The cause is essentially a reduction of the turbine inlet temperature, with which the desired partial load is set. The burnout and thus the CO emissions are directly related to this temperature reduction. Accordingly, in order to reduce CO emissions, it is often aimed specifically at thermodynamic parameters. So z. As the burner inlet air mass flow can be reduced (by blowing off compressor air in front of the combustion chamber or reducing the intake air mass flow by closing the compressor guide vanes), the turbine inlet temperature can be increased by raising the exhaust gas temperature or the compressor inlet temperature can be increased associated with a reduction of the Ansaugmassenstroms.

Je nach gesetzlichen Rahmenbedingungen wird der kontinuierliche Betrieb der Gasturbine dennoch zu niedrigen Lasten hin limitiert. Unterhalb dieser Mindestlasten bleibt dem Kraftwerksbetreiber nur das Abfahren der Anlage. Das Wiederanfahren bei ausreichender Stromnachfrage ist zwar schnell möglich, kostet im Allgemeinen jedoch Lebensdauer der thermisch belasteten Komponenten.Depending on the legal framework, the continuous operation of the gas turbine is nevertheless limited to low loads. Below these minimum loads, the power plant operator only has to shut down the system. Restarting with sufficient demand for power is quickly possible, but generally costs the life of the thermally stressed components.

Es ist daher Aufgabe der Erfindung, ein Verfahren zum Betreiben einer Gasturbine anzugeben, das eine weitere Erhöhung der betrieblichen Flexibilität insbesondere im Teillastbereich bei gleichzeitig geringen CO-Emissionen erlaubt.It is therefore an object of the invention to specify a method for operating a gas turbine, which allows a further increase in operational flexibility, in particular in the partial load range with simultaneously low CO emissions.

Diese Aufgabe wird erfindungsgemäß gelöst, indem der Gasturbine zugeführtes Brenngas vor der Zufuhr zur Gasturbine mit Zusatz von Wasserdampf partiell reformiert wird.This object is achieved according to the invention by partially reforming the gas turbine supplied fuel gas before the supply to the gas turbine with the addition of water vapor.

Die Erfindung geht dabei von der Überlegung aus, dass eine Erhöhung der betrieblichen Flexibilität und geringe CO-Emissionen im Teillastbereich durch eine Verbesserung des Ausbrands des Brenngases erreicht werden könnten. Der Ausbrand wird dabei durch konstruktions- und verfahrensbedingte Größen beeinflusst. Im Wesentlichen sind dies Durchmischung, Quench-Effekte bei Mischung mit Kühlluftströmen, die zur Verfügung stehende Verweilzeit im Brennraum sowie die Brennstoffeigenschaften. Neben den bereits bekannten thermodynamischen Maßnahmen könnte daher eine konstruktive Vergrößerung der Verweilzeit z. B. durch Vergrößerung der Baulänge der Brennkammer den CO-Gehalt reduzieren. Diese wirkt sich jedoch negativ auf die NOx-Emissionen bei hohen Brennraumtemperaturen aus, so dass diese Option ausscheidet.The invention is based on the consideration that an increase in operational flexibility and low CO emissions in the partial load range could be achieved by improving the burnout of the fuel gas. The burn-out is influenced by design-related and process-related variables. Essentially, these are mixing, quenching effects when mixed with cooling air streams, the available residence time in the combustion chamber and the fuel properties. In addition to the already known thermodynamic measures could therefore be a constructive increase in the residence time z. B. reduce the CO content by increasing the length of the combustion chamber. However, this has a negative effect on the NOx emissions at high combustion chamber temperatures, so that this option is eliminated.

