EP2625678B1 - Method for operating a public address system - Google Patents

Method for operating a public address system Download PDF

Info

Publication number
EP2625678B1
EP2625678B1 EP11790863.2A EP11790863A EP2625678B1 EP 2625678 B1 EP2625678 B1 EP 2625678B1 EP 11790863 A EP11790863 A EP 11790863A EP 2625678 B1 EP2625678 B1 EP 2625678B1
Authority
EP
European Patent Office
Prior art keywords
loop
impedance
switches
beginning
isolator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11790863.2A
Other languages
German (de)
French (fr)
Other versions
EP2625678A1 (en
Inventor
Thomas Müller
Andreas Nejedly
Robert Reither
Josef Schreiner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novar GmbH
Original Assignee
Novar GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novar GmbH filed Critical Novar GmbH
Publication of EP2625678A1 publication Critical patent/EP2625678A1/en
Application granted granted Critical
Publication of EP2625678B1 publication Critical patent/EP2625678B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R29/00Monitoring arrangements; Testing arrangements
    • H04R29/007Monitoring arrangements; Testing arrangements for public address systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R27/00Public address systems

Definitions

  • the invention relates to a method for operating a voice announcement system of the type specified in the preamble of claim 1.
  • Voice announcement systems in public spaces often have an interface to an alarm system or form an integral part of the latter. At least when such electroacoustic systems are also used to announce danger messages, they are subject to high operational safety requirements. In particular, an interruption or a short circuit in the ring line supplying the loudspeakers must not lead to a failure of the entire system.
  • the microcontroller opens, which then switches off its operating voltage refers to the local energy store, the switch or switches in one of the looped-through wires of the loop. If the voltage dip is caused by a short circuit, this will isolate the short circuit. While in normal operation the center only feeds the audio signals and the AC supply voltage into the beginning of the ring circuit, in the event of a short circuit, the feed should also come from the end of the ring circuit in order to ensure the supply of the two stub lines created by the removal of the short circuit.
  • JP H 10 136493 discloses a method and an associated voice alarm device in which a distinction can be made between a loss of contact of a loudspeaker and the interruption of the entire bus line by impedance measurement. >
  • control center measures the impedance of the ring line step by step from the first to the last isolator module and the impedance of the entire ring line when it is started up, enters the measured values as setpoint values in an impedance table and periodically measures the impedance of the entire ring line during operation and compares it with the corresponding target value from the impedance table, generates an error message if a deviation is detected and determines the fault location by comparing the measured value with the individual target values in the impedance table and displays it.
  • This functionality can also be added to systems that are already installed with little effort.
  • An essential prerequisite for the uninterrupted maintenance of the function of the voice announcement system in the event of an interruption in the ring line is that the control center feeds the AC supply voltage into the ring line both from its beginning and from its end. At the same time, this is a prerequisite for restoring the operability of the system after a short circuit, more precisely the operability of the stub line resulting from the removal of a short circuit from the end of the previous loop to before the location of the short circuit.
  • a further improvement of the method consists in the fact that the control center carries out the step-by-step measurement of the impedance of the loop both from its beginning and from its end and enters the measured values in two impedance tables, during operation the impedance of the loop also from both its beginning as well as hers
  • the redundancy created in this way increases the reliability of an error message and, above all, the display of the correct error location.
  • control center calculates the impedance values of the ring circuit at the frequency of the supply voltage using Fourier analysis.
  • the easiest way to measure its impedance step by step from the first to the last isolator module is to first open the switches of all isolator modules and then sequentially close them to switch the loop through.
  • the opening and sequential closing of the switches is performed both from the beginning to the end and from the end to the beginning of the loop.
  • a simple way of removing a short circuit from the loop is that in the event of a short circuit, the switches of all isolator modules are opened and then sequentially closed again, starting at the beginning and at the end of the loop, and that the switches of the isolator modules immediately on both sides of the location of the short circuit after closing be reopened immediately.
  • the simultaneous re-establishment of the two stubs from the control panel could result in the isolator module adjacent to the location of the short circuit in the stub starting at the beginning of the previous loop closing its switch towards the location of the short circuit and at the same time any isolator module in the other stub as well closes its switch on the side of the short-circuit location and recognizes this short-circuit via the randomly also closed switches of the other separator modules up to the short-circuit location, it would open its switch again and leave it open. This could leave a significant portion of that second stub inoperable.
  • the last disconnector module at the end of the loop closes its switch or switches with a delay time longer than the time to sequentially close the switches from the first to the penultimate disconnector module.
  • each isolator module can be equipped with an LED that the microprocessor switches on when it has recognized that this isolator module is closest to the short-circuit location and therefore keeps the corresponding switch permanently open.
  • figure 1 has a control center that contains the components known per se, for example for a voice announcement, a connection A for the start of a 2-wire loop and a connection B for the end of this loop.
  • the cores of the loop are looped through isolator modules 1 to 7.
  • such a loop can comprise 60 or more separator modules.
  • Loudspeakers (not shown here) are connected to the cores of the ring line in the separator modules and/or to the line sections between the separator modules.
  • the audio signals are usually fed in at up to 100 Veff.
  • a sinusoidal signal with 22 kHz and an amplitude of approx. 50 V is fed in as an alternating supply voltage.
  • figure 2 shows a simplified and single-line block diagram of an isolator module.
  • the incoming ring line is connected to terminal 1 and the outgoing ring line is connected to terminal 2.
  • Two switches S1 and S2 are connected in series in one core of the ring circuit looped through from terminal 1 to terminal 2. Between S1 and S2 there is a terminal 3 for connecting a loudspeaker L1. Additional loudspeakers L2 and L3 can be connected to the loop outside of the separator module.
  • the switches S1 and S2 are designed here as contacts of separate relays (not shown).
  • the relays and thus the switches S1 and S2 are controlled by a microcontroller, depending on whether there is a sufficient voltage level on the input side and/or on the output side, more precisely whether a predetermined voltage level is exceeded or not reached.
  • the separate voltage test circuits required for this are known and are therefore not shown.
  • the microcontroller receives its operating voltage from a power pack which, in normal operation, draws its supply AC voltage from both the input side and the output side via a rectifier.
  • the power pack also includes an energy store in the form of a capacitor that is also constantly charged during normal operation from the AC supply voltage and via the rectifier after voltage adjustment. Its capacity is dimensioned in such a way that the isolator module can work autonomously for a certain period of time, eg one to two seconds, if the AC supply voltage (and the audio signals) fail.
  • figure 3 1 is a simplified flow chart illustrating the operation of each of the isolator modules and particularly the microcontroller's partially looped routines and subroutines.
  • the ring circuit is calibrated when it is put into operation for the first time and after every change, for example in the number of separator modules and/or loudspeakers.
  • the AC supply voltage is switched on to the ring line and then switched off again. This ensures that all relays, controlled by the microcontroller (see figure 3 ), their switches S1 and S2 have opened and thus a defined initial state is established, which is not initially the case when using bistable relays, for example.
  • the control center applies the AC supply voltage again, but only to the beginning of the loop, i.e. connection A.
  • the microcontroller of the isolator module 1 recognizes that the supply voltage is present and therefore closes its switches S1 and S2 (in Figure 3 with "Relay 1 " or "Relay 2").
  • the capacitor of its power supply is charged.
  • the control center measures the impedance of this first line section of the ring circuit at the frequency of the AC supply voltage and enters the measured value in a first field of an impedance table A as the target value.
  • the second separator module After the switch S2 of the first separator module is closed, the second separator module also receives the AC supply voltage. From the impedance jump that occurs when switch S2 closes, the control center recognizes that the ring line is now switched through to this second isolator module. The control center repeats the impedance measurement and enters the new value in a second field of the impedance table A as the nominal value of the impedance up to the second isolator.
  • This calibration process and the creation of a complete series of values in the impedance table A continues up to the last isolator module.
  • the control panel can then measure the impedance of the entire loop up to its end at connection B and also save this setpoint. This measurement can also be carried out at a later point in time.
  • control panel switches off the AC supply voltage from its connection A. This opens the switches S1 and S2 of all isolator modules again.
  • the control center then applies the AC supply voltage to its connection B and thus to the end of the loop and repeats the calibration process from the end to the beginning of the loop.
  • the control center enters the corresponding values in an impedance table B.
  • the panel applies the AC supply voltage to both its A and B terminals. If not before, the central unit now measures the total impedance of the closed ring and saves the measured value as a setpoint.
  • control panel periodically, e.g. every 5 to 10 seconds, measures the impedance of the ring circuit fed from both sides with the AC supply voltage and, if necessary, with audio signals, both from connection A and from connection B, and compares the measured values or actual values with the corresponding ones Target values in impedance table A or impedance table B.
  • the control center recognizes this interruption by the fact that the measured values or actual values of the impedance deviate from the corresponding setpoint values and therefore generates an error message. Furthermore, the control center compares the current measured values with the setpoint values entered in the individual fields of impedance tables A and B and, based on the result, determines the number of the isolator module that, seen from connection A, is before the interruption and the number of the isolator module that in the same sense after the interruption. The central unit shows these separator module numbers in a suitable form, e.g. on a display. The isolator modules are not involved in detecting an interruption. According to the flow chart in FIG. 3, only the disconnector modules located closest to the interruption open their switch S1 or S2 on the side of the interruption; however, this has no effect on the two stub lines caused by the interruption and/or on the control center or the continued function of the system.
  • the supply voltage at the isolating modules collapses both on the input side and on the output side.
  • Only the isolator module 1 then receives its alternating supply voltage via connection A and closes according to the program routine figure 3 its switches S1 and S2.
  • the separator module 2 also receives the AC supply voltage, closes its switches S1 and S2, etc., up to the separator module that is closest to the location of the short circuit.
  • this sequence is repeated, starting with connection B and the last isolator module, i.e. the in the example figure 1 the isolator module 7.
  • this last isolator module only begins to close its switches S1 and S2 with a time delay that is calculated in such a way that by then the longest possible stub line starting from connection A, i.e. up to the isolator module 6 in figure 1 , is completed with certainty.
  • This delay time can be 3 seconds for 60 separator modules, for example.
  • the control panel determines the numbers of the respective last isolator modules before the short-circuit location in the same way as in the case of an interruption.
  • the microcontroller of the isolator modules adjacent to the short-circuit location can control their LEDs to make it easier to find the physical short-circuit point.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Alarm Systems (AREA)
  • Locating Faults (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Sprachdurchsageanlage der im Oberbegriff des Anspruches 1 angegebenen Art.The invention relates to a method for operating a voice announcement system of the type specified in the preamble of claim 1.

