EP2617720B1 - Novel cortistatin a analog and use thereof - Google Patents

Novel cortistatin a analog and use thereof Download PDF

Info

Publication number
EP2617720B1
EP2617720B1 EP11825285.7A EP11825285A EP2617720B1 EP 2617720 B1 EP2617720 B1 EP 2617720B1 EP 11825285 A EP11825285 A EP 11825285A EP 2617720 B1 EP2617720 B1 EP 2617720B1
Authority
EP
European Patent Office
Prior art keywords
group
compound
pharmaceutically acceptable
acceptable salt
mmol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11825285.7A
Other languages
German (de)
French (fr)
Other versions
EP2617720A1 (en
EP2617720A4 (en
Inventor
Motomasa Kobayashi
Naoyuki Kotoku
Masayoshi Arai
Satoru Tamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka University NUC
Original Assignee
Osaka University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka University NUC filed Critical Osaka University NUC
Publication of EP2617720A1 publication Critical patent/EP2617720A1/en
Publication of EP2617720A4 publication Critical patent/EP2617720A4/en
Application granted granted Critical
Publication of EP2617720B1 publication Critical patent/EP2617720B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D407/00Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
    • C07D407/02Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings
    • C07D407/10Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing two hetero rings linked by a carbon chain containing aromatic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages

Definitions

  • the present invention relates to a novel cortistatin A analog and use thereof. More particularly, the present invention relates to a novel cortistatin A analog which is useful for cancer prevention or treatment in that the analog has anti-proliferative activity against vascular endothelial cells and anti-angiogenic activity.
  • Cancer combat is a great challenge for human beings. To this end, cancer chemotherapeutic drugs have been vigorously developed, but no drugs that have cancer cell-specific effects have been created yet.
  • Angiogenesis in cancer is essential for growth and metastasis of solid cancer.
  • the development of angiogenesis inhibitors for cancer therapy is different in direction from the conventional anticancer drug development based on direct actions on cancer cells.
  • Angiogenesis inhibitors for cancer therapy affect the unique microenvironment surrounding tumor cells, and therefore are expected to reduce the development of drug-resistant cancer cells and to enhance the specificity of effects on cancer cells.
  • bevacizumab (trade name: Avastin), a monoclonal antibody inhibiting the binding of a proangiogenic factor VEGF (vascular endothelial growth factor) to its receptor
  • sorafenib (trade name: Nexavar) and sunitinib (trade name: Sutent), which inhibit tyrosine kinase receptors including VEGF receptor.
  • VEGF vascular endothelial growth factor
  • sorafenib trade name: Nexavar
  • sunitinib (trade name: Sutent) which inhibit tyrosine kinase receptors including VEGF receptor.
  • These three drugs are clinically used, but have problems in terms of limited indication, side effects, etc. Further, considering that all these drugs have the same action mechanism relevant to inhibition of VEGF signal transduction, it is a quite crucial issue to create novel pharmaceuticals which are different in chemical structure and action mechanism from these drugs.
  • the present inventors focused on vascular endothelial cells, a key player in cancer angiogenesis, and screened for natural substances having selective anti-proliferative activity against vascular endothelial cells.
  • the present inventors found that the methanol extract from Corticium simplex, an Indonesian marine sponge, has specific anti-proliferative activity against human umbilical vein endothelial cells (HUVEC).
  • HAVEC human umbilical vein endothelial cells
  • the present inventors purified active substances from the methanol extract, analyzed their chemical structures, identified four kinds of novel modified steroidal alkaloids having an oxabicyclo[3.2.1]octene moiety and an isoquinoline side-chain, and named these steroidal alkaloids as cortistatins.
  • cortistatins can be obtained in only very small amounts from natural sources, and the industrial production of cortistatins by chemical synthesis is difficult due to their complicated chemical structures. Therefore, novel cortistatin analogs which can be mass-produced are desired.
  • Known analogs of cortistatin A include, for example, those described in Patent Literature 1 to 3. However, these analogs have a chemical structure as complicated as that of cortistatin A and require multiple steps for synthesis, and thus are not suitable for industrial mass-production.
  • An object of the present invention is to provide a cortistatin A analog which can be mass-produced by chemical synthesis due to its simple chemical structure and retains the same biological activities as those of cortistatin A; and to provide a medicament for cancer prevention or treatment comprising the cortistatin A analog as an active ingredient.
  • the present invention includes the following as a solution to the above-mentioned problems.
  • the compound represented by the general formula (M) or (I) of the present invention or a pharmaceutically acceptable salt thereof has a simpler chemical structure than that of cortistatin A, and therefore can be mass-produced by chemical synthesis.
  • the compound represented by the general formula (M) or (I) of the present invention or a pharmaceutically acceptable salt thereof retains the same biological activities as those of cortistatin A, namely, selective anti-proliferative activity against vascular endothelial cells and anti-angiogenic activity, and therefore is useful as an active ingredient of medicaments for cancer prevention or treatment.
  • the present invention provides a compound represented by the general formula (M): wherein R 1 , R 2 and R 4 are as defined above; or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a compound represented by the general formula (I): wherein R 1 and R 2 are as defined for general formula (M); or a pharmaceutically acceptable salt thereof.
  • the preferred "substituted or unsubstituted aromatic heterocyclic group” is a pyridyl group, a quinolyl group or an isoquinolyl group, and more preferred is a 7-isoquinolyl group.
  • the "substituted or unsubstituted alkyl group having 1 to 3 carbon atoms" is, for example, a methyl, ethyl, n-propyl or isopropyl group optionally having one or more substituents.
  • examples of the "alkyl group having 1 to 4 carbon atoms” include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group; and examples of the "acyl group having 1 to 4 carbon atoms” include a formyl group, an acetyl group, a propionyl group and a butyryl group.
  • examples of the "alkyl group having 1 to 3 carbon atoms” include a methyl group, an ethyl group, a n-propyl group and an isopropyl group; and examples of the "acyl group having 1 to 3 carbon atoms” include a formyl group, an acetyl group, a propionyl group and a malonyl group.
  • Examples of the compound represented by the general formula (M) or (I) of the present invention include the following compounds (II) to (CCXLV).
  • the compound of the present invention is a compound represented by the following formula (II), (XVIII), (XIX), (XXIII) or (LIV).
  • the compound represented by formula (II) can be chemically synthesized via 12 steps, and the yield is about 14%.
  • the present inventors have confirmed that the compound represented by formula (II) has more than 100 times stronger anti-proliferative activity against vascular endothelial cells than against other cancer cells; inhibits the migration and tubulogenesis of human umbilical vein endothelial cells (HUVEC); has in vivo anti-angiogenic activity; and shows antitumor activity in a mouse cancer cell transplant model.
  • UUVEC human umbilical vein endothelial cells
  • the compounds represented by formulae (XVIII), (XIX), (XXIII) and (LIV) can also be chemically synthesized in an easy manner, and each of the compounds has selective anti-proliferative activity against vascular endothelial cells in a broad range of concentration like cortistatin A.
  • Examples of the "pharmaceutically acceptable salt” include salts of alkali metals (for example, potassium, sodium, lithium, etc.), salts of alkaline earth metals (for example, calcium, magnesium, etc.), ammonium salts (for example, a tetramethylammonium salt, a tetrabutylammonium salt, etc.), salts of organic amines (for example, triethylamine, methylamine, dimethylamine, cyclopentylamine, benzylamine, phenethylamine, piperidine, monoethanolamine, diethanolamine, tris(hydroxymethyl)methylamine, lysine, arginine, N-methyl-D-glucamine, etc.), and acid addition salts (for example, inorganic acid salts, such as hydrochlorides, hydrobromides, hydriodides, sulfates, phosphates and nitrates; and organic acid salts, such as acetates, trifluoroacetate
  • the compound represented by the general formula (M) or (I) of the present invention or a pharmaceutically acceptable salt thereof is referred to as "the compound of the present invention.”
  • the compound of the present invention can be produced according to any method without particular limitation, for example, the synthesis method described in Example 1, 4 or 5.
  • Isolation and purification of the compound of the present invention can be performed by a known technique, for example, phase transfer reaction, concentration, solvent extraction, fractional distillation, pH shifting, crystallization, recrystallization, chromatography or the like.
  • a known technique for example, phase transfer reaction, concentration, solvent extraction, fractional distillation, pH shifting, crystallization, recrystallization, chromatography or the like.
  • the compound of the present invention is obtained in a free form, it can be converted into an objective salt by a known technique.
  • the compound of the present invention is obtained in the form of a salt, it can be converted into a free form or an objective salt by a known technique.
  • each of the isomeric forms and mixtures thereof are included in the compound of the present invention.
  • each optical isomer resolved from the racemate is also included in the compound of the present invention.
  • Each of these isomers can be individually obtained by a known synthesis method or separation method (concentration, solvent extraction, column chromatography, recrystallization, etc.).
  • the compound of the present invention may be a hydrate or a solvate.
  • the compound of the present invention may be labeled with an isotope or the like.
  • the compound of the present invention has selective anti-proliferative activity against vascular endothelial cells, and therefore is useful as an active ingredient of vascular endothelial cell growth inhibitors.
  • the compound of the present invention has anti-angiogenic activity, and therefore is useful as an active ingredient of angiogenesis inhibitors. Therefore, the compound of the present invention can be preferably used for prevention or treatment of diseases associated with vascular endothelial cell growth and/or angiogenesis.
  • diseases associated with vascular endothelial cell growth and/or angiogenesis include cancer (growth and metastasis of solid cancer), macular degeneration, diabetic retinopathy, neovascular glaucoma, inflammatory dermatosis, rheumatoid arthritis and osteoarthritis.
  • the compound of the present invention shows antitumor activity in a mouse cancer cell transplant model, and therefore is useful as an active ingredient of medicaments for cancer prevention or treatment.
  • the cancer that the compound of the present invention can prevent or treat is not particularly limited, and examples thereof include lung cancer, colon cancer, prostate cancer, breast cancer, pancreatic cancer, esophageal cancer, gastric cancer, liver cancer, biliary tract cancer, spleen cancer, renal cancer, bladder cancer, uterine cancer, ovarian cancer, testicular cancer, thyroid cancer, brain tumor and hematological tumor.
  • Preferred is a solid cancer characterized by tumor growth accompanied by angiogenesis.
  • the present invention provides a pharmaceutical composition comprising the compound of the present invention and a pharmaceutically acceptable carrier.
  • the pharmaceutical composition of the present invention can be prepared by blending the compound of the present invention as an active ingredient, a pharmaceutically acceptable carrier and if needed an additive, and formulated into a dosage form.
  • Specific examples of the dosage form include oral preparations such as tablets, coated tablets, pills, powders, granules, capsules, solutions, suspensions and emulsions; and parenteral preparations such as injections, infusions, suppositories, ointments and patches.
  • the blending ratio of the carrier or the additive is appropriately determined based on the range of the blending ratio conventionally adopted in the pharmaceutical field.
  • the carrier or the additive that can be blended is not particularly limited, and examples thereof include various carriers such as water, physiological saline, other aqueous solvents, and aqueous or oily bases; and various additives such as excipients, binders, pH adjusters, disintegrants, absorption enhancers, lubricants, colorants, corrigents and fragrances.
  • Examples of the additive that can be blended into tablets, capsules and the like include binders such as gelatin, cornstarch, tragacanth and gum arabic; excipients such as crystalline cellulose; bulking agents such as cornstarch, gelatin and alginic acid; lubricants such as magnesium stearate; sweeteners such as sucrose, lactose and saccharin; and flavors such as peppermint, Gaultheria adenothrix oil and cherry.
  • a liquid carrier such as fats and oils can be further blended in addition to the above-mentioned materials.
  • a sterile composition for injection can be prepared according to an ordinary pharmaceutical formulation practice, for example, by dissolving or suspending an active substance in a vehicle such as water for injection and a natural vegetable oil (such as sesame oil and coconut oil).
  • a vehicle such as water for injection and a natural vegetable oil (such as sesame oil and coconut oil).
  • an aqueous liquid for injection for example, physiological saline, an isotonic solution containing glucose and an auxiliary substance (for example, D-sorbitol, D-mannitol, sodium chloride, etc.), or the like can be used, optionally together with a suitable solubilizer such as alcohols (for example, ethanol), polyalcohols (for example, propylene glycol, polyethylene glycol) and nonionic surfactants (for example, polysorbate 80 TM , HCO-50).
  • alcohols for example, ethanol
  • polyalcohols for example, propylene glycol, polyethylene glycol
  • nonionic surfactants for example,
  • an oily liquid for example, sesame oil, soybean oil or the like can be used, optionally together with a solubilizer such as benzyl benzoate and benzyl alcohol.
  • a buffering agent for example, a phosphate buffer, a sodium acetate buffer
  • a soothing agent for example, benzalkonium chloride, procaine hydrochloride, etc.
  • a stabilizer for example, human serum albumin, polyethylene glycol, etc.
  • a preservative for example, benzyl alcohol, phenol, etc.
  • an antioxidant etc.
  • the pharmaceutical preparation that can be obtained in the above manner can be administered to, for example, humans and other mammals (rats, mice, rabbits, sheep, pigs, cows, cats, dogs, monkeys, etc.).
  • the dose may vary depending on the state of the animal, the cancer type, the condition, the administration method and the like, but in general, the daily oral dose for a human weighing about 60 kg is, for example, about 0.1 to 1000 mg, preferably about 1.0 to 500 mg, and more preferably about 3.0 to 200 mg in terms of the active ingredient.
  • the amount for one dose may vary depending on the state of the animal, the cancer type, the condition, the administration method and the like, but for example in the case of injections, it is usually advantageous that the active ingredient is intravenously administered in an amount of, for example, about 0.01 to 100 mg, preferably about 0.01 to 50 mg, and more preferably about 0.01 to 20 mg per kg body weight.
  • the daily total dose may be a single dose or divided into several portions.
  • the medicament of the present invention for cancer prevention or treatment can be used in combination with another cancer therapeutic drug.
  • another cancer therapeutic drug is not particularly limited, but preferred is a chemotherapeutic drug, an immunotherapeutic drug or a hormone therapy drug, for example.
  • the medicament for cancer prevention or treatment can also be used in combination with radiotherapy.
  • the chemotherapeutic drug is not particularly limited and examples thereof include:
  • the immunotherapeutic drug is not particularly limited and examples thereof include picibanil, Krestin, sizofiran, lentinan, ubenimex, interferons, interleukins, macrophage colony-stimulating factor, granulocyte colony-stimulating factor, erythropoietin, lymphotoxins, BCG vaccine, Corynebacterium parvum, levamisole, polysaccharide K, procodazole and anti-CTLA4 antibody.
  • the hormone therapy drug is not particularly limited and examples thereof include fosfestrol, diethylstilbestrol, chlorotrianisene, medroxyprogesterone acetate, megestrol acetate, chlormadinone acetate, cyproterone acetate, danazol, allylestrenol, gestrinone, mepartricin, raloxifene, ortneloxifene, levormeloxifene, antiestrogens (for example, tamoxifen citrate, toremifene citrate, etc.), birth-control pills, mepitiostane, testololactone, aminoglutethimide, LH-RH agonists (for example, goserelin acetate, buserelin, leuprorelin, etc.), droloxifene, epitiostanol, ethinylestradiol sulfonate, aromatase inhibitors (for example,
  • the combined use of the medicament for cancer prevention or treatment, with another cancer therapeutic drug or radiotherapy can provide the following effects without limitation:
  • the medicament for cancer prevention or treatment and another cancer therapeutic drug may be simultaneously administered to a subject, or separately administered thereto at some interval.
  • the dose of the drug in combined use can be determined based on its clinical dose and is appropriately selected depending on the subject, the age and body weight of the subject, the condition, the administration time, the dosage form, the administration method, the combination of drugs, etc.
  • CA-1 the compound represented by formula (II) (hereinafter referred to as "CA-1") was synthesized.
  • CA-1 which is represented by formula (II)
  • an existing anticancer drug doxorubicin was used as a control compound.
  • the test compound and the control compound were separately dissolved at predetermined concentrations in EtOH.
  • the cells used were normal human umbilical vein endothelial cells (HUVEC) and human pharyngeal carcinoma KB3-1 cells.
  • HUVEC and KB3-1 were seeded in separate 96-well multiwell plates at 2 ⁇ 10 3 cells/100 ⁇ L/well and cultured in an atmosphere of 5% CO 2 at 37°C for 24 hours. Next, 1.0 ⁇ L each of the ethanol solutions containing the test compound or the control compound at various concentrations were added, and the cells were cultured under the same conditions for additional 72 hours. After 72 hours, 10 ⁇ L of WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) reagent was added.
  • WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt
  • the amount of water-soluble formazan formed in viable cells was colorimetrically determined by measurement at OD 450 nm, and the growth inhibition ratio was calculated by comparison of the amount of formazan between the compound treatment groups and the non-treatment group.
  • the anti-proliferative activities of the test compound and the control compound on each type of cells were expressed as a 50% growth inhibitory concentration (IC 50 value).
  • the cell type selectivity (Selective Index (S. I.) value) was expressed as a value resulting from division of the IC 50 value against KB3-1 by the IC 50 value against HUVEC.
  • the results are shown in Table 1.
  • the IC 50 value of the test compound CA-1 was 0.1 ⁇ M against HUVEC and 10.5 ⁇ M against KB3-1.
  • the S.I. value was 105.
  • the IC 50 value of the control compound doxorubicin was 0.13 ⁇ M against HUVEC and 0.36 ⁇ M against KB3-1, and the S.I. value was as low as 2.7. Therefore, doxorubicin has little selectivity in cell type.
  • Table 1 CA-1 doxorubicin IC 50 S.I. IC 50 S.I. HUVEC 0.1 0.13 KB3-1 10.5 105 0.36 2.7
  • test compound CA-1 was suspended at predetermined concentrations in 1% CMC.
  • vehicle 1% CMC
  • Matrigel (trade name, manufactured by BD), 200 ng/mL of a proangiogenic factor bFGF (basic fibroblast growth factor) and 100 U/mL of heparin were added, and the mixture was subcutaneously injected into the flanks of female ddY mice (6-week old) with an injection needle of 23G. After the Matrigel injection, the test compound CA-1 or the vehicle (1% CMC) was intraperitoneally administered on a schedule of once every two days, 5 times in total. Aside from this, Matrigel without bFGF was injected into a group of mice and then the vehicle was administered thereto (negative control group).
  • bFGF basic fibroblast growth factor
  • the anti-angiogenic effect was evaluated as follows: the day after the final administration of the test compound, the implanted Matrigel was harvested and weighed, and then the amount of hemoglobin accumulated in the Matrigel was compared between the test compound administration groups and the control groups. Significance analysis was performed using a Dunnett's test at a significance level of 5%.
  • Figs. 2 and 3 show images of the Matrigel injection sites in representative mice of all different groups
  • Fig. 3 shows a graph representing the measured amount of hemoglobin accumulated in the Matrigel.
  • CA-1 administered at not less than 10 mg/kg significantly reduced the amount of hemoglobin accumulated in the Matrigel to almost the same level as that of the group injected with Matrigel not supplemented with the proangiogenic factor bFGF.
  • test compound CA-1 was suspended at predetermined concentrations in 1% CMC.
  • vehicle 1% CMC was administered to the control group.
  • Mouse sarcoma S180 cells were suspended at 1 ⁇ 10 7 cells/mL in a serum-free RPMI culture medium and the suspension was kept on ice. Then, the S180 cell suspension was subcutaneously inoculated at 1 ⁇ 10 6 cells/100 ⁇ L/mouse into the flanks of female ddY mice (5-week old) with an injection needle of 23G. The mice were maintained for one week for engraftment of the S180 cells. Subsequently, the test compound (5 mg/kg, 10 mg/kg and 25 mg/kg) or the vehicle (1% CMC) was intraperitoneally administered on a schedule of once every two days, 7 times in total. The antitumor activity was evaluated as follows: one day after the final administration, tumors were isolated and weighed, and then the tumor weight was compared between the test compound administration groups and the control group.
  • Figs. 4 and 5 show an image for size comparison of tumors isolated from the mice of all groups
  • Fig. 5 shows a graph representing the measurement results of the tumor weight.
  • the tumor weights of the 5 mg/kg, 10 mg/kg and 25 mg/kg CA-1 administration groups were reduced to 34%, 23% and 17% of that of the control group, respectively.
  • CA-1 was shown to have marked antitumor activity. In no groups, weight loss or diarrhea, or visual abnormalities in organs of the mice were observed.
  • CA-2 the compound represented by formula (XIX)
  • CA-3 the compound represented by formula (XIX)
  • CA-4 the compound represented by formula (XXIII)
  • CA-1, CA-2, CA-3, CA-4 and CA-5 were evaluated for anti-proliferative activity against normal human umbilical vein endothelial cells (HUVEC) and human pharyngeal carcinoma KB3-1 cells.
  • the five test compounds were separately dissolved at predetermined concentrations in EtOH.
  • HUVEC and KB3-1 were seeded in separate 96-well multiwell plates at 2x10 3 cells/100 ⁇ L/well and cultured in an atmosphere of 5% CO 2 at 37°C for 24 hours. Next, 1.0 ⁇ L each of the ethanol solutions containing the test compound or the control compound at various concentrations were added, and the cells were cultured under the same conditions for additional 72 hours.
  • WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) reagent was added. After 3-hour incubation, the amount of water-soluble formazan formed in viable cells was colorimetrically determined by measurement at OD 450 nm, and the growth inhibition ratio was calculated by comparison of the amount of formazan between the compound treatment groups and the non-treatment group.
  • Example 3 The test was performed in the same manner as in Example 3, except that oral administration was performed instead of intraperitoneal administration and that a 50 mg/kg administration group was additionally included.
  • Figs. 13 and 14 show images of the Matrigel injection sites in representative mice of all different groups except the 25 mg/kg administration group
  • Fig. 14 shows a graph representing the measured amount of hemoglobin accumulated in the Matrigel.
  • CA-1 administered at not less than 10 mg/kg significantly reduced the amount of hemoglobin accumulated in the Matrigel, and in the 50 mg/kg administration group, the amount of hemoglobin was reduced to almost the same level as that of the group injected with Matrigel not supplemented with the proangiogenic factor bFGF.
  • Example 3 The test was performed in the same manner as in Example 3, except that oral administration was performed instead of intraperitoneal administration and that a 50 mg/kg administration group was included instead of the 5 mg/kg administration group.
  • Figs. 15 and 16 show an image for size comparison of tumors isolated from the mice of all groups
  • Fig. 16 shows a graph representing the measurement results of the tumor weight.
  • the tumor weights of the 10 mg/kg, 25 mg/kg and 50 mg/kg CA-1 administration groups were reduced to 67%, 50% and 25% of that of the control group, respectively.
  • CA-1 was shown to have marked antitumor activity. In no groups, weight loss or diarrhea, or visual abnormalities in organs of the mice were observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Plural Heterocyclic Compounds (AREA)

