EP2616764A1 - Device and method for measuring the shape of a mirror or of a specular surface - Google Patents

Device and method for measuring the shape of a mirror or of a specular surface

Info

Publication number
EP2616764A1
EP2616764A1 EP11773081.2A EP11773081A EP2616764A1 EP 2616764 A1 EP2616764 A1 EP 2616764A1 EP 11773081 A EP11773081 A EP 11773081A EP 2616764 A1 EP2616764 A1 EP 2616764A1
Authority
EP
European Patent Office
Prior art keywords
pattern
measured
camera
shape
lighting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11773081.2A
Other languages
German (de)
French (fr)
Inventor
Michel Pichon
Romain Etienne
Alexandre Marlier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP2616764A1 publication Critical patent/EP2616764A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/18Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/25Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
    • G01B11/2513Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object with several lines being projected in more than one direction, e.g. grids, patterns

Definitions

  • the invention relates to a device for measuring the shape of a mirror or a specular surface (reflecting surface).
  • the invention is more particularly intended for surfaces that are not flat but having a convex shape whose concavity is strongly marked in a direction, hereinafter referred to as "main direction", and much less marked in the direction perpendicular to the main direction , called “secondary direction”. More precisely, "the direction of a concavity” is understood in this way and as illustrated in FIGS. 1a and 1b: by positioning a surface A on a horizontal plane support B with the domed portion opposite this support, the concavity with respect to the plane of the support is distinct according to its comparison with said plane in one and the other of the directions of the plane, directions corresponding to the X and Y axes in a two-dimensional orthogonal reference plane.
  • concavity with respect to the other is that which is least parallel to the support plane.
  • the concavity is more pronounced along the axis X, so called principal direction, than along the Y axis, said secondary direction.
  • measuring the shape means estimating the slope and the altitude for a multitude of points of the surface to be measured with respect to a reference surface, and this in the two corresponding measurement directions. to the main and secondary directions of the bending.
  • the invention will be more particularly described with reference to a curved glazing, without being limited thereto.
  • the device also applies to flat surfaces that are very slightly deformed, whether in laminated glass or tempered glass.
  • Another useful application of the device concerns the measurement of shape of parabolic solar mirrors, for which the concavity of the surface is much more accentuated.
  • it is indeed appropriate to measure the shape of a specular surface for example to detect glass defects at the outer surface of a car glazing. The detection and measurement of these defects make it possible to provide the aesthetic appearance of the automobile glazing if it was observed in reflection from the outside of the motor vehicle with which it is associated.
  • the shape of the mirror In a parabolic mirror application, it is generally preferable to know the shape of the mirror just after its manufacture, by comparing it to the perfect shape of a reference mirror. Indeed, the good focus of light rays by a mirror depends on the energy efficiency of the mirror. However, the focus is directly related to the ideal profile of the concavity of the mirror, which profile is precisely appreciated by the measurement of slope and altitude of a multitude of points of the surface.
  • Various shape measurement techniques are known, such as the probe process, photogrammetry, deflectometry, or laser scanning.
  • the probe process consists in mounting a probe at the end of a mechanical arm coming into contact with the surface of the glazing at numerous points (typically 1000 points regularly distributed for a glazing 1500x1500 mm). This measuring device gives direct access to the altitude of each point. The local slope is then calculated from the altitude by digital derivation. The acquisition and processing time is of the order of 100 minutes.
  • Photogrammetry consists in sticking on the entire surface to measure a pattern consisting of a white sheet on which is drawn a large number of precisely positioned black spots. Several shots of this pattern are made from different angles (typically eight angles), then these shots are processed by appropriate software to reconstruct the two-dimensional shape of the surface and thus provide a map of the altitude. The local slope is calculated from this altitude by derivation. The acquisition and processing time is of the order of 120 minutes.
  • the deflectometry technique is on the other hand much faster, of the order of 5 minutes. It consists in analyzing the deformations of a test pattern after reflection on the surface to be measured. By knowing the state of the undeformed pattern, and in a known manner by ray tracing, the local slope of the surface at any point on this surface can be calculated. The mathematical integration of the local slope into consecutive points leads to the altitude of these different points.
  • Laser scanning also faster technique, consists of scanning the surface to be analyzed in two perpendicular directions with a laser precisely aligned in each direction. A camera observes the point of impact of the beam after reflection on a target placed in the plane of focus of the surface and checks the quality of the centering of the point of impact of the beam on this target. The duration of the measurement, for a surface of 1500x1500 mm is, typically, 5 minutes.
  • deflectometry and laser scanning techniques are difficult to implement on an industrial line because they require adjustments, extremely fine positioning or calibrations of the measuring systems as soon as a new surface is to be measured.
  • an alignment error or inclination of the laser for example 1 milliradian, or 1 mm over a distance of 1 m completely distorts the measurement and estimation results.
  • the object of the invention is therefore to provide a device for measuring the shape of a specular surface associated with a volume such as a glazing unit or a mirror, this device not having the aforementioned drawbacks and combining the performances both when the time of implementation and acquisition and processing of data, and the reproducibility of measurement on industrial line.
