EP2625043A1 - Structure de sécurité incorporant des microperforations - Google Patents

Structure de sécurité incorporant des microperforations

Info

Publication number
EP2625043A1
EP2625043A1 EP11776892.9A EP11776892A EP2625043A1 EP 2625043 A1 EP2625043 A1 EP 2625043A1 EP 11776892 A EP11776892 A EP 11776892A EP 2625043 A1 EP2625043 A1 EP 2625043A1
Authority
EP
European Patent Office
Prior art keywords
microperforations
security
structure according
microperforation
observation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11776892.9A
Other languages
German (de)
English (en)
Inventor
Philippe Dietemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArjoWiggins Security SAS
Original Assignee
ArjoWiggins Security SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArjoWiggins Security SAS filed Critical ArjoWiggins Security SAS
Publication of EP2625043A1 publication Critical patent/EP2625043A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/346Perforations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/23Identity cards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/24Passports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/26Entrance cards; Admission tickets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/27Lots, e.g. lottery tickets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/20Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof characterised by a particular use or purpose
    • B42D25/29Securities; Bank notes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/351Translucent or partly translucent parts, e.g. windows
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/373Metallic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/435Marking by removal of material using electromagnetic radiation, e.g. laser
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/405Marking
    • B42D25/43Marking by removal of material
    • B42D25/44Marking by removal of material using mechanical means, e.g. engraving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/40Manufacture
    • B42D25/45Associating two or more layers
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/06Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using wave or particle radiation
    • G07D7/12Visible light, infrared or ultraviolet radiation
    • B42D2033/22
    • B42D2035/20
    • B42D2035/36
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • B42D25/36Identification or security features, e.g. for preventing forgery comprising special materials
    • B42D25/378Special inks
    • B42D25/391Special inks absorbing or reflecting polarised light