Sprachdurchsageanlagen in öffentlichen Räumen haben häufig eine Schnittstelle zu einer Gefahrenmeldeanlage oder bilden einen integralen Teil letzterer. Zumindest dann, wenn solche elektroakustischen Anlagen auch zur Durchsage von Gefahrenmeldungen dienen, unterliegen sie hohen Anforderungen an die Betriebssicherheit. Insbesondere dürfen eine Unterbrechung oder ein Kurzschluss in der die Lautsprecher versorgenden Ringleitung nicht zu einem Ausfall der gesamten Anlage führen.Voice announcement systems in public spaces often have an interface to an alarm system or form an integral part of the latter. At least when such electroacoustic systems are also used to announce danger messages, they are subject to high operational safety requirements. In particular, an interruption or a short circuit in the ring line supplying the loudspeakers must not lead to a failure of the entire system.

Aus der WO 2009/049949 A1 ist es bekannt, die Ringleitung hierzu über Trennermodule zu führen, von denen jedes einen Schalter oder zwei in Serie liegende Schalter, einen den oder die Schalter steuernden Microcontroller, einen aus der Ringleitung wieder aufladbaren Energiespeicher und Spannungsprüfschaltungen für eine von der Zentrale der Anlage gelieferte Versorgungswechselspannung umfasst. Die Versorgungswechselspannung hat eine außerhalb des Hörbereiches liegende Frequenz. Diese Trennermodule ermöglichen es, die Sprachdurchsageanlage in dem Verfahren entsprechend dem Oberbegriff des Anspruches 1 zu betreiben. Hierzu prüft der Mikrocontroller periodisch, ob der ankommende und der abgehende Leitungsabschnitt der Ringleitung die Versorgungswechselspannung führen. Bei einem Spannungseinbruch öffnet der Mikrocontroller, der dann seine Betriebsspannung aus dem lokalen Energiespeicher bezieht, den oder die Schalter in einer der durchgeschleiften Adern der Ringleitung. Wenn der Spannungseinbruch durch einen Kurzschluss verursacht ist, wird der Kurzschluss dadurch isoliert. Während im normalen Betrieb die Zentrale die Audiosignale und die Versorgungswechselspannung nur in den Anfang der Ringleitung einspeist, soll die Einspeisung im Kurzschlussfall auch vom Ende der Ringleitung her erfolgen um die Versorgung der beiden durch das Heraustrennen des Kurzschlusses entstandenen Stichleitungen zu gewährleisten. Mit den in der Druckschrift beschriebenen Mitteln ist dieser Aufbau von Stichleitungen jedoch nicht ohne weiteres möglich, weil nach einem Kurzschluss die Schalter aller Trennermodule offen und somit die Trennermodule eingangsseitig und ausgangsseitig spannungslos sind und auch nicht in anderer Weise miteinander kommunizieren.From the WO 2009/049949 A1 it is known to run the ring line for this purpose via isolator modules, each of which has a switch or two switches in series, a microcontroller controlling the switch or switches, an energy store that can be recharged from the ring line and voltage test circuits for an AC supply voltage supplied by the control center of the system includes. The AC power supply has a frequency that is outside the audible range. These separator modules make it possible to operate the voice announcement system in the method according to the preamble of claim 1. For this purpose, the microcontroller periodically checks whether the incoming and outgoing line sections of the ring line are carrying the AC supply voltage. In the event of a voltage dip, the microcontroller opens, which then switches off its operating voltage refers to the local energy store, the switch or switches in one of the looped-through wires of the loop. If the voltage dip is caused by a short circuit, this will isolate the short circuit. While in normal operation the center only feeds the audio signals and the AC supply voltage into the beginning of the ring circuit, in the event of a short circuit, the feed should also come from the end of the ring circuit in order to ensure the supply of the two stub lines created by the removal of the short circuit. With the means described in the publication, however, this construction of stub lines is not readily possible because after a short circuit the switches of all isolator modules are open and the isolator modules are therefore de-energized on the input and output sides and also do not communicate with one another in any other way.