  • the device for measuring the shape of a mirror or a specular surface comprises a first planar pattern of one-way pattern intended to be at a distance from the surface to be measured, a camera for the shooting of the image intended to be reflected in the specular surface, information processing means which are recorded by the camera, first means of illumination of the whole target, and is characterized in that it comprises additional means of lighting which are arranged in the immediate vicinity and parallel to the plane of the test pattern, or in the plane of the test pattern, and facing the surface to be measured, the first lighting means and the additional lighting means alternately so as to visualize respectively that the first test pattern or a second pattern of one-way pattern generated from additional lighting means.
  • the additional lighting means by their arrangement are intended to illuminate in the plane of the test pattern towards the surface to be measured.
  • the device thus makes it possible, from two distinct patterns, to provide measurements at a time, in the direction of the surface that requires the most precision and resolution, namely the direction of the greatest deformation, and in the secondary direction perpendicular to the main direction.
  • the alternating illumination shows either a first monodirectional pattern test pattern which ensures to measure the shape in the main direction, or a second pattern of one-way pattern and perpendicular to the pattern of the first pattern to measure the deformation of the surface. in his secondary direction.
  • This device avoids the use of a bi-directional pattern, such as a chessboard pattern, which is difficult to process and has too low spatial resolution.
  • the device of the invention by-passes these difficulties by making cohabit on the same surface supporting the first pattern, two separate patterns that are visible only in an appropriate implementation of the lighting conditions.
  • the lighting time respectively of the first lighting means and additional lighting means lasts the time of a respective shooting of the entire surface by the camera.
  • this device allows an extremely fast measurement of the shape of the surface according to an acquisition and processing time of at most 20 seconds, which is particularly suitable for an industrial line.
  • the first pattern comprises an alternation of dark and light parallel lines of identical width, such as 10 mm.
  • width is meant the smallest dimension of a line.
  • the second pattern provided by the additional illumination means comprises a multiplicity of point light sources, such as light-emitting diodes or optical fiber terminations, which are regularly spaced in an alignment parallel to the lines of the first pattern.
  • point light sources such as light-emitting diodes or optical fiber terminations
  • the light sources are aligned centrally in the width of at least one dark line.
  • the device comprises a panel carrying the first sight, this panel comprising a central orifice which accommodates the objective of the camera, preferably the orifice being dimensioned so that the ratio between its surface and the total area of the target is less than 1/1000.
  • the distance between the first sight and the surface to be measured, and the dimensions of the target are adapted so that the whole of the target is reflected on the entire surface to be measured, and in that the objective of the camera is adapted to record in a single shot the entire surface to be measured.
  • the device is advantageously associated with a plane support carrying the surface to be measured, this support extending parallel to the first target, and the surface to be measured being intended to be arranged centrally with respect to the optical axis of the objective from the camera.
  • the opposite edges of the surface to be measured and perpendicular to the main direction are placed substantially at the same distance from the support so that the curvature in the main direction is substantially symmetrical with respect to the optical axis constituted by the axis of the camera.
  • the concavity of said surface must be directed opposite the target, and said surface is arranged on said support so that the unidirectional pattern of the first target is oriented perpendicular to the main direction of the bending.
  • the surface is deposited on the support so that the camera can capture the entire surface in one shot, but no precise centering of the surface is necessary, nor calibration or calibration step, which allows very advantageously to save time on industrial line.
  • FIG. 2 shows a schematic sectional view of the measuring device of the invention associated with a support carrying the surface to be measured;
  • FIG. 3 is a perspective view of the support of FIG. 2;
  • FIG. 4 is a front view of an example of a first pattern with a one-way pattern used by the device of the invention.
  • FIG. 5 is a partial front view of an example of a second pattern used by the invention.
  • FIG. 2 diagrammatically illustrates the measuring device 1 of the invention for estimating the shape of a specular surface 2, such as one of the main faces of a curved glazing having distinct curvatures along mainly two directions; bending being more pronounced in one of the directions.
  • a specular surface 2 such as one of the main faces of a curved glazing having distinct curvatures along mainly two directions; bending being more pronounced in one of the directions.
  • the device comprises a support 3 on which the glazing is deposited and a more detailed view of which is illustrated in FIG. 3, a pattern 4 with a monodirectional pattern which is more particularly illustrated with reference to FIG. 4, the surface 2 of the glazing being next to the sight, a camera 5, processing means 6 connected to the camera and able to process the recordings recorded by the camera, the first illumination means 7 of the sight, and additional means of illumination 8 implemented when the first lighting means are extinguished.
  • the additional lighting means 8 are configured and arranged to illuminate in the plane of the target towards the surface to be measured 2 by generating a second pattern 9 monodirectional pattern perpendicular to the pattern of the first pattern.
  • the device of the invention makes it possible, thanks to the first pattern 4, to produce an image in the surface in high resolution, and by the second pattern which is concealed in the first when the additional illumination means are extinguished, to create an image of lower but sufficient resolution for measurement result requirements.
  • Changing camera lighting and shooting conditions make it easy to switch between instantly and take two shots successively, one shot per image of each of the staffs reflecting.
  • the measurement is therefore made in two perpendicular directions, considering that the most convex shape should be measured more accurately than the less curved shape, or considering that the knowledge of the shape in the second direction is negligible or that this form is flat in this direction.
  • the support 3 with reference to FIGS. 3 and 4 forms a plane surface table and on which are arranged a plurality of support pads 30, here visible by transparency through the surface and four in number, as well as lateral stops 31 and 32.
  • the curved glazing is deposited on the support 3 according to one of its main faces 20, opposite the surface 2 to be measured, the convex portion 21 of the glazing being turned towards the support 3.