Definitions

  • the present invention relates to the field of security documents.
  • the patent application EP 1 525 100 describes a security document through which a plurality of perforations of ellipsoidal section, oriented according to the normal to the document, extends.
  • the application WO 00/43216 describes a security element against forgery, comprising non-through perforations, resulting in different depths, which may include oblique perforations.
  • the perforations are visible in the form of a gray gradient when the structure is observed in transmission.
  • WO 02/33652 discloses a security element having conical perforations oriented perpendicularly to the element, through or not, to form a multi-tone image.
  • the invention thus has, according to one of its aspects, a safety structure comprising at least:
  • a first set of microperforations all making a first angle with the normal to the structure, and defining a first visible pattern at least when observed in an observation direction coinciding with the axis of the microperforations
  • this second set defining a second visible pattern at least when observed along an observation direction coinciding with the axis of the microperforations of the second set.
  • microperforation a hole optionally filled with a non-opaque material having a greater transverse dimension of millimeter or micrometer size, especially between 5 microns and 200 microns, better between 10 and 50 microns.
  • the transverse dimension is measured perpendicularly to the axis of the microperforation.
  • the cross section of the microperforation is less than or equal to 0.1 mm 2 , better, 0.002 mm 2 .
  • the microperforations preferably each have a larger cross-sectional area of less than or equal to 0.1 mm 2 .
  • a microperforation has the advantage of being easily detectable only under certain observation conditions, and is thus not easily visible to the naked eye if these observation conditions are not respected.
  • the second pattern is not visible or is visible with a lower contrast than when the microperforations of the second set are observed along their axis.
  • a microperforation may be of constant cross section or not. It may be of circular or non-circular section, in particular polygonal, in particular polygonal regular or non-regular, oblong, in particular elliptical.
  • micro-perforations may be carried out using a laser, which is preferred, or using micro-needles or by water jet.
  • microperforation means a microperforation extending in the structure along a direction forming a non-zero angle with the normal to the structure.
  • the angle of a microperforation relative to the normal to the structure is oriented, a negative value meaning that it is oriented to the left and positive to the right.
  • the structure may comprise at least a third set of microperforations making a third angle with the normal to the structure and defining a third visible pattern when observed in a direction of observation coinciding with the axis of the microperforations of the third set.
  • the first, second and third angles can define a strictly increasing sequence, so that, when the direction of observation of the structure is continuously varied, an impression of movement is imparted to the observer, the corresponding patterns successively passing through a maximum observation contrast with their environment.
  • the second set can be located between the first and the third set.
  • the first and second sets of microperforations may be adjacent and the angular difference (in absolute value) between the first and second angles may be between 5 ° and 90 °, preferably between 5 and 50 ° so that the observation of the first and the second set does not require an amplitude of inclination of the document too important to perform by the observer.
  • the second and third sets of microperforations may be adjacent and the angular difference (in absolute value) between the second and third angles may be between 5 ° and 90 °.
  • the first and third angles may be opposite values and the second angle may be zero.
  • the variation of the angle between the sets of microperforations can be done in a plane, which is for example parallel to the long side or the short side of a document incorporating the structure.
  • This variation can also be done along two axes perpendicular to each other. This may allow an observer to observe different sets of microperforations by varying the viewing angle from left to right and also to observe different sets of microperforations by varying the angle from bottom to top.
  • At least one microperforation of the first set and at least one microperforation of the second set can meet at a common end and have opposite ends disjoint. Such an arrangement is quite difficult to reproduce for a counterfeiter.
  • At least one microperforation of the first set, at least one micro-perforation of the second set and at least one micro-perforation of the third set can meet at one common end and have opposite ends disjoint.
  • Patterns can be visible in transmitted light.
  • the microperforations can thus appear brighter than the rest of the structure when observed along their axis. To do this, the microperforations can be through to let pass light through them.
  • the structure can be opaque except microperforations.
  • the microperforations may be non-through and result in at least one layer of the non-opaque structure, consisting of a varnish, a transparent film or a paper made transparent or translucent.
  • the patterns may be visible in reflected light.
  • the microperforations can lead to a reflective layer, including a metal layer, of the structure.
  • the microperforations can lead to or in an inner layer of the structure comprising a "waveguide", which makes it possible to guide the light to micro-perforations.
  • the structure may thus comprise an input surface of the light, other than a microperforation, for example defined by an aperture ending in the waveguide.
  • the micro-perforations can still lead to a luminescent layer.
  • the structure may be monolayer or multilayer.
  • the structure may comprise at least one recto layer and a backside layer, adjacent or not.
  • the structure may further comprise at least one inner layer located between the front and back layers.
  • the structure may in particular comprise at least two inner layers located between the front and back layers.
  • Each inner layer may have a different color than the others. This may allow, when the microperforations allow to observe the color of said inner layers, to create a color effect in addition to the aforementioned motion effect.
  • the structure may comprise a translucent or transparent protective layer, for example a varnish, covering the microperforations at one end.
  • a translucent or transparent protective layer for example a varnish
  • the structure may comprise a polarized filter comprising at least one of the first, second and third sets of microperforations, so that it can be observed, for an orientation of the polarized filter relative to an external light source placed behind the filter relative to to the observer, an extinction of the transmitted light and a contrast between said set of microperforations and its environment.
  • the polarized filter can be incorporated in a through window of the structure.
  • the polarized filter may be visible only on one side of the structure, the light arriving at the filter through one or more layers that do not allow direct observation.
  • the polarized filter can be attached to one or more other layers of the structure.
  • At least one or even more than one microperforation preferably all the microperforations of at least one set, or even all sets of microperforations, may be through, and in particular may lead to the outside of the security structure.
  • At least one microperforation of an assembly may be non-through, in particular may open into a layer of the structure, preferably a non-opaque layer and preferably still transparent.
  • At least one of the sets, or all sets of microperforations may be oblique (s), the microperforations of said set (s) all forming a non-zero angle with the normal to the structure.
  • the structure comprises at least one, more preferably a plurality of oblique through microperforations.
  • all the microperforations defining the sets of microperforations as defined previously are oblique through.
  • the thickness e of the structure can be chosen such that all the oblique through microperforations respect the condition:
  • ⁇ ⁇ denotes the angle that the axis of a traversing microperforation oblique with the normal to the multilayer structure and ⁇ 3 ⁇ 4 denotes the largest transverse dimension of the orifices through which said microperforation opens on the external faces of the structure, di being measured perpendicular to the axis of the orifice. This avoids that we can see through the structure, via microperforations through, normal incidence.
  • the invention relates to a security article, in particular a wire, a foil or a patch, comprising a security structure according to the invention.
  • the invention relates to a security document comprising a security article or a security structure according to the invention, being chosen in particular from a means of payment, such as a bank note, a check or a restaurant ticket, an identity document such as an identity card or a visa or a passport or a driving license, a title deed, a diploma, a lottery ticket, a ticket or a entrance ticket to cultural or sporting events.
  • the invention relates to a method of authenticating a security element or a security document incorporating a security structure according to the invention, comprising the following steps:
  • the subject of the invention is a safety structure that comprises microperforations made through at least one polarized filter.
  • the structure may comprise only one set of microperforations all having the same axis.
  • the invention relates to a method of authenticating a security article or security document incorporating a security structure comprising a polarized filter, as defined above, in which the external light source emits polarized light, in particular is a liquid crystal screen, said method comprising the steps of:
  • FIG. 1 represents in section an example of structure according to the invention
  • FIGS. 2a, 2b, 2c, 2d, 2e, 2f represent the security structure of FIG. 1 observed in different directions, FIGS. 2a, 2c, 2e being front views of the structure and FIGS. 2b, 2d. , 2f cross sections along II of Figures 2a, 2c and 2e.
  • FIG. 3 is an enlarged sectional view of a microperforation
  • FIGS. 4 and 5 illustrate variants of structures according to the invention, in section
  • FIGS. 6a, 6b, 6c, 6d, 6e, 6f and 6h show the structure of FIG. 5 observed in different viewing directions, FIGS. 6a, 6c, 6e, 6g being front views of the structure and FIGS. FIGS. 6b, 6d, 6f, 6h cross sections along II-II of FIG. 6a,
  • FIG. 7 represents an alternative embodiment
  • FIGS. 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h partially represent a variant of security structure observed in different viewing directions, FIGS. 8a, 8c, 8e being front views of the structure and Figures 8b, 8c, 8d, 8f, 8h cross sections along III-III of Figure 8a;
  • FIGS. 9, 10, 11, 12, 13, 14, 15, 16, 17 are diagrammatic and partial sections of alternative embodiments of structures according to the invention.
  • FIGS. 20 to 26 show examples of security documents according to the invention, FIG. 24 being a sectional view along XXIV-XXIV of FIG. 23, and
  • micro-perforations have been represented in one and the same plane of section, but they can extend in different planes, in particular parallel to one another.
  • Identical or similar elements found in separate embodiments have been designated in the figures by the same reference numeral.
  • FIG. 1 shows an exemplary structure 10 according to the invention, comprising two sets G 1 and G 2 of p 1 and p 2 microperforations, the microperforations being, for example, through, obliquely crossing the structure from one side to the other.
  • each set G has microperforations p; extending parallel in the same direction Xi.
  • the directions X 1 , X 2 of the two sets G 1 , G 2 with respect to the normal are distinct from one another.
  • the first set Gi may comprise a plurality of microperforations pi extending parallel to a direction Xi making an angle ai with the normal N to the structure and opening through orifices O i on an outer face 1 1 of the structure and the second set G 2 may comprise a plurality of microperforations p 2 extending parallel to a direction X 2 forming an angle ⁇ 2 with the normal N and opening through orifices o 2 on the outer face 11 of the structure, with i ⁇ a 2 .
  • the angle ⁇ 1 can be understood as an absolute variant between 30 ° and 60 °, being for example equal to 45 °.
  • the angle a 2 may be included as an absolute variant between 30 ° and 60 °, being for example equal to 45 °.
  • can be between 5 ° and 30 °.
  • FIGS. 2a-2f show an example of implementation of such a structure, observed according to different directions of observations.
  • the sets G 1 , G 2 of microperforations are for example arranged to form two adjacent patterns, in this case the letters AW.
  • FIGS. 2a and 2b correspond to an observation in transvision, placing the structure in front of a light source, in a first direction of observation substantially coinciding with the direction Xi of the first set of microperforations.
  • the pattern A formed by the microperforations pi of the first set Gi thus appears while the pattern W formed by the microperforations p 2 of the second set G 2 remains relatively obscure.
  • the structure 10 is represented in FIGS. 2c and 2d observed in transvision along a second normal observation direction N at the structure, different from the directions Xi, X 2 .
  • the two AW patterns then appear obscure, as illustrated in Figure 2c.
  • FIG. 3 a structure according to the invention, traversed from one side by an oblique microperforation p.
  • This figure illustrates the limiting case where the thickness of the structure is equal to the minimum thickness e m i n which makes it possible to prevent that one can see through the microperforation under normal observation.
  • This minimum thickness e m i n is calculated as a function of the largest transverse dimension di Oi orifices through which said microperforation opens on the outer faces 11, 12 of the structure, it seems to us that the measurement is not perpendicular to the axis, thank you to check this point, and angle ⁇ ; what does this microperforation do with the local normal.
  • the invention is not limited to a structure comprising two sets of microperforations.
  • FIG. 4 shows a structure having a plurality of sets G 1 , G 2 , ... G n of oblique crossing microperforations pi ... p n .
  • Each set Gi comprises microperforations p; extending parallel in the same direction Xi.
  • the directions X 1 , X 2 , ... X n of the n sets G 1,..., G n with respect to the normal are preferably distinct from each other, as illustrated.
  • the first set Gi may comprise at least three microperforations pi extending in a direction forming an angle ⁇ with the normal
  • the second set G 2 may comprise at least three microperforations p 2 extending in a direction forming an angle ⁇ 2 with the normal
  • the nth set G n can comprise at least three microperforations p n extending in a direction making an angle ⁇ ⁇ with the normal.
  • angles ⁇ , ⁇ 2, ... ⁇ ⁇ are advantageously chosen while respecting the relationship ⁇ ⁇ ⁇ ... ⁇ ⁇ , with the different sets Gi, ... G n succeeding one another in a direction, for example left to right in the example of Figure 4.
  • This scheduling can allow, during the observation of the structure in transvision and by continuously varying the angle of the direction of observation, to create an impression of movement, because the maximum light intensity from the microperforations successively passes through the different sets when the viewing angle changes.
  • FIGS. 5 and 6 show an example of implementation of such a structure, observed according to different directions of observation.
  • the structure here comprises three sets Gi, G 2 and G 3 of microperforations, these sets being arranged for example so as to form three adjacent patterns, in this case the AWS letters.
  • the second set of microperforations is located between the first and third sets.
  • the set Gi comprises microperforations pi extending parallel in the same direction Xi forming an angle ⁇ 1 with the normal, and opening through orifices Oi on an external face 11 of the structure 10.
  • the assembly G 2 comprises microperforations p 2 extending parallel in the same direction X 2 forming an angle ⁇ 2 with the normal, and opening through orifices o 2 on the outer face 11.
  • the assembly G 3 comprises P3 microperforations extending parallel in the same direction X3 forming an angle (3 with the normal, and opening through orifices 03 on the outer face 11.
  • the angles ⁇ , a 2 , (3 are chosen such that ai ⁇ a 2 ⁇ a, 3.
  • can be between 5 ° and
  • FIGS. 6a and 6b correspond to an observation in transvision, according to a first direction of observation substantially coinciding with the direction Xi of the first set Gi of microperforations.
  • the pattern A formed by the pi microperforations the first set Gi thus appears bright while the patterns W and S formed by the microperforations p 2 , p3 of the second and third sets G 2 and G 3 appear relatively obscure, as shown in Figure 6a.
  • FIGS. 6c and 6d illustrate the observation in transvision in a different direction of observation of the directions X 1 , X 2 , X 3 of the three sets, for example according to the normal N to the structure.
  • the three AWS patterns appear dark, as shown in Figure 6c.
  • the patterns A and S formed by the microperforations pi, P3 of the first and third sets G 1 , G 3 appear relatively obscure and that W formed by the microperforations p 2 of the second set G 2 appears brighter, as shown in Figure 6e.
  • microperforations have been represented oblique, but it may be otherwise.
  • one of the sets of microperforations may have microperforations oriented perpendicular to the structure.
  • FIG. 7 shows a structure in which microperforations p 2 of the second set G 2 extend perpendicularly to the plane of the structure.
  • Motion printing can be created within a set of microperforations defining a basic pattern such as a letter.
  • the structure may comprise at least two sets of microperforations, or even at least three sets of microperforations as previously described, with the difference that they together define the same pattern instead of defining respective separate patterns.
  • FIGS. 8a to 8h there is shown a structure on which extends an elementary pattern, in this case the letter A, formed by a plurality of microperforations passing right through the structure and composed of three sets Gi, G 2 , G 3 .