Description

    TECHNICAL FIELD
  • The present invention relates to a novel cortistatin A analog and use thereof. More particularly, the present invention relates to a novel cortistatin A analog which is useful for cancer prevention or treatment in that the analog has anti-proliferative activity against vascular endothelial cells and anti-angiogenic activity.
  • BACKGROUND ART
  • Cancer combat is a great challenge for human beings. To this end, cancer chemotherapeutic drugs have been vigorously developed, but no drugs that have cancer cell-specific effects have been created yet. Angiogenesis in cancer is essential for growth and metastasis of solid cancer. The development of angiogenesis inhibitors for cancer therapy is different in direction from the conventional anticancer drug development based on direct actions on cancer cells. Angiogenesis inhibitors for cancer therapy affect the unique microenvironment surrounding tumor cells, and therefore are expected to reduce the development of drug-resistant cancer cells and to enhance the specificity of effects on cancer cells. Based on such a concept, the following drugs have been created: bevacizumab (trade name: Avastin), a monoclonal antibody inhibiting the binding of a proangiogenic factor VEGF (vascular endothelial growth factor) to its receptor; and sorafenib (trade name: Nexavar) and sunitinib (trade name: Sutent), which inhibit tyrosine kinase receptors including VEGF receptor. These three drugs are clinically used, but have problems in terms of limited indication, side effects, etc. Further, considering that all these drugs have the same action mechanism relevant to inhibition of VEGF signal transduction, it is a quite crucial issue to create novel pharmaceuticals which are different in chemical structure and action mechanism from these drugs.
  • Under such circumstances, the present inventors focused on vascular endothelial cells, a key player in cancer angiogenesis, and screened for natural substances having selective anti-proliferative activity against vascular endothelial cells. As a result, the present inventors found that the methanol extract from Corticium simplex, an Indonesian marine sponge, has specific anti-proliferative activity against human umbilical vein endothelial cells (HUVEC). Then, with the guidance of bioassay, the present inventors purified active substances from the methanol extract, analyzed their chemical structures, identified four kinds of novel modified steroidal alkaloids having an oxabicyclo[3.2.1]octene moiety and an isoquinoline side-chain, and named these steroidal alkaloids as cortistatins. The present inventors confirmed that, in particular, cortistatin A, which is represented by the formula below, shows more than 3000 times stronger anti-proliferative activity against HUVEC (IC50 = 1.8 nM) than against other cancer cells, and inhibits the migration and tubulogenesis of HUVEC, which are regarded as essential indicators of angiogenesis; and in addition, demonstrated that the mechanism of such actions is not relevant to inhibition of VEGF signal transduction (see Non Patent Literature 1 to 3).
    Figure imgb0001
  • However, cortistatins can be obtained in only very small amounts from natural sources, and the industrial production of cortistatins by chemical synthesis is difficult due to their complicated chemical structures. Therefore, novel cortistatin analogs which can be mass-produced are desired.
  • Known analogs of cortistatin A include, for example, those described in Patent Literature 1 to 3. However, these analogs have a chemical structure as complicated as that of cortistatin A and require multiple steps for synthesis, and thus are not suitable for industrial mass-production.
  • CITATION LIST Patent Literature
  • Non Patent Literature
    • Non Patent Literature 1:
      • Aoki, S., et al. J. Am. Chem. Soc. 2006, 128, 3148-3149.
    • Non Patent Literature 2:
      • Aoki, S., et al. Tetrahedron Lett. 2007, 48, 4485-4488.
    • Non Patent Literature 3:
      • Aoki, S., et al. Bioorg. Med. Chem. 2007, 15, 6758-6762.
    SUMMARY OF INVENTION TECHNICAL PROBLEM
  • An object of the present invention is to provide a cortistatin A analog which can be mass-produced by chemical synthesis due to its simple chemical structure and retains the same biological activities as those of cortistatin A; and to provide a medicament for cancer prevention or treatment comprising the cortistatin A analog as an active ingredient.
  • SOLUTION TO PROBLEM
  • The present invention includes the following as a solution to the above-mentioned problems.
    1. (1) A compound represented by the general formula (M):
      Figure imgb0002
      wherein
      • R1 represents a substituted or unsubstituted aromatic heterocyclic group selected from the group consisting of a pyridyl group, a furyl group, a thienyl group, an indolyl group, a quinolyl group, an isoquinolyl group, a benzofuranyl group, a benzothienyl group, an imidazolyl group, a benzimidazolyl group, a thiazolyl group, an oxazolyl group, a pyrazolyl group, a pyrimidyl group, a pyrazinyl group, an isoxazolyl group, an isoindolyl group and a pyrrolyl group,
      • R2 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, OR3, N(R3 )2, C(=O)OR3 or C(=O)N(R3)2,
      • R3 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an acyl group having 1 to 4 carbon atoms,
      • R4 represents a hydrogen atom, an oxygen atom or OR5,
      • R5 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an acyl group having 1 to 3 carbon atoms, and
      • a substituent of the substituted aromatic heterocyclic group or of the substituted alkyl group is independently selected from the group consisting of a fluorine atom, a chlorine atom, a cyano group, a hydroxyl group, a nitro group, an alkyl group, a cycloalkyl group, an alkoxy group, an amino group, a phenyl group, a naphthyl group, an anthryl group, a styryl group, a pyridyl group, a pyridoindolyl group, a quinolyl group and a benzothiazolyl group;
      • or
      • a pharmaceutically acceptable salt thereof.
    2. (2) The compound according to the above (1), which is represented by the general formula (I):
      Figure imgb0003
      wherein R1 and R2 are as defined in the above (1); or a pharmaceutically acceptable salt thereof.
    3. (3) The compound according to the above (1) or (2), wherein R1 is a pyridyl group, a quinolyl group or an isoquinolyl group; or a pharmaceutically acceptable salt thereof.
    4. (4) The compound according to the above (3), which is represented by
      Figure imgb0004
      Figure imgb0005
      Figure imgb0006
      Figure imgb0007
      Figure imgb0008
      Figure imgb0009
      or
      Figure imgb0010
      Figure imgb0011
      or a pharmaceutically acceptable salt thereof.
    5. (5) A pharmaceutical composition, comprising the compound according to any one of the above (1) to (4) or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
    6. (6) A vascular endothelial cell growth inhibitor, comprising the compound according to any one of the above (1) to (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
    7. (7) An angiogenesis inhibitor, comprising the compound according to any one of the above (1) to (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
    8. (8) A medicament for cancer prevention or treatment, comprising the compound according to any one of the above (1) to (4) or a pharmaceutically acceptable salt thereof as an active ingredient.
    9. (9) The medicament according to the above (8), which is usable in combination with a chemotherapeutic drug, an immunotherapeutic drug or a hormone therapy drug.
    10. (10) The medicament according to the above (8), which is usable in combination with radiotherapy.
    11. (11) Use of the compound according to any one of the above (1) to (4) or a pharmaceutically acceptable salt thereof for production of medicaments for cancer prevention or treatment.
    12. (12) The compound according to any one of the above (1) to (4) or a pharmaceutically acceptable salt thereof for use in cancer treatment or prevention.
    ADVANTAGEOUS EFFECTS OF INVENTION
  • The compound represented by the general formula (M) or (I) of the present invention or a pharmaceutically acceptable salt thereof has a simpler chemical structure than that of cortistatin A, and therefore can be mass-produced by chemical synthesis. The compound represented by the general formula (M) or (I) of the present invention or a pharmaceutically acceptable salt thereof retains the same biological activities as those of cortistatin A, namely, selective anti-proliferative activity against vascular endothelial cells and anti-angiogenic activity, and therefore is useful as an active ingredient of medicaments for cancer prevention or treatment.
  • BRIEF DESCRIPTION OF DRAWINGS
    • Fig. 1 shows the synthesis scheme of the compound represented by formula (II) (CA-1).
    • Fig. 2 shows images of the Matrigel injection sites in representative mice of all different groups in the test for in vivo anti-angiogenic activity after intraperitoneal administration of the compound represented by formula (II) (CA-1).
    • Fig. 3 shows a graph representing the measured amount of hemoglobin accumulated in the Matrigel subcutaneously injected into mice in the test for in vivo anti-angiogenic activity after intraperitoneal administration of the compound represented by formula (II) (CA-1).
    • Fig. 4 shows an image for size comparison of tumors isolated from the mice of all groups in the test for antitumor activity in a mouse cancer cell transplant model after intraperitoneal administration of the compound represented by formula (II) (CA-1).
    • Fig. 5 shows a graph representing the measurement results of the tumor weight in the test for antitumor activity in a mouse cancer cell transplant model after intraperitoneal administration of the compound represented by formula (II) (CA-1).
    • Fig. 6 shows the synthesis schemes of the compounds represented by formulae (XVIII), (XIX) and (XXIII) (CA-2, CA-3 and CA-4).
    • Fig. 7 shows the synthesis scheme of the compound represented by formula (LIV) (CA-5).
    • Fig. 8 shows the evaluation results of the compound represented by formula (II) (CA-1) in the test for selective anti-proliferative activity against vascular endothelial cells.
    • Fig. 9 shows the evaluation results of the compound represented by formula (XVIII) (CA-2) in the test for selective anti-proliferative activity against vascular endothelial cells.
    • Fig. 10 shows the evaluation results of the compound represented by formula (XIX) (CA-3) in the test for selective anti-proliferative activity against vascular endothelial cells.
    • Fig. 11 shows the evaluation results of the compound represented by formula (XXIII) (CA-4) in the test for selective anti-proliferative activity against vascular endothelial cells.
    • Fig. 12 shows the evaluation results of the compound represented by formula (LIV) (CA-5) in the test for selective anti-proliferative activity against vascular endothelial cells.
    • Fig. 13 shows images of the Matrigel injection sites in representative mice of all different groups in the test for in vivo anti-angiogenic activity after oral administration of the compound represented by formula (II) (CA-1).
    • Fig. 14 shows a graph representing the measured amount of hemoglobin accumulated in the Matrigel subcutaneously injected into mice in the test for in vivo anti-angiogenic activity after oral administration of the compound represented by formula (II) (CA-1).
    • Fig. 15 shows an image for size comparison of tumors isolated from the mice of all groups in the test for antitumor activity in a mouse cancer cell transplant model after oral administration of the compound represented by formula (II) (CA-1).
    • Fig. 16 shows a graph representing the measurement results of the tumor weight in the test for antitumor activity in a mouse cancer cell transplant model after oral administration of the compound represented by formula (II) (CA-1).
    DESCRIPTION OF EMBODIMENTS
  • The present invention provides a compound represented by the general formula (M):
    Figure imgb0012
    wherein R1, R2 and R4 are as defined above;
    or
    a pharmaceutically acceptable salt thereof.
  • The present invention also provides a compound represented by the general formula (I):
    Figure imgb0013
    wherein R1 and R2 are as defined for general formula (M); or
    a pharmaceutically acceptable salt thereof.
  • As for R1, the preferred "substituted or unsubstituted aromatic heterocyclic group" is a pyridyl group, a quinolyl group or an isoquinolyl group, and more preferred is a 7-isoquinolyl group.
  • As for R2, the "substituted or unsubstituted alkyl group having 1 to 3 carbon atoms" is, for example, a methyl, ethyl, n-propyl or isopropyl group optionally having one or more substituents.
  • As for R3, examples of the "alkyl group having 1 to 4 carbon atoms" include a methyl group, an ethyl group, a n-propyl group, an isopropyl group, a n-butyl group, an isobutyl group, a sec-butyl group and a tert-butyl group; and examples of the "acyl group having 1 to 4 carbon atoms" include a formyl group, an acetyl group, a propionyl group and a butyryl group.
  • As for R5, examples of the "alkyl group having 1 to 3 carbon atoms" include a methyl group, an ethyl group, a n-propyl group and an isopropyl group; and examples of the "acyl group having 1 to 3 carbon atoms" include a formyl group, an acetyl group, a propionyl group and a malonyl group.
  • Examples of the compound represented by the general formula (M) or (I) of the present invention include the following compounds (II) to (CCXLV).