Daher sollte eine Modifikation der Brennstoffeigenschaften erfolgen, d. h. zur Verringerung der CO-Emissionen sollte bedarfsweise die Brennstoffzusammensetzung geändert werden. Dies ist besonders einfach möglich, in dem das Brenngas unter Zusetzung von Wasserdampf partiell reformiert wird. Das entstehende Gemisch aus Kohlenmonoxid, Wasserstoff, Erdgas und Wasser weist eine erhöhte Reaktivität auf, wodurch der Ausbrand des in der Flammenfront gebildeten Kohlenmonoxids beschleunigt wird.Therefore, a modification of the fuel properties should be made, i. H. If necessary, the fuel composition should be changed to reduce CO emissions. This is particularly easy possible, in which the fuel gas is partially reformed with the addition of water vapor. The resulting mixture of carbon monoxide, hydrogen, natural gas and water has an increased reactivity, which accelerates the burnout of the carbon monoxide formed in the flame front.

In vorteilhafter Ausgestaltung erfolgt das Reformieren in einem Rohrreaktor, dem Brenngas zugeführt wird, dem zuvor Wasserdampf zugesetzt wird. Der Rohrreaktor eignet sich besonders gut, die für die Reformierung erforderlichen Temperatur- und Druckparameter bereitzustellen. Die Reformierung kann sowohl mit als auch ohne Katalysator betrieben werden.In an advantageous embodiment, the reforming is carried out in a tubular reactor, the fuel gas is supplied to the previously added steam. The tubular reactor is particularly well suited to provide the temperature and pressure parameters required for reforming. The reforming can be operated both with and without a catalyst.

In weiterer vorteilhafter Ausgestaltung wird der Rohrreaktor mittels der Abgase der Gasturbine beheizt. Dabei kann die Beheizung des Rohrreaktors entweder direkt mit Gasturbinenabgas geschehen oder der Rohrreaktor befindet sich an geeigneter Stelle in einem der Gasturbine nachgeschalteten Abhitzedampferzeuger. Dies ist besonders wirkungsgradeffizient, da keine zusätzliche Heizeinrichtung nötig ist. Die Abgase stellen eine Temperatur von ca. 400 bis 650 °C zur Verfügung. Diese Temperaturen reichen zwar unter Umständen nicht für eine vollständige Reformierung des Brenngases aus. Eine vollständige Umsetzung ist jedoch für den Anwendungsfall in einer Gasturbine nicht erforderlich und auch nicht erwünscht. Vielmehr genügt eine Anreicherung mit Wasserstoff, so dass die Reaktivität erhöht wird, auf der anderen Seite aber auch keine Gefährdung des Betriebs durch Flammenrückschlag entsteht.In a further advantageous embodiment of the tubular reactor is heated by means of the exhaust gases of the gas turbine. The heating of the tubular reactor can either be done directly with gas turbine exhaust gas or the tubular reactor is located at a suitable point in one of the gas turbine downstream heat recovery steam generator. This is particularly efficient, since no additional heating is necessary. The exhaust gases provide a temperature of about 400 to 650 ° C available. Although these temperatures may not be sufficient for a complete reforming of the fuel gas. However, a full implementation is not required for the application in a gas turbine and also not desirable. Rather, sufficient enrichment with hydrogen, so that the reactivity is increased, on the other hand, but no risk of operation by flashback arises.

Vorteilhafterweise wird das Brenngas vor der Zufuhr zur Gasturbine und nach dem Reformieren in einen Wärmetauscher geleitet. Dadurch kann der Wärmeinhalt des reformierten Brenngases wirkungsgradsteigernd genutzt werden, beispielsweise zur Dampferzeugung oder zur Vorwärmung des Brenngases.Advantageously, the fuel gas is passed before being fed to the gas turbine and after reforming in a heat exchanger. As a result, the heat content of the reformed fuel gas can be used to increase efficiency, for example, to generate steam or to preheat the fuel gas.