  • the set Gi comprises four penetrating microperforations pn ... p 14 extending in parallel planes, in the same direction Xi making an angle with the normal to the structure.
  • the set G 2 comprises two through microperforations p 2 i, p 22 extending parallel, for example following the normal N to the structure.
  • FIGS. 8b, 8c and 8d show various possible arrangements of microperforations of one set relative to another, while maintaining the same orientation.
  • FIG. 8d illustrates the variant according to which the microperforation p 12 of the first set Gi, the microperforation p 22 of the second set G 2 and the microperforation p 32 of the third set G 3 are disjoint.
  • the microperforation p 22 of the second set and the microperforation p 32 of the third set meet at a common end, opening on one face 12 of the structure, and have respective opposite ends disjointed opening on the other face 11 of the structure, the microperforation p 12 remaining separate from the other two microperforations.
  • a microperforation of the first set and a microperforation of the second set can meet at a common end and have respective opposite ends disjoint, and a microperforation of the third set can extend independently of the other two microperforations.
  • the microperforation p 12 of the first set Gi, the microperforation p 22 of the second set G 2 and the microperforation p 32 of the third set G 3 meet at a common end opening on the face 12 of the structure and have respective disjointed opposite ends opening on the face 11 of the structure.
  • microperforations which meet at a common end may advantageously make it possible to create different patterns respectively on the front and the back of the structure.
  • the reduction in the number of orifices visible on the front or the back can also make it possible to reinforce the security of the structure, making the microperforations more difficult to detect.
  • FIGS. 8b and 8a correspond to an observation in transvision, according to a first direction of observation substantially coinciding with the direction Xi of the first set Gi of microperforations.
  • the microperforations pn ... p 14 of the first set Gi thus appear bright while the microperforations p 21 , p 22 and P3i. . .p34 of the second and third sets G 2 and G 3 appear relatively obscure.
  • Figures 8e and 8f correspond to an observation in transvision following a second direction of observation, for example according to the normal N to the structure.
  • the microperforations p 21 , p 22 of the second set G 2 thus appear bright while the microperforations pu ... p 14 and p 31 ... p 34 of the first and third sets Gi and G 3 appear relatively obscure.
  • the microperforations p 31 ... p 34 of the third set G 3 appear bright while the microperforations pn ... p 14 and p 21 , p 22 of the first and second sets Gi, G 2 appear relatively obscure.
  • the structure so that the microperforations open onto a reflective material, for example metal, in order to be able to perceive the effect of movement by observation in reflected light.
  • the first and third sets of microperforations it is preferable for the first and third sets of microperforations to be symmetrical with respect to the normal, so that when observed in a direction corresponding to the axis of the microperforations of the first set, a light can be observed. reflected from the third set of microperforations.
  • FIG. 9 thus shows a structure comprising microperforations p 12i p 22 and p 32 such as those described in the preceding example, and further comprising a reflective opaque layer 20 covering the common end of the microperforations.
  • the figure also illustrates the possibility of covering the opposite orifices of the microperforations with a layer 21 of translucent or transparent material, for example a varnish.
  • the layers 20 and 21 completely cover the two faces of the structure 10.
  • the layers can only partially cover the structure, in the vicinity of the orifices of the microperforations, so as to close them.
  • a translucent or transparent protective layer is not specifically related to this embodiment and such a layer may cover the microperforations of any of the previously described examples, or illustrated below.
  • At least one set of microperforations may comprise at least one non-through microperforation, as shown in FIG. 10.
  • the structure is advantageously at least partially translucent, at least in the region comprising the non-through microperforation (s). In this way, when the structure is observed in transvision, the non-crossing microperforation (s) appear (ssen) t brighter than the support.
  • the invention is not limited to a monolayer structure.
  • the structure may comprise at least a first layer 31 and a second layer 32 at least partially superimposed, especially in the region comprising the microperforations.
  • This figure also illustrates the possibility for the different layers to be, in plan view, of different dimensions.
  • the layer 32 may belong to a fibrous substrate and the layer 31 to an insert element on this fibrous substrate, such as a patch, a foil or a security thread.
  • the different layers of the structure may for example be of different colors. This can make it possible to observe, in addition to the effect of movement according to the angle of observation, a color effect.
  • color is meant a color observed under an illuminant which may be visible light, especially daylight, or non-visible light, especially UV or IR light.
  • the first layer may be made of fibrous material, for example paper, or synthetic material, for example polyester, having for example a first color in visible light. It may have a thickness ei of between 20 microns and 70 microns.
  • the second layer may be made of fibrous material, for example paper, or of synthetic material, for example polyester, having for example a second color different from the first. It may have a thickness e 2 of between 20 microns and 70 microns.
  • the color difference ⁇ under illuminant D 65 between the colors of the layers is, for example, greater than or equal to 2.
  • the color of one of the layers is, for example, achromatic, such as white or black.
  • at least one of the layers is luminescent, for example phosphorescent or fluorescent.
  • the layers can have different colors of luminescence.
  • the structure illustrated in FIG. 12 differs from that of the preceding figure in that the structure comprises, in addition to two inner layers 31 and 32, a recto layer 41 and a backside layer 42, the first and second layers 31 and 32 extending between the front and back layers.
  • the stack is traversed from one side by microperforations p, parallel axes, belonging to a set of microperforations according to the invention.
  • the layers 41 and 42 are preferably opaque, at least at the portion through which the microperforations pass.
  • the layers 41 and 42 may be formed by impressions or by an added or coated coating on the rest of the structure. These layers can still be constituted by a metallization or a laminated film on the rest of the structure.
  • front 41 and back 42 layers can be advantageous for masking the inner layers 31 and 32, for example to make respective colors different from these inner layers visible only through the microperforations, under certain observation conditions.
  • the user can for example observe, in addition to the effect of movement following the arrangement of sets of microperforations, at least a first color at the microperforations by observing the front of the article or security document that incorporates the structure and at least a second color, different from the first, by observing the back of the article or document.
  • the first color may be different from the color of the outer face 11 of the recto layer 41, at least in the non-transparent region where the microperforations are located, so that the microperforations are detectable by the difference in color that appears between microperforations and said region.
  • the second color which is preferably different from the color of the outer face 12 of the backing layer 42, at least at the level of the region in which the microperforations are located.
  • the front 11 and back 12 layers appear homogeneous and completely cover the underlying layers, but in a variant the front and back layers can cover only a part of the underlying layers, being for example absent or transparent in places.
  • a structure according to the invention may further comprise only one inner layer 33 located between the front and back layers 41 and 42, as illustrated in FIG. 13.
  • FIG. 14 repeats the structure of FIG. 12, the first and second inner layers 31 and 32 each comprising a waveguide type light collecting material, for example a commercially available polycarbonate luminescent film. by the company BAYER under the name LISA ® .
  • the intermediate layer 36 is for example reflective.
  • the recto 41 and back 42 layers comprise one or more openings, distinct microperforations, defining entry surfaces 37 of the light.
  • the light entering through the entry surfaces 37 is propagated in the layers 31 and 32 and emerges through the microperforations.
  • the user illuminates the input surfaces 37 and observes the light emerging from the microperforations.
  • the presence of a "waveguide" material is advantageous in that it can make it possible to better distinguish the colors returned by the first and second inner layers 31 and 32 through the microperforations.
  • the guide material of the inner layers may optionally comprise luminescent materials.
  • the layers 41 and 42 may be reflective, in order to accentuate the "waveguide" effect.
  • the microperforations can be successful (it is necessary to penetrate into the waveguide so that light can be emitted by this exit point) in a layer comprising a waveguide film, as illustrated in FIG. 14b.
  • the structure also comprises a waveguide layer 53 extending under the reflecting layer 53 and on a reflecting layer 54, the microperforations opening on the layer 53.
  • the structure further has a light input surface 56 defined by an aperture 57 through the opaque layer 51 and the underlying reflective layer 52, allowing the light to propagate through the layer 53 and stand out by the microperforations.
  • a light input surface 56 defined by an aperture 57 through the opaque layer 51 and the underlying reflective layer 52, allowing the light to propagate through the layer 53 and stand out by the microperforations.
  • the structure comprises a plurality of superimposed layers and a plurality of non-traversing microperforations, defining several sets of distinct microperforations Gi, G 2 , G n , of which there are six in the example illustrated.
  • the microperforations of the same set Gi are oriented at the same inclination ⁇ ; relative to the normal N to the structure.
  • the inclination specific to each set of microperforations makes it possible to obtain color effects that vary according to the angle of observation of the microperforations, when the different layers where the microperforations end up have different colors.
  • the sets G 1 , G 2 , G 3 are shifted and are not superimposed on the sets G 4 , G 5 , G 6 .
  • This may make it possible to prevent the pattern or patterns drawn by the sets G 1 , G 2 , G 3 from interfering with the pattern (s) drawn by the sets G 4 , G 5 , G 6 and vice versa, especially when the structure is observed. in transvision and does not have sufficient opacity to prevent the detection of the presence of a microperforation opening on one side by observing the opposite side.
  • at least two or all micro-perforations can lead into separate layers.
  • the structure 10 comprises a plurality of sets Gi, ... Gi, ... G j, ... G n of microperforations, all microperforations pi of the same assembly having a Gi same inclination ⁇ ; and resulting in the same inner layer 1 ;, all the microperforations p j of at least one other set G j of inclination ⁇ j different from 3 ⁇ 4, and preferably those of all other sets, resulting in respective respective inner layers .
  • the inner layers are of different colors, a color change can be observed when the viewing angle changes.
  • At least one of the sets of microperforations may comprise at least one microperforation filled with a material or a fluid other than air, translucent or transparent, for example a transparent resin, a surface treatment as described in EPI 319104 or a varnish.
  • the security structure comprises a polarized filter 70, preferably linearly, comprising at least one of the first, second and third sets of microperforations.
  • a polarized filter 70 preferably linearly, comprising at least one of the first, second and third sets of microperforations.
  • only one set has been represented, for example drawing an AW pattern.
  • the filter 70 is illuminated with light transmitted by an external light source 80 of polarized light, with an orientation of the filter with respect to the source for which the filter is translucent and passes light.
  • the light also passes through the microperforations. In this way, the contrast between the microperforations and the filter is relatively low.
  • the polarized filter 70 is oriented relative to the light source 80 so as to observe an extinction of the transmitted light. Under these conditions, the filter appears dark, and microperforations that let in the light appear brighter.
  • the external light source 80 of polarized light may be a liquid crystal display (LCD), as shown in Figs. 19a and 19b.
  • the polarized filter 70 of the security structure is backlit by the LCD screen with an orientation such that light is transmitted uniformly through the filter and the microperforations.
  • the structure 10 is oriented relative to the LCD screen so as to cause extinction of the light transmitted by the screen.
  • FIGS. 20 to 26 show exemplary embodiments of security documents according to the invention, comprising a security structure 10 according to the invention.
  • the security structure 10 according to the invention is directly integrated into a security document 90, for example a banknote.
  • the microperforations draw for example a pattern on it.
  • the document 90 comprises a security thread or a foil 92 defining with the remainder of the document a security structure 10 according to the invention.
  • the wire or foil 92 may appear entirely on the surface of the document 90 and extend over the entire width / document, between two opposite edges.
  • the width of the wire or foil 92 may be between 0.5 mm and 30 mm.
  • the structure according to the invention 10 may be formed in part by a layer of the document 90 such as a fibrous or thermoplastic substrate and the rest of the structure may be defined by the wire or foil 92. It is advantageous in this case that the microperforations are carried out after incorporation of the wire or foil to the document 90.
  • the structure 10 according to the invention is a thread 92 integrated into windows, called “window thread", and the microperforations appear in one or more windows 94. It is advantageous to provide windows on both of them. opposite sides of the document, so as to allow to observe microperforations on both sides of the document.
  • the document comprises a window 94, in which is integrated a security structure 10 according to the invention.
  • FIG. 24 shows a sectional view illustrating the case where the security structure 10 is sandwiched between two paper jets 96, 97 of the document 90.
  • the window can be defined by a transparent area of the document.
  • the structure 10 according to the invention and / or the security document 90 which incorporates such a structure may comprise additional security elements, as defined below.
  • security elements comprise for example colored fibers or boards, fully or partially printed or metallized wires. These security elements are called first level.
  • Additional security elements are detectable only with a relatively simple apparatus, such as a lamp emitting in the ultraviolet (UV) or infrared (IR).
  • UV ultraviolet
  • IR infrared
  • These security elements comprise, for example, fibers, boards, strips, wires or particles. These security elements may be visible to the naked eye or not, being for example luminescent under a lighting of a Wood lamp emitting in a wavelength of 365 nm. These security elements are said to be second level.
  • Additional security elements require for their detection a more sophisticated detection device.
  • These security elements are for example capable of generating a specific signal when they are subjected, simultaneously or not, to one or more external excitation sources. The automatic detection of the signal makes it possible to authenticate, if necessary, the document.
  • These security elements comprise, for example, tracers in the form of active materials, particles or fibers capable of generating a specific signal when these tracers are subjected to optronic, electrical, magnetic or electromagnetic excitation. These security elements are said to be third level.
  • the additional security element or elements present in the security document, or the security structure that it comprises, may have first, second or third level security features.
  • the security document 90 comprises a security structure 10 comprising a polarized filter 70 as described with reference to FIGS. 18a and 18b.
  • the presence of the polarized filter and its orientation may be indicated by a reference 71, for example an arrow directed in the direction of polarization of the filter.
  • the security structure comprising the polarized filter 70 can be incorporated in the security document 90 in the form of a security thread 92, as shown in FIG. 25, or a patch 98 within a window. 94, as shown in FIG. 26.
  • FIG. 27 represents an exemplary document that integrates two windows containing polarized filters 100 and 101 having crossed polarization directions, arranged in such a way that the two filters can be superimposed by folding the document, for example according to a median fold line 102.
  • One of the filters 100 and 101 comprises microperforations, for example as defined above. Once the filters are superimposed, almost no light passes except where there are microperforations.
  • FIG. 28 represents a variant where the filter 100 is in a through window and the other filter 101 is incorporated in "Windows thread", that is to say that the filter appears in windows 103 alternating with regions 104 where the filter is hidden by a paper jet of the document.
  • the perforations are present on one of the filters.
  • the invention can not be limited to the embodiments described.
  • the number of microperforations per set, their spacing, the shape of the cross section of the microperforations, their size, the number of microperforation sets can be modified according to the desired optical effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Optics & Photonics (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Credit Cards Or The Like (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