Unabhängig davon besteht bei derartigen Sprachdurchsageanlagen, die große Flächen mit 60 oder mehr Lautsprechern beschallen, das Problem, den Fehlerort, also die Unterbrechung oder den Kurzschluss, auf der Ringleitung lokalisieren zu können.Irrespective of this, there is the problem of being able to localize the fault location, ie the interruption or the short circuit, on the ring line with such voice announcement systems which fill large areas with sound using 60 or more loudspeakers.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der einleitend angegebenen Gattung zu schaffen, das es ermöglicht, einen Fehler durch Unterbrechung oder Kurzschluss auf der Ringleitung in der Zentrale sowohl festzustellen als auch zu lokalisieren. Eine weitere Aufgabe besteht darin, nach einem Kurzschluss die intakten Teile der Ringleitung auf einfache Weise wieder in Betrieb nehmen zu können. JP H 10 136493 offenbart ein Verfahren und eine zugehörige Sprachalarmierungseinrichtung, bei der durch Impedanzmessung zwischen einem Kontaktverlust eines Lautsprechers und der Unterbrechung der gesamten Busleitung unterschieden werden kann. >The invention is based on the object of creating a method of the type specified at the outset, which makes it possible to both detect and localize a fault due to an interruption or short circuit on the ring line in the control center. Another task is to be able to easily put the intact parts of the loop back into operation after a short circuit. JP H 10 136493 discloses a method and an associated voice alarm device in which a distinction can be made between a loss of contact of a loudspeaker and the interruption of the entire bus line by impedance measurement. >

Diese Aufgabe ist erfindungsgemäß dadurch gelöst, dass die Zentrale bei Inbetriebnahme der Ringleitung deren Impedanz schrittweise von dem ersten bis zum letzten Trennermodul sowie die Impedanz der gesamten Ringleitung misst, die gemessenen Werte als Sollwerte in eine Impedanztabelle einträgt, im Betrieb periodisch die Impedanz der gesamten Ringleitung misst und mit dem entsprechenden Sollwert aus der Impedanztabelle vergleicht, bei Feststellung einer Abweichung eine Fehlermeldung erzeugt und durch Vergleich des gemessenen Wertes mit den einzelnen Sollwerten in der Impedanztabelle den Fehlerort ermittelt und zur Anzeige bringt.This object is achieved according to the invention in that the control center measures the impedance of the ring line step by step from the first to the last isolator module and the impedance of the entire ring line when it is started up, enters the measured values as setpoint values in an impedance table and periodically measures the impedance of the entire ring line during operation and compares it with the corresponding target value from the impedance table, generates an error message if a deviation is detected and determines the fault location by comparing the measured value with the individual target values in the impedance table and displays it.

Auch bereits installierte Anlagen können mit geringem Aufwand um diese Funktionalität ergänzt werden.This functionality can also be added to systems that are already installed with little effort.

Eine wesentliche Voraussetzung für die unterbrechungslose Aufrechterhaltung der Funktion der Sprachdurchsageanlage im Fall einer Unterbrechung der Ringleitung besteht darin, dass die Zentrale die Versorgungswechselspannung in die Ringleitung sowohl von deren Anfang aus als auch von deren Ende aus einspeist. Gleichzeitig ist dies Voraussetzung für die Wiederherstellung der Funktionsfähigkeit der Anlage nach einem Kurzschluss, genauer gesagt die Funktionsfähigkeit der nach einem Heraustrennen eines Kurzschlusses dadurch entstandenen Stichleitung von dem Ende der vorherigen Ringleitung bis vor den Kurzschlussort.An essential prerequisite for the uninterrupted maintenance of the function of the voice announcement system in the event of an interruption in the ring line is that the control center feeds the AC supply voltage into the ring line both from its beginning and from its end. At the same time, this is a prerequisite for restoring the operability of the system after a short circuit, more precisely the operability of the stub line resulting from the removal of a short circuit from the end of the previous loop to before the location of the short circuit.

Eine weitere Verbesserung des Verfahrens besteht darin, dass die Zentrale die schrittweise Messung der Impedanz der Ringleitung sowohl von deren Anfang aus als auch von deren Ende aus vornimmt und die gemessenen Werte in zwei Impedanztabellen einträgt, im Betrieb die Impedanz der Ringleitung ebenfalls sowohl von ihrem Anfang als auch von ihremA further improvement of the method consists in the fact that the control center carries out the step-by-step measurement of the impedance of the loop both from its beginning and from its end and enters the measured values in two impedance tables, during operation the impedance of the loop also from both its beginning as well as hers

Ende her periodisch misst, und vor Erzeugung einer Fehlermeldung und Fehlerortanzeige die gemessenen Istwerte mit den Sollwerten in den beiden Impedanztabellen vergleicht.Measures periodically at the end and compares the measured actual values with the target values in the two impedance tables before generating an error message and displaying the location of the error.

Die dadurch geschaffene Redundanz erhöht die Zuverlässigkeit einer Fehlermeldung und vor allem der Anzeige des korrekten Fehlerortes.The redundancy created in this way increases the reliability of an error message and, above all, the display of the correct error location.

Um von der Zentrale aus insbesondere auch solche Trennermodule, zwischen denen nur kurze Leitungsabschnitte liegen, zuverlässig unterscheiden und damit im Fehlerfall den Fehlerort eng eingrenzen zu können, ist es vorteilhaft, wenn die Zentrale die Impedanzwerte der Ringleitung bei der Frequenz der Versorgungsspannung durch Fourieranalyse errechnet.In order to be able to reliably distinguish from the control center, in particular, those isolator modules between which there are only short line sections and thus to narrowly localize the fault location in the event of a fault, it is advantageous if the control center calculates the impedance values of the ring circuit at the frequency of the supply voltage using Fourier analysis.