    Figure imgb0014
    Figure imgb0015
    Figure imgb0016
    Figure imgb0017
    Figure imgb0018
    Figure imgb0019
    Figure imgb0020
    Figure imgb0021
    Figure imgb0022
    Figure imgb0023
    Figure imgb0024
    Figure imgb0025
    Figure imgb0026
    Figure imgb0027
    Figure imgb0028
    Figure imgb0029
    Figure imgb0030
    Figure imgb0031
    Figure imgb0032
    Figure imgb0033
    Figure imgb0034
    Figure imgb0035
    Figure imgb0036
    Figure imgb0037
    Figure imgb0038
    Figure imgb0039
    Figure imgb0040
    Figure imgb0041
    Figure imgb0042
    Figure imgb0043
    Figure imgb0044
    Figure imgb0045
    Figure imgb0046
    Figure imgb0047
    Figure imgb0048
    Figure imgb0049
    Figure imgb0050
    Figure imgb0051
    Figure imgb0052
    Figure imgb0053
    Figure imgb0054
    Figure imgb0055
    Figure imgb0056
    Figure imgb0057
    Figure imgb0058
    Figure imgb0059
    Figure imgb0060
    Figure imgb0061
    Figure imgb0062
    Figure imgb0063
    Figure imgb0064
    Figure imgb0065
    Figure imgb0066
    Figure imgb0067
    Figure imgb0068
    Figure imgb0069
    Figure imgb0070
    Figure imgb0071
    Figure imgb0072
    Figure imgb0073
    Figure imgb0074
    Figure imgb0075
    Figure imgb0076
    Figure imgb0077
    Figure imgb0078
    Figure imgb0079
    Figure imgb0080
    Figure imgb0081
    Figure imgb0082
    Figure imgb0083
    Figure imgb0084
    Figure imgb0085
    Figure imgb0086
    Figure imgb0087
    Figure imgb0088
    Figure imgb0089
    Figure imgb0090
    Figure imgb0091
    Figure imgb0092
    Figure imgb0093
    Figure imgb0094
  • Particularly preferred as the compound of the present invention is a compound represented by the following formula (II), (XVIII), (XIX), (XXIII) or (LIV).
    Figure imgb0095
    Figure imgb0096
    Figure imgb0097
    Figure imgb0098
    Figure imgb0099
  • The compound represented by formula (II) can be chemically synthesized via 12 steps, and the yield is about 14%. The present inventors have confirmed that the compound represented by formula (II) has more than 100 times stronger anti-proliferative activity against vascular endothelial cells than against other cancer cells; inhibits the migration and tubulogenesis of human umbilical vein endothelial cells (HUVEC); has in vivo anti-angiogenic activity; and shows antitumor activity in a mouse cancer cell transplant model. According to the same method as for the synthesis of the compound of formula (II), the compounds represented by formulae (XVIII), (XIX), (XXIII) and (LIV) can also be chemically synthesized in an easy manner, and each of the compounds has selective anti-proliferative activity against vascular endothelial cells in a broad range of concentration like cortistatin A.
  • Examples of the "pharmaceutically acceptable salt" include salts of alkali metals (for example, potassium, sodium, lithium, etc.), salts of alkaline earth metals (for example, calcium, magnesium, etc.), ammonium salts (for example, a tetramethylammonium salt, a tetrabutylammonium salt, etc.), salts of organic amines (for example, triethylamine, methylamine, dimethylamine, cyclopentylamine, benzylamine, phenethylamine, piperidine, monoethanolamine, diethanolamine, tris(hydroxymethyl)methylamine, lysine, arginine, N-methyl-D-glucamine, etc.), and acid addition salts (for example, inorganic acid salts, such as hydrochlorides, hydrobromides, hydriodides, sulfates, phosphates and nitrates; and organic acid salts, such as acetates, trifluoroacetates, lactates, tartrates, oxalates, fumarates, maleates, benzoates, citrates, methanesulfonates, ethanesulfonates, benzenesulfonates, toluenesulfonates, isethionates, glucuronates and gluconates).
  • Hereinafter, the compound represented by the general formula (M) or (I) of the present invention, or a pharmaceutically acceptable salt thereof is referred to as "the compound of the present invention."
  • The compound of the present invention can be produced according to any method without particular limitation, for example, the synthesis method described in Example 1, 4 or 5.
  • Isolation and purification of the compound of the present invention can be performed by a known technique, for example, phase transfer reaction, concentration, solvent extraction, fractional distillation, pH shifting, crystallization, recrystallization, chromatography or the like. In the case where the compound of the present invention is obtained in a free form, it can be converted into an objective salt by a known technique. Conversely, in the case where the compound of the present invention is obtained in the form of a salt, it can be converted into a free form or an objective salt by a known technique.
  • In the case where the compound of the present invention has isomeric forms such as optical isomers, stereoisomers, regioisomers, rotamers and the like, each of the isomeric forms and mixtures thereof are included in the compound of the present invention. For example, in the case where the compound of the present invention can exist as optical isomers, each optical isomer resolved from the racemate is also included in the compound of the present invention. Each of these isomers can be individually obtained by a known synthesis method or separation method (concentration, solvent extraction, column chromatography, recrystallization, etc.).
  • The compound of the present invention may be a hydrate or a solvate. The compound of the present invention may be labeled with an isotope or the like.
  • The compound of the present invention has selective anti-proliferative activity against vascular endothelial cells, and therefore is useful as an active ingredient of vascular endothelial cell growth inhibitors. The compound of the present invention has anti-angiogenic activity, and therefore is useful as an active ingredient of angiogenesis inhibitors. Therefore, the compound of the present invention can be preferably used for prevention or treatment of diseases associated with vascular endothelial cell growth and/or angiogenesis. Examples of the diseases associated with vascular endothelial cell growth and/or angiogenesis include cancer (growth and metastasis of solid cancer), macular degeneration, diabetic retinopathy, neovascular glaucoma, inflammatory dermatosis, rheumatoid arthritis and osteoarthritis.
  • The compound of the present invention shows antitumor activity in a mouse cancer cell transplant model, and therefore is useful as an active ingredient of medicaments for cancer prevention or treatment. The cancer that the compound of the present invention can prevent or treat is not particularly limited, and examples thereof include lung cancer, colon cancer, prostate cancer, breast cancer, pancreatic cancer, esophageal cancer, gastric cancer, liver cancer, biliary tract cancer, spleen cancer, renal cancer, bladder cancer, uterine cancer, ovarian cancer, testicular cancer, thyroid cancer, brain tumor and hematological tumor. Preferred is a solid cancer characterized by tumor growth accompanied by angiogenesis.
  • The present invention provides a pharmaceutical composition comprising the compound of the present invention and a pharmaceutically acceptable carrier. The pharmaceutical composition of the present invention can be prepared by blending the compound of the present invention as an active ingredient, a pharmaceutically acceptable carrier and if needed an additive, and formulated into a dosage form. Specific examples of the dosage form include oral preparations such as tablets, coated tablets, pills, powders, granules, capsules, solutions, suspensions and emulsions; and parenteral preparations such as injections, infusions, suppositories, ointments and patches. The blending ratio of the carrier or the additive is appropriately determined based on the range of the blending ratio conventionally adopted in the pharmaceutical field. The carrier or the additive that can be blended is not particularly limited, and examples thereof include various carriers such as water, physiological saline, other aqueous solvents, and aqueous or oily bases; and various additives such as excipients, binders, pH adjusters, disintegrants, absorption enhancers, lubricants, colorants, corrigents and fragrances.
  • Examples of the additive that can be blended into tablets, capsules and the like include binders such as gelatin, cornstarch, tragacanth and gum arabic; excipients such as crystalline cellulose; bulking agents such as cornstarch, gelatin and alginic acid; lubricants such as magnesium stearate; sweeteners such as sucrose, lactose and saccharin; and flavors such as peppermint, Gaultheria adenothrix oil and cherry. In the case where the unit dosage form is a capsule, a liquid carrier such as fats and oils can be further blended in addition to the above-mentioned materials. A sterile composition for injection can be prepared according to an ordinary pharmaceutical formulation practice, for example, by dissolving or suspending an active substance in a vehicle such as water for injection and a natural vegetable oil (such as sesame oil and coconut oil). As an aqueous liquid for injection, for example, physiological saline, an isotonic solution containing glucose and an auxiliary substance (for example, D-sorbitol, D-mannitol, sodium chloride, etc.), or the like can be used, optionally together with a suitable solubilizer such as alcohols (for example, ethanol), polyalcohols (for example, propylene glycol, polyethylene glycol) and nonionic surfactants (for example, polysorbate 80, HCO-50). As an oily liquid, for example, sesame oil, soybean oil or the like can be used, optionally together with a solubilizer such as benzyl benzoate and benzyl alcohol. Further, a buffering agent (for example, a phosphate buffer, a sodium acetate buffer), a soothing agent (for example, benzalkonium chloride, procaine hydrochloride, etc.), a stabilizer (for example, human serum albumin, polyethylene glycol, etc.), a preservative (for example, benzyl alcohol, phenol, etc.), an antioxidant, etc. may also be blended.
  • The pharmaceutical preparation that can be obtained in the above manner can be administered to, for example, humans and other mammals (rats, mice, rabbits, sheep, pigs, cows, cats, dogs, monkeys, etc.). The dose may vary depending on the state of the animal, the cancer type, the condition, the administration method and the like, but in general, the daily oral dose for a human weighing about 60 kg is, for example, about 0.1 to 1000 mg, preferably about 1.0 to 500 mg, and more preferably about 3.0 to 200 mg in terms of the active ingredient. As for the parenteral dose, the amount for one dose may vary depending on the state of the animal, the cancer type, the condition, the administration method and the like, but for example in the case of injections, it is usually advantageous that the active ingredient is intravenously administered in an amount of, for example, about 0.01 to 100 mg, preferably about 0.01 to 50 mg, and more preferably about 0.01 to 20 mg per kg body weight. The daily total dose may be a single dose or divided into several portions.
  • The medicament of the present invention for cancer prevention or treatment can be used in combination with another cancer therapeutic drug. Such another cancer therapeutic drug is not particularly limited, but preferred is a chemotherapeutic drug, an immunotherapeutic drug or a hormone therapy drug, for example. According to the present invention, the medicament for cancer prevention or treatment can also be used in combination with radiotherapy.
  • The chemotherapeutic drug is not particularly limited and examples thereof include:
    • alkylating agents such as nitrogen mustard, nitrogen mustard N-oxide hydrochloride, chlorambucil, cyclophosphamide, ifosfamide, thiotepa, carboquone, improsulfan tosilate, busulfan, nimustine hydrochloride, mitobronitol, melphalan, dacarbazine, ranimustine, estramustine phosphate sodium, triethylenemelamine, carmustine, lomustine, streptozocin, pipobroman, ethoglucid, carboplatin, cisplatin, miboplatin, nedaplatin, oxaliplatin, altretamine, ambamustine, dibrospidium chloride, fotemustine, prednimustine, pumitepa, Ribomustin, temozolomide, treosulfan, trofosfamide, zinostatin stimalamer, adozelesin, cystemustine and bizelesin;
    • antimetabolites such as mercaptopurine, 6-mercaptopurine riboside, thioinosine, methotrexate, pemetrexed, enocitabine, cytarabine, cytarabine ocfosfate, ancitabine hydrochloride, 5-FU and its derivatives (for example, fluorouracil, tegafur, UFT, doxifluridine, carmofur, galocitabine, emitefur, capecitabine, etc.), aminopterin, nelzarabine, leucovorin calcium, Tabloid, butocin, calcium folinate, calcium levofolinate, cladribine, emitefur, fludarabine, gemcitabine, hydroxycarbamide, pentostatin, piritrexim, idoxuridine, mitoguazone, tiazofurin, ambamustine and bendamustine;
    • anticancer antibiotics such as actinomycin D, actinomycin C, mitomycin C, chromomycin A3, bleomycin hydrochloride, bleomycin sulfate, peplomycin sulfate, daunorubicin hydrochloride, doxorubicin hydrochloride, aclarubicin hydrochloride, pirarubicin hydrochloride, epirubicin hydrochloride, neocarzinostatin, mithramycin, sarkomycin, carzinophilin, mitotane, zorubicin hydrochloride, mitoxantrone hydrochloride and idarubicin hydrochloride; and
    • plant-derived anticancer drugs such as etoposide, etoposide phosphate, vinblastine sulfate, vincristine sulfate, vindesine sulfate, teniposide, paclitaxel, docetaxel and vinorelbine.