  • the glazing thus rests by its face 20 on the support pads 30 which are spaced appropriately to properly distribute the weight of the glazing to maintain a stable equilibrium.
  • the lateral stops 31 and 32 make it possible to wedge the glazing by its lateral edges 20 and 22.
  • the studs 30 and the stops 31 and 32 also serve to correctly position the glazing, and therefore the surface 2, relative to the target 4 which is intended to be reflected in this surface.
  • the positioning of the glazing on the measurement support can be done via a robot arm. It can more simply be done through two operators. More commonly, the positioning of the glazing under the test is done during the conveying of the glazing on line by stopping the glazing under the test pattern, then focusing (by centering) with the aid of removable cylinders acting as stops 31 and 32 associated with an elevator system ensuring vertical translation up or down, and placed under the glazing instead of the support pads 30 to bring the glazing at the right distance from the test pattern. After the shots, the glazing is redeposited on the conveyor and evacuated before the arrival of the next glazing.
  • the first pattern 4 illustrated in FIG. 4 is a pattern with a one-way pattern forming a regular periodic signal.
  • the pattern consists of a regular alternation of dark lines 40 and lines 41 and clear, preferably black and white lines to provide a strong contrast between them.
  • the width of each line is constant, for example 10 mm.
  • Each line is an object, optically speaking.
  • Each line has an upstream edge and a downstream edge whose positioning is referenced in the processing means 6.
  • the camera 5 is intended to take the image of the pattern in reflection on the surface, and therefore the image of each upstream and downstream edge of the lines; the processing means will establish a comparison of the positioning of the edges of each of the lines between the image and the reference, providing the optical magnification of each line.
  • the treatment process will be seen in more detail later.
  • the target 4 faces the surface 2 to be measured and is arranged at a distance. It extends along a square or rectangular surface.
  • the dimensions of the test pattern and its separation distance from the surface 2 are adapted so that the whole of the test pattern can be reflected in the surface 2, these magnitudes also taking into account the type of objective (viewing angle ) assigned to the camera.
  • viewing angle the type of objective assigned to the camera.
  • the distance sight-surface is 2500 mm
  • the dimensions of the target are of 3600 x 1800 mm.
  • the objective 50 of the camera 5 (FIG. 2) is located in the same plane as that of the target 4 and pointed towards the surface 2.
  • the type of objective and the distance to the surface allow to measure in full field, that is to say on the entire surface in a single shot.
  • the target 4 is for example supported by a rigid panel 42 of white PVC on which are screen printed black lines of identical width and regularly spaced.
  • the panel 42 has in its center an orifice 43 accommodating the camera lens.
  • the orifice will be as small as possible because the portion of the surface 2 facing it can not be measured.
  • care must be taken to have a ratio between the surface of the orifice and the surface of the target less than 1/1000.
  • the missing part of the pattern corresponding to this orifice may however be artificially reconstituted by a suitable technique so as not to alter the measurement in this area.
  • the target is illuminated by its front face (facing the surface 2) with the first lighting means 7, such as projectors.
  • the lighting means are in a number and arrangement that are suitable for providing uniform illumination of the entire pattern.
  • the whole of its image reflecting in the specular surface 2 is intended to be photographed in a single take by the camera which covers by its objective the whole of the glazing area.
  • the camera 5 is for example a matrix camera of known type comprising a decomposition of square pixels according to 1700 columns on 1200 lines. Each pixel is associated with a specific area of the image of the reference pattern which allows the position of each of the line edges of the pattern to be referenced. Each pixel also corresponds to a zone (point) of the surface to be measured.
  • the comparison between the acquired pattern is on a perfect glazing, or on a flat glazing and in measurement geometric conditions identical to that of the glazing to be measured, and its image reflected by the glazing to be measured will allow to deduce the optical magnification of each of lines at each pixel and therefore each point of the surface 2. Thanks to the processing means 6, the measured optical magnification will be deduced, the slope in each of the points and consequently the altitude to establish finally the profile of the surface (its form).
  • the glazing in order to have the best resolution for measuring the shape corresponding to the most pronounced concavity (principal direction), it is advisable to orient the glazing with respect to the sight so that the lines of the sight are arranged perpendicular to this principal direction.
  • the pattern 4 arranged vis-à-vis the surface 2 will be such that the lines 40 and 41 will be perpendicular to the X axis and parallel to the orthogonal Y axis.
  • this pattern pattern in parallel lines corresponds to measuring the deformations observed according to the width of each of the lines, which ensures a higher resolution of measurement than with the other type of pattern whose motive will be seen further, and is therefore adapted to the profile of the most pronounced concavity.
  • the shooting of the image of the test pattern and its processing to deduce the shape of the surface 2 according to the main direction of the bending are performed in a very short time, of the order of 10 s.
  • the device makes it possible to measure extremely rapidly also the shape corresponding to the secondary direction of the bending without moving the glazing.
  • a second pattern is thus created in a monodirectional pattern perpendicular to the pattern of the first pattern, the first being then somehow "erased” (no longer being visualized) to take an image in reflection in the first pattern. surface 2 than the only second sight.
  • the additional lighting means 8 are provided and put into operation by control means 80, while the first illumination means 7 are extinguished controlled by means of control. 70.
  • the control means 70 and 80 are controlled jointly to provide illumination and control. concomitant extinction.