Vorteilhafterweise erfolgt weiterhin der Zusatz von Wasser-dampf mittels einer Strahlpumpe, wobei der Wasserdampf als Treibmedium und das Brenngas als Saugmedium verwendet wird. Dadurch kann insbesondere in vergleichsweise höheren Lastbereichen, in denen der Druck des Brenngases nicht mehr ausreicht, um die Druckverluste in Mischer und Rohrreaktor auszugleichen, ein ausreichender Druck für das reformierte Brenngas erzeugt werden.Advantageously, the addition of water vapor by means of a jet pump, wherein the water vapor is used as a driving medium and the fuel gas is used as the suction medium. As a result, in particular in comparatively higher load ranges in which the pressure of the fuel gas is no longer sufficient to compensate for the pressure losses in the mixer and tubular reactor, a sufficient pressure for the reformed fuel gas can be generated.

Dabei wird vorteilhafterweise der Wasserdampf einem der Gasturbine zugeordneten Abhitzedampferzeuger entnommen. Dieser Wasserdampf hat typischerweise einen vergleichsweise hohen Druck, der zur Druckerhöhung des reformierten Brenngases und/oder der Nutzung in einer Strahlpumpe vorteilhaft genutzt werden kann.In this case, the steam is advantageously taken from a waste heat steam generator associated with the gas turbine. This steam typically has a comparatively high pressure, which can be advantageously used to increase the pressure of the reformed fuel gas and / or the use in a jet pump.

Vorteilhafterweise wird die Gasturbine dabei unterhalb von 70% ihrer Maximalleistung betrieben. Gerade in derartigen, vergleichsweise niedrigen Lastbereichen ist es möglich, durch die Reformierung der Brenngase die Gasturbine noch emissionskonform zu betreiben.Advantageously, the gas turbine is operated below 70% of its maximum power. Especially in such comparatively low load ranges, it is possible to operate the gas turbine still emissions compliant by reforming the fuel gases.

Vorteilhafterweise wird eine Gasturbine mit dem beschriebenen Verfahren betrieben und eine Kraftwerksanlage umfasst eine derartige Gasturbine.Advantageously, a gas turbine is operated with the described method and a power plant comprises such a gas turbine.

Die Kraftwerksanlage ist dabei vorteilhafterweise als Gas- und Dampfturbinenkraftwerk ausgelegt. Dadurch lassen sich bezüglich des beschriebenen Verfahrens vielfache Synergieeffekte erzielen. So kann z. B. der Wasserdampf aus dem Dampfkreislauf genutzt werden.The power plant is advantageously designed as a gas and steam turbine power plant. As a result, multiple synergy effects can be achieved with respect to the method described. So z. B. the water vapor can be used from the steam cycle.

Die mit der Erfindung erzielten Vorteile bestehen insbesondere darin, dass durch die partielle Reformierung des Brenngases mit Zufuhr von Wasserdampf auch bei niedrigen Lasten einer Gasturbine, d. h. bei verminderten Flammenendtemperaturen und den typischen in Gasturbinenbrennkammern zur Verfügung stehenden Verweilzeiten Kohlenmonoxid bis unter die geforderten Grenzwerte abreagiert. Dadurch kann die Gasturbine auch bei niedrigen Lasten weiter betrieben werden und es ist kein lebensdauerreduzierender Ab- und Anfahrvorgang nötig. Die Prozessführung mit den Parametern Verweilzeit und Dampf- /Erdgas-Verhältnis ist dabei so zu bemessen, dass ein sicherer Betrieb ohne Flammenrückschlag mit den für Erdgasbetrieb ausgelegten Brennern möglich ist.The advantages achieved by the invention are in particular that by the partial reforming of the fuel gas with supply of water vapor even at low loads of a gas turbine, d. H. At reduced flame temperatures and the typical residence times available in gas turbine combustors, carbon monoxide has reacted to below the required limit values. As a result, the gas turbine can continue to operate even at low loads and there is no life-reducing and startup necessary. The process control with the parameters residence time and steam / natural gas ratio is to be dimensioned so that a safe operation without flashback is possible with the designed for natural gas operation burners.