  • The immunotherapeutic drug is not particularly limited and examples thereof include picibanil, Krestin, sizofiran, lentinan, ubenimex, interferons, interleukins, macrophage colony-stimulating factor, granulocyte colony-stimulating factor, erythropoietin, lymphotoxins, BCG vaccine, Corynebacterium parvum, levamisole, polysaccharide K, procodazole and anti-CTLA4 antibody.
  • The hormone therapy drug is not particularly limited and examples thereof include fosfestrol, diethylstilbestrol, chlorotrianisene, medroxyprogesterone acetate, megestrol acetate, chlormadinone acetate, cyproterone acetate, danazol, allylestrenol, gestrinone, mepartricin, raloxifene, ortneloxifene, levormeloxifene, antiestrogens (for example, tamoxifen citrate, toremifene citrate, etc.), birth-control pills, mepitiostane, testololactone, aminoglutethimide, LH-RH agonists (for example, goserelin acetate, buserelin, leuprorelin, etc.), droloxifene, epitiostanol, ethinylestradiol sulfonate, aromatase inhibitors (for example, fadrozole hydrochloride, anastrozole, letrozole, exemestane, vorozole, formestane, etc.), antiandrogens (for example, flutamide, bicalutamide, nilutamide, etc.), 5α-reductase inhibitors (for example, finasteride, epristeride, etc.), corticosteroids (for example, dexamethasone, prednisolone, betamethasone, triamcinolone, etc.) and androgen synthesis inhibitors (for example, abiraterone, etc.).
  • The combined use of the medicament for cancer prevention or treatment, with another cancer therapeutic drug or radiotherapy, can provide the following effects without limitation:
    1. (1) synergistic effect is obtainable;
    2. (2) the dose is reducible;
    3. (3) prolonged treatment period is selectable; and
    4. (4) persistent therapeutic effect can be expected.
  • In the case where the medicament for cancer prevention or treatment and another cancer therapeutic drug are used in combination, they may be simultaneously administered to a subject, or separately administered thereto at some interval. The dose of the drug in combined use can be determined based on its clinical dose and is appropriately selected depending on the subject, the age and body weight of the subject, the condition, the administration time, the dosage form, the administration method, the combination of drugs, etc.
  • EXAMPLES
  • Hereinafter, the present invention will be illustrated in detail by Examples, but is not limited thereto.
  • <Example 1: Synthesis of compound represented by formula (II) >
  • According to the scheme shown in Fig. 1, the compound represented by formula (II) (hereinafter referred to as "CA-1") was synthesized.
  • (1) Synthesis of compound 3 ((3aS,7aS)-7a-methylhexahydro-1H-indene-1,5(6H)-dione)
  • Under argon atmosphere, t-BuMgCl (1.0 M in THF, 6.02 mL, 6.02 mmol) was added to a THF solution (28 mL) of CuI (882 mg, 4.63 mmol) at -50°C, and the mixture was stirred for 20 minutes. To this, HMPA (8.10 mL, 46.3 mmol) was added and the reaction mixture was stirred at -50°C for 20 minutes. After a THF solution of compound 2 (760 mg, 4.63 mmol) was added via a cannula at -78°C, DIBAL-H (1.0 M in n-hexane, 7.41 mL, 7.41 mmol) and a THF solution (9.0 mL) of HMPA (4.05 mL, 23.2 mmol) were slowly added dropwise via a cannula, and the mixture was stirred at -78°C for 30 minutes. The temperature of the reaction mixture was made to slowly rise to -40°C, and the reaction mixture was stirred for additional 3 hours. After the temperature of the reaction mixture was made to rise to 0°C, a 5% HCl aqueous solution was added and then extraction with AcOEt was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 2:1) and compound 3 (592 mg, 77%) was obtained.
    IR (KBr) : 2959, 1738, 1711 cm-1. [α]D 21 +150.0 (c 1.70, CHCl3). 1H-NMR (500 MHz, CDCl3) δ: 2.55-2.50 (2H, m), 2.48-2.40 (3H, m), 2.22-2.14 (1H, m), 2.08-2.00 (1H, m), 1.96-1.90 (2H, m), 1.68 (1H, tt, J = 11.6, 8.5 Hz), 1.60 (1H, dd, J = 13.4, 9.2 Hz), 1.05 (3H, s).
  • (2) Synthesis of compound 4 ((3a'S,7a'S)-7a' - methylhexahydrospiro[[1,3]dioxolane-2,5'-inden]-1'(6'H)-one)
  • To a CH3CN solution (32 mL) of compound 3 (535 mg, 3.22 mmol), ethylene glycol (5.4 mL, 96.6 mmol) and oxalic acid dihydrate (203 mg, 1.61 mmol) were added at 0°C, and the mixture was stirred at room temperature for 8 hours. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NaHCO3 solution was added and then extraction with AcOEt was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 2:1) and compound 4 (624 mg, 92%) was obtained.
    IR (KBr): 2953, 2887, 1732, 1068 cm-1. [α]D 21 +91.3 (c 1.28, CHCl3). 1H-NMR (500 MHz, CDCl3) δ: 3.92-3.86 (4H, m), 2.40 (1H, dd, J = 19.0, 9.2 Hz), 2.09 (1H, dt, J = 19.0, 11.0 Hz), 1.97-1.93 (1H, m), 1.83-1.80 (1H, m), 1.73-1.64 (5H, m), 1.57 (1H, tt, J = 12.5, 9.0 Hz), 1.44 (1H, td, J = 13.9, 5.7 Hz), 0.88 (3H, s). ESI MS: m/z 233 (M+Na)+. HR-ESI MS: m/z 233.1154, calcd for C12H18O3Na. Found: 233.1160.
  • (3) Synthesis of compound 5 ((3a'S,7a'S)-7a'-methyl-3',3a',4',6',7',7a'-hexahydrospiro[[1,3]dioxolane-2,5'-inden]-1'-yltrifluoromethanesulfonate)
  • To a THF solution (14 mL) of compound 4 (300 mg, 1.43 mmol), phenyl-N-triflimide (1.02 g, 2.86 mmol) and KHMDS (0.5 M in toluene, 4.3 mL, 2.15 mmol) were added at -78°C, and the mixture was stirred for 30 minutes. After the temperature of the reaction mixture was made to rise to 0°C, water was added and then extraction with Et2O was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 4:1) and compound 5 (420 mg, 85%) was obtained.
    IR (KBr): 2955, 2885, 1421, 1213, 1141, 1055 cm-1. [α]D 20 +69.2 (c 1.41, CHCl3). 1H-NMR (500 MHz, CDCl3) δ: 5.57 (1H, dd, J = 3.3, 1.6 Hz), 3.92 (4H, m), 2.23-2.15 (2H, m), 2.05-2.02 (1H, m), 1.77-1.60 (7H, m), 1.02 (3H, s). ESI MS: m/z 365 (M+Na)+. HR-ESI MS: m/z 365.0647, calcd for C13H17O5F3NaS. Found: 365.0646.
  • (4) Synthesis of compound 6 (7-((3a'S,7a'S)-7a'-methyl-3',3a',4',6',7',7a'-hexahydrospiro[[1,3]dioxolane-2,5'-inden]-1'-yl)isoquinoline)
  • To a DMF solution (5.0 mL) of compound 5 (200 mg, 0.584 mmol), a solution (5.0 mL) of 7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)isoquinoline (162 mg, 0.642 mmol) in DMF, Pd(PPh3)4 (100 mg, 0.0876 mmol) and K2CO3 (239 mg, 1.75 mmol) were added at room temperature, and the mixture was stirred at 50°C for 30 minutes. After the temperature of the reaction mixture was made to drop to 0°C, water was added and then extraction with AcOEt was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. In this way, a crude product containing compound 6 was obtained.
  • (5) Synthesis of compound 7 ((3aS,7aS)-3-(isoquinolin-7-yl)-3a-methyl-4,5,7,7a-tetrahydro-1H-inden-6(3aH)-one)
  • To an acetone/water solution (6.2 mL + 0.62 mL) of the crude product containing compound 6, p-toluenesulfonic acid monohydrate (237 mg, 1.23 mmol) was added at 0°C, and the mixture was stirred at room temperature for 2 hours. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NaHCO3 solution was added and then extraction with AcOEt was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:2) and compound 7 (80 mg, 50% in 2 steps) was obtained.
    IR (KBr): 2935, 1707, 850 cm-1. [α]D 20 +94.0 (c 2.54, CHCl3). 1H-NMR (500 MHz, CDCl3) δ: 9.22 (1H, s), 8.49 (1H, d, J = 6.1 Hz), 7.92 (1H, s), 7.77 (1H, d, J = 9.8 Hz), 7.75 (1H, dd, J = 8.9, 1.5 Hz), 6.17 (1H, s), 2.62-2.50 (4H, m), 2.39-2.36 (4H, m), 2.28-2.21 (1H, m), 1.97-1.95 (1H, m), 1.32 (3H, s). ESI MS: m/z 278 (M+H)+. HR-ESI MS: m/z 278.1545, calcd for C19H20NO. Found: 278.1544.
  • (6) Synthesis of compound 8 ((1S,3aS,7aS)-1-(isoquinolin-7-yl)-7a-methylhexahydro-1H-inden-5(6H)-one)
  • To an AcOEt solution (3.0 mL) of compound 7 (73 mg, 0.261 mmol), Pd/C (21.9 mg) was added at room temperature, and the mixture was stirred under hydrogen atmosphere for 12 hours. The reaction mixture was filtered through Celite and the filtrate was concentrated in vacuo. In this way, compound 8 (71 mg, 98%) was obtained.
    IR (KBr): 2959, 1709, 852 cm-1. 1H-NMR (500 MHz, CDCl3) δ: 9.22 (1H, s), 8.48 (1H, d, J = 6.1 Hz), 7.80 (1H, s), 7.75 (1H, d, J = 7.9 Hz), 7.62 (1H, d, J = 6.1 Hz), 7.57 (1H, d, J = 8.5 Hz), 2.99 (1H, t, J = 9.8 Hz), 2.46-2.44 (1H, m), 2.37-2.30 (3H, m), 2.19-2.18 (1H, m), 2.12-2.10 (1H, m), 1.91-1.90 (1H, m), 1.78-1.75 (2H, m), 1.59-1.57 (1H, m), 0.75 (3H, s). ESI MS: m/z 280 (M+H)+. HR-ESI MS: m/z 280.1701, calcd for C19H22NO. Found: 280.1714.
  • (7) Synthesis of compound 9 ((1R,3aS,7aR)-1-(isoquinolin-7-yl)-7a-methyl-2,3,3a,4-tetrahydro-1H-inden-5(7aH)-one)
  • To a CH3CN solution (2.0 mL) of compound 8 (28 mg, 0.100 mmol), HMDS (0.21 mL, 1.00 mmol), NaI (75.2 mg, 0.500 mmol) and TMSCl (0.062 mL, 0.500 mmol) were added at 0°C, and the mixture was stirred at room temperature for 3 hours. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NH4Cl solution was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. To a DMSO solution (1.0 mL) of the resulting product, 2-iodoxybenzoic acid (19.1 mg, 0.635 mmol) was added at 0°C, and the mixture was stirred at room temperature for 8 hours. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NaHCO3 solution was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:2) and compound 9 (19 mg, 71% in 2 steps) was obtained.
    IR (KBr): 2962, 1672, 852 cm-1. [α]D 19 -3.95 (c 1.07, CHCl3). 1H-NMR (500 MHz, CDCl3) δ: 9.26 (1H, s), 8.52 (1H, d, J = 5.5 Hz), 7.85 (1H, s), 7.82 (1H, d, J = 8.5 Hz), 7.65-7.63 (2H, m), 7.07 (1H, d, J = 9.8 Hz), 5.90 (1H, d, J = 10.4 Hz), 3.24 (1H, t, J = 9.8 Hz), 2.62-2.58 (1H, m), 2.45-2.43 (2H, m), 2.33-2.28 (2H, m), 2.01-1.99 (1H, m), 1.74-1.72 (1H, m), 0.81 (3H, s). ESI MS: m/z 278 (M+H)+. HR-ESI MS: m/z 278.1545, calcd for C19H20NO. Found: 278.1544.
  • (8) Synthesis of compound 10 ((1R,3aS,7aS)-1-(isoquinolin-7-yl)-7a-methyl-2,3,3a,7a-tetrahydro-1H-inden-5-yltrifluoromethanesulfonate)
  • To a THF solution (3.6 mL) of compound 9 (100 mg, 0.361 mmol), phenyl-N-triflimide (258 mg, 1.12 mmol) and KHMDS (0.5 M in toluene, 2.25 mL, 1.12 mmol) were added at -78°C, and the mixture was stirred for 30 minutes. After the temperature of the reaction mixture was made to rise to 0°C, water was added and then extraction with AcOEt was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:1) and compound 10 (138 mg, 94%) was obtained.
    IR (KBr) : 2964, 1419, 1211, 1141 cm-1. 1H-NMR (500 MHz, CDCl3) δ: 9.22 (1H, s), 8.51 (1H, d, J = 6.1 Hz), 7.83 (1H, s), 7.80 (1H, d, J = 8.5 Hz), 7.64-7.62 (2H, m), 6.26 (1H, d, J = 9.8 Hz), 5.92 (1H, t, J = 2.5 Hz), 5.79 (1H, dd, J = 9.8, 2.2 Hz), 3.31 (1H, t, J = 10.1 Hz), 3.04-2.99 (1H, m), 2.37-2.34 (2H, m), 2.03-2.01 (1H, m), 1.88-1.86 (1H, m), 0.67 (3H, s). ESI MS: m/z 410 (M+H)+. HR-ESI MS: m/z 410.1038, calcd for C20H19NO3F3S. Found: 410.1024.
  • (9) Synthesis of compound 11 ((1R,3aS,7aS)-methyl 1-(isoquinolin-7-yl)-7a-methyl-2,3,3a,7a-tetrahydro-1H-indene-5-carboxylate)
  • To a DMF solution (20 mL) of compound 10 (265 mg, 0.648 mmol), Pd(PPh3)4 (75 mg, 0.0648 mmol), MeOH (8.3 mL) and Et3N (1.45 mL, 9.72 mmol) were added at room temperature, and the mixture was stirred under carbon monoxide atmosphere at 40°C for 3 hours. After the temperature of the reaction mixture was made to drop to 0°C, water was added and then extraction with AcOEt was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:1) and compound 11 (200 mg, 98%) was obtained.
    IR (KBr): 2955, 1714, 1267 cm-1. [α]D 19 -88.6 (c 1.51, CHCl3). 1H-NMR (500 MHz, CDCl3) δ: 9.24 (1H, s), 8.50 (1H, d, J = 6.1 Hz), 7.84 (1H, s), 7.79 (1H, d, J = 8.5 Hz), 7.64 (2H, dd, J = 12.2, 3.7 Hz), 7.13 (1H, s), 6.34 (1H, d, J = 9.8 Hz), 6.17 (1H, d, J = 9.8 Hz), 3.77 (3H, s), 3.31 (1H, t, J = 9.8 Hz), 2.93-2.91 (1H, m), 2.39-2.33 (2H, m), 2.09-2.02 (1H, m), 1.89-1.88 (1H, m), 0.58 (3H, s). ESI MS: m/z 320 (M+H)+. HR-ESI MS: m/z 320.1651, calcd for C21H22NO2-Found: 320.1643.
  • (10) Synthesis of compound 12 ((1R,3aS,7aS)-1-(isoquinolin-7-yl)-7a-methyl-2,3,3a,7a-tetrahydro-1H-indene-5-carbaldehyde)
  • To a CH2Cl2 solution (13 mL) of compound 11 (54.2 mg, 0.188 mmol), DIBAL-H (1.0 M in n-hexane, 0.56 mL, 0.56 mmol) was added at -78°C, and the mixture was stirred for 15 minutes. After the temperature of the reaction mixture was made to rise to 0°C, a 15% NaOH aqueous solution was added. The reaction mixture was filtered through Celite and the filtrate was concentrated in vacuo. In this way, a crude product (49 mg) containing ((1R,3aS,7aS)-1-(isoquinolin-7-yl)-7a-methyl-2,3,3a,7a-tetrahydro-1H-inden-5-yl)methanol was obtained. To a CH2Cl2 solution (3.4 mL) of the obtained crude product, Dess-Martin periodinane (107 mg, 0.254 mmol) and NaHCO3 (71 mg, 0.847 mmol) were added at 0°C, and the mixture was stirred at room temperature for 30 minutes. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NaHCO3 solution was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:4) and compound 12 (38 mg, 67% in 2 steps) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.44 (1H, s), 9.25 (1H, s), 8.50 (1H, d, J = 5.5 Hz), 7.85 (1H, s), 7.80 (1H, d, J = 8.5 Hz), 7.66-7.64 (2H, m), 6.95 (1H, s), 6.37 (1H, d, J = 9.8 Hz), 6.23 (1H, d, J = 9.8 Hz), 3.35 (1H, t, J = 9.8 Hz), 3.05 (1H, t, J = 10.0 Hz), 2.41-2.36 (2H, m), 2.08 (1H, s), 1.98-1.96 (1H, m), 0.58 (3H, s). ESI MS: m/z 290 (M+H)+.
  • (11) Synthesis of objective compound 1 (CA-1, (3R,3aR,11aS,11bR)-3-(isoquinolin-7-yl)-3a-methyl-1,2,3,3a,9,10,11a,11b-octahydrocyclopenta[c]xanthen-7(8H)-one)
  • To an AcOEt solution (4.0 mL) of compound 12 (12 mg, 0.0415 mmol), 1,3-cyclohexanedione (11 mg, 0.083 mmol) and ethylenediamine (3.6 mL, 0.0498 mmol) were added at 0°C, and the mixture was stirred at room temperature for 3 hours. After the temperature of the reaction mixture was made to drop to 0°C, water was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:4) and compound 1 (15 mg, 97%) was obtained.