  • the exposure time of the camera in particular can also be adapted to the luminous intensity of the second sight, much brighter than the first sight that is no longer illuminated in order to "erase" even more effectively this first sight.
  • the additional lighting 8 is arranged at the plane of the test pattern, in the plane of the facade precisely the target or in its immediate vicinity. In addition, this lighting is located in the space of the dark lines of the first monodirectional pattern 4.
  • the additional lighting means 8 consist, with regard to FIG. 5, in a plurality of light points regularly spaced along each of the dark lines 41 of the pattern 4 forming the second pattern 9.
  • the lighting elements consist of a multiplicity of point light sources 90, such as light-emitting diodes or optical fiber terminations.
  • the pattern of the second pattern thus created generates a multitude of objects, formed optically speaking by the separation width between two consecutive light spots for each of the lines.
  • This second pattern once reflected in the surface 2, returns an image for which is measured in the direction parallel to the secondary direction the possible deformation (optical magnification) of the separation distance from one light point to another.
  • This pattern 9 makes it possible to measure the shape in the secondary direction of the bending, that is to say in the direction Y.
  • Such a pattern of the pattern because of its resolution less than that of the pattern of the first, is in effect used for the less curved profile of the surface.
  • the processing and calculation means 6 are connected to the camera 5 to develop the mathematical treatments and analyzes that follow the two shots.
  • the processing method consists, from the optical magnification measured ⁇ , at a point on the surface (corresponding to the pixel i of the camera), while knowing the distance target-surface d sm to be measured, to calculate the focal distance fi ' equivalent spherical mirror which would give a magnification ⁇ of the test pattern at the distance d sm .
  • the local curvature (at each point) can be deduced in a known manner, and then by integrating the local curvature a first time, the local slope is deduced, which then gives access after another mathematical integration at the altitude of each of the points of the surface, and consequently to the shape of this surface.
  • the device of the invention thus provides, by its two monodirectional patterns visualizable alternately very quickly, by shooting only two images, and by an easy calculation method, an extremely fast measurement system, reproducible, requiring only a brief shutdown time of the glazing (no more than 10 seconds) followed by a processing time of not more than 10 seconds when it advances on an industrial line.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention relates to a device for measuring the shape of a surface. Said device comprises a first test pattern (4) having a unidirectional design illuminated by a first lighting means (7), which enables the shape to be measured in a first direction, and a second test pattern (9) having a unidirectional design perpendicular to the design of the first test pattern, which enables the shape to be measured in a second direction perpendicular to the first direction. The second test pattern is generated in the same plane as the first test pattern by an additional lighting means (8) which is only illuminated when the first lighting means is switched off.

Description

DISPOSITIF ET PROCEDE DE MESURE DE LA FORME D'UN MIROIR OU D'UNE SURFACE SPECULAIRE  DEVICE AND METHOD FOR MEASURING THE SHAPE OF A MIRROR OR A SPECULAR SURFACE
L'invention concerne un dispositif pour mesurer la forme d'un miroir ou d'une surface spéculaire (surface réfléchissante). The invention relates to a device for measuring the shape of a mirror or a specular surface (reflecting surface).
L'invention est plus particulièrement destinée aux surfaces qui ne sont pas planes mais présentant une forme bombée dont la concavité est fortement marquée selon une direction, dite par la suite « direction principale », et nettement moins marquée dans la direction perpendiculaire à la direction principale, dite « direction secondaire ». Plus précisément, « la direction d'une concavité » s'entend ainsi et tel qu'illustrée sur les figures 1 a et 1 b : en positionnant une surface A sur un support plan horizontal B avec la partie bombée en regard de ce support, la concavité par rapport au plan du support s'avère distincte selon sa comparaison par rapport au dit plan dans l'une et l'autre des directions du plan, directions correspondant aux axes X et Y dans un repère orthogonal à deux dimensions du plan. La concavité la plus prononcée par rapport à l'autre est celle qui est la moins parallèle au plan de support. A titre d'exemple sur les figures 1 a et 1 b, la concavité est davantage prononcée selon l'axe X, dite par conséquent direction principale, que selon l'axe Y, dite direction secondaire. The invention is more particularly intended for surfaces that are not flat but having a convex shape whose concavity is strongly marked in a direction, hereinafter referred to as "main direction", and much less marked in the direction perpendicular to the main direction , called "secondary direction". More precisely, "the direction of a concavity" is understood in this way and as illustrated in FIGS. 1a and 1b: by positioning a surface A on a horizontal plane support B with the domed portion opposite this support, the concavity with respect to the plane of the support is distinct according to its comparison with said plane in one and the other of the directions of the plane, directions corresponding to the X and Y axes in a two-dimensional orthogonal reference plane. The most pronounced concavity with respect to the other is that which is least parallel to the support plane. As an example in Figures 1a and 1b, the concavity is more pronounced along the axis X, so called principal direction, than along the Y axis, said secondary direction.
Par ailleurs, on entend par « mesurer la forme », l'estimation de la pente et de l'altitude pour une multitude de points de la surface à mesurer par rapport à une surface de référence, et cela dans les deux directions de mesure correspondant aux directions principale et secondaire du bombage. In addition, "measuring the shape" means estimating the slope and the altitude for a multitude of points of the surface to be measured with respect to a reference surface, and this in the two corresponding measurement directions. to the main and secondary directions of the bending.