Das reformierte Brenngas kann dabei entweder in den Hauptgasstrom, den Vormischgasstrom, in den Pilotgasstrom oder gezielt in einzelne Verbrennungsstufen gemischt werden. Durch die Beschränkung auf einzelne Verbrennungsstufen erhält man bereits mit geringen Massenströmen einen deutlichen Einfluss auf die Emissionsdaten.The reformed fuel gas can be mixed either into the main gas stream, the premix gas stream, into the pilot gas stream or specifically into individual combustion stages. Due to the restriction to individual combustion stages, even with low mass flows one obtains a clear influence on the emission data.

Insgesamt ist es mit dem beschriebenen Verfahren möglich, gezielt die reaktiven Eigenschaften des Brennstoffes zu beeinflussen und den Anforderungen an Emissionsdaten und Verbrennungsstabilität im Teillastbereich anzupassen. Dadurch ist es möglich, Gasturbinen emissionskonform auch bei niedrigen Lasten zu betreiben.Overall, it is possible with the described method to specifically influence the reactive properties of the fuel and to adapt to the requirements of emission data and combustion stability in the partial load range. This makes it possible to operate gas turbines in accordance with the emissions even at low loads.

Die Erfindung wird anhand einer Zeichnung näher erläutert. Darin zeigen:

  • FIG 1 eine schematische Darstellung eines Gas- und Dampfturbinenkraftwerks mit einer Gasturbine mit Brenngasreformierung mit Mischeinheit zur Vermischung von Wasserdampf und Brenngas, und
  • FIG 2 eine schematische eine schematische Darstellung eines Gas- und Dampfturbinenkraftwerks mit einer Gasturbine mit Brenngasreformierung mit Strahlpumpe zur Vermischung von Wasserdampf und Brenngas.
The invention will be explained in more detail with reference to a drawing. Show:
  • FIG. 1 a schematic representation of a gas and steam turbine power plant with a gas turbine with fuel gas reforming with mixing unit for mixing water vapor and fuel gas, and
  • FIG. 2 a schematic a schematic representation of a gas and steam turbine power plant with a gas turbine with fuel gas reforming with jet pump for mixing water vapor and fuel gas.

Gleiche Teile sind in allen FIGs mit denselben Bezugszeichen versehen.Identical parts are provided with the same reference numerals in all FIGS.

Das Gas- und Dampfturbinenkraftwerk 1 gemäß der FIG 1 umfasst eine Gasturbine 2 und den mit der Gasturbine 2 auf einer gemeinsamen Welle 4 angeordneten Generator 6. Das Gas- und Dampfturbinenkraftwerk 1 ist als Einwellenanlage ausgelegt. Auf der Welle 6 ist somit auch eine Dampfturbine 8 angeordnet. Die Dampfturbine 8 ist für eine einfache Zwischenüberhitzung ausgelegt, umfasst also drei Turbinenstufen, nämlich jeweils eine Hoch-, Mittel- und Niederdruckstufe.The combined cycle power plant 1 according to the FIG. 1 includes a gas turbine 2 and arranged with the gas turbine 2 on a common shaft 4 generator 6. The combined cycle power plant 1 is designed as a single-shaft system. On the shaft 6, therefore, a steam turbine 8 is arranged. The steam turbine 8 is designed for a simple reheat, thus comprises three turbine stages, namely one high, medium and low pressure stage.