Bei der Inbetriebnahme der Ringleitung lässt sich deren Impedanz schrittweise von dem ersten bis zum letzten Trennermodul am einfachsten dann messen, wenn zunächst die Schalter aller Trennermodule geöffnet und anschließend zum Durchschalten der Ringleitung sequenziell geschlossen werden.When starting up the loop, the easiest way to measure its impedance step by step from the first to the last isolator module is to first open the switches of all isolator modules and then sequentially close them to switch the loop through.

Vorzugsweise wird das Öffnen und sequenzielle Schließen der Schalter sowohl vom Anfang zum Ende als auch vom Ende zum Anfang der Ringleitung durchgeführt.Preferably, the opening and sequential closing of the switches is performed both from the beginning to the end and from the end to the beginning of the loop.

Eine einfache Möglichkeit zur Heraustrennung eines Kurzschlusses aus der Ringleitung besteht darin, dass im Kurzschlussfall die Schalter aller Trennermodule geöffnet und dann, beginnend am Anfang und am Ende der Ringleitung, sequenziell wieder geschlossen werden und dass die Schalter der Trennermodule unmittelbar beidseits des Kurzschlussortes nach dem Schließen sofort wieder geöffnet werden.A simple way of removing a short circuit from the loop is that in the event of a short circuit, the switches of all isolator modules are opened and then sequentially closed again, starting at the beginning and at the end of the loop, and that the switches of the isolator modules immediately on both sides of the location of the short circuit after closing be reopened immediately.

Weil nach einem Kurzschluss der gleichzeitige Wiederaufbau der beiden Stichleitungen von der Zentrale aus dazu führen könnte, dass das dem Kurzschlussort benachbarte Trennermodul in der vom Anfang der vorherigen Ringleitung ausgehenden Stichleitung seinen zu dem Kurzschlussort hin gelegenen Schalter schließt und gleichzeitig irgendein Trennermodul in der anderen Stichleitung ebenfalls seinen auf der Seite des Kurzschlussortes liegenden Schalter schließt und über die zufällig ebenfalls geschlossenen Schalter der weiteren Trennermodule bis zum Kurzschlussort diesen Kurzschluss erkennt, würde er seinen Schalter wieder öffnen und offen lassen. Dadurch könnte ein erheblicher Teil dieser zweiten Stichleitung funktionsunfähig bleiben.Because after a short circuit, the simultaneous re-establishment of the two stubs from the control panel could result in the isolator module adjacent to the location of the short circuit in the stub starting at the beginning of the previous loop closing its switch towards the location of the short circuit and at the same time any isolator module in the other stub as well closes its switch on the side of the short-circuit location and recognizes this short-circuit via the randomly also closed switches of the other separator modules up to the short-circuit location, it would open its switch again and leave it open. This could leave a significant portion of that second stub inoperable.

Vorzugsweise schließt deshalb das letzte Trennermodul am Ende der Ringleitung seinen Schalter oder seine Schalter mit einer Verzögerungszeit, die länger ist als die Zeit zum sequenziellen Schließen der Schalter von dem ersten bis zu dem vorletzten Trennermodul.Preferably, therefore, the last disconnector module at the end of the loop closes its switch or switches with a delay time longer than the time to sequentially close the switches from the first to the penultimate disconnector module.

Damit der physikalische Fehlerort zur Reparatur leichter aufgefunden werden kann, kann jedes Trennermodul mit einer LED ausgestattet sein, die der Mikroprozessor anschaltet, wenn er erkannt hat, dass dieses Trennermodul dem Kurzschlussort am nächsten liegt und deshalb den entsprechenden Schalter dauerhaft offen hält.To make it easier to find the physical fault location for repair, each isolator module can be equipped with an LED that the microprocessor switches on when it has recognized that this isolator module is closest to the short-circuit location and therefore keeps the corresponding switch permanently open.

Das Verfahren nach der Erfindung wird nachfolgend beispielhaft anhand einer Sprachdurchsageanlage erläutert, die stark vereinfacht in der Zeichnung dargestellt ist. Es zeigt:

Fig. 1:
den grundsätzlichen Aufbau einer Sprachdurchsageanlage,
Fig. 2:
ein Blockschaltbild eines Trennermoduls und
Fig. 3:
ein Flußdiagramm des Programablaufes in dem Mikroprozessor des Trennermoduls gemäß Figur 2.
The method according to the invention is explained below by way of example using a voice announcement system, which is shown in a highly simplified manner in the drawing. It shows:
Figure 1:
the basic structure of a voice announcement system,
Figure 2:
a block diagram of a separator module and
Figure 3:
a flowchart of the program flow in the microprocessor of the separator module according to figure 2 .

Gemäß Figur 1 hat eine Zentrale, die die an sich bekannten Komponenten z.B. für eine Sprachdurchsage enthält, einen Anschluss A für den Anfang einer 2-adrigen Ringleitung und einen Anschluss B für das Ende dieser Ringleitung. Die Adern der Ringleitung sind durch Trennermodule 1 bis 7 hindurchgeschleift. In der Praxis kann eine solche Ringleitung 60 und mehr Trennermodule umfassen. An die Adern der Ringleitung sind in den Trennermodulen und/oder an die Leitungsabschnitte zwischen den Trennermodulen hier nicht dargestellte Lautsprecher angeschlossen. Üblicherweise werden bei derartigen Anlagen die Audiosignale mit bis zu 100 Veff eingespeist. Zusätzlich wird als Versorgungswechselspannung z.B. ein Sinussignal mit 22 kHz und einer Amplitude von ca. 50 V eingespeist. Zwischen der Zentrale und den Trennermodulen sowie zwischen den Trennermodulen untereinander besteht keine gesonderte Kommunikationsverbindung, anders als im Fall von Gefahrenmeldeanlagen, z.B. Brandmeldeanlagen, die in Ringbustechnik ausgeführt sind und auf dem Ringbus Trennermodule haben, die zumindest mit der Zentrale digital kommunizieren und von dieser gesteuert werden.According to figure 1 has a control center that contains the components known per se, for example for a voice announcement, a connection A for the start of a 2-wire loop and a connection B for the end of this loop. The cores of the loop are looped through isolator modules 1 to 7. In practice, such a loop can comprise 60 or more separator modules. Loudspeakers (not shown here) are connected to the cores of the ring line in the separator modules and/or to the line sections between the separator modules. In systems of this type, the audio signals are usually fed in at up to 100 Veff. In addition, a sinusoidal signal with 22 kHz and an amplitude of approx. 50 V is fed in as an alternating supply voltage. There is no separate communication connection between the control panel and the isolator modules and between the isolator modules themselves, unlike in the case of hazard alarm systems, e.g. fire alarm systems, which are designed using ring bus technology and have isolator modules on the ring bus, which at least communicate digitally with the control panel and are controlled by it .