    IR (KBr) : 2959, 1653, 1582, 1375 cm-1. [α]D 19 -101.7 (c 1.24, CHCl3). 1H-NMR (500 MHz, CDCl3) δ: 9.26 (1H, s), 8.51 (1H, d, J = 5.5 Hz), 7.85 (1H, s), 7.80 (1H, d, J = 8.5 Hz), 7.65 (2H, t, J = 6.4 Hz), 6.37 (1H, s), 6.05 (1H, d, J = 9.2 Hz), 5.90 (1H, d, J = 9.2 Hz), 4.86 (1H, d, J = 11.6 Hz), 3.23 (1H, t, J = 9.8 Hz), 2.57-2.28 (4H, m), 2.03-2.02 (2H, m), 1.84-1.81 (1H, m), 1.61-1.59 (1H, m), 1.20 (1H, m), 0.93-0.90 (2H, m), 0.68 (3H, s). ESI MS: m/z 384 (M+H)+.
  • <Example 2: Evaluation of selective anti-proliferative activity against vascular endothelial cells (1)>
  • CA-1, which is represented by formula (II), was used as a test compound, and an existing anticancer drug doxorubicin was used as a control compound. The test compound and the control compound were separately dissolved at predetermined concentrations in EtOH. The cells used were normal human umbilical vein endothelial cells (HUVEC) and human pharyngeal carcinoma KB3-1 cells.
  • HUVEC and KB3-1 were seeded in separate 96-well multiwell plates at 2×103 cells/100 µL/well and cultured in an atmosphere of 5% CO2 at 37°C for 24 hours. Next, 1.0 µL each of the ethanol solutions containing the test compound or the control compound at various concentrations were added, and the cells were cultured under the same conditions for additional 72 hours. After 72 hours, 10 µL of WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) reagent was added. After 3-hour incubation, the amount of water-soluble formazan formed in viable cells was colorimetrically determined by measurement at OD 450 nm, and the growth inhibition ratio was calculated by comparison of the amount of formazan between the compound treatment groups and the non-treatment group. The anti-proliferative activities of the test compound and the control compound on each type of cells were expressed as a 50% growth inhibitory concentration (IC50 value). The cell type selectivity (Selective Index (S. I.) value) was expressed as a value resulting from division of the IC50 value against KB3-1 by the IC50 value against HUVEC.
  • The results are shown in Table 1. The IC50 value of the test compound CA-1 was 0.1 µM against HUVEC and 10.5 µM against KB3-1. The S.I. value was 105. On the other hand, the IC50 value of the control compound doxorubicin was 0.13 µM against HUVEC and 0.36 µM against KB3-1, and the S.I. value was as low as 2.7. Therefore, doxorubicin has little selectivity in cell type. These results demonstrate that the test compound CA-1 selectively inhibits the growth of vascular endothelial cells, a key player in angiogenesis. Table 1
    CA-1 doxorubicin
    IC50 S.I. IC50 S.I.
    HUVEC 0.1 0.13
    KB3-1 10.5 105 0.36 2.7
  • <Example 3: Evaluation of in vivo anti-angiogenic activity after intraperitoneal administration>
  • The test compound CA-1 was suspended at predetermined concentrations in 1% CMC. To control groups, the vehicle (1% CMC) was administered.
  • To 500 µL of Matrigel (trade name, manufactured by BD), 200 ng/mL of a proangiogenic factor bFGF (basic fibroblast growth factor) and 100 U/mL of heparin were added, and the mixture was subcutaneously injected into the flanks of female ddY mice (6-week old) with an injection needle of 23G. After the Matrigel injection, the test compound CA-1 or the vehicle (1% CMC) was intraperitoneally administered on a schedule of once every two days, 5 times in total. Aside from this, Matrigel without bFGF was injected into a group of mice and then the vehicle was administered thereto (negative control group). The anti-angiogenic effect was evaluated as follows: the day after the final administration of the test compound, the implanted Matrigel was harvested and weighed, and then the amount of hemoglobin accumulated in the Matrigel was compared between the test compound administration groups and the control groups. Significance analysis was performed using a Dunnett's test at a significance level of 5%.
  • The results are shown in Figs. 2 and 3. Fig. 2 shows images of the Matrigel injection sites in representative mice of all different groups, and Fig. 3 shows a graph representing the measured amount of hemoglobin accumulated in the Matrigel. As is clear from Figs. 2 and 3, CA-1 administered at not less than 10 mg/kg significantly reduced the amount of hemoglobin accumulated in the Matrigel to almost the same level as that of the group injected with Matrigel not supplemented with the proangiogenic factor bFGF. These results demonstrate that the test compound CA-1 has in vivo anti-angiogenic effect.
  • <Example 3: Evaluation of antitumor activity in mouse cancer cell transplant model after intraperitoneal administration>
  • The test compound CA-1 was suspended at predetermined concentrations in 1% CMC. The vehicle (1% CMC) was administered to the control group.
  • Mouse sarcoma S180 cells were suspended at 1×107 cells/mL in a serum-free RPMI culture medium and the suspension was kept on ice. Then, the S180 cell suspension was subcutaneously inoculated at 1×106 cells/100 µL/mouse into the flanks of female ddY mice (5-week old) with an injection needle of 23G. The mice were maintained for one week for engraftment of the S180 cells. Subsequently, the test compound (5 mg/kg, 10 mg/kg and 25 mg/kg) or the vehicle (1% CMC) was intraperitoneally administered on a schedule of once every two days, 7 times in total. The antitumor activity was evaluated as follows: one day after the final administration, tumors were isolated and weighed, and then the tumor weight was compared between the test compound administration groups and the control group.
  • The results are shown in Figs. 4 and 5. Fig. 4 shows an image for size comparison of tumors isolated from the mice of all groups, and Fig. 5 shows a graph representing the measurement results of the tumor weight. As is clear from Figs. 4 and 5, the tumor weights of the 5 mg/kg, 10 mg/kg and 25 mg/kg CA-1 administration groups were reduced to 34%, 23% and 17% of that of the control group, respectively. Thus, CA-1 was shown to have marked antitumor activity. In no groups, weight loss or diarrhea, or visual abnormalities in organs of the mice were observed.
  • <Example 4: Synthesis of compounds represented by formulae (XVIII), (XIX) and (XXIII) >
  • According to the schemes shown in Fig. 6, the compound represented by formula (XVIII) (hereinafter referred to as "CA-2"), the compound represented by formula (XIX) (hereinafter referred to as "CA-3"), and the compound represented by formula (XXIII) (hereinafter referred to as "CA-4") were synthesized.
  • (1) Synthesis of compound 14 (tert-butyl((3,5-dimethoxycyclohexa-2,5-dien-1-yl)methoxy)diphenylsilane)
  • To a DMF solution (1.0 mL) of compound 13 (17 mg, 0.098 mmol), imidazole (33 mg, 0.48 mmol) and TBDPSCl (80 µL, 0.31 mmol) were added at 0°C, and the mixture was stirred at 0°C for 30 minutes. To this, a saturated aqueous NH4Cl solution was added and then extraction with CHCl3 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 10:1) and compound 14 (37.5 mg, 93%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 7.71-7.69 (4H, m), 7.44-7.37 (6H, m), 4.73 (2H, d, J = 3.0 Hz), 3.56 (6H, s), 3.55 (2H, d, J = 7.5 Hz), 3.26-3.19 (1H, m), 2.84-2.74 (2H, m), 1.09 (9H, s).
  • (2) Synthesis of compound 15 (5-(((tert-butyldiphenylsilyl)oxy)methyl)cyclohexane-1,3-dione)
  • To a THF solution (2.8 mL) of compound 14 (227 mg, 0.56 mmol), 1 M HCl (0.55 mL) was added, and the mixture was stirred at room temperature for 1 hour. The reaction mixture was diluted with acetone and toluene, and then concentrated in vacuo. In this way, compound 15 (198 mg, 94%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 7.71-7.69 (4H, m), 7.44-7.37 (6H, m), 3.65-3.30 (3H, m), 2.75-2.30 (4H, m).
  • (3) Synthesis of compound 16 ((3R,3aR,11aS,11bR)-9-(((tert-butyldiphenylsilyl)oxy)methyl)-3-(isoquinolin-7-yl)-3a-methyl-1,3,3a,8,9,10,11a,11b-octahydrocyclopenta[c]xanthen-7(2H)-one)
  • To an AcOEt/CH2Cl2 solution (1:3, 8.0 mL) of compound 12 (see Example 1 and Fig. 1, 56 mg, 0.19 mmol), compound 15 (134 mg, 0.35 mmol) and ethylenediamine (16 µL, 0.23 mmol) were added at 0°C, and the mixture was stirred at room temperature for 10 hours. After the temperature of the reaction mixture was made to drop to 0°C, water was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:1) and compound 16 (57 mg, 45%) was obtained as a diastereomeric mixture (1:1).
    1H-NMR (500 MHz, CDCl3) δ: 9.25 (1H, s), 8.51 (1H, d, J = 5.5 Hz), 7.85 (1H, s), 7.80 (1H, d, J = 8.5 Hz), 7.67-7.62 (5H, m), 7.47-7.35 (7H, m), 6.37 (1/2H, brs), 6.34 (1/2H, brs), 6.05 (1H, dd, J = 10.0, 1.0 Hz), 5.90 (1H, d, J = 10.0 Hz), 4.89 (1/2H, dd, J = 12.0, 2.0 Hz), 4.87 (1/2H, dd, J = 12.0, 2.0 Hz), 3.67-3.57 (2H, m), 3.23 (1H, t, J = 10.0 Hz), 2.60-2.20 (9H, m), 1.87-1.78 (1H, m), 1.08 (9/2H, s), 1.07 (9/2H, s), 0.69 (3H, s).
  • (4) Synthesis of compound 17 (CA-2, (3R,3aR,11aS,11bR)-9-(hydroxymethyl)-3-(isoquinolin-7-yl)-3a-methyl-1,3,3a,8,9,10,11a,11b-octahydrocyclopenta[c]xanthen-7(2H)-one)
  • To a THF solution (0.7 mL) of compound 16 (42 mg, 0.066 mmol), TBAF (1.0 M in THF, 0.13 mL, 0.13 mmol) and CH3COOH (4 µL) were added at 0°C, and the mixture was stirred at room temperature overnight. To this, a saturated brine and a saturated aqueous NaHCO3 solution were added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (AcOEt and AcOEt/MeOH = 10:1) and compound 17 (24.3 mg, 88%) was obtained as a diastereomeric mixture (1:1).
    1H-NMR (500 MHz, CDCl3) δ: 9.25 (1H, s), 8.51 (1H, d, J = 5.5 Hz), 7.85 (1H, s), 7.80 (1H, d, J = 8.5 Hz), 7.66-7.63 (2H, m), 6.36 (1/2H, brs), 6.35 (1/2H, brs), 6.05 (1/2H, d, J = 9.0 Hz), 6.04 (1/2H, d, J = 9.0 Hz), 5.91 (1/2H, d, J = 9.0 Hz), 5.90 (1/2H, d, J = 9.0 Hz), 4.89 (1/2H, dd, J = 12.0, 2.0 Hz), 4.85 (1/2H, dd, J = 12.0, 2.0 Hz), 3.67-3.57 (3H, m), 3.23 (1H, t, J = 10.0 Hz), 2.60-2.20 (9H, m), 1.87-1.78 (1H, m), 0.68 (3H, s).
  • (5) Synthesis of compound 18 (CA-3, (3R,3aR,11aS,11bR)-9-(aminomethyl)-3-(isoquinolin-7-yl)-3a-methyl-1,3,3a,8,9,10,11a,11b-octahydrocyclopenta[c]xanthen)-7(2H)-one)
  • To a CH2Cl2 solution (0.2 mL) of compound 17 (4.2 mg, 0.01 mmol), MsCl (4 µL, 0.05 mmol) and Et3N (8 µL, 0.10 mmol) were added at 0°C, and the mixture was stirred at room temperature for 5 hours. To this, water was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. To a DMF solution (0.2 mL) of the residue, NaN3 (6.4 mg, 0.10 mmol) was added, and the mixture was stirred at room temperature for 3 days. To this, water was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. To a THF/water solution (0.4 mL + 0.1 mL) of the residue, PPh3 (8.0 mg, 0.07 mmol) was added, and the mixture was stirred at room temperature for 5 hours. To this, water was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (AcOEt and CH2Cl2/MeOH = 10:1) and compound 18 (2.3 mg, 42%) was obtained as a diastereomeric mixture (1:1).
    1H-NMR (500 MHz, CDCl3) δ: 9.25 (1H, s), 8.51 (1H, d, J = 5.5 Hz), 7.84 (1H, s), 7.80 (1H, d, J = 8.5 Hz), 7.66-7.63 (2H, m), 6.33 (1H, brs), 6.03 (1H, d, J = 9.5 Hz), 5.91 (1H, d, J = 9.0 Hz), 4.85 (1H, d, J = 13.0 Hz), 3.65 (2H, brs), 3.23-3.16 (3H, m), 2.60-2.20 (9H, m), 1.87-1.78 (1H, m), 0.67 (3H, s).
  • (6) Synthesis of compound 19 (CA-4, (3R,3aR,11aS,11bR)-3-(isoquinolin-7-yl)-3a-methyl-7-oxo-1,2,3,3a,7,8,9,10,11a,11b-decahydrocyclopenta[c]xanthene-9-carboxylic acid)
  • To a CH2Cl2 solution (0.3 mL) of compound 17 (4.5 mg, 0.011 mmol), Dess-Martin periodinane (6.9 mg, 0.016 mmol) and NaHCO3 (3.7 mg, 0.044 mmol) were added at 0°C, and the mixture was stirred at room temperature for 1 hour. After the temperature of the reaction mixture was made to drop to 0°C, a saturated Na2S2O3 solution was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. To a t-BuOH solution (0.2 mL) of the residue, NaClO2 (3.0 mg, 0.033 mmol), 2-methyl-2-butene (70 µL) and an aqueous NaH2PO4 solution (20%, 0.2 mL) were added, and the mixture was stirred at room temperature for 2 hours. After the temperature of the reaction mixture was made to drop to 0°C, water was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (AcOEt and CH2Cl2/MeOH = 5:1) and compound 19 (1.1 mg, 25% in 2 steps) was obtained as a diastereomeric mixture (1:1).
    1H-NMR (500 MHz, CDCl3) δ: 9.28 (1H, brs), 8.50 (1H, d, J = 6.0 Hz), 7.87 (1H, s), 7.81 (1H, d, J = 8.5 Hz), 7.67-7.63 (2H, m), 6.35 (1H, brs), 6.03 (1H, d, J = 9.5 Hz), 5.91 (1H, d, J = 9.0 Hz), 4.88 (1H, d, J = 11.0 Hz), 3.23-3.16 (2H, m), 2.60-2.20 (8H, m), 1.87-1.78 (1H, m), 0.67 (3H, s) .
  • <Example 5: Synthesis of compound represented by formula (LIV)>
  • According to the scheme shown in Fig. 7, the compound represented by formula (LIV) (hereinafter referred to as "CA-5") was synthesized.
  • (1) Synthesis of compound 20 ((1'S,2'R,3a'S,7a'S)-1'-(isoquinolin-7-yl)-7a'-methyloctahydrospiro[[1,3]dioxolane-2,5'-inden]-2'-ol)
  • BH3·THF (1.0 M in THF, 3.3 mL, 3.3 mmol) was added to a THF solution (13.6 mL) of compound 6 (see Example 1 and Fig. 1, 350 mg, 1.09 mmol), and the mixture was stirred at room temperature for 4 hours. After the temperature of the reaction mixture was made to drop to 0°C, a 2 N NaOH aqueous solution (17 mL) and a 30% H2O2 aqueous solution (17 mL) were added. The mixture was stirred at room temperature for 3 days and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was dissolved in MeOH (10 mL) and Na2CO3 (800 mg) was added thereto. After the mixture was heated under reflux for 7 hours, the insoluble matter was filtered off and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (CHCl3/MeOH/H2O = 30:3:1 (lower phase)) and compound 20 (258 mg, 70%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.17 (1H, s), 8.46 (1H, d, J = 6.5 Hz), 7.79 (1H, s), 7.76 (1H, d, J = 8.5 Hz), 7.61 (1H, d, J = 6.5 Hz), 7.56 (1H, dd, J = 8.5, 1.5 Hz), 5.01 (1H, td, J = 9.0, 1.5 Hz), 4.00-3.95 (4H, m), 2.90 (1H, d, J = 7.5 Hz), 2.46-2.38 (1H, m), 2.02 (1H, td, J = 13.0, 8.5 Hz), 1.80-1.43 (7H, m), 0.63 (3H, s).