Der Dampfkreislauf beginnt mit der Vorwärmung des Speisewassers im Vorwärmer 10, der ebenso wie sämtliche im Folgenden beschriebenen Vorwärmer, Verdampfer und Überhitzer in einem dem Abgaskanal 12 der Gasturbine 2 nachgeschalteten Abhitzedampferzeuger 14 angeordnet sind. Das vorgewärmte Speisewasser wird von dort auf die Niederdruckdampftrommel 16 und die Speisewasserpumpe 18 verteilt. Aus der Speisewasserpumpe 18 wird das Speisewasser wiederum über den Mitteldruckvorwärmer 20 in die Mitteldruckdampftrommel 22 sowie parallel dazu in den Hochdruckvorwärmer 24 geleitet.The steam cycle begins with the preheating of the feedwater in the preheater 10, which, like all the preheaters, evaporators and superheaters described below, are arranged in a waste heat steam generator 14 connected downstream of the exhaust gas channel 12 of the gas turbine 2. The preheated feed water is distributed from there to the low-pressure steam drum 16 and the feedwater pump 18. From the feedwater pump 18, the feedwater is in turn passed through the medium-pressure preheater 20 in the medium-pressure steam drum 22 and parallel to the high-pressure preheater 24.

Der Hochdruckteil des Abhitzedampferzeugers 14 ist im Durchlauf ausgelegt, d. h. es existiert keine Dampftrommel. Vielmehr wird das Medium aus dem Hochdruckvorwärmer 24 direkt in den kombinierten Hochdruckverdampfer- und -überhitzer 26 geleitet. Von dort aus strömt es in eine Wasser-Dampf-Abscheideeinrichtung 28, die im Wesentlichen nur bei geringen Lasten für eine Abscheidung von verbleibendem flüssigem Medium sorgt. Der Dampf aus der Wasser-Dampf-Abscheideeinrichtung 28 wird im Hochdrucküberhitzer 30 nochmals überhitzt und anschließend über die Hochdruckdampfleitung 32 der Hochdruckstufe der Dampfturbine 8 zugeführt.The high-pressure part of the heat recovery steam generator 14 is designed in the passage, d. H. There is no steam drum. Rather, the medium from the high pressure preheater 24 is passed directly into the combined high pressure evaporator and superheater 26. From there, it flows into a water-vapor separator 28, which ensures essentially only at low loads for a separation of remaining liquid medium. The steam from the water-steam separator 28 is reheated in the high-pressure superheater 30 again and then fed via the high-pressure steam line 32 of the high-pressure stage of the steam turbine 8.

Die Mittel- und Niederdruckstufen des Abhitzedampferzeugers 14 sind im Umlauf ausgelegt. Von der Niederdruckdampftrommel 16 ausgehend wird im Umlauf, d. h. zirkulierend der Niederdruckverdampfer 34 durchströmt, analog von der Mitteldruckdampftrommel 22 ausgehend der Mitteldruckverdampfer 36. Der jeweils in den Dampftrommeln 16, 22 anfallende Dampf wird in den Niederdrucküberhitzer 38 bzw. den Mitteldrucküberhitzer 40 geleitet. Mit dem Dampf aus dem Niederdrucküberhitzer 38 wird über die Niederdruckdampfleitung 42 der Niederdruckstufe der Dampfturbine 8 zugeführt.The middle and low pressure stages of the heat recovery steam generator 14 are designed in circulation. Starting from the low pressure steam drum 16 is circulating, d. H. The low-pressure evaporator 34 flows through in a circulating manner, analogously to the medium-pressure steam drum 22, starting from the medium-pressure evaporator 36. The steam accumulating in the steam drums 16, 22 is conducted into the low-pressure superheater 38 or the medium-pressure superheater 40. With the steam from the low-pressure superheater 38, the low-pressure stage of the steam turbine 8 is fed via the low-pressure steam line 42.

Der Dampf aus dem Mitteldrucküberhitzer 42 hingegen wird mit dem in der Hochdruckstufe der Dampfturbine 8 entspannten und über die Rückführleitung 44 zurückgeführten Dampf vermischt und in den Zwischenüberhitzer 46 geführt. Von hier wird der Dampf über die Mitteldruckdampfleitung 48 der Mitteldruckstufe der Dampfturbine 8 zugeführt. In der Dampfturbine 8 im Übrigen anfallender Dampf wird in den Kondensator 50 geleitet, wo er verflüssigt wird und über eine Kondensatpumpe 52 und die Speisewasserleitung 54 wieder der Speisewasserpumpe 18 zugeführt wird.By contrast, the steam from the medium-pressure superheater 42 is mixed with the steam which has been expanded in the high-pressure stage of the steam turbine 8 and returned via the return line 44 and fed into the reheater 46. From here, the steam is fed via the medium-pressure steam line 48 to the medium-pressure stage of the steam turbine 8. In the steam turbine 8 incidentally accumulating steam is passed into the condenser 50, where it is liquefied and fed back to the feedwater pump 18 via a condensate pump 52 and the feedwater line 54.