Figur 2 zeigt ein vereinfachtes und einpolig gezeichnetes Blockschaltbild eines Trennermoduls. An die Klemme 1 ist die ankommende Ringleitung, an die Klemme 2 die abgehende Ringleitung angeschlossen. In einer Ader der von Klemme 1 zu Klemme 2 durchgeschleiften Ringleitung liegen zwei Schalter S1 und S2 in Serie. Zwischen S1 und S2 befindet sich eine Klemme 3 für den Anschluss eines Lautsprechers L1. Weitere Lautsprecher L2 und L3 können an die Ringleitung außerhalb des Trennermoduls angeschlossen sein. figure 2 shows a simplified and single-line block diagram of an isolator module. The incoming ring line is connected to terminal 1 and the outgoing ring line is connected to terminal 2. Two switches S1 and S2 are connected in series in one core of the ring circuit looped through from terminal 1 to terminal 2. Between S1 and S2 there is a terminal 3 for connecting a loudspeaker L1. Additional loudspeakers L2 and L3 can be connected to the loop outside of the separator module.

Die Schalter S1 und S2 sind sowohl wegen der hohen Audiospannungen als auch der hohen Audioströme hier als Kontakte von nicht dargestellten, getrennten Relais ausgeführt. Die Relais und damit die Schalter S1 und S2 werden von einem Microcontroller gesteuert, und zwar in Abhängigkeit davon, ob eingangsseitig und/oder ausgangsseitig ein hinreichender Spannungspegel vorhanden ist, genauer gesagt, ob ein vorgegebener Spannungspegel überschritten oder unterschritten wird. Die hierzu notwendigen, getrennten Spannungsprüfschaltungen sind bekannt und deshalb nicht dargestellt.Because of the high audio voltages and the high audio currents, the switches S1 and S2 are designed here as contacts of separate relays (not shown). The relays and thus the switches S1 and S2 are controlled by a microcontroller, depending on whether there is a sufficient voltage level on the input side and/or on the output side, more precisely whether a predetermined voltage level is exceeded or not reached. The separate voltage test circuits required for this are known and are therefore not shown.

Der Microcontroller erhält seine Betriebsspannung aus einem Netzteil, das im normalen Betrieb seinerseits sowohl aus der eingangsseitig als auch aus der ausgangsseitig anliegenden Versorgungswechselspannung über je einen Gleichrichter bezieht. Das Netzteil umfasst jedoch zusätzlich einen im normalen Betrieb ebenfalls aus der Versorgungswechselspannung und über die Gleichrichter nach Spannungsanpassung ständig geladenen Energiespeicher in Form eines Kondensators. Dessen Kapazität ist so bemessen, dass das Trennermodul bei Wegfall der Versorgungswechselspannung (und der Audiosignale) eine bestimmte Zeit, z.B. ein bis zwei Sekunden, autark arbeiten kann.The microcontroller receives its operating voltage from a power pack which, in normal operation, draws its supply AC voltage from both the input side and the output side via a rectifier. However, the power pack also includes an energy store in the form of a capacitor that is also constantly charged during normal operation from the AC supply voltage and via the rectifier after voltage adjustment. Its capacity is dimensioned in such a way that the isolator module can work autonomously for a certain period of time, eg one to two seconds, if the AC supply voltage (and the audio signals) fail.

In Figur 3 ist ein vereinfachtes Flussdiagramm dargestellt, das die Arbeitsweise jedes der Trennermodule und insbesondere die teilweise als Schleife durchlaufenen Routinen und Subroutinen des Microcontrollers veranschaulicht.In figure 3 1 is a simplified flow chart illustrating the operation of each of the isolator modules and particularly the microcontroller's partially looped routines and subroutines.

Im Folgenden wird das Verfahren zum Betreiben einer derartigen Sprachdurchsageanlage beschrieben.The method for operating such a voice announcement system is described below.

Bei der erstmaligen Inbetriebnahme und nach jeder Veränderung z.B. der Anzahl der Trennermodule und/oder der Lautsprecher wird die Ringleitung eingemessen. Im ersten Schritt wird die Versorgungswechselspannung an die Ringleitung angeschaltet und anschließend wieder abgeschaltet. Dadurch wird sichergestellt, dass alle Relais, gesteuert von dem Microcontroller (siehe Figur 3), ihre Schalter S1 und S2 geöffnet haben und somit ein definierter Anfangszustand hergestellt ist, der z.B. bei Verwendung von bistabilen Relais zunächst nicht gegeben ist.The ring circuit is calibrated when it is put into operation for the first time and after every change, for example in the number of separator modules and/or loudspeakers. In the first step, the AC supply voltage is switched on to the ring line and then switched off again. This ensures that all relays, controlled by the microcontroller (see figure 3 ), their switches S1 and S2 have opened and thus a defined initial state is established, which is not initially the case when using bistable relays, for example.

Im nächsten Schritt legt die Zentrale erneut die Versorgungswechselspannung an, jedoch nur an den Anfang der Ringleitung, d.h. den Anschluss A. Der Microcontroller des Trennermoduls 1 erkennt das Anliegen der Versorgungsspannung und schließt deshalb seine Schalter S1 und S2 (in Figur 3 mit "Relais 1" bzw. "Relais 2" bezeichnet). Gleichzeitig wird der Kondensator seines Netzteils geladen. Währenddessen misst die Zentrale bei der Frequenz der Versorgungswechselspannung die Impedanz dieses ersten Leitungsabschnittes der Ringleitung und trägt den gemessenen Wert in ein erstes Feld einer Impedanztabelle A als Sollwert ein.In the next step, the control center applies the AC supply voltage again, but only to the beginning of the loop, i.e. connection A. The microcontroller of the isolator module 1 recognizes that the supply voltage is present and therefore closes its switches S1 and S2 (in Figure 3 with "Relay 1 " or "Relay 2"). At the same time, the capacitor of its power supply is charged. Meanwhile, the control center measures the impedance of this first line section of the ring circuit at the frequency of the AC supply voltage and enters the measured value in a first field of an impedance table A as the target value.

Nach dem Schließen des Schalters S2 des ersten Trennermoduls erhält auch das zweite Trennermodul die Versorgungswechselspannung. Die Zentrale erkennt an dem mit dem Schließen des Schalters S2 eintretenden Impedanzsprung, dass die Ringleitung nun bis zu diesem zweiten Trennermodul durchgeschaltet ist. Die Zentrale wiederholt die Impedanzmessung und trägt den neuen Wert als Sollwert der Impedanz bis zu dem zweiten Trenner in ein zweites Feld der Impedanztabelle A ein.After the switch S2 of the first separator module is closed, the second separator module also receives the AC supply voltage. From the impedance jump that occurs when switch S2 closes, the control center recognizes that the ring line is now switched through to this second isolator module. The control center repeats the impedance measurement and enters the new value in a second field of the impedance table A as the nominal value of the impedance up to the second isolator.