L'invention sera plus particulièrement décrite en regard d'un vitrage bombé, sans toutefois y être limitée. Le dispositif s'applique également à des surfaces planes très légèrement déformées, que ce soit en verre feuilleté ou en verre trempé. Une autre application utile du dispositif concerne la mesure de forme de miroirs solaires paraboliques, pour lesquels la concavité de la surface est bien plus accentuée. Selon les applications, il est en effet opportun de mesurer la forme d'une surface spéculaire, par exemple pour détecter des défauts du verre au niveau de la surface extérieure d'un vitrage automobile. La détection et la mesure de ces défauts permettent de fournir le rendu esthétique du vitrage automobile si celui-ci était observé en réflexion de l'extérieur du véhicule automobile auquel il est associé. Par ailleurs, certains défauts peuvent même devenir très gênants après assemblage de la feuille de verre pour constituer un vitrage feuilleté utilisé en tant que pare-brise, car ils engendrent des phénomènes de distorsion optique, accentués du fait de l'assemblage à une seconde feuille de verre. Par conséquent, dans la pratique, on souhaite détecter ces défauts bien en amont dans la chaîne de fabrication d'un vitrage afin d'écarter et mettre au rébus ces surfaces verrières en cas de défauts trop prononcés. The invention will be more particularly described with reference to a curved glazing, without being limited thereto. The device also applies to flat surfaces that are very slightly deformed, whether in laminated glass or tempered glass. Another useful application of the device concerns the measurement of shape of parabolic solar mirrors, for which the concavity of the surface is much more accentuated. According to the applications, it is indeed appropriate to measure the shape of a specular surface, for example to detect glass defects at the outer surface of a car glazing. The detection and measurement of these defects make it possible to provide the aesthetic appearance of the automobile glazing if it was observed in reflection from the outside of the motor vehicle with which it is associated. Moreover, certain defects can even become very troublesome after assembly of the glass sheet to constitute a laminated glazing used as a windshield, because they generate optical distortion phenomena, accentuated by the fact of the assembly to a second sheet of glass. Therefore, in practice, it is desired to detect these defects well upstream in the production line of a glazing to remove and rebuse these glass surfaces in case of too pronounced defects.
Il est également judicieux de connaître la forme d'un vitrage pour savoir s'il épousera parfaitement en sa périphérie la carrosserie à laquelle il est destiné. It is also wise to know the shape of a glazing to know if he will marry perfectly in its periphery the bodywork for which it is intended.
Dans une application de miroir parabolique, il est généralement préférable de connaître la forme du miroir juste après sa fabrication, en la comparant à la forme parfaite d'un miroir de référence. En effet, de la bonne focalisation des rayons lumineux par un miroir dépend le rendement énergétique de ce miroir. Or, la focalisation est directement liée au profil idoine de la concavité du miroir, profil qui est justement apprécié par la mesure de pente et d'altitude d'une multitude de points de la surface. Différentes techniques de mesure de forme sont connues, telles le procédé avec palpeur, la photogrammétrie, la déflectométrie, ou encore le balayage laser. In a parabolic mirror application, it is generally preferable to know the shape of the mirror just after its manufacture, by comparing it to the perfect shape of a reference mirror. Indeed, the good focus of light rays by a mirror depends on the energy efficiency of the mirror. However, the focus is directly related to the ideal profile of the concavity of the mirror, which profile is precisely appreciated by the measurement of slope and altitude of a multitude of points of the surface. Various shape measurement techniques are known, such as the probe process, photogrammetry, deflectometry, or laser scanning.
Le procédé avec palpeur consiste à monter un palpeur à l'extrémité d'un bras mécanique venant en contact avec la surface du vitrage en de nombreux points (typiquement 1000 points répartis régulièrement pour un vitrage de 1500x1500 mm). Ce dispositif de mesure donne accès directement à l'altitude de chacun des points. La pente locale est ensuite calculée à partir de l'altitude par dérivation numérique. La durée d'acquisition et de traitement est de l'ordre de 100 minutes. The probe process consists in mounting a probe at the end of a mechanical arm coming into contact with the surface of the glazing at numerous points (typically 1000 points regularly distributed for a glazing 1500x1500 mm). This measuring device gives direct access to the altitude of each point. The local slope is then calculated from the altitude by digital derivation. The acquisition and processing time is of the order of 100 minutes.
La photogrammétrie consiste à coller sur toute la surface à mesurer une mire constituée d'une feuille blanche sur laquelle est tracé un grand nombre de points noirs précisément positionnés. Plusieurs prises de vue de cette mire sont réalisées sous différents angles (typiquement huit angles), puis ces prises de vue sont traitées par un logiciel approprié afin de reconstituer la forme en deux dimensions de la surface et fournir ainsi une cartographie de l'altitude. La pente locale est calculée à partir de cette altitude par dérivation. La durée d'acquisition et de traitement est de l'ordre de 120 minutes. Photogrammetry consists in sticking on the entire surface to measure a pattern consisting of a white sheet on which is drawn a large number of precisely positioned black spots. Several shots of this pattern are made from different angles (typically eight angles), then these shots are processed by appropriate software to reconstruct the two-dimensional shape of the surface and thus provide a map of the altitude. The local slope is calculated from this altitude by derivation. The acquisition and processing time is of the order of 120 minutes.