La présente invention concerne une structure de sécurité (10) comportant au moins : - un premier ensemble (G1) de microperforations faisant toutes un même premier angle (ai) avec la normale à la structure, et définissant un premier motif visible lorsqu'observé dans une direction d'observation coïncidant avec l'axe des microperforations du premier ensemble, et - un deuxième ensemble (G2) de microperforations faisant toutes un même deuxième angle (a2) avec la normale à la structure, différent du premier angle, ce deuxième ensemble définissant un deuxième motif visible lorsqu'observé selon une direction d'observation coïncidant avec l'axe des microperforations du deuxième ensemble.

Description

Structure de sécurité incorporant des microperforations
La présente invention se rapporte au domaine des documents de sécurité.
Il est connu, notamment des billets suisses, de faire des perforations perpendiculaires au plan du papier afin de le sécuriser. L'effet visuel obtenu relève de la seule observation en lumière transmise des perforations.
La demande de brevet EP 1 525 100 décrit un document de sécurité au travers duquel s'étend une pluralité de perforations de section ellipsoïdale, orientées selon la normale au document.
La demande WO 00/43216 décrit un élément de sécurité contre la falsification, comportant des perforations non traversantes, aboutissant à différentes profondeurs, pouvant comporter des perforations obliques. Les perforations sont visibles sous la forme d'un dégradé de gris lorsque la structure est observée en transmission.
La demande WO 02/33652 décrit un élément de sécurité comportant des perforations coniques orientées perpendiculairement à l'élément, traversantes ou non, pour former une image multi-ton.
Il existe un besoin pour renforcer encore la sécurité et améliorer les processus d'authentification des documents de sécurité, afin notamment d'augmenter la difficulté de contrefaire ces documents.
L'invention a ainsi pour objet, selon l'un de ses aspects, une structure de sécurité comportant au moins :
un premier ensemble de microperforations faisant toutes un même premier angle avec la normale à la structure, et définissant un premier motif visible au moins lorsqu'observé dans une direction d'observation coïncidant avec l'axe des microperforations, et
- un deuxième ensemble de microperforations faisant toutes un même deuxième angle avec la normale à la structure, différent du premier angle, ce deuxième ensemble définissant un deuxième motif visible au moins lorsqu'observé selon une direction d'observation coïncidant avec l'axe des microperforations du deuxième ensemble.
Un « ensemble » de microperforations se compose d'au moins deux microperforations, et de préférence d'au moins dix microperforations. Par « microperforation », on désigne un trou éventuellement rempli d'un matériau non opaque, présentant une plus grande dimension transversale de taille millimétrique ou micrométrique, notamment comprise entre 5 microns et 200 microns, mieux entre 10 et 50 microns. La dimension transversale est mesurée perpendiculairement à l'axe de la microperforation. La section transversale de la microperforation est inférieure ou égale à 0,1mm2, mieux, 0,002mm2. Les microperforations ont de préférence chacune une plus grande section d'étendue inférieure ou égale à 0,1 mm2.
Une microperforation présente l'avantage de n'être facilement détectable que sous certaines conditions d'observation, et n'est ainsi pas aisément visible à l'œil nu si ces conditions d'observation ne sont pas respectées.
Lorsque le premier motif est observé selon l'axe des microperforations du premier ensemble, le deuxième motif n'est pas visible ou est visible avec un contraste moins élevé que lorsque les microperforations du deuxième ensemble sont observées selon leur axe.
Une microperforation peut être de section transversale constante ou non. Elle peut être de section circulaire ou non circulaire, notamment polygonale, en particulier polygonale régulière ou non régulière, oblongue, notamment elliptique.
Les microperforations peuvent être réalisées à l'aide d'un laser, ce qui est préféré, ou à l'aide de micro-aiguilles ou par jet d'eau.
Par microperforation « oblique » on désigne une microperforation s 'étendant dans la structure suivant une direction faisant un angle non nul avec la normale à la structure.
L'angle d'une microperforation relativement à la normale à la structure est orienté, une valeur négative signifiant qu'il est orienté vers la gauche et positive vers la droite.
La structure peut comporter au moins un troisième ensemble de microperforations faisant un même troisième angle avec la normale à la structure et définissant un troisième motif visible lorsqu'observé selon une direction d'observation coïncidant avec l'axe des microperforations du troisième ensemble.
Selon un exemple de mise en œuvre de l'invention, les premier, deuxième et troisième angles peuvent définir une suite strictement croissante, de telle sorte que, lorsque l'on fait varier continûment la direction d'observation de la structure, une impression de mouvement soit conférée à l'observateur, les motifs correspondants passant successivement par un contraste d'observation maximal avec leur environnement.
Le deuxième ensemble peut être situé entre le premier et le troisième ensemble.
Les premier et deuxième ensembles de microperforations peuvent être adjacents et l'écart angulaire (en valeur absolue) entre les premier et deuxième angles peut être compris entre 5° et 90°, de préférence compris entre 5 et 50° de sorte à ce que l'observation du premier puis du deuxième ensemble ne nécessite pas une amplitude d'inclinaison du document trop importante à effectuer par l'observateur.
Les deuxième et troisième ensembles de microperforations peuvent être adjacents et l'écart angulaire (en valeur absolue) entre les deuxième et troisième angles peut être compris entre 5° et 90°.
Les premier et troisième angles peuvent être de valeurs opposées et le deuxième angle de valeur nulle.
La variation de l'angle entre les ensembles de microperforations peut se faire dans un plan, lequel est par exemple parallèle au grand côté ou au petit côté d'un document incorporant la structure.
Cette variation peut se faire aussi selon deux axes perpendiculaires entre eux. Cela peut permettre à un observateur d'observer différents ensembles de microperforations en faisant varier l'angle d'observation de gauche à droite et d'observer également différents ensembles de microperforations en faisant varier l'angle de bas en haut.
Au moins une microperforation du premier ensemble et au moins une microperforation du deuxième ensemble peuvent se rejoindre à une extrémité commune et avoir des extrémités opposées disjointes. Une telle disposition est assez difficile à reproduire pour un contrefacteur.
Au moins une microperforation du premier ensemble, au moins une microperforation du deuxième ensemble et au moins une microperforation du troisième ensemble peuvent se rejoindre à une extrémité commune et avoir des extrémités opposées disjointes.
Les motifs peuvent être visibles en lumière transmise. Les microperforations peuvent ainsi apparaître plus lumineuses que le reste de la structure lorsqu'observées selon leur axe. Pour ce faire, les microperforations peuvent être traversantes afin de laisser passer la lumière à travers elles. Dans ce cas, la structure peut être opaque hormis les microperforations. En variante, les microperforations peuvent être non traversantes et déboucher sur au moins une couche de la structure non opaque, constituée d'un vernis, d'un film transparent ou d'un papier rendu transparent ou translucide.
Alternativement, les motifs peuvent être visibles en lumière réfléchie. Pour ce faire, les microperforations peuvent déboucher sur une couche réfléchissante, notamment une couche métallique, de la structure.
En variante, les microperforations peuvent déboucher sur ou dans une couche interne de la structure comportant un « guide d'onde », permettant de guider la lumière jusqu'aux microperforations. La structure peut ainsi comporter une surface d'entrée de la lumière, autre qu'une microperforation, par exemple définie par un ajour aboutissant au guide d'onde. Les microperforations peuvent encore déboucher sur une couche luminescente.
La structure peut être monocouche ou multicouche. La structure peut comporter au moins une couche de recto et une couche de verso, adjacentes ou non. La structure peut en outre comporter au moins une couche interne située entre les couches de recto et de verso.
La structure peut notamment comporter au moins deux couches internes situées entre les couches de recto et de verso. Chaque couche interne peut présenter une couleur différente de celle des autres. Cela peut permettre, lorsque les microperforations permettent d'observer la couleur desdites couches internes, de créer un effet coloriel en plus de l'effet de mouvement précité.
La structure peut comporter une couche de protection translucide ou transparente, par exemple un vernis, recouvrant les microperforations à une extrémité. Ainsi, les microperforations sont protégées d'un risque d'obturation par des salissures.
La structure peut comporter un filtre polarisé comportant au moins l'un des premier, deuxième et troisième ensembles de microperforations, de sorte que l'on puisse observer, pour une orientation du filtre polarisé relativement à une source lumineuse extérieure placée derrière le filtre par rapport à l'observateur, une extinction de la lumière transmise et un contraste entre ledit ensemble de microperforations et son environnement.
Le filtre polarisé peut être incorporé dans une fenêtre traversante de la structure. Le filtre polarisé peut n'être apparent que sur une face de la structure, la lumière arrivant au filtre par l'intermédiaire d'une ou plusieurs couches qui n'en permettent pas l'observation directe.
Le filtre polarisé peut être accolé à une ou plusieurs autres couches de la structure.
Au moins une microperforation, voire plusieurs, de préférence toutes les microperforations d'au moins un ensemble, voire de tous les ensembles de microperforations, peuvent être traversantes, et notamment peuvent déboucher à l'extérieur de la structure de sécurité.
Au moins une microperforation d'un ensemble, voire plusieurs microperforations, notamment toutes les microperforations d'au moins un ensemble, voire de tous les ensembles de microperforations, peuvent être non traversantes, notamment peuvent déboucher au sein d'une couche de la structure, de préférence une couche non opaque et de préférence encore transparente.
Au moins l'un des ensembles, voire tous les ensembles de microperforations, peu(ven)t être oblique(s), les microperforations dudit ou desdits ensemble(s) faisant toutes un angle non nul avec la normale à la structure.
De préférence, la structure comporte au moins une, mieux une pluralité de microperforations traversantes obliques. De préférence, toutes les microperforations définissant les ensembles de microperforations tels que définis précédemment sont traversantes obliques.
L'épaisseur e de la structure peut être choisie de telle sorte que toutes les microperforations traversantes obliques respectent la condition :
où θί désigne l'angle que fait l'axe d'une microperforation traversante oblique avec la normale à la structure multicouche et <¾ désigne la plus grande dimension transversale des orifices par lesquels ladite microperforation débouche sur les faces externes de la structure, di étant mesurée perpendiculairement à l'axe de l'orifice. Cela évite que l'on puisse voir au travers de la structure, via les microperforations traversantes, sous incidence normale.
Selon un autre de ses aspects, l'invention concerne un article de sécurité, notamment un fil, un foil ou un patch, comportant une structure de sécurité selon l'invention. Selon encore un autre de ses aspects, l'invention concerne un document de sécurité comportant un article de sécurité ou une structure de sécurité selon l'invention, étant notamment choisi parmi un moyen de paiement, tel qu'un billet de banque, un chèque ou un ticket restaurant, un document d'identité tel qu'une carte d'identité ou un visa ou un passeport ou un permis de conduire, un titre de propriété, un diplôme, un ticket de loterie, un titre de transport ou encore un ticket d'entrée à des manifestations culturelles ou sportives.