Die Gasturbine 2 wird mit Erdgas als Brenngas B beaufschlagt. Das nach in der Gasturbine 2 entstehende Abgas wird nach der Passage des Abhitzedampferzeugers 14 in einen Kamin 56 geleitet und von dort in die Umwelt. Dementsprechend sind hier Grenzwerte bezüglich des CO-Gehalts des Abgases einzuhalten. Um dies auch bei niedrigen Lasten zu gewährleisten, wird das Brenngas B oder wahlweise ein Teil des Brenngases B einer Mischeinheit 58 zugeführt, in der es mit im Bereich des Mitteldrucküberhitzers 40 entnommenem Dampf vermischt wird. Das Wasserdampf-Brenngas-Gemisch wird anschließend einem im Abhitzedampferzeuger 14 angeordneten Rohrreaktor 60 zugeführt.The gas turbine 2 is acted upon by natural gas as fuel gas B. The resulting in the gas turbine 2 exhaust gas is passed after the passage of the heat recovery steam generator 14 in a chimney 56 and from there into the environment. Accordingly, here are To comply with limit values with regard to the CO content of the exhaust gas. In order to ensure this even at low loads, the fuel gas B or optionally a part of the fuel gas B is fed to a mixing unit 58, in which it is mixed with extracted in the region of the medium pressure superheater 40 steam. The water vapor / fuel gas mixture is then fed to a tubular reactor 60 arranged in the heat recovery steam generator 14.

Im Rohrreaktor 60 wird das Gas durch den dort herrschenden Druck und die dort herrschende Temperatur partiell reformiert. Das partiell reformierte Brenngas wird anschließend über einen Wärmetauscher 62, in dem das zuvor der Mischeinheit 58 zugeführte Brenngas B vorgewärmt wird, in die Brenner der Gasturbine 2 geleitet. In einer alternativen, nicht gezeigten Ausführungsform ist der Wärmetauscher 62 in die Speisewasserleitung 54 geschaltet.In the tubular reactor 60, the gas is partially reformed by the pressure prevailing there and the temperature prevailing there. The partially reformed fuel gas is then passed into the burners of the gas turbine 2 via a heat exchanger 62, in which the fuel gas B previously supplied to the mixing unit 58 is preheated. In an alternative, not shown embodiment, the heat exchanger 62 is connected in the feedwater line 54.

Die Ausführungsform nach FIG 2 wird nur anhand ihrer Unterschiede zur FIG 1 beschrieben. Die Mischeinheit 58 ist hier durch eine Strahlpumpe 64 ersetzt. Der Dampf wird der Wasser-Dampf-Abscheideeinrichtung 28 der Hochdruckstufe des Abhitzedampferzeugers 14 entnommen und wirkt in der Strahlpumpe als Treibmedium. Dadurch wird der Druck des reformierten Gases erhöht und die Ausführungsform nach FIG 2 eignet sich auch für höhere Lasten der Gasturbine 2.The embodiment according to FIG. 2 is only based on their differences to FIG. 1 described. The mixing unit 58 is here replaced by a jet pump 64. The steam is taken from the water-steam separator 28 of the high pressure stage of the heat recovery steam generator 14 and acts as a propellant in the jet pump. Thereby, the pressure of the reformed gas is increased and the embodiment according to FIG. 2 is also suitable for higher loads of the gas turbine 2.