Cependant, les deux techniques précédentes présentent l'inconvénient de temps de traitement beaucoup trop longs lorsqu'il s'agit de les mettre en œuvre sur des lignes industrielles dont les cadences imposent le passage d'un volume toutes les 20 à 30 secondes. However, the two previous techniques have the disadvantage of processing time much too long when it comes to implement on industrial lines whose rates require the passage of a volume every 20 to 30 seconds.
La technique de déflectométrie est par contre bien plus rapide, de l'ordre de 5 minutes. Elle consiste à analyser les déformations d'une mire après réflexion sur la surface à mesurer. En connaissant l'état de la mire non déformée, et de manière connue par tracé de rayons, la pente locale de la surface en tout point de cette surface peut être calculée. L'intégration mathématique de la pente locale en des points consécutifs conduit à l'altitude de ces différents points. Le balayage laser, technique également plus rapide, consiste à balayer la surface à analyser selon deux directions perpendiculaires avec un laser précisément aligné selon chacune des directions. Une caméra observe le point d'impact du faisceau après réflexion sur une cible placée dans le plan de focalisation de la surface et vérifie la qualité du centrage du point d'impact du faisceau sur cette cible. La durée de la mesure, pour une surface de 1500x1500 mm est, typiquement, de 5 minutes. The deflectometry technique is on the other hand much faster, of the order of 5 minutes. It consists in analyzing the deformations of a test pattern after reflection on the surface to be measured. By knowing the state of the undeformed pattern, and in a known manner by ray tracing, the local slope of the surface at any point on this surface can be calculated. The mathematical integration of the local slope into consecutive points leads to the altitude of these different points. Laser scanning, also faster technique, consists of scanning the surface to be analyzed in two perpendicular directions with a laser precisely aligned in each direction. A camera observes the point of impact of the beam after reflection on a target placed in the plane of focus of the surface and checks the quality of the centering of the point of impact of the beam on this target. The duration of the measurement, for a surface of 1500x1500 mm is, typically, 5 minutes.
Toutefois, les techniques par déflectométrie et balayage laser sont difficiles à mettre en œuvre sur une ligne industrielle car elles nécessitent des réglages, des positionnements ou des étalonnages extrêmement fins des systèmes de mesure dès qu'une nouvelle surface est à mesurer. En particulier, une erreur d'alignement ou d'inclinaison du laser, par exemple de 1 milliradian, soit 1 mm sur une distance de 1 m fausse totalement les résultats de mesure et d'estimation. However, deflectometry and laser scanning techniques are difficult to implement on an industrial line because they require adjustments, extremely fine positioning or calibrations of the measuring systems as soon as a new surface is to be measured. In particular, an alignment error or inclination of the laser, for example 1 milliradian, or 1 mm over a distance of 1 m completely distorts the measurement and estimation results.
L'invention a donc pour but de fournir un dispositif de mesure de la forme d'une surface spéculaire associée à un volume tel qu'un vitrage ou un miroir, ce dispositif ne présentant pas les inconvénients précités et conjuguant les performances à la fois quant au temps de mise en œuvre et d'acquisition et de traitement des données, et à la reproductibilité de mesure sur ligne industrielle. The object of the invention is therefore to provide a device for measuring the shape of a specular surface associated with a volume such as a glazing unit or a mirror, this device not having the aforementioned drawbacks and combining the performances both when the time of implementation and acquisition and processing of data, and the reproducibility of measurement on industrial line.
Selon l'invention, le dispositif de mesure de la forme d'un miroir ou d'une surface spéculaire comporte une première mire plane de motif monodirectionnel destinée à être à distance de la surface à mesurer, une caméra pour la prise de vue de l'image destinée à se réfléchir dans la surface spéculaire, des moyens de traitement des informations qui sont enregistrées par la caméra, des premiers moyens d'éclairage de l'ensemble la mire, et est caractérisé en ce qu'il comporte des moyens supplémentaires d'éclairage qui sont agencés, à proximité immédiate et parallèlement au plan de la mire, ou dans le plan même de la mire, et en regard de la surface à mesurer, les premiers moyens d'éclairage et ceux supplémentaires éclairant alternativement de manière à ne visualiser respectivement que la première mire ou bien une seconde mire de motif monodirectionnel engendrée à partir des moyens supplémentaires d'éclairage. According to the invention, the device for measuring the shape of a mirror or a specular surface comprises a first planar pattern of one-way pattern intended to be at a distance from the surface to be measured, a camera for the shooting of the image intended to be reflected in the specular surface, information processing means which are recorded by the camera, first means of illumination of the whole target, and is characterized in that it comprises additional means of lighting which are arranged in the immediate vicinity and parallel to the plane of the test pattern, or in the plane of the test pattern, and facing the surface to be measured, the first lighting means and the additional lighting means alternately so as to visualize respectively that the first test pattern or a second pattern of one-way pattern generated from additional lighting means.