Selon un autre de ses aspects, l'invention concerne un procédé d'authentifïcation d'un élément de sécurité ou d'un document de sécurité incorporant une structure de sécurité selon l'invention, comportant les étapes suivantes :
observer l'article ou le document de sécurité en faisant varier continûment la direction d'observation,
déterminer, sur la base au moins des images générées par l'apparition et la disparition des microperforations, l'authenticité de l'article ou du document de sécurité.
Selon un autre de ses aspects, l'invention a pour objet une structure de sécurité qui comprend des microperforations réalisées à travers au moins un filtre polarisé. Selon cet aspect de l'invention, la structure peut ne comporter qu'un seul ensemble de microperforations ayant toutes le même axe. Les caractéristiques additionnelles définies plus haut s'appliquent à cet objet de l'invention.
L'invention concerne un procédé d'authentifïcation d'un article de sécurité ou d'un document de sécurité incorporant une structure de sécurité comportant un filtre polarisé, telle que précédemment définie, dans lequel la source lumineuse extérieure émet une lumière polarisée, notamment est un écran à cristaux liquides, ledit procédé comportant les étapes consistant à :
- disposer l'article ou le document de sécurité devant la source lumineuse,
- modifier, pour faire varier le degré d'extinction de la lumière transmise par la structure de sécurité, l'orientation de l'article ou du document de sécurité relativement à la source,
- déterminer, sur la base au moins d'une variation du contraste entre la microperforation et son environnement, l'authenticité de l'article ou du document de sécurité. L'invention pourra être mieux comprise à la lecture de la description détaillée qui va suivre, d'exemples de mise en œuvre non limitatifs de celle-ci, et à l'examen du dessin annexé, sur lequel :
- la figure 1 représente en coupe un exemple de structure selon l'invention,
- les figures 2a, 2b, 2c, 2d, 2e, 2f représentent la structure de sécurité de la figure 1 observée selon différentes directions, les figures 2a, 2c, 2e, étant des vues de face de la structure et les figures 2b, 2d, 2f des coupes transversales selon I-I des figures 2a, 2c et 2e.
- la figure 3 est une vue en coupe agrandie d'une microperforation,
- les figures 4 et 5 illustrent des variantes de structures selon l'invention, en coupe,
- les figures 6a, 6b, 6c, 6d, 6e, 6f et 6h représentent la structure de la figure 5 observée selon différentes directions d'observation, les figures 6a, 6c, 6e, 6g étant des vues de face de la structure et les figures 6b, 6d, 6f, 6h des coupes transversales selon II-II de la figure 6a,
- la figure 7 représente une variante de réalisation,
- les figures 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h représentent partiellement une variante de structure de sécurité observée selon différentes directions d'observation, les figures 8a, 8c, 8e étant des vues de face de la structure et les figures 8b, 8c, 8d, 8f, 8h des coupes transversales selon III-III de la figure 8a ;
- les figures 9, 10, 11, 12, 13, 14, 15, 16, 17 sont des coupes schématiques et partielles de variantes de réalisation de structures selon l'invention,
- les figures 20 à 26 représentent des exemples de documents de sécurité selon l'invention, la figure 24 étant une vue en coupe selon XXIV-XXIV de la figure 23, et
- les figures 27 et 28 représentent des variantes de documents comportant des filtres polarisés.
Sur les figures, les proportions réelles des différents éléments représentés n'ont pas toujours été respectées, dans un souci de clarté du dessin.
Pour la même raison, les microperforations ont été représentées dans un même plan de coupe, mais elles peuvent s'étendre dans des plans différents, notamment parallèles entre eux. Les éléments identiques ou similaires se retrouvant dans des modes de réalisation distincts ont été désignés sur les figures par un même numéro de référence.
On a représenté sur la figure 1 un exemple de structure 10 selon l'invention, comportant deux ensembles Gi et G2 de microperforations pi et p2, les microperforations étant par exemple traversantes, franchissant obliquement de part en part la structure. D'une façon générale, chaque ensemble G; comporte des microperforations p; s'étendant parallèlement suivant une même direction Xi. Les directions Xi, X2 des deux ensembles Gi, G2 par rapport à la normale sont distinctes l'une de l'autre.
Par exemple, le premier ensemble Gi peut comporter une pluralité de microperforations pi s'étendant parallèlement à une direction Xi faisant un angle ai avec la normale N à la structure et débouchant par des orifices O i sur une face externe 1 1 de la structure et le deuxième ensemble G2 peut comporter une pluralité de microperforations p2 s'étendant parallèlement à une direction X2 faisant un angle a2 avec la normale N et débouchant par des orifices o2 sur la face externe 11 de la structure, avec i≠ a2.
L'angle ai peut être compris en variante absolue entre 30° et 60°, étant par exemple égal à 45°. L'angle a2 peut être compris en variante absolue entre 30° et 60°, étant par exemple égal à 45°. L'écart angulaire |αι- a2| peut être compris entre5° et 30°.
Ces inclinaisons différentes peuvent permettre, lors de l'observation de la structure en transvision et en faisant varier continûment l'angle de la direction d'observation au moins dans l'intervalle [αι,α2], de créer une impression de mouvement, car l'intensité lumineuse maximale issue des microperforations passe successivement d'un ensemble à l'autre lorsque l'angle d'observation change. Cette structure offre ainsi une sécurité de premier niveau à l'utilisateur.
On a représenté sur les figures 2a-2f un exemple de mise en œuvre d'une telle structure, observée selon différentes directions d'observations. Les ensembles Gi, G2 de microperforations sont par exemple agencés de manière à former deux motifs adjacents, en l'espèce les lettres AW.
Les figures 2a et 2b correspondent à une observation en transvision, en plaçant la structure devant une source lumineuse, suivant une première direction d'observation coïncidant sensiblement avec la direction Xi du premier ensemble Gi de microperforations. Le motif A formé par les microperforations pi du premier ensemble Gi apparaît ainsi lumineux tandis que le motif W formé par les microperforations p2 du deuxième ensemble G2 reste relativement obscur.
La structure 10 est représentée sur les figures 2c et 2d observée en transvision suivant une deuxième direction d'observation normale N à la structure, différente des directions Xi, X2. Les deux motifs AW apparaissent alors obscurs, comme illustré sur la figure 2c.
Enfin, lorsque la structure 10 est observée en transvision suivant une troisième direction d'observation correspondant sensiblement à la direction X2 du deuxième ensemble G2 de microperforations, comme illustré sur la figure 2f, le motif A formé par les microperforations pi du premier ensemble Gi apparaît obscur et celui W formé par les microperforations p2 du deuxième ensemble G2 apparaît lumineux, comme illustré sur la figure 2e.
Ainsi, lorsque l'on fait varier la direction d'observation en balayant continûment au moins l'intervalle [αι,α2 ], les lettres A et W apparaissent tour à tour lumineuses puis obscures, donnant l'impression à l'observateur d'un mouvement.
On a représenté sur la figure 3 une structure selon l'invention, traversée de part en part par une microperforation oblique p;. Cette figure illustre le cas limite où l'épaisseur de la structure est égale à l'épaisseur minimale emin qui permet d'empêcher que l'on puisse voir à travers la microperforation en observation normale. Cette épaisseur minimale emin est calculée en fonction de la plus grande dimension transversale di des orifices Oi par lesquels ladite microperforation débouche sur les faces externes 11 , 12 de la structure, il nous semble que la mesure n'est pas perpendiculaire à l'axe, merci de vérifier ce point, et de l'angle Θ; que fait cette microperforation avec la normale locale. L'épaisseur totale de la structure est de préférence supérieure ou égale à emin, où emin = di/sin (θ;) (avec Θ;≠ 0).
L'invention n'est pas limitée à une structure comportant deux ensembles de microperforations .
On a représenté sur la figure 4 une structure ayant une pluralité d'ensembles Gi, G2, ... Gn de microperforations traversantes obliques pi ...pn. Chaque ensemble Gi comporte des microperforations p; s'étendant parallèlement suivant une même direction Xi. Les directions Xi, X2, ... Xn des n ensembles Gi, ... Gn par rapport à la normale sont de préférence distinctes les unes des autres, comme illustré. Par exemple, le premier ensemble Gi peut comporter au moins trois microperforations pi s'étendant suivant une direction faisant un angle δι avec la normale, le deuxième ensemble G2 peut comporter au moins trois microperforations p2 s'étendant suivant une direction faisant un angle δ2 avec la normale, et le énième ensemble Gn peut comporter au moins trois microperforations pn s'étendant suivant une direction faisant un angle δη avec la normale.
Les angles δι, δ2, ...δη sont avantageusement choisis en respectant la relation δι<δι<...<δη, avec les différents ensembles Gi, ... Gn se succédant dans une direction, par exemple de gauche à droite dans l'exemple de la figure 4. Cet ordonnancement peut permettre, lors de l'observation de la structure en transvision et en faisant varier continûment l'angle de la direction d'observation, de créer une impression de mouvement, car l'intensité lumineuse maximale issue des microperforations passe successivement par les différents ensembles lorsque l'angle d'observation change.
On a représenté sur les figures 5 et 6 un exemple de mise en œuvre d'une telle structure, observée selon différentes directions d'observation. La structure comporte ici trois ensembles Gi, G2 et G3 de microperforations, ces ensembles étant par exemple agencés de manière à former trois motifs adjacents, en l'espèce les lettres AWS. Dans l'exemple considéré, le deuxième ensemble de microperforations est situé entre les premier et troisième ensembles.
Comme on peut le voir sur la figure 5, l'ensemble Gi comporte des microperforations pi s'étendant parallèlement suivant une même direction Xi faisant un angle ai avec la normale, et débouchant par des orifices Oi sur une face externe 11 de la structure 10. L'ensemble G2 comporte des microperforations p2 s'étendant parallèlement suivant une même direction X2 faisant un angle a2 avec la normale, et débouchant par des orifices o2 sur la face externe 11. L'ensemble G3 comporte des microperforations P3 s'étendant parallèlement suivant une même direction X3 faisant un angle ( 3 avec la normale, et débouchant par des orifices 03 sur la face externe 11. Les angles αι, a2, ( 3 sont choisis de telle sorte que ai<a2<a,3. L'écart angulaire | peut être compris entre 5° et
90° de préférence compris entre 5 et 50°.
Les figures 6a et 6b correspondent à une observation en transvision, suivant une première direction d'observation coïncidant sensiblement avec la direction Xi du premier ensemble Gi de microperforations. Le motif A formé par les microperforations pi du premier ensemble Gi apparaît ainsi lumineux tandis que les motifs W et S formés par les microperforations p2, p3 des deuxième et troisième ensembles G2 et G3 apparaissent relativement obscurs, comme illustré sur la figure 6a.
Les figures 6c et 6d illustrent l'observation en transvision suivant une direction d'observation différente des directions Xi, X2, X3 des trois ensembles, par exemple selon la normale N à la structure. Les trois motifs AWS apparaissent alors sombres, comme illustré sur la figure 6c.
Lorsque la structure 10 est observée en transvision suivant une direction d'observation correspondant sensiblement à la direction X2 du deuxième ensemble G2, comme illustré sur la figure 6f, les motifs A et S formés par les microperforations pi, P3 des premier et troisième ensembles Gi, G3 apparaissent relativement obscurs et celui W formé par les microperforations p2 du deuxième ensemble G2 apparaît plus lumineux, comme illustré sur la figure 6e.