Dieser Einmessvorgang und das Anlegen einer vollständigen Wertereihe in der Impedanztabelle A setzt sich bis zu dem letzten Trennermodul fort. Anschließend kann die Zentrale die Impedanz der gesamten Ringleitung bis zu ihrem Ende am Anschluss B messen und auch diesen Sollwert speichern. Diese Messung kann auch zu einem späteren Zeitpunkt durchgeführt werden.This calibration process and the creation of a complete series of values in the impedance table A continues up to the last isolator module. The control panel can then measure the impedance of the entire loop up to its end at connection B and also save this setpoint. This measurement can also be carried out at a later point in time.

Im nächsten Schritt schaltet die Zentrale die Versorgungswechselspannung von ihrem Anschluss A ab. Dadurch öffnen erneut die Schalter S1 und S2 aller Trennermodule.In the next step, the control panel switches off the AC supply voltage from its connection A. This opens the switches S1 and S2 of all isolator modules again.

Dann legt die Zentrale die Versorgungswechselspannung an ihren Anschluss B und damit an das Ende der Ringleitung an und wiederholt den Einmessvorgang nunmehr vom Ende zum Anfang der Ringleitung. Die entsprechenden Werte trägt die Zentrale in eine Impedanztabelle B ein.The control center then applies the AC supply voltage to its connection B and thus to the end of the loop and repeats the calibration process from the end to the beginning of the loop. The control center enters the corresponding values in an impedance table B.

Im letzten Schritt legt die Zentrale die Versorgungswechselspannung sowohl an ihren Anschluss A als auch an ihren Anschluss B an. Wenn nicht bereits zuvor, misst die Zentrale nun die Gesamtimpedanz des geschlossenen Ringes und speichert den Messwert als Sollwert.In the last step, the panel applies the AC supply voltage to both its A and B terminals. If not before, the central unit now measures the total impedance of the closed ring and saves the measured value as a setpoint.

Im Betrieb misst die Zentrale periodisch, z.B. alle 5 bis 10 Sekunden, die Impedanz der von beiden Seiten mit der Versorgungswechselspannung und gegebenenfalls mit Audiosignalen gespeisten Ringleitung, sowohl vom Anschluss A aus als auch vom Anschluss B aus und vergleicht die Messwerte oder Istwerte mit den entsprechenden Sollwerten in der Impedanztabelle A bzw. der Impedanztabelle B.During operation, the control panel periodically, e.g. every 5 to 10 seconds, measures the impedance of the ring circuit fed from both sides with the AC supply voltage and, if necessary, with audio signals, both from connection A and from connection B, and compares the measured values or actual values with the corresponding ones Target values in impedance table A or impedance table B.

Im Fall einer Unterbrechung der Ringleitung erkennt die Zentrale diese Unterbrechung daran, dass die Messwerte oder Istwerte der Impedanz von den entsprechenden Sollwerten abweichen und generiert deshalb eine Fehlermeldung. Des Weiteren vergleicht die Zentrale die aktuellen Messwerte mit den in den einzelnen Feldern der Impedanztabellen A und B eingetragenen Sollwerten und bestimmt anhand das Ergebnisses die Nummer des Trennermoduls, das, von dem Anschluss A gesehen, vor der Unterbrechung liegt und die Nummer des Trennermoduls, das im gleichen Sinn nach der Unterbrechung liegt. Diese Trennermodulnummern zeigt die Zentrale in geeigneter Form, z.B. auf einem Display, an. An der Erkennung einer Unterbrechung sind die Trennermodule nicht beteiligt. Lediglich die der Unterbrechung am nächsten liegenden Trennermodule öffnen entsprechend dem Flussdiagramm in Figur 3 ihren auf der Seite der Unterbrechung liegenden Schalter S1 oder S2; dies bleibt jedoch ohne Auswirkung auf die durch die Unterbrechung entstehenden beiden Stichleitungen und/oder auf die Zentrale sowie die fortbestehende Funktion der Anlage.In the event of an interruption in the ring circuit, the control center recognizes this interruption by the fact that the measured values or actual values of the impedance deviate from the corresponding setpoint values and therefore generates an error message. Furthermore, the control center compares the current measured values with the setpoint values entered in the individual fields of impedance tables A and B and, based on the result, determines the number of the isolator module that, seen from connection A, is before the interruption and the number of the isolator module that in the same sense after the interruption. The central unit shows these separator module numbers in a suitable form, e.g. on a display. The isolator modules are not involved in detecting an interruption. According to the flow chart in FIG. 3, only the disconnector modules located closest to the interruption open their switch S1 or S2 on the side of the interruption; however, this has no effect on the two stub lines caused by the interruption and/or on the control center or the continued function of the system.

Im Fall eines Kurzschlusses bricht die Versorgungsspannung an den Trennermodulen sowohl eingangsseitig als auch ausgangsseitig zusammen. Infolgedessen veranlasst der nun autark aus dem Kondensator mit seiner Betriebsspannung versorgte Microcontroller, dass das Trennermodul seine Relais, genauer gesagt seine Schalter S1 und S2, in die Offenstellung bringt. Dies gilt für alle Trennermodule. Nur das Trennermodul 1 erhält dann über den Anschluss A seine Versorgungswechselspannung und schließt entsprechend der Programmroutine in Figur 3 seine Schalter S1 und S2. Als nächstes erhält deshalb das Trennermodul 2 ebenfalls die Versorgungswechselspannung, schließt seine Schalter S1 und S2 usw., bis zu demjenigen Trennermodul, das dem Kurzschlussort am nächsten liegt. Dessen Microcontroller stellt nach dem Schließen seines Schalters S2 fest, dass die Versorgungswechselspannung zusammenbricht, öffnet deshalb den Schalter S2 sofort wieder und hält ihn dauerhaft offen, weil bei dieser Abfolge der Schaltvorgänge der Zusammenbruch der Versorgungswechselspannung anzeigt, dass das betreffende Trennermodul dem Kurzschlussort unmittelbar benachbart ist. Die Schalter S1, S2 der zwischen diesem Trennermodul und dem Anschluss A der Zentrale liegenden, weiteren Trennermodule bleiben hingegen geschlossen, weil der Kurzschluss nicht unmittelbar nach dem Schließen ihrer jeweiligen Relais bzw. Schalter auftrat. Folglich ist die Stichleitung von dem Anschluss A bis zu dem letzten Trennermodul vor dem Kurzschlussort wieder aufgebaut und alle angeschlossenen Lautsprecher sind wieder funktionsfähig.In the event of a short circuit, the supply voltage at the isolating modules collapses both on the input side and on the output side. As a result, the now independently supplied with its operating voltage from the capacitor Microcontroller that the isolator module brings its relays, more precisely its switches S1 and S2, into the open position. This applies to all separator modules. Only the isolator module 1 then receives its alternating supply voltage via connection A and closes according to the program routine figure 3 its switches S1 and S2. Next, therefore, the separator module 2 also receives the AC supply voltage, closes its switches S1 and S2, etc., up to the separator module that is closest to the location of the short circuit. After closing its switch S2, its microcontroller determines that the AC supply voltage has collapsed, so it immediately opens switch S2 again and keeps it permanently open, because in this sequence of switching operations, the collapse of the AC supply voltage indicates that the disconnector module in question is in the immediate vicinity of the location of the short circuit . On the other hand, the switches S1, S2 of the other separator modules located between this separator module and the connection A of the control center remain closed because the short circuit did not occur immediately after the closing of their respective relays or switches. As a result, the stub from terminal A to the last isolator module before the location of the short circuit is rebuilt and all connected loudspeakers are functional again.