Claims (10)

Verfahren zum Betreiben einer Gasturbine (2),
bei dem der Gasturbine (2) zugeführtes Brenngas (B) vor der Zufuhr zur Gasturbine (2) mit Zusatz von Wasserdampf partiell reformiert wird.
Method for operating a gas turbine (2),
in which the fuel gas (B) supplied to the gas turbine (2) is partially reformed before it is fed to the gas turbine (2) with the addition of water vapor.
Verfahren nach Anspruch 1,
bei dem das Reformieren in einem Rohrreaktor (60) erfolgt, dem Brenngas (B) zugeführt wird, dem zuvor Wasserdampf zugesetzt wird.
Method according to claim 1,
in which the reforming is carried out in a tubular reactor (60), the fuel gas (B) is supplied to the previously added steam.
Verfahren nach Anspruch 2,
bei dem der Rohrreaktor (60) mittels der Abgase der Gasturbine (2) beheizt wird.
Method according to claim 2,
in which the tube reactor (60) is heated by means of the exhaust gases of the gas turbine (2).
Verfahren nach einem der vorhergehenden Ansprüche,
bei dem das Brenngas (B) vor der Zufuhr zur Gasturbine (2) und nach dem Reformieren in einen Wärmetauscher (62) geleitet wird.
Method according to one of the preceding claims,
in which the fuel gas (B) before feeding to the gas turbine (2) and after reforming in a heat exchanger (62) is passed.
Verfahren nach einem der vorhergehenden Ansprüche,
bei dem der Zusatz von Wasserdampf mittels einer Strahlpumpe (64) erfolgt, wobei der Wasserdampf als Treibmedium und das Brenngas (B) als Saugmedium verwendet wird.
Method according to one of the preceding claims,
in which the addition of water vapor by means of a jet pump (64), wherein the water vapor as a driving medium and the fuel gas (B) is used as a suction medium.
Verfahren nach Anspruch 5,
bei dem der Wasserdampf einem der Gasturbine (2) zugeordneten Abhitzedampferzeuger (14) entnommen wird.
Method according to claim 5,
in which the steam is taken from a waste heat steam generator (14) associated with the gas turbine (2).
Verfahren nach einem der vorhergehenden Ansprüche,
bei dem die Gasturbine (2) unterhalb von 70% ihrer Maximalleistung betrieben wird.
Method according to one of the preceding claims,
in which the gas turbine (2) is operated below 70% of its maximum power.
Gasturbine (2),
betrieben mit dem Verfahren nach einem der vorhergehenden Ansprüche.
Gas turbine (2),
operated by the method according to any one of the preceding claims.
Kraftwerksanlage (1) mit einer Gasturbine (2) nach Anspruch 8.Power plant (1) with a gas turbine (2) according to claim 8. Kraftwerksanlage (1) nach Anspruch 9,
die als Gas- und Dampfturbinenkraftwerk (1) ausgelegt ist.
Power plant (1) according to claim 9,
which is designed as a gas and steam turbine power plant (1).
EP12154233.6A 2012-02-07 2012-02-07 Method for operating a gas turbine Withdrawn EP2626532A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12154233.6A EP2626532A1 (en) 2012-02-07 2012-02-07 Method for operating a gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12154233.6A EP2626532A1 (en) 2012-02-07 2012-02-07 Method for operating a gas turbine

Publications (1)

Publication Number Publication Date
EP2626532A1 true EP2626532A1 (en) 2013-08-14

Family

ID=45560814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12154233.6A Withdrawn EP2626532A1 (en) 2012-02-07 2012-02-07 Method for operating a gas turbine

Country Status (1)