Enfin, lorsque la structure 10 est observée en transvision suivant une direction d'observation correspondant sensiblement à la direction X3 du troisième ensemble G3 de microperforations, comme illustré sur la figure 6h, les motifs A et W formés par les microperforations pi, p2 des premier et deuxième ensembles Gi, G2 apparaissent relativement obscurs et le motif S formé par les microperforations P3 du troisième ensemble G3 apparaît plus lumineux, comme illustré sur la figure 6g.
Ainsi, lorsque l'on fait varier la direction d'observation en balayant continûment au moins l'intervalle [0,1 , 0,3] les lettres AWS apparaissent tour à tour lumineuses puis obscures, donnant l'impression à l'observateur d'un mouvement.
Dans les exemples décrits ci-dessus, les microperforations ont été représentées obliques, mais il peut en être autrement. Par exemple, l'un des ensembles de microperforations peut avoir des microperforations orientées perpendiculairement à la structure.
On a ainsi représenté sur la figure 7 une structure dans laquelle des microperforations p2 du deuxième ensemble G2 s'étendent perpendiculairement au plan de la structure.
L'impression de mouvement peut être créée au sein d'un ensemble de microperforations définissant un motif élémentaire tel qu'une lettre. Pour obtenir ce résultat, la structure peut comporter au moins deux ensembles de microperforations, voire au moins trois ensembles de microperforations tels que précédemment décrits, à la différence près qu'ils définissent ensemble un même motif au lieu de définir des motifs respectifs distincts.
Dans l'exemple illustré aux figures 8a à 8h, on a représenté une structure sur laquelle s'étend un motif élémentaire, en l'espèce la lettre A, formé par une pluralité de microperforations traversant de part en part la structure et composée de trois ensembles Gi, G2, G3.
L'ensemble Gi comporte quatre microperforations traversantes pn ...p14 s 'étendant dans des plans parallèles, suivant une même direction Xi faisant un angle a avec la normale à la structure. L'ensemble G2 comporte deux microperforations traversantes p2i, p22 s'étendant parallèlement, par exemple suivant la normale N à la structure. L'ensemble G3 comporte quatre microperforations traversantes p3i... p34 s'étendant dans des plans parallèles, suivant une même direction X3 faisant par exemple un angle α3=-αι avec la normale à la structure.
On a représenté sur les figures 8b, 8c et 8d différents agencements possibles des microperforations d'un ensemble relativement à un autre, tout en conservant la même orientation. La figure 8d illustre la variante selon laquelle la microperforation p12 du premier ensemble Gi, la microperforation p22 du deuxième ensemble G2 et la microperforation p32 du troisième ensemble G3 sont disjointes.
Sur la figure 8c, la microperforation p22 du deuxième ensemble et la microperforation p32 du troisième ensemble se rejoignent à une extrémité commune, débouchant sur une face 12 de la structure, et présentent des extrémités opposées respectives disjointes débouchant sur l'autre face 11 de la structure, la microperforation p12 restant séparée des deux autres microperforations.
En variante, une microperforation du premier ensemble et une microperforation du deuxième ensemble peuvent se rejoindre à une extrémité commune et présenter des extrémités opposées respectives disjointes, et une microperforation du troisième ensemble peut s'étendre indépendamment des deux autres microperforations.
Sur les figures 8b, 8f et 8h, la microperforation p12 du premier ensemble Gi, la microperforation p22 du deuxième ensemble G2 et la microperforation p32 du troisième ensemble G3 se rejoignent à une extrémité commune débouchant sur la face 12 de la structure et présentent des extrémités opposées respectives disjointes débouchant sur la face 11 de la structure.
La présence de microperforations qui se rejoignent à une extrémité commune peut avantageusement permettre de créer des motifs différents respectivement sur le recto et le verso de la structure. La diminution du nombre d'orifices visibles sur le recto ou le verso peut également permettre de renforcer la sécurité de la structure, en rendant les microperforations plus difficiles à détecter.
Les figures 8b et 8a correspondent à une observation en transvision, suivant une première direction d'observation coïncidant sensiblement avec la direction Xi du premier ensemble Gi de microperforations. Les microperforations pn ...p14 du premier ensemble Gi apparaissent ainsi lumineuses tandis que les microperforations p21, p22 et P3i . . .p34 des deuxième et troisième ensembles G2 et G3 apparaissent relativement obscures.
Les figures 8e et 8f correspondent à une observation en transvision suivant une deuxième direction d'observation, par exemple selon la normale N à la structure. Les microperforations p21, p22 du deuxième ensemble G2 apparaissent ainsi lumineuses tandis que les microperforations pu ...p14 et p31...p34 des premier et troisième ensembles Gi et G3 apparaissent relativement obscures.
Lorsque la structure 10 est observée en transvision suivant une troisième direction d'observation correspondant sensiblement à la direction X3 du troisième ensemble G3 de microperforations, comme illustré sur la figure 8h, les microperforations p31...p34 du troisième ensemble G3 apparaissent lumineuses tandis que les microperforations pn ...p14 et p21, p22 des premier et deuxième ensembles Gi, G2 apparaissent relativement obscures.
Il est possible d'agencer la structure de sorte à ce que les microperforations débouchent sur un matériau réfléchissant, par exemple métallique, afin de pouvoir percevoir l'effet de mouvement par une observation en lumière réfléchie. Dans ce cas, il est préférable que le premier et le troisième ensemble de microperforations soient symétriques par rapport à la normale de sorte que lors d'une observation selon une direction correspondant à l'axe des microperforations du premier ensemble, on puisse observer une lumière réfléchie provenant du troisième ensemble de microperforations.
On a ainsi représenté sur la figure 9 une structure comportant des microperforations p12i p22 et p32 telles que celles décrites dans l'exemple précédent, et comportant en outre une couche opaque réfléchissante 20 recouvrant l'extrémité commune des microperforations.
On a également illustré sur la figure la possibilité de recouvrir les orifices opposés des microperforations d'une couche 21 de matériau translucide ou transparent, par exemple un vernis.
Dans l'exemple considéré, les couches 20 et 21 recouvrent intégralement les deux faces de la structure 10. En variante, les couches peuvent ne recouvrir que partiellement la structure, dans le voisinage des orifices des microperforations, de façon à les obturer.
La présence d'une couche de protection translucide ou transparente n'est pas liée spécifiquement à cet exemple de réalisation et une telle couche peut recouvrir les microperforations de l'un quelconque des exemples précédemment décrits, ou illustrés par la suite.
Au moins un ensemble de microperforations peut comporter au moins une microperforation non traversante, comme représenté sur la figure 10. Dans ce cas, la structure est avantageusement au moins partiellement translucide, au moins dans la région comportant la ou les microperforations non traversantes. De cette façon, lorsque la structure est observée en transvision, la ou les microperforation(s) non traversante(s) apparai(ssen)t plus lumineuse(s) que le support.
Par ailleurs, l'invention n'est pas limitée à une structure monocouche.
Comme illustré notamment sur la figure 11 , la structure peut comporter au moins une première couche 31 et une deuxième couche 32 au moins partiellement superposées, notamment dans la région comportant les microperforations. On a également illustré sur cette figure la possibilité pour les différentes couches d'être, en vue de dessus, de dimensions différentes.
Par exemple, la couche 32 peut appartenir à un substrat fibreux et la couche 31 à un élément rapporté sur ce substrat fibreux, tel qu'un patch, un foil ou un fil de sécurité.
Les différentes couches de la structure peuvent par exemple être de couleurs différentes. Cela peut permettre d'observer, outre l'effet de mouvement selon l'angle d'observation, un effet coloriel. Par « couleur », on désigne une couleur observée sous un illuminant qui peut être une lumière visible, notamment la lumière du jour, ou une lumière non visible, notamment une lumière UV ou IR.
Dans un exemple où la structure comporte au moins deux couches, la première couche peut être réalisée en matériau fibreux, par exemple du papier, ou en matériau synthétique, par exemple du polyester, présentant par exemple une première couleur en lumière visible. Elle peut présenter une épaisseur ei comprise entre 20 microns et 70 microns. La deuxième couche peut être réalisée en matériau fibreux, par exemple du papier, ou en matériau synthétique, par exemple du polyester, présentant par exemple une deuxième couleur différente de la première. Elle peut présenter une épaisseur e2 comprise entre 20 microns et 70 microns. D'une façon générale, l'écart de couleur ΔΕ sous illuminant D65 entre les couleurs des couches est par exemple supérieur ou égal à 2. La couleur de l'une des couches est par exemple achromatique, comme le blanc ou le noir. Dans une variante, l'une au moins des couches est luminescente, par exemple phosphorescente ou fluorescente. Les couches peuvent avoir des couleurs de luminescence différentes.
La structure illustrée sur la figure 12 diffère de celle de la figure précédente en ce que la structure comporte outre deux couches internes 31 et 32 une couche de recto 41 et une couche de verso 42, les première et deuxième couches 31 et 32 s'étendant entre les couches de recto et de verso. L'empilement est traversé de part en part par des microperforations p, d'axes parallèles, appartenant à un ensemble de microperforations selon l'invention. Les couches 41 et 42 sont de préférence opaques, tout du moins au niveau de la portion traversée par les microperforations.
Les couches 41 et 42 peuvent être constituées par des impressions ou par un revêtement rapporté ou couché sur le reste de la structure. Ces couches peuvent encore être constituées par une métallisation ou un film laminé sur le reste de la structure.
La présence des couches de recto 41 et de verso 42 peut être avantageuse pour masquer les couches internes 31 et 32, afin par exemple de rendre des couleurs respectives différentes de ces couches internes visibles uniquement au travers des microperforations, sous certaines conditions d'observation.
L'utilisateur peut par exemple observer, en plus de l'effet de mouvement consécutif à l'agencement des ensembles de microperforations, au moins une première couleur au niveau des microperforations en observant le recto de l'article ou du document de sécurité qui incorpore la structure et au moins une deuxième couleur, différente de la première, en observant le verso de l'article ou du document. La première couleur peut être différente de la couleur de la face externe 11 de la couche de recto 41 , au moins dans la région non transparente où se situent les microperforations, de telle sorte que les microperforations soient repérables par la différence de couleur qui apparaît entre les microperforations et ladite région. Il en va de même pour la deuxième couleur, qui est de préférence différente de la couleur de la face externe 12 de la couche de verso 42, au moins au niveau de la région dans laquelle se situent les microperforations.
Dans l'exemple considéré, les couches de recto 11 et de verso 12 apparaissent homogènes et couvrant entièrement les couches sous-jacentes, mais dans une variante les couches de recto et de verso peuvent ne couvrir qu'une parties des couches sous-jacentes, étant par exemple absentes ou transparentes par endroits.
Une structure selon l'invention peut encore ne comporter qu'une seule couche interne 33 située entre les couches 41 et 42 de recto et de verso, comme illustré sur la figure 13.