Als nächstes wiederholt sich dieser Ablauf ausgehend von dem Anschluss B und dem letzten Trennermodul, also im Beispiel der Figur 1 dem Trennermodul 7. Dieses letzte Trennermodul beginnt jedoch mit dem Schließen seiner Schalter S1 und S2 erst mit einer Zeitverzögerung, die so bemessen ist, dass bis dahin der Aufbau der von dem Anschluss A ausgehenden, längstmöglichen Stichleitung, also bis zu dem Trennermodul 6 in Figur 1, mit Sicherheit abgeschlossen ist. Diese Verzögerungszeit kann z.B. für 60 Trennermodule 3 Sekunden betragen. Würden nämlich im Beispiel der Fig. 1 die Trennermodule 1 und 7 gleichzeitig mit dem Aufbau ihrer jeweiligen Stichleitungen beginnen, könnte der Fall eintreten, dass dann, wenn das letzte Trennermodul der ersten Stichleitung seinen Schalter S2 schließt und damit "in" den Kurzschluss schaltet, gleichzeitig eines der Trennermodule in der zweiten Stichleitung ebenfalls seine Schalter schließt (auch wenn das nicht das dem Kurzschluss unmittelbar benachbarte Trennermodul ist), folglich ebenfalls "in" den Kurzschluss zu schalten meint und deshalb seine Schalter wieder öffnen und offen lassen würde, obwohl dieses Trennermodul nicht das dem Kurzschlussort nächstgelegene Trennermodul ist. Je nach Lage des Kurzschlussortes im Verhältnis zu diesem irrtümlich schaltenden Trennermodul würde dann ein Großteil des Ringes bzw. der zweiten Stichleitung dauerhaft funktionsunfähig bleiben.Next, this sequence is repeated, starting with connection B and the last isolator module, i.e. the in the example figure 1 the isolator module 7. However, this last isolator module only begins to close its switches S1 and S2 with a time delay that is calculated in such a way that by then the longest possible stub line starting from connection A, i.e. up to the isolator module 6 in figure 1 , is completed with certainty. This delay time can be 3 seconds for 60 separator modules, for example. If in the example of 1 If the isolator modules 1 and 7 start to set up their respective stubs at the same time, it could happen that when the last isolator module of the first stub closes its switch S2 and thus switches the short circuit "in", one of the isolator modules in the second stub also switches also closes its switches (even if this is not the disconnector module immediately adjacent to the short circuit), consequently also means to switch "into" the short circuit and would therefore open its switches again and leave them open, although this disconnector module is not the disconnector module closest to the location of the short circuit. Depending on the position of the short-circuit location in relation to this disconnector module switching by mistake, a large part of the ring or the second spur line would then remain permanently inoperable.

Nach dem Heraustrennen des Kurzschlusses und dem Aufbau der beiden Stichleitungen bis zum Kurzschlussort verhalten sich die Stichleitungen von der Zentrale aus gesehen wie im Fall einer Unterbrechung der Ringleitung. Die Zentrale ermittelt folglich bei der nächsten Impedanzmessung auf die gleiche Weise wie im Fall einer Unterbrechung die Nummern der jeweiligen letzten Trennermodule vor dem Kurzschlussort.After the short circuit has been removed and the two stub lines have been set up up to the location of the short circuit, the stub lines behave as if the loop circuit had been interrupted, as seen by the control panel. Consequently, during the next impedance measurement, the control panel determines the numbers of the respective last isolator modules before the short-circuit location in the same way as in the case of an interruption.

Wenn alle Trennermodule mit einer LED ausgestattet sind, kann der Microcontroller der jeweils dem Kurzschlussort benachbarten Trennermodule deren LEDs ansteuern um das Auffinden der physikalischen Kurzschlussstelle zu erleichtern.If all isolator modules are equipped with an LED, the microcontroller of the isolator modules adjacent to the short-circuit location can control their LEDs to make it easier to find the physical short-circuit point.

Claims (7)

  1. Method for operating a public address system comprising a central processing unit that feeds audio signals to a plurality of parallel-connected loudspeakers via a two-wire loop that is routed via isolator modules, each of which comprises
    - at least one switch to interrupt the loop in the event of a short circuit,
    - a controlling microcontroller,
    - an energy store that can be recharged from the loop,
    - and voltage test circuits for an AC supply voltage supplied by the central processing unit,
    characterised in that
    when the loop is started up, the central processing unit measures the impedance of said loop step by step from the first to the last isolator module as well as the impedance of the entire loop, enters the measured values as target values into an impedance table, during operation periodically measures the impedance of the entire loop and compares said impedance with the corresponding target value from the impedance table, generates a fault notification if a discrepancy is detected, and determines and displays the fault location by comparing the measured value with the individual target values in the impedance table.
  2. Method according to either claim 1 or 2, characterised in that the central processing unit feeds the AC supply voltage into the loop both from the beginning and from the end thereof.
  3. Method according to claim 1, characterised in that the central processing unit performs the step-by-step measurement of the impedance of the loop both from the beginning and from the end thereof and enters the measured values into two impedance tables, during operation periodically measures the impedance of the loop likewise both from the beginning and from the end thereof, and, before generating a fault notification and displaying the location of the fault, compares the measured actual values with the target values in the two impedance tables.
  4. Method according to any of claims 1 to 3, characterised in that the central processing unit calculates the impedance values of the loop at the frequency of the supply voltage by Fourier analysis.
  5. Method according to any of claims 1 to 4, characterised in that when the loop is started up, the switches of all isolator modules are first opened and then sequentially closed to connect through the loop.
  6. Method according to claim 5, characterised in that the opening and sequential closing of the switches is carried out both from the beginning to the end and from the end to the beginning of the loop.
  7. Method according to any of claims 1 to 6, characterised in that in the event of a short circuit, the switches of the isolator modules, starting at the beginning and at the end of the loop, sequentially close again, and in that the switches of the isolator modules directly on both sides of the short-circuit location immediately open again after closing.
EP11790863.2A 2010-10-04 2011-10-04 Method for operating a public address system Active EP2625678B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010047220A DE102010047220B4 (en) 2010-10-04 2010-10-04 Method for operating a voice announcement system
PCT/EP2011/004937 WO2012045436A1 (en) 2010-10-04 2011-10-04 Method for operating a public address system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP21214038.8 Division-Into 2021-12-13