Country Link
EP (1) EP2626532A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017215804A1 (en) * 2016-06-17 2017-12-21 Siemens Aktiengesellschaft Condensate recirculation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351094A1 (en) * 1988-04-05 1990-01-17 Imperial Chemical Industries Plc Gas turbines
DE10015965A1 (en) * 1999-03-31 2000-11-16 Toshiba Kawasaki Kk Method for improving efficiency of gas turbine by burning reformed gas with gas reforming unit heated by exhaust gasses
EP1655467A1 (en) * 2004-11-03 2006-05-10 Nuon Tecno B.V. Power generation system
US20080155984A1 (en) * 2007-01-03 2008-07-03 Ke Liu Reforming system for combined cycle plant with partial CO2 capture
US7467519B2 (en) * 2005-08-09 2008-12-23 Praxair Technology, Inc. Electricity and synthesis gas generation method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0351094A1 (en) * 1988-04-05 1990-01-17 Imperial Chemical Industries Plc Gas turbines
DE10015965A1 (en) * 1999-03-31 2000-11-16 Toshiba Kawasaki Kk Method for improving efficiency of gas turbine by burning reformed gas with gas reforming unit heated by exhaust gasses
EP1655467A1 (en) * 2004-11-03 2006-05-10 Nuon Tecno B.V. Power generation system
US7467519B2 (en) * 2005-08-09 2008-12-23 Praxair Technology, Inc. Electricity and synthesis gas generation method
US20080155984A1 (en) * 2007-01-03 2008-07-03 Ke Liu Reforming system for combined cycle plant with partial CO2 capture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017215804A1 (en) * 2016-06-17 2017-12-21 Siemens Aktiengesellschaft Condensate recirculation
CN109312635A (en) * 2016-06-17 2019-02-05 西门子股份公司 Condensate recirculation
CN109312635B (en) * 2016-06-17 2021-02-05 西门子股份公司 Condensate recirculation
US11008897B2 (en) 2016-06-17 2021-05-18 Siemens Energy Global GmbH & Co. KG Condensate recirculation

Similar Documents

Publication Publication Date Title
DE102009043864B4 (en) Duct burner for low calorific value fuel for heating systems and heat recovery systems
DE10228335B3 (en) Heat recovery steam generator with auxiliary steam generation
DE112013005578B4 (en) Power generation system, drive method for power generation system
DE102009003406A1 (en) Method and system for supporting a modification of a combined cycle working fluid and its combustion
CH698467A2 (en) Apparatus and method for starting up a power plant.
WO2008065156A1 (en) Method for operating a gas turbine
DE19952885A1 (en) Process and operation of a power plant
US20110266726A1 (en) Gas turbine exhaust as hot blast for a blast furnace
CH701017A2 (en) System and method for heating fuel for a gas turbine.
DE102018123663A1 (en) Fuel preheating system for a combustion gas turbine
EP1866521A2 (en) Method for starting a gas and steam turbine system
EP2907980A1 (en) Method for operating a gas and steam turbine facility for frequency support
EP0758045B1 (en) Starting process for a single shaft combined power plant
WO2008107406A2 (en) Combined power plant and method for starting up a combined power plant
CH703748B1 (en) Combined cycle power plant and method for operating a combined cycle power plant.
DE102012102351A1 (en) Micro gas turbine device for mini-block heating station for generating electricity for residential or commercial unit, has exhaust gas-fresh air mixing unit arranged before combustion chamber inlet for mixing fresh air with exhaust gas
WO1992020905A1 (en) Gas-turbine/steam-turbine installation
DE102011053272A1 (en) Integrated turbomachine oxygen plant
EP2626532A1 (en) Method for operating a gas turbine
DE102016115580A1 (en) System and method for maintaining emission limits during operation of a gas turbine at partial load conditions
DE4223528A1 (en) Method of operating a gas turbine
EP1557607B1 (en) Burner with cooled component, gas turbine and method for cooling the component
EP3402974B1 (en) Micro-gas turbine plant and method for operating a micro-gas turbine plant
DE10052844B4 (en) Method and device for generating energy from gas
EP2964930B1 (en) Method for reducing the co emissions of a gas turbine and gas turbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140717