L'exemple de la figure 14 reprend la structure de la figure 12, les première et deuxième couches internes 31 et 32 comportant chacune un matériau collecteur de lumière du type « guide d'onde », par exemple un film luminescent à base de polycarbonate commercialisé par la société BAYER sous la dénomination LISA®. On a en outre illustré sur cette figure la possibilité que la structure comporte une ou plusieurs couches intermédiaires, s'étendant entre les première et deuxième couches internes 31 et 32, par exemple une unique couche intermédiaire 36 attenante à celles-ci. La couche intermédiaire 36 est par exemple réfléchissante. Les couches de recto 41 et de verso 42 comportent un ou plusieurs ajours, distincts des microperforations, définissant des surfaces d'entrée 37 de la lumière.
La lumière qui pénètre par les surfaces d'entrée 37 se propage dans les couches 31 et 32 et ressort par les microperforations. Ainsi, lors de la mise en œuvre du procédé d'authentifîcation, l'utilisateur illumine les surfaces d'entrée 37 et observe la lumière sortant des microperforations. La présence d'un matériau « guide d'onde » est avantageuse en ce qu'elle peut permettre de mieux distinguer les couleurs renvoyées par les première et deuxième couches internes 31 et 32 au travers des microperforations. Le matériau guide d'onde des couches internes peut éventuellement comporter des matériaux luminescents. Les couches 41 et 42 peuvent être réfléchissantes, afin d'accentuer l'effet « guide d'onde ».
Les microperforations peuvent aboutir (il faut pénétrer dans le guide d'onde pour que la lumière puisse être émise par ce point de sortie) dans une couche comportant un film guide d'onde, comme illustré à la figure 14b.
Sur cette figure, on a illustré une couche opaque 51 accolée à une couche réfléchissante 52 sous jacente, lesdites couches étant traversées de part en part par un premier ensemble de microperforations Gi et par un deuxième ensemble de microperforations G2 tels que précédemment définis.
La structure comporte également une couche 53 guide d'onde, s 'étendant sous la couche réfléchissante 53 et sur une couche réfléchissante 54, les microperforations débouchant sur la couche 53.
La structure présente en outre une surface 56 d'entrée de la lumière, définie par un ajour 57 au travers de la couche opaque 51 et de la couche réfléchissante sous-jacente 52, permettant à la lumière de se propager dans la couche 53 et de ressortir par les microperforations. Ainsi, l'effet optique associé aux microperforations peut être observé en lumière réfléchie.
Dans l'exemple de réalisation illustré à la figure 15, la structure comporte une pluralité de couches superposées et une pluralité de microperforations non traversantes, définissant plusieurs ensembles de microperforations Gi, G2, Gn distincts, au nombre de six dans l'exemple illustré. Les microperforations d'un même ensemble Gi sont orientées suivant une même inclinaison δ; relativement à la normale N à la structure. L'inclinaison propre à chaque ensemble de microperforations permet d'obtenir des effets coloriels changeant selon l'angle d'observation des microperforations, lorsque les différentes couches où aboutissent les microperforations ont des couleurs différentes.
Dans l'exemple considéré, lorsque la structure est observée de face, les ensembles Gi, G2, G3 sont décalés et ne se superposent pas aux ensembles G4, G5, G6. Cela peut permettre d'éviter que le ou les motifs dessinés par les ensembles Gi, G2, G3 ne viennent brouiller le ou les motifs dessinés par les ensembles G4, G5, G6 et inversement, notamment lorsque la structure est observée en transvision et ne présente pas une opacité suffisante pour empêcher de déceler la présence d'une microperforation débouchant sur une face en l'observant par la face opposée. Au sein d'un même ensemble Gi, au moins deux, voire toutes les microperforations peuvent déboucher dans des couches distinctes.
Dans un exemple de réalisation illustré à la figure 16, la structure 10 comporte plusieurs ensembles Gi,...Gi,...Gj,...Gn de microperforations, toutes les microperforations pi d'un même ensemble Gi ayant une même inclinaison δ; et aboutissant à une même couche interne 1;, toutes les microperforations pj d'au moins un autre ensemble Gj d'inclinaison ôj différente de ¾, et de préférence celles de tous les autres ensembles, aboutissant à des couches internes respectives différentes. Ainsi, lorsque les couches internes sont de couleurs différentes on peut observer un changement de couleur lorsque l'angle d'observation change.
D'une manière générale, comme illustré sur la figure 17, au moins l'un des ensembles de microperforations peut comporter au moins une microperforation remplie d'un matériau ou d'un fluide autre que l'air, translucide ou transparent, par exemple une résine transparente, un traitement de surface tel que décrit dans le document EPI 319104ou encore un vernis .
Selon la variante illustrée sur les figures 18 et 19, la structure de sécurité comporte un filtre polarisé 70, de préférence linéairement, comportant au moins l'un des premier, deuxième et troisième ensembles de microperforations. Dans l'exemple considéré, un seul ensemble a été représenté, dessinant par exemple un motif AW.
Sur la figure 18a, le filtre 70 est éclairé en lumière transmise par une source lumineuse 80 extérieure de lumière polarisée, avec une orientation du filtre par rapport à la source pour laquelle le filtre est translucide et laisse passer la lumière. La lumière passe également au travers des microperforations. De la sorte, le contraste entre les microperforations et le filtre est relativement faible.
Sur la figure 18b, le filtre polarisé 70 est orienté relativement à la source lumineuse 80 de manière à observer une extinction de la lumière transmise. Dans ces conditions, le filtre apparaît obscur, et les microperforations qui laissent passer la lumière apparaissent plus lumineuses.
La source lumineuse 80 extérieure de lumière polarisée peut être un écran à cristaux liquides (LCD), comme illustré aux figures 19a et 19b. Sur la figure 19a, le filtre polarisé 70 de la structure de sécurité est rétro- éclairée par l'écran LCD avec une orientation telle que la lumière est transmise uniformément à travers le filtre et les microperforations.
Sur la figure 19b, la structure 10 est orientée relativement à l'écran LCD de façon à provoquer une extinction de la lumière transmise par l'écran.
On a représenté sur les figures 20 à 26 des exemples de réalisation de documents de sécurité selon l'invention, comportant une structure de sécurité 10 conforme à l'invention.
Sur la figure 20, la structure de sécurité 10 selon l'invention est directement intégrée dans un document de sécurité 90, par exemple un billet de banque. Les microperforations dessinent par exemple un motif sur celui-ci.
Sur la figure 21, le document 90 comporte un fil de sécurité ou un foil 92 définissant avec le reste du document une structure de sécurité 10 conforme à l'invention. Le fil ou foil 92 peut apparaître intégralement en surface du document 90 et s'étendre sur toute la largeur / du document, entre deux bords opposés.
La largeur du fil ou foil 92 peut être comprise entre 0,5 mm et 30 mm. La structure selon l'invention 10 peut être formée en partie par une couche du document 90 telle qu'un substrat fibreux ou thermoplastique et le reste de la structure peut être défini par le fil ou foil 92. Il est avantageux dans ce cas que les microperforations soient réalisées après incorporation du fil ou foil au document 90.
Sur la variante de la figure 22, la structure 10 selon l'invention est un fil 92 intégré en fenêtres, dit "window thread", et les microperforations apparaissent dans une ou plusieurs fenêtres 94. Il est intéressant de prévoir des fenêtres sur les deux faces opposées du document, de façon à permettre d'observer des microperforations des deux côtés du document.
Sur la figure 23, le document comporte une fenêtre 94, dans laquelle est intégrée une structure de sécurité 10 selon l'invention. On a représenté sur la figure 24 une vue en coupe, illustrant le cas où la structure de sécurité 10 est prise en sandwich entre deux jets de papier 96, 97 du document 90.
Selon une variante non représentée, la fenêtre peut être définie par une zone transparente du document. D'une façon générale, la structure 10 selon l'invention et/ou le document de sécurité 90 qui intègre une telle structure peut comporter des éléments de sécurité additionnels, tels que définis ci-après.
Parmi les éléments de sécurité supplémentaires, certains sont détectables à l'œil, en lumière du jour ou en lumière artificielle, sans utilisation d'un appareil particulier. Ces éléments de sécurité comportent par exemple des fibres ou planchettes colorées, des fils imprimés ou métallisés totalement ou partiellement. Ces éléments de sécurité sont dits de premier niveau.
D'autres types d'éléments de sécurité supplémentaires sont détectables seulement à l'aide d'un appareil relativement simple, tel qu'une lampe émettant dans l'ultraviolet (UV) ou l'infrarouge (IR). Ces éléments de sécurité comportent par exemple des fibres, des planchettes, des bandes, des fils ou des particules. Ces éléments de sécurité peuvent être visibles à l'œil nu ou non, étant par exemple luminescents sous un éclairage d'une lampe de Wood émettant dans une longueur d'onde de 365 nm. Ces éléments de sécurité sont dits de deuxième niveau.
D'autres types d'éléments de sécurité supplémentaires nécessitent pour leur détection un appareil de détection plus sophistiqué. Ces éléments de sécurité sont par exemple capables de générer un signal spécifique lorsqu'ils sont soumis, de manière simultanée ou non, à une ou plusieurs sources d'excitation extérieure. La détection automatique du signal permet d'authentifier, le cas échéant, le document. Ces éléments de sécurité comportent par exemple des traceurs se présentant sous la forme de matières actives, de particules ou de fibres, capables de générer un signal spécifique lorsque ces traceurs sont soumis à une excitation optronique, électrique, magnétique ou électromagnétique. Ces éléments de sécurité sont dits de troisième niveau.
Le ou les éléments de sécurité supplémentaires présents au sein du document de sécurité, ou de la structure de sécurité qu'il comporte, peuvent présenter des caractéristiques de sécurité de premier, de deuxième ou de troisième niveau.
Sur les figures 25 et 26, le document de sécurité 90 selon l'invention comporte une structure de sécurité 10 comportant un filtre polarisé 70 tel que décrit en référence aux figures 18a et 18b. La présence du filtre polarisé et son orientation peuvent être signalées par un repère 71, par exemple une flèche dirigée suivant la direction de polarisation du filtre. La structure de sécurité comportant le filtre polarisé 70 peut être incorporée au document de sécurité 90 sous la forme d'un fil de sécurité 92, tel qu'illustré sur la figure 25, ou encore d'un patch 98 au sein d'une fenêtre 94, comme représenté sur la figure 26.
La figure 27 représente un exemple de document qui intègre deux fenêtres contenant des filtres polarisés 100 et 101 ayant des directions de polarisation croisées, disposées de telle sorte que les deux filtres puissent être superposés en pliant le document, par exemple selon une ligne de pliage médiane 102. L'un des filtres 100 et 101 comporte des microperforations, par exemple telles que définies précédemment. Une fois les filtres superposés, pratiquement aucune lumière ne passe sauf là où il y a des microperforations.
La figure 28 représente une variante où le filtre 100 est dans une fenêtre traversante et l'autre filtre 101 est incorporé en « Windows thread », c'est-à-dire que le filtre apparaît dans des fenêtres 103 en alternance avec des régions 104 où le filtre est masqué par un jet de papier du document. Les perforations sont présentes sur l'un des filtres.
Bien entendu, l'invention ne saurait se limiter aux modes de réalisation décrits. En particulier, le nombre de microperforations par ensemble, leur espacement, la forme de la section transversale des microperforations, leur taille, le nombre d'ensembles de microperforations peuvent être modifiés en fonction de l'effet optique désiré.
Les caractéristiques des différents modes de réalisation peuvent être combinées entre elles au sein de variantes non illustrées.
L'expression « comportant un » doit être comprise comme étant synonyme de « comportant au moins un », sauf si le contraire est spécifié.