Publications (2)

Publication Number Publication Date
EP2625678A1 EP2625678A1 (en) 2013-08-14
EP2625678B1 true EP2625678B1 (en) 2022-08-03

Family

ID=45093664

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11790863.2A Active EP2625678B1 (en) 2010-10-04 2011-10-04 Method for operating a public address system

Country Status (5)

Country Link
US (1) US9462401B2 (en)
EP (1) EP2625678B1 (en)
CN (1) CN103299352B (en)
DE (1) DE102010047220B4 (en)
WO (1) WO2012045436A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010047220B4 (en) * 2010-10-04 2012-07-05 Novar Gmbh Method for operating a voice announcement system
EP2833333B1 (en) 2013-07-31 2018-12-19 Honeywell Life Safety Austria GmbH Bus system and method for operating a bus system
US11263895B2 (en) 2017-04-05 2022-03-01 Carrier Corporation Audio riser active electrical supervision
EP3503591B1 (en) * 2017-12-19 2021-02-03 Honeywell International Inc. Device for electrically connecting and disconnecting portions of an electrical line, public address system, method for detecting a failure in an electrical line
JP2022544574A (en) 2019-08-14 2022-10-19 ドルビー ラボラトリーズ ライセンシング コーポレイション Method and system for monitoring and reporting speaker health

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036995A (en) * 1999-07-21 2001-02-09 Toa Corp Abnormality detecting device for speaker line
DE102010047220A1 (en) * 2010-10-04 2012-04-05 Novar Gmbh Method for operating a voice announcement system

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH651688A5 (en) * 1980-06-23 1985-09-30 Cerberus Ag METHOD FOR TRANSMITTING MEASURED VALUES IN A FIRE DETECTING SYSTEM AND DEVICE FOR IMPLEMENTING THE METHOD.
DE4038992C1 (en) 1990-12-06 1992-02-06 Siemens Ag, 8000 Muenchen, De
JPH10136493A (en) * 1996-10-28 1998-05-22 Toa Corp Inspection device for speaker line
GB9813882D0 (en) * 1998-06-27 1998-08-26 Protec Fire Detection Plc Public address system having zone isolator circuits
US6466647B1 (en) * 1999-11-17 2002-10-15 Bellsouth Intellectual Property Corporation System and method for estimating the capacity of a local loop to carry data
DE10051329C2 (en) * 2000-10-10 2003-12-11 Job Lizenz Gmbh & Co Kg Alarm system
CN100547947C (en) * 2004-09-16 2009-10-07 天津市明珠电器公司 The loud speaker of two-wire multiple signal transmission detects control circuit in the Public Address system
CN2854616Y (en) * 2005-12-09 2007-01-03 天津先唯铁路电子设备有限公司 Fault locating device for railway loudspeaker
AT504297B1 (en) * 2006-09-28 2009-11-15 Av Digital Audio Videotechnik METHOD AND MEASURING DEVICE FOR MONITORING SOUNDPROOFING SYSTEMS
EP2017803B1 (en) * 2007-07-16 2011-07-06 Herbert Puchner Active function maintenance and safety system for warning loudspeaker networks in double-wire loop system
EP2051220A1 (en) * 2007-10-17 2009-04-22 Siemens Building Technologies Fire & Security Products GmbH & Co. oHG Separating device with energy storage for an electric circuit conducting energy
US7999668B2 (en) * 2008-11-17 2011-08-16 GM Global Technology Operations LLC Series interlock system with integrated ability to identify breached locations

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001036995A (en) * 1999-07-21 2001-02-09 Toa Corp Abnormality detecting device for speaker line
DE102010047220A1 (en) * 2010-10-04 2012-04-05 Novar Gmbh Method for operating a voice announcement system

Also Published As

Publication number Publication date
DE102010047220A1 (en) 2012-04-05
CN103299352B (en) 2015-08-19
US9462401B2 (en) 2016-10-04
EP2625678A1 (en) 2013-08-14
CN103299352A (en) 2013-09-11
WO2012045436A1 (en) 2012-04-12
DE102010047220B4 (en) 2012-07-05
US20140029754A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
DE68925085T2 (en) Load control system
DE3236812C2 (en) Telecontrol system
EP2625678B1 (en) Method for operating a public address system
EP2383622B1 (en) Connection device for connecting field devices
DE2260335A1 (en) ARRANGEMENT FOR THE FEEDING OF POWER INTO A REMOTE INDICATION SYSTEM
WO2016142163A1 (en) Switch device for operating at least one load
EP3748599B1 (en) Method for operating and testing a hazard signaling system with a bus system, detector for connecting to a bus system and hazard signalling system with a bus system.
WO2005053221A2 (en) Method for operating a network
DE102015211510A1 (en) EDM
EP2393073B1 (en) Method for operating a hazard notification assembly
EP2423897A2 (en) Hazard notification assembly and method for its operation
DE3521164A1 (en) MONITORING DEVICE
DE102018126787B4 (en) Charging station for electric vehicles with at least two charging connections and an optional power electronics unit that can be switched to this
EP2127992B1 (en) Circuit for monitoring the end position switches of a four wire three phase drive for points
EP3632049A1 (en) Status signal output
DE2711519B2 (en) Data transmission system
EP2520988B1 (en) Monitoring device for mains monitors
DE303642C (en)
EP1808946B1 (en) Method for monitoring a cable which can be disconnected in a network, appropriate monitoring device and monitoring system therefor
DE3116392C1 (en) Electrical circuit arrangement for simulating a busbar system
EP3531137A1 (en) Energy supply device and method for operating same
WO2017140698A1 (en) Cable break in module systems
EP3848633B1 (en) Circuit with protection against internal faults
DE102017114662B3 (en) FIELD BUS SYSTEM
DE102004055053A1 (en) Network, especially PA PROFIBUS network, with redundancy has branching elements that check state of cable connected to one network connection when supply voltage received at other connection, only forward voltage if cable not faulty

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130409

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150729

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20171109

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

INTC Intention to grant announced (deleted)
APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20220215

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1509380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20220815

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011017364

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221205

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221203

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20221104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011017364

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20221031

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221004

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

26N No opposition filed

Effective date: 20230504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221004

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1509380

Country of ref document: AT

Kind code of ref document: T

Effective date: 20221004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231024

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231026

Year of fee payment: 13

Ref country code: DE

Payment date: 20231027

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220803