  • (2) Synthesis of compound 21 ((1S,2R,3aS,7aS)-2-hydroxy-1-(isoquinolin-7-yl)-7a-methylhexahydro-1H-inden-5(6H)-one)
  • To an acetone/water solution (10 mL + 2 mL) of compound 20 (209 mg, 0.62 mmol), p-toluenesulfonic acid monohydrate (293 mg, 1.54 mmol) was added, and the mixture was stirred at 70°C for 5 hours. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NaHCO3 solution was added and then extraction with CHCl3 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (CHCl3/MeOH/H2O = 30:3:1 (lower phase)) and compound 21 (174 mg, 96%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.24 (1H, s), 8.51 (1H, d, J = 5.5 Hz), 7.85 (1H, s), 7.82 (1H, d, J = 8.5 Hz), 7.65 (1H, d, J = 5.5 Hz), 7.59 (1H, dd, J = 8.5, 1.5 Hz), 5.10 (1H, td, J = 9.0, 1.5 Hz), 3.64 (1H, s), 2.97 (1H, d, J = 8.0 Hz), 2.53-2.26 (5H, m), 2.15-2.08 (1H, m), 1.91 (1H, ddd, J = 14.5, 8.0, 2.0 Hz), 1.85 (1H, td, J = 12.0, 5.5 Hz), 1.75 (1H, ddd, J = 12.0, 6.5, 1.5 Hz), 0.83 (3H, s).
  • (3) Synthesis of compound 22 ((1S,2R,3aS,7aS)-1-(isoquinolin-7-yl)-7a-methyl-2-((triethylsilyl)oxy)hexahydro-1H-inden-5(6H)-one)
  • To a CH2Cl2 solution (7.3 mL) of compound 21 (214 mg, 0.73 mmol), TESOTf (180 µL, 0.80 mmol) and 2,6-lutidine (110 µL, 0.95 mmol) were added at -78°C, and the mixture was stirred at -78°C for 20 minutes. To this, a saturated NH4Cl solution was added and then extraction with CHCl3 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (CHCl3/MeOH/H2O = 100:3:1 (lower phase)) and compound 22 (207 mg, 70%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.25 (1H, s), 8.52 (1H, d, J = 5.5 Hz), 7.81-7.78 (2H, m), 7.65 (1H, d, J = 6.0 Hz), 7.58 (1H, dd, J = 8.5, 1.5 Hz), 4.95 (1H, td, J = 9.0, 2.0 Hz), 2.98 (1H, d, J = 7.5 Hz), 2.51-2.24 (5H, m), 2.04 (1H, td, J = 12.5, 8.5 Hz), 1.87-1.78 (2H, m), 1.69 (1H, ddd, J = 13.0, 7.5, 2.0 Hz), 0.83 (3H, s), 0.74 (9H, t, J = 8.0 Hz), 0.46-0.31 (6H, m).
  • (4) Synthesis of compound 23 ((1R,2R,3aS,7aR)-1-(isoquinolin-7-yl)-7a-methyl-2-((triethylsilyl)oxy)-2,3,3a,4-tetrahydro-1H-inden-5(7aH)-one)
  • To a CH3CN solution (7.5 mL) of compound 22 (154 mg, 0.38 mmol), HMDS (0.8 mL, 3.82 mmol), NaI (280 mg, 1.87 mmol) and TMSCl (0.24 mL, 1.89 mmol) were added at 0°C, and the mixture was stirred at room temperature for 1 hour. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NH4Cl solution was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. To a DMSO solution (7.5 mL) of the resulting product, 2-iodoxybenzoic acid (210 mg, 0.75 mmol) was added at 0°C, and the mixture was stirred at room temperature for 9 hours. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NaHCO3 solution and a saturated Na2S2O3 solution were added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:1) and compound 23 (72 mg, 47%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.25 (1H, s), 8.52 (1H, d, J = 5.5 Hz), 7.84-7.80 (2H, m), 7.66 (1H, d, J = 5.5 Hz), 7.61 (1H, dd, J = 8.5, 1.5 Hz), 6.96 (1H, d, J = 14.5 Hz), 5.86 (1H, d, J = 14.5 Hz), 4.88 (1H, t, J = 7.0 Hz), 3.16 (1H, d, J = 7.0 Hz), 2.87-2.78 (1H, m), 2.63 (1H, dd, J = 17.5, 4.0 H2), 2.41 (1H, dd, J = 17.5, 15.0 Hz), 2.16 (1H, td, J = 13.5, 8.5 Hz), 1.90 (1H, dd, J = 13.5, 7.5 Hz), 0.86 (3H, s), 0.73 (9H, t, J = 8.0 Hz), 0.46-0.31 (6H, m).
  • (5) Synthesis of compound 24 ((1R,2R,3aS,7aS)-1-(isoquinolin-7-yl)-7a-methyl-2-((triethylsilyl)oxy)-2,3,3a,7a-tetrahydro-1H-inden-5-yl trifluoromethanesulfonate)
  • To a THF solution (4.2 mL) of compound 23 (85.5 mg, 0.21 mmol), phenyl-N-triflimide (300 mg, 0.84 mmol) and KHMDS (0.5 M in toluene, 1.7 mL, 0.85 mmol) were added at - 78°C, and the mixture was stirred for 150 minutes. After the temperature of the reaction mixture was made to rise to 0°C, water was added and then extraction with AcOEt was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 3:1) and compound 24 (72 mg, 64%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.25 (1H, s), 8.51 (1H, d, J = 6.0 Hz), 7.84 (1H, s), 7.83 (1H, d, J = 8.5 Hz), 7.69 (1H, d, J = 6.5 Hz), 7.62 (1H, d, J = 8.5 Hz), 6.16 (1H, d, J = 10.0 Hz), 5.90 (1H, s), 5.77 (1H, dd, J = 10.0, 2.0 Hz), 4.92 (1H, t, J = 7.0 Hz), 3.41-3.36 (1H, m), 3.24 (1H, d, J = 6.5 Hz), 2.30 (1H, td, J = 13.0, 8.5 Hz), 1.94 (1H, dd, J = 13.0, 8.0 Hz), 0.73 (3H, s), 0.73 (9H, t, J = 8.0 Hz), 0.46-0.31 (6H, m).
  • (6) Synthesis of compound 25 ((1R,2R,3aS,7aS)-methyl 1-(isoquinolin-7-yl)-7a-methyl-2-((triethylsilyl)oxy)-2,3,3a,7a-tetrahydro-1H-indene-5-carboxylate)
  • To a DMF solution (0.5 mL) of compound 24 (8.3 mg, 0.015 mmol), Pd(PPh3)4 (2 mg, 0.002 mmol), MeOH (0.2 mL) and Et3N (0.015 mL, 0.11 mmol) were added at room temperature, and the mixture was stirred under carbon monoxide atmosphere at 40°C for 1 hour. After the temperature of the reaction mixture was made to drop to 0°C, water was added and then extraction with AcOEt was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 2:1) and compound 25 (6.7 mg, 97%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.25 (1H, s), 8.51 (1H, d, J = 6.0 Hz), 7.85 (1H, s), 7.81 (1H, d, J = 8.5 Hz), 7.67 (1H, d, J = 6.5 Hz), 7.63 (1H, d, J = 8.5 Hz), 7.10 (1H, d, J = 2.5 Hz), 6.32 (1H, d, J = 10.0 Hz), 6.05 (1H, d, J = 10.0 Hz), 4.93 (1H, t, J = 7.0 Hz), 3.77 (3H, s), 3.29 (1H, ddd, J = 12.0, 8.5, 2.5 Hz), 3.25 (1H, d, J = 6.5 Hz), 2.32 (1H, td, J = 13.0, 8.5 Hz), 1.95 (1H, dd, J = 13.0, 8.5 Hz), 0.73 (9H, t, J = 8.0 Hz), 0.62 (3H, s), 0.46-0.31 (6H, m).
  • (7) Synthesis of compound 26 (((1R,2R,3aS,7aS)-1-(isoquinolin-7-yl)-7a-methyl-2-((triethylsilyl)oxy)-2,3,3a,7a-tetrahydro-1H-inden-5-yl)methanol)
  • To a CH2Cl2 solution (2.5 mL) of compound 25 (46 mg, 0.10 mmol), DIBAL-H (1.0 M in n-hexane, 0.3 mL, 0.3 mmol) was added at -78°C, and the mixture was stirred for 30 minutes. After the temperature of the reaction mixture was made to rise to 0°C, this was diluted with CH2Cl2 (5 mL), and an aqueous potassium sodium tartrate solution (7 mL) was added. The mixture was stirred for 6 hours and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:1) and compound 26 (22.5 mg, 52%) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.24 (1H, s), 8.51 (1H, d, J = 6.0 Hz), 7.85 (1H, s), 7.81 (1H, d, J = 8.5 Hz), 7.65 (1H, d, J = 5.5 Hz), 7.63 (1H, dd, J = 8.5, 2.0 Hz), 6.03 (1H, d, J = 9.0 Hz), 5.90 (1H, brs), 5.89 (1H, dd, J = 9.0, 1.5 Hz), 4.93 (1H, t, J = 7.0 Hz), 4.16 (1H, d, J = 12.5 Hz), 4.11 (1H, d, J = 12.5 Hz), 3.24 (1H, d, J = 7.5 Hz), 3.24-3.19 (1H, m), 2.23 (1H, td, J = 13.5, 8.5 Hz), 1.88 (1H, dd, J = 12.0, 8.5 Hz), 0.73 (9H, t, J = 8.0 Hz), 0.63 (3H, s), 0.46-0.31 (6H, m).
  • (8) Synthesis of compound 28 ((2R,3R,3aS,11aS,11bR)-3-(isoquinolin-7-yl)-3a-methyl-2-((triethylsilyl)oxy)-1,3,3a,8,9,10,11a,11b-octahydrocyclopenta[c]xanthen-7(2H)-one)
  • To a CH2Cl2 solution (1.3 mL) of compound 26 (22.5 mg, 0.054 mmol), Dess-Martin periodinane (34.1 mg, 0.08 mmol) and NaHCO3 (22.6 mg, 0.27 mmol) were added at 0°C, and the mixture was stirred at room temperature for 30 minutes. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NH4Cl solution was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. In this way, a mixture (27.5 mg) containing compound 27 was obtained.
  • To an AcOEt solution (2.7 mL) of the obtained product, 1,3-cyclohexanedione (12 mg, 0.11 mmol) and ethylenediamine (4.3 µL, 0.064 mmol) were added at 0°C, and the mixture was stirred at room temperature for 2 hours. After the temperature of the reaction mixture was made to drop to 0°C, water was added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (n-hexane/AcOEt = 1:1) and compound 28 (16.5 mg, 60% in 2 steps) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.26 (1H, s), 8.51 (1H, d, J = 6.0 Hz), 7.83 (1H, s), 7.81 (1H, d, J = 8.5 Hz), 7.66 (1H, d, J = 5.5 Hz), 7.61 (1H, dd, J = 8.5, 1.5 Hz), 6.36 (1H, brs), 6.01 (1H, d, J = 9.0 Hz), 5.78 (1H, d, J = 9.0 Hz), 4.95 (1H, t, J = 7.0 Hz), 4.81 (1H, dd, J = 11.5, 2.5 Hz), 3.17 (1H, d, J = 6.5 Hz), 2.84 (1H, td, J = 13.5, 7.5 Hz), 2.57 (1H, ddd, J = 18.0, 9.0, 5.0 Hz), 2.50 (1H, dt, J = 18.0, 5.0 Hz), 2.44-2.40 (2H, m), 2.25 (1H, td, J = 13.5, 8.5 Hz), 2.12-1.95 (3H, m), 0.75 (3H, s), 0.73 (9H, t, J = 8.0 Hz), 0.46-0.31 (6H, m).
  • (9) Synthesis of compound 30 (CA-5, (3R,3aS,11aS,11bR)-3-(isoquinolin-7-yl)-3a-methyl-1,3,3a,9,10,11b-hexahydrocyclopenta[c]xanthene-2,7(8H,11aH)-dione)
  • To a MeOH solution (0.7 mL) of compound 26 (4.7 mg, 0.009 mmol), a 5% HCl solution (0.18 mL, 0.25 mmol) was added at 0°C, and the mixture was stirred for 10 minutes. After addition of NaHCO3 (64 mg), the reaction mixture was dried over Na2SO4 and filtered, and the filtrated was concentrated in vacuo. The residue was dissolved in CHCl3 and the insoluble matter was filtered off through a cotton plug. The filtrate was concentrated in vacuo and a mixture (5.4 mg) containing compound 29 was obtained.
  • To a CH2Cl2 solution (0.3 mL) of the obtained product, Dess-Martin periodinane (11.6 mg, 0.03 mmol) was added at 0°C, and the mixture was stirred at room temperature for 30 minutes. After the temperature of the reaction mixture was made to drop to 0°C, a saturated NH4Cl solution and a saturated Na2S2O3 solution were added and then extraction with CH2Cl2 was performed. The organic layer was dried over Na2SO4 and filtered, and the filtrate was concentrated in vacuo. The residue was purified by silica gel column chromatography (CHCl3/MeOH/H2O = 100:3:1 (lower phase)) and compound 30 (3.3 mg, 91% in 2 steps) was obtained.
    1H-NMR (500 MHz, CDCl3) δ: 9.26 (1H, s), 8.55 (1H, d, J = 5.5 Hz), 7.84 (1H, d, J = 8.5 Hz), 7.77 (1H, s), 7.67 (1H, d, J = 5.5 Hz), 7.46 (1H, d, J = 8.5 Hz), 6.47 (1H, brs), 6.16 (1H, d, J = 9.0 Hz), 5.97 (1H, d, J = 9.0 Hz), 4.99 (1H, d, J = 9.0 Hz), 3.71 (1H, s), 2.90-2.81 (2H, m), 2.61 (1H, ddd, J = 18.0, 9.5, 5.5 Hz), 2.56-2.44 (4H, m), 2.12-1.95 (2H, m), 0.80 (3H, s).
  • <Example 6: Evaluation of selective anti-proliferative activity against vascular endothelial cells (2)>
  • CA-1, CA-2, CA-3, CA-4 and CA-5 were evaluated for anti-proliferative activity against normal human umbilical vein endothelial cells (HUVEC) and human pharyngeal carcinoma KB3-1 cells. The five test compounds were separately dissolved at predetermined concentrations in EtOH. HUVEC and KB3-1 were seeded in separate 96-well multiwell plates at 2x103 cells/100 µL/well and cultured in an atmosphere of 5% CO2 at 37°C for 24 hours. Next, 1.0 µL each of the ethanol solutions containing the test compound or the control compound at various concentrations were added, and the cells were cultured under the same conditions for additional 72 hours. After 72 hours, 10 µL of WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt) reagent was added. After 3-hour incubation, the amount of water-soluble formazan formed in viable cells was colorimetrically determined by measurement at OD 450 nm, and the growth inhibition ratio was calculated by comparison of the amount of formazan between the compound treatment groups and the non-treatment group.
  • The results of CA-1 are shown in Fig. 8, the results of CA-2 are shown in Fig. 9, the results of CA-3 are shown in Fig. 10, the results of CA-4 are shown in Fig. 11, and the results of CA-5 were shown in Fig. 12. As is clear from Figs. 8 to 12, each of these compounds selectively inhibits the growth of vascular endothelial cells.
  • <Example 7: Evaluation of in vivo anti-angiogenic activity after oral administration>
  • The test was performed in the same manner as in Example 3, except that oral administration was performed instead of intraperitoneal administration and that a 50 mg/kg administration group was additionally included.
  • The results are shown in Figs. 13 and 14. Fig. 13 shows images of the Matrigel injection sites in representative mice of all different groups except the 25 mg/kg administration group, and Fig. 14 shows a graph representing the measured amount of hemoglobin accumulated in the Matrigel. As is clear from Figs. 13 and 14, CA-1 administered at not less than 10 mg/kg significantly reduced the amount of hemoglobin accumulated in the Matrigel, and in the 50 mg/kg administration group, the amount of hemoglobin was reduced to almost the same level as that of the group injected with Matrigel not supplemented with the proangiogenic factor bFGF. These results demonstrate that the test compound CA-1 orally administered also exhibits in vivo anti-angiogenic effect.
  • <Example 8: Evaluation of antitumor activity in mouse cancer cell transplant model after oral administration>
  • The test was performed in the same manner as in Example 3, except that oral administration was performed instead of intraperitoneal administration and that a 50 mg/kg administration group was included instead of the 5 mg/kg administration group.
  • The results are shown in Figs. 15 and 16. Fig. 15 shows an image for size comparison of tumors isolated from the mice of all groups, and Fig. 16 shows a graph representing the measurement results of the tumor weight. As is clear from Figs. 15 and 16, the tumor weights of the 10 mg/kg, 25 mg/kg and 50 mg/kg CA-1 administration groups were reduced to 67%, 50% and 25% of that of the control group, respectively. Thus, CA-1 was shown to have marked antitumor activity. In no groups, weight loss or diarrhea, or visual abnormalities in organs of the mice were observed.