Les moyens supplémentaires d'éclairage par leur agencement sont destinés à éclairer dans le plan de la mire en direction de la surface à mesurer. Le dispositif permet donc à partir de deux mires distinctes de fournir des mesures à la fois, dans la direction de la surface qui sollicite le plus de précision et de résolution, à savoir la direction de plus forte déformation, et dans la direction secondaire perpendiculaire à la direction principale. Ainsi, l'éclairage alterné met en évidence soit une première mire de motif monodirectionnel qui assure de mesurer la forme dans la direction principale, soit une seconde mire de motif monodirectionnel et perpendiculaire au motif de la première mire afin de mesurer la déformation de la surface dans sa direction secondaire. The additional lighting means by their arrangement are intended to illuminate in the plane of the test pattern towards the surface to be measured. The device thus makes it possible, from two distinct patterns, to provide measurements at a time, in the direction of the surface that requires the most precision and resolution, namely the direction of the greatest deformation, and in the secondary direction perpendicular to the main direction. Thus, the alternating illumination shows either a first monodirectional pattern test pattern which ensures to measure the shape in the main direction, or a second pattern of one-way pattern and perpendicular to the pattern of the first pattern to measure the deformation of the surface. in his secondary direction.
Ce dispositif évite l'utilisation d'une mire à motif bidirectionnel, telle qu'une mire en forme d'échiquier, qui est difficile à traiter et présente une trop faible résolution spatiale. Le dispositif de l'invention contourne par conséquent ces difficultés en faisant cohabiter sur la même surface supportant la première mire, deux mires distinctes qui ne sont visibles que selon une mise en œuvre appropriée des conditions d'éclairage. This device avoids the use of a bi-directional pattern, such as a chessboard pattern, which is difficult to process and has too low spatial resolution. The device of the invention by-passes these difficulties by making cohabit on the same surface supporting the first pattern, two separate patterns that are visible only in an appropriate implementation of the lighting conditions.
Selon une caractéristique, le temps d'éclairage respectivement des premiers moyens d'éclairage et des moyens supplémentaires d'éclairage dure le temps d'une prise de vue respective de l'ensemble de la surface par la caméra. According to one characteristic, the lighting time respectively of the first lighting means and additional lighting means lasts the time of a respective shooting of the entire surface by the camera.
Ainsi, ce dispositif permet une mesure extrêmement rapide de la forme de la surface selon un temps d'acquisition et de traitement d'au plus 20 secondes, ce qui est particulièrement adapté pour une ligne industrielle. Thus, this device allows an extremely fast measurement of the shape of the surface according to an acquisition and processing time of at most 20 seconds, which is particularly suitable for an industrial line.
Selon une autre caractéristique, la première mire comprend une alternance de lignes parallèles sombres et claires de largeur identique, telle que de 10 mm. On entend par « largeur », la dimension la plus petite d'une ligne. According to another characteristic, the first pattern comprises an alternation of dark and light parallel lines of identical width, such as 10 mm. By "width" is meant the smallest dimension of a line.
De préférence, la seconde mire fournie par les moyens supplémentaires d'éclairage comprend une multiplicité de sources lumineuses ponctuelles, du type diodes électroluminescentes ou terminaisons de fibres optiques, qui sont régulièrement espacées selon un alignement parallèle aux lignes de la première mire. Preferably, the second pattern provided by the additional illumination means comprises a multiplicity of point light sources, such as light-emitting diodes or optical fiber terminations, which are regularly spaced in an alignment parallel to the lines of the first pattern.
Plus particulièrement, les sources lumineuses sont alignées de manière centrée dans la largeur d'au moins une ligne sombre. Selon une autre caractéristique, le dispositif comporte un panneau portant la première mire, ce panneau comprenant un orifice central qui accueille l'objectif de la caméra, de préférence l'orifice étant dimensionné de sorte que le rapport entre sa surface et la surface totale de la mire soit inférieur à 1/1000. More particularly, the light sources are aligned centrally in the width of at least one dark line. According to another feature, the device comprises a panel carrying the first sight, this panel comprising a central orifice which accommodates the objective of the camera, preferably the orifice being dimensioned so that the ratio between its surface and the total area of the target is less than 1/1000.
La distance entre la première mire et la surface à mesurer, et les dimensions de la mire sont adaptées de sorte que l'ensemble de la mire soit réfléchi sur la totalité de la surface à mesurer, et en ce que l'objectif de la caméra est adapté pour enregistrer en une seule prise de vue la totalité de la surface à mesurer. The distance between the first sight and the surface to be measured, and the dimensions of the target are adapted so that the whole of the target is reflected on the entire surface to be measured, and in that the objective of the camera is adapted to record in a single shot the entire surface to be measured.
Le dispositif est avantageusement associé à un support plan portant la surface à mesurer, ce support s'étendant parallèlement à la première mire, et la surface à mesurer étant destinée à être agencée de manière centrée par rapport à l'axe optique de l'objectif de la caméra. Les bords opposés de la surface à mesurer et perpendiculaires à la direction principale sont placés sensiblement à la même distance du support afin que la courbure dans la direction principale soit sensiblement symétrique par rapport à l'axe optique constitué par l'axe de la caméra. Pour assurer la mesure selon les directions principale et secondaire d'une surface bombée, la concavité de ladite surface doit être dirigée en regard de la mire, et ladite surface est agencée sur ledit support de façon que le motif monodirectionnel de la première mire soit orienté perpendiculairement à la direction principale du bombage. The device is advantageously associated with a plane support carrying the surface to be measured, this support extending parallel to the first target, and the surface to be measured being intended to be arranged centrally with respect to the optical axis of the objective from the camera. The opposite edges of the surface to be measured and perpendicular to the main direction are placed substantially at the same distance from the support so that the curvature in the main direction is substantially symmetrical with respect to the optical axis constituted by the axis of the camera. To ensure the measurement in the main and secondary directions of a curved surface, the concavity of said surface must be directed opposite the target, and said surface is arranged on said support so that the unidirectional pattern of the first target is oriented perpendicular to the main direction of the bending.