Claims

REVENDICATIONS
1. Structure de sécurité (10) comportant au moins :
un premier ensemble (Gi) de microperforations faisant toutes un même premier angle (ai) avec la normale à la structure, et définissant un premier motif visible lorsqu'observé dans une direction d'observation coïncidant avec l'axe des microperforations du premier ensemble, et
un deuxième ensemble (G2) de microperforations faisant toutes un même deuxième angle (a2) avec la normale à la structure, différent du premier angle, ce deuxième ensemble définissant un deuxième motif visible lorsqu'observé selon une direction d'observation coïncidant avec l'axe des microperforations du deuxième ensemble.
2. Structure de sécurité selon la revendication précédente, comportant en outre au moins un troisième ensemble (G3) de microperforations faisant un même troisième angle (a3) avec la normale à la structure et définissant un troisième motif visible lorsqu'observé selon une direction d'observation coïncidant avec l'axe des microperforations du troisième ensemble, et ai < a2 < a3 de telle sorte que, lorsque l'on fait varier continûment la direction d'observation de la structure, une impression de mouvement soit conférée à l'observateur.
3. Structure de sécurité selon la revendication 1 ou 2, les motifs étant visibles en lumière transmise.
4. Structure de sécurité selon la revendication 2, le deuxième ensemble (G2) étant situé entre le premier ensemble (Gi) et le troisième ensemble(G3).
5. Structure de sécurité selon l'une quelconque des revendications précédentes, les premier ensemble (Gi) et deuxième ensemble (G2) de microperforations étant adjacents et l'écart angulaire |αι-α2| étant compris entre 5° et 50°.
6. Structure de sécurité selon l'une quelconque des revendications 2 à 5, les deuxième ensemble (G2) et troisième ensemble (G3) de microperforations étant adjacents et l'écart angulaire | α2 -a3| étant compris entre 5° et 50°.
7. Structure de sécurité selon l'une quelconque des revendications précédentes, au moins une microperforation du premier ensemble (Gi) et au moins une microperforation du deuxième ensemble (G2) se rejoignant à une extrémité commune et ayant des extrémités opposées disjointes.
8. Structure de sécurité selon l'une quelconque des revendications 2 à 7, au moins une microperforation du premier ensemble (Gi), au moins une microperforation du deuxième ensemble (G2) et au moins une microperforation du troisième ensemble (G3) se rejoignant à une extrémité commune et ayant des extrémités opposées disjointes.
9. Structure de sécurité selon l'une quelconque des revendications 2 à 8, dans laquelle a2=0 et αι=-α3.
10. Structure de sécurité selon l'une quelconque des revendications précédentes, comportant un filtre polarisé (70) comportant au moins l'un des premier, deuxième et troisième ensembles de microperforations, de sorte que l'on puisse observer, pour une orientation du filtre polarisé par rapport à une source lumineuse extérieure (80), une extinction de la lumière transmise et un contraste entre ledit ensemble de microperforations et son environnement.
11. Structure de sécurité selon la revendication précédente, le filtre polarisé
(70) étant incorporé dans une fenêtre (94) traversante de la structure.
12. Structure de sécurité selon la revendication 10, le filtre polarisé (70) n'étant apparent que sur une face de la structure.
13. Structure de sécurité selon l'une quelconque des revendications précédentes, au moins l'une des microperforations étant remplie d'un matériau ou d'un fluide autre que l'air, transparent ou translucide.
14. Structure de sécurité selon l'une quelconque des revendications précédentes, toutes les microperforations étant traversantes, notamment débouchant à l'extérieur de la structure de sécurité.
15. Structure de sécurité selon l'une quelconque des revendications 1 à 13, au moins l'un des ensembles de microperforations comportant au moins une microperforation non traversante.
16. Structure de sécurité selon l'une quelconque des revendications précédentes, au moins l'un des ensembles, voire tous les ensembles de microperforations, étant oblique(s), les microperforations dudit ou desdits ensemble(s) faisant toutes un angle non nul avec la normale à la structure.
17. Structure de sécurité selon l'une quelconque des revendications précédentes, comportant une couche (21) de protection translucide ou transparente, notamment un vernis, recouvrant une extrémité des microperforations.
18. Structure de sécurité selon l'une quelconque des revendications précédentes, les microperforations ayant chacune une plus grande section d'étendue inférieure ou égale à 0,1 mm2.
19. Article de sécurité, notamment un fil, un foil ou un patch, comportant une structure de sécurité (10) selon l'une quelconque des revendications précédentes.
20. Document de sécurité (90) comportant un article de sécurité selon la revendication précédente ou une structure de sécurité (10) selon l'une quelconque des revendications 1 à 18, étant notamment choisi parmi un moyen de paiement, tel qu'un billet de banque, un chèque ou un ticket restaurant, un document d'identité tel qu'une carte d'identité ou un visa ou un passeport ou un permis de conduire, un titre de propriété, un diplôme, un ticket de loterie, un titre de transport ou encore un ticket d'entrée à des manifestations culturelles ou sportives.
21. Procédé d'authentifïcation d'un article de sécurité ou d'un document de sécurité (90) incorporant une structure de sécurité (10) telle que définie dans l'une quelconque des revendications 1 à 18, comportant les étapes suivantes :
observer l'article ou le document de sécurité en faisant varier continûment la direction d'observation,
déterminer, sur la base au moins des images générées par l'apparition et la disparition des microperforations, l'authenticité de l'article ou du document de sécurité.
22. Procédé d'authentifïcation d'un article de sécurité ou d'un document de sécurité (90) incorporant une structure de sécurité (10) telle que définie dans l'une quelconque des revendications 10 à 12 ou telle que définie dans l'une quelconque des revendications 13 à 18 selon la revendication 10, dans lequel la source lumineuse extérieure émet une lumière polarisée, notamment est un écran à cristaux liquides, ledit procédé comportant les étapes consistant à :
disposer l'article ou le document de sécurité devant la source lumineuse, - modifier, pour faire varier le degré d'extinction de la lumière transmise par la structure de sécurité, l'orientation de l'article ou du document de sécurité relativement à la source, déterminer, sur la base au moins d'une variation du contraste entre la microperforation et son environnement, l'authenticité de l'article ou du document de sécurité.
EP11776892.9A 2010-10-08 2011-10-07 Structure de sécurité incorporant des microperforations Withdrawn EP2625043A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1058201A FR2965752B1 (fr) 2010-10-08 2010-10-08 Structure de securite incorporant des microperforations
PCT/IB2011/054424 WO2012046213A1 (fr) 2010-10-08 2011-10-07 Structure de sécurité incorporant des microperforations

Publications (1)

Publication Number Publication Date
EP2625043A1 true EP2625043A1 (fr) 2013-08-14

Family

ID=44022101

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11776892.9A Withdrawn EP2625043A1 (fr) 2010-10-08 2011-10-07 Structure de sécurité incorporant des microperforations

Country Status (3)

Country Link
EP (1) EP2625043A1 (fr)
FR (1) FR2965752B1 (fr)
WO (1) WO2012046213A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011004933B4 (de) * 2011-03-01 2012-10-31 Bundesdruckerei Gmbh Verfahren und Sicherheitselement zur Speicherung einer Information mit Hilfe von Mikrokanälen in einem Substrat
AU2012390236B2 (en) * 2012-09-21 2017-05-04 Orell Fussli Sicherheitsdruck Ag Security document with microperforations
ITMI20130417A1 (it) * 2013-03-19 2014-09-20 Plug In S R L Dispositivo per il riconoscimento di documenti negoziabili.
ITTO20131074A1 (it) * 2013-12-24 2015-06-25 Cts Electronics S P A Metodo e dispositivo di verifica microforature per validare documenti
DE102018106430B4 (de) * 2018-03-20 2021-08-12 Bundesdruckerei Gmbh Sicherheitselement mit Mikro- oder Nanostrukturierung
WO2020037002A1 (fr) * 2018-08-13 2020-02-20 Crane & Co., Inc. Film micro-optique sans lentille
GB2576573C (en) 2018-08-24 2024-02-21 Hid Cid Ltd A security sheet and a security booklet
DE102019126674A1 (de) * 2019-10-02 2021-04-08 Bundesdruckerei Gmbh Personalisierung einer Mehrzahl von Sicherheitselementen

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020117845A1 (en) * 2000-01-03 2002-08-29 Bundesdruckerei Gmbh Security and/or valve document
CA2359937C (fr) * 1999-01-21 2008-08-05 Johannes Ignatius Marie Cobben Document de securite muni d'un motif a perforations
DE19934434B4 (de) * 1999-07-22 2006-10-05 Bundesdruckerei Gmbh Wert- und Sicherheitserzeugnis mit Mikrokanälen
FR2814476B1 (fr) 2000-09-11 2003-04-11 Arjo Wiggins Sa Feuille de securite comportant une couche transparente ou translucide
DE10052184A1 (de) 2000-10-20 2002-05-02 Datacard Corp Prüfverfahren
DE60232608D1 (de) 2002-07-25 2009-07-23 Orell Fuessli Sicherheitsdruck Sicherheitsdokument und verfahren zur echtheitsprüfung
DE10315558A1 (de) * 2003-04-05 2004-10-14 Bundesdruckerei Gmbh Wert- und Sicherheitsdokument, System aus einem Wert- und Sicherheitsdokument und einem Decoder und Verfahren zu deren Herstellung
DE102007015934B4 (de) * 2007-04-02 2021-04-01 Bundesdruckerei Gmbh Dokument mit einem Sicherheitsmerkmal, Lesegerät und Verfahren zum Lesen eines Sicherheitsmerkmals
EP2165849A1 (fr) * 2008-09-18 2010-03-24 Gemalto Oy Document d'identification comprenant un élément de sécurité

Also Published As

Publication number Publication date
FR2965752A1 (fr) 2012-04-13
WO2012046213A1 (fr) 2012-04-12
FR2965752B1 (fr) 2012-11-30

Similar Documents

Publication Publication Date Title
EP2625043A1 (fr) Structure de sécurité incorporant des microperforations
EP2723945B1 (fr) Fil de sécurité
EP2454102B2 (fr) Element de securite a effet de parallaxe
FR2969670A1 (fr) Element pour document de securite comportant une structure optique
EP2454054B1 (fr) Elément de sécurité à effet de parallaxe
FR2948217A1 (fr) Element de securite a effet de parallaxe
WO2014199296A1 (fr) Structure de securite a element optique diffractif
EP3397502B1 (fr) Article securise comportant une image combinee et/ou une trame de revelation
EP3142864B1 (fr) Procédé de fabrication d&#39;un élément de sécurité
EP2872340B1 (fr) Structure de securite
EP3351400B1 (fr) Elément de sécurité et document sécurisé
EP3083258B2 (fr) Article de securite
WO2012046212A1 (fr) Structure multicouche
WO2015052181A1 (fr) Document de sécurité comprenant un film à effets interférentiels, procédé de détermination de l&#39;authenticité d&#39;un tel document et dispositif pour la mise en oeuvre d&#39;un tel procédé
WO2011141858A1 (fr) Document de securite comportant un filigrane ou pseudo-filigrane, une image combinee et une trame de revelation, et procedes associes
EP3206885B1 (fr) Element de securite pour document securise
EP3206884B1 (fr) Element de securite, et document securise
CA2947108A1 (fr) Bandeau de securite et document de securite qui l&#39;integre
WO2018115515A1 (fr) Document securise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130411

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141114

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160225