Claims (12)

  1. A compound represented by the general formula (M):
    Figure imgb0100
    wherein
    R1 represents a substituted or unsubstituted aromatic heterocyclic group selected from the groug consisting of a pyridyl group, a furyl group, a thienyl group, an indolyl group, a quinolyl group, an isoquinolyl group, a benzofuranyl group, a benzothienyl group, an imidazolyl group, a benzimidazolyl group, a thiazolyl group, an oxazolyl group, a pyrazolyl group, a pyrimidyl group, a pyrazinyl group, an isoxazolyl group, an isoindolyl group and a pyrrolyl group,
    R2 represents a hydrogen atom, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, OR3, N(R3)2, C(=O)OR3 or C(=O)N(R3)2,
    R3 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, or an acyl group having 1 to 4 carbon atoms,
    R4 represents a hydrogen atom, an oxygen atom or OR5,
    R5 represents a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or an acyl group having 1 to 3 carbon atoms, and
    a substituent of the substituted aromatic heterocyclic group or of the substituted alkyl group is independently selected from the group consisting of a fluorine atom, a chlorine atom, a cyano group, a hydroxyl group, a nitro group, an alkyl group, a cycloalkyl group, an alkoxy group, an amino group, a phenyl group, a naphthyl group, an anthryl group, a styryl group, a pyridyl group, a pyridoindolyl group, a quinolyl group and a benzothiazolyl group; or
    a pharmaceutically acceptable salt thereof.
  2. The compound according to claim 1, which is represented by the general formula (I):
    Figure imgb0101
    wherein R1 and R2 are as defined in Claim ; or
    a pharmaceutically acceptable salt thereof.
  3. The compound according to claim 1 or 2, wherein R1 is a pyridyl group, a quinolyl group or an isoquinolyl group; or a pharmaceutically acceptable salt thereof.
  4. The compound according to claim 3, which is represented by
    Figure imgb0102
    Figure imgb0103
    Figure imgb0104
    Figure imgb0105
    Figure imgb0106
    or
    Figure imgb0107
    or a pharmaceutically acceptable salt thereof.
  5. A pharmaceutical composition, comprising the compound according to any one of claims 1 to 4 or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.
  6. A vascular endothelial cell growth inhibitor, comprising the compound according to any one of claims 1 to 4 or a pharmaceutically acceptable salt thereof as an active ingredient.
  7. An angiogenesis inhibitor, comprising the compound according to any one of claims 1 to 4 or a pharmaceutically acceptable salt thereof as an active ingredient.
  8. A medicament for use in cancer prevention or treatment, comprising the compound according to any one of claims 1 to 4 or a pharmaceutically acceptable salt thereof as an active ingredient.
  9. The medicament for use according to claim 8, which is usable in combination with a chemotherapeutic drug, an immunotherapeutic drug or a hormone therapy drug.
  10. The medicament for use according to claim 8, which is usable in combination with radiotherapy.
  11. Use of the compound according to any one of claims 1 to 4 or a pharmaceutically acceptable salt thereof for production of medicaments for cancer prevention or treatment.
  12. The compound according to any one of claims 1 to 4 or a pharmaceutically acceptable salt thereof for use in cancer prevention or treatment.
EP11825285.7A 2010-09-17 2011-09-16 Novel cortistatin a analog and use thereof Not-in-force EP2617720B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010209131 2010-09-17
PCT/JP2011/071264 WO2012036287A1 (en) 2010-09-17 2011-09-16 Novel cortistatin a analog and use thereof

Publications (3)

Publication Number Publication Date
EP2617720A1 EP2617720A1 (en) 2013-07-24
EP2617720A4 EP2617720A4 (en) 2014-02-19
EP2617720B1 true EP2617720B1 (en) 2016-03-30

Family

ID=45831740

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11825285.7A Not-in-force EP2617720B1 (en) 2010-09-17 2011-09-16 Novel cortistatin a analog and use thereof

Country Status (5)

Country Link
US (1) US8791263B2 (en)
EP (1) EP2617720B1 (en)
JP (1) JP5614858B2 (en)
ES (1) ES2570748T3 (en)
WO (1) WO2012036287A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103102305B (en) * 2013-02-05 2015-01-21 中国科学院新疆理化技术研究所 Alkaloid of skeleton type 2 in nigella glandulifera preyn and preparation method of alkaloid
BR112016014760A2 (en) 2013-12-24 2017-12-12 Harvard College compound, pharmaceutical composition, methods for treating a condition, inhibiting and validating kinase activity, modulating the b-catenin pathway and the tgfb / bmp path in a cell, to modulate stat1 and hif-1 activity alpha in a cell to increase bim expression and to prepare a compound, mutant and protein
WO2016025424A1 (en) 2014-08-11 2016-02-18 Angion Biomedica Corporation Cytochrome p450 inhibitors and uses thereof
CN107531631B (en) 2014-12-31 2021-09-03 安吉昂生物医药公司 Methods and agents for treating diseases
EP3294298A4 (en) 2015-05-08 2018-10-17 President and Fellows of Harvard College Cortistatin analogues, syntheses, and uses thereof
EP3316889A4 (en) 2015-07-01 2018-11-14 President and Fellows of Harvard College Cortistatin analogues and syntheses and uses thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009137335A1 (en) 2008-05-05 2009-11-12 The Scripps Research Institute Synthesis of (+) corstistatin a and related compounds
WO2010024930A2 (en) 2008-08-28 2010-03-04 President And Fellows Of Harvard College Cortistatin analogues and syntheses therof

Also Published As

Publication number Publication date
EP2617720A1 (en) 2013-07-24
US20130210859A1 (en) 2013-08-15
EP2617720A4 (en) 2014-02-19
US8791263B2 (en) 2014-07-29
WO2012036287A1 (en) 2012-03-22
JP5614858B2 (en) 2014-10-29
JPWO2012036287A1 (en) 2014-02-03
ES2570748T3 (en) 2016-05-20

Similar Documents

Publication Publication Date Title
EP3612517B1 (en) Bicyclic compounds and their use in the treatment of cancer
EP2617720B1 (en) Novel cortistatin a analog and use thereof
EP3604306B1 (en) Macrocyclic derivative of pyrazol[3,4-d]pyrimidin-3-one, pharmaceutical composition and use thereof
EP3067356B1 (en) Pyrrolo pyrimidine derivative
CN114401952A (en) Substituted cycloalkyl compounds as modulators of integrated stress pathways
CA3138182A1 (en) Substituted cycloalkyls as modulators of the integrated stress pathway
EP4129996A1 (en) Novel aminopyrimidine egfr inhibitor
CA3080968A1 (en) Modulators of the integrated stress pathway
CA3109534A1 (en) Inhibiting .alpha.v .beta.6 integrin
EP3807251B1 (en) Phenyl and pyridinyl substituted imidazoles as modulators of roryt
JP2022553077A (en) METTL3 modulator
EA027533B1 (en) Fused tetra or penta-cyclic dihydrodiazepinocarbazolones as parp inhibitors
KR20150132170A (en) Acyclic cyanoethylpyrazolo pyridones as janus kinase inhibitors
CA3149891A1 (en) 3,5-disubstituted pyrazole compounds as kinase inhibitors and uses thereof
EP4169917A1 (en) Quinazoline compound and preparation method, application, and pharmaceutical compostion thereof
EP2906564A1 (en) Treating brain cancer using agelastatin a (aa) and analogues thereof
CA3110576A1 (en) Compounds for treating certain leukemias
EP3978498A1 (en) Substituted fused bicyclic derivative, preparation method therefor, and application thereof in medicines
EP3950693A1 (en) Thienoheterocyclic derivative, preparation method therefor and medical use thereof
CN110461836A (en) A kind of selective depression kinases compound and application thereof
AU2015362700B2 (en) Indole and azaindoles derivatives and their use in neurodegenerative diseases
UA56169C2 (en) Indolyl pyroliden methyl pyrrol derivatives, a method for preparing thereof, a pharmaceutical composition, a combined preparation and a treatment method, an intermediary product
KR20220042127A (en) Pyrazolopyrimidine compounds, methods for their preparation and applications thereof
EP4393924A1 (en) Imidazo [1,2-a] pyrazine or pyrazolo [1,5-a] pyrimidine derivative and use thereof
RU2686675C1 (en) Taxane compounds and also the production method and use thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130404

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20140122

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/4725 20060101ALI20140116BHEP

Ipc: C07D 405/04 20060101AFI20140116BHEP

Ipc: A61P 35/00 20060101ALI20140116BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: A61K 31/4725 20060101ALI20150731BHEP

Ipc: C07D 405/04 20060101AFI20150731BHEP

Ipc: A61P 35/00 20060101ALI20150731BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150904

INTG Intention to grant announced

Effective date: 20150925

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 785263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160415

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011024739

Country of ref document: DE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2570748

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20160520

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160701

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160330

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 785263

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160730

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160817

Year of fee payment: 6

Ref country code: GB

Payment date: 20160921

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160801

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160922

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011024739

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160916

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160916

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011024739

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170917

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110916

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160930

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170916

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160330

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160917