La surface est déposée sur le support de façon que la caméra puisse prendre en une seule prise de vue l'ensemble de la surface, mais aucun centrage précis de la surface n'est nécessaire, ni d'étape d'étalonnage ou de calibrage, ce qui permet très avantageusement de gagner du temps sur ligne industrielle. The surface is deposited on the support so that the camera can capture the entire surface in one shot, but no precise centering of the surface is necessary, nor calibration or calibration step, which allows very advantageously to save time on industrial line.
La présente invention est maintenant décrite à l'aide d'exemples uniquement illustratifs et nullement limitatifs de la portée de l'invention, et à partir des illustrations ci-jointes, dans lesquelles : - Les figures 1 a et 1 b illustrent schématiquement le profil d'une surface bombée selon respectivement deux directions perpendiculaires; The present invention is now described with the aid of examples which are only illustrative and in no way limit the scope of the invention, and from the attached illustrations, in which: - Figures 1a and 1b schematically illustrate the profile of a curved surface respectively in two perpendicular directions;
- La figure 2 représente une vue en coupe schématique du dispositif de mesure de l'invention associé à un support portant la surface à mesurer; - La figure 3 est une vue en perspective du support de la figure 2 ;  - Figure 2 shows a schematic sectional view of the measuring device of the invention associated with a support carrying the surface to be measured; FIG. 3 is a perspective view of the support of FIG. 2;
- La figure 4 est une vue de face d'un exemple de première mire à motif monodirectionnel utilisée par le dispositif de l'invention ;  FIG. 4 is a front view of an example of a first pattern with a one-way pattern used by the device of the invention;
- La figure 5 est une vue de face partielle d'un exemple d'une seconde mire utilisée par l'invention.  FIG. 5 is a partial front view of an example of a second pattern used by the invention.
La figure 2 illustre schématiquement le dispositif de mesure 1 de l'invention pour estimer la forme d'une surface spéculaire 2, telle que l'une des faces principales d'un vitrage à forme bombée présentant des courbures distinctes selon principalement deux directions, le bombage étant davantage prononcé selon l'une des directions. FIG. 2 diagrammatically illustrates the measuring device 1 of the invention for estimating the shape of a specular surface 2, such as one of the main faces of a curved glazing having distinct curvatures along mainly two directions; bending being more pronounced in one of the directions.
Le dispositif comprend un support 3 sur lequel est déposé le vitrage et dont une vue plus en détail est illustrée sur la figure 3, une mire 4 à motif monodirectionnel qui est plus particulièrement illustrée en regard de la figure 4, la surface 2 du vitrage étant en regard de la mire, une caméra 5, des moyens de traitement 6 reliés à la caméra et aptes à traiter les prises de vues enregistrées par la caméra, des premiers moyens d'éclairage 7 de la mire, et des moyens supplémentaires d'éclairage 8 mis en œuvre lorsque les premiers moyens d'éclairage sont éteints. Les moyens supplémentaires d'éclairage 8 sont configurés et agencés pour éclairer dans le plan de la mire en direction de la surface à mesurer 2 en engendrant une seconde mire 9 à motif monodirectionnel perpendiculaire au motif de la première mire. The device comprises a support 3 on which the glazing is deposited and a more detailed view of which is illustrated in FIG. 3, a pattern 4 with a monodirectional pattern which is more particularly illustrated with reference to FIG. 4, the surface 2 of the glazing being next to the sight, a camera 5, processing means 6 connected to the camera and able to process the recordings recorded by the camera, the first illumination means 7 of the sight, and additional means of illumination 8 implemented when the first lighting means are extinguished. The additional lighting means 8 are configured and arranged to illuminate in the plane of the target towards the surface to be measured 2 by generating a second pattern 9 monodirectional pattern perpendicular to the pattern of the first pattern.
Le dispositif de l'invention permet grâce à la première mire 4 de produire une image dans la surface en haute résolution, et par la seconde mire qui est dissimulée dans la première lorsque les moyens supplémentaires d'éclairage sont éteints, de créer une image de résolution plus faible mais suffisante pour les besoins en résultats de mesure. La modification des conditions d'éclairage et de prise de vue par la caméra assurent de passer d'une mire à l'autre quasi- instantanément et de prendre successivement deux prises de vue, une prise par image de chacune des mires se réfléchissant. The device of the invention makes it possible, thanks to the first pattern 4, to produce an image in the surface in high resolution, and by the second pattern which is concealed in the first when the additional illumination means are extinguished, to create an image of lower but sufficient resolution for measurement result requirements. Changing camera lighting and shooting conditions make it easy to switch between instantly and take two shots successively, one shot per image of each of the staffs reflecting.
La mesure est donc faite selon deux directions perpendiculaires, en considérant que la forme la plus bombée doit être mesurée avec plus de précision que la forme la moins bombée, ou bien en considérant que la connaissance de la forme dans la seconde direction est négligeable ou que cette forme est plane dans cette direction. Le support 3 en regard des figures 3 et 4 forme une table de surface plane et sur laquelle sont disposés plusieurs plots d'appui 30, ici visibles par transparence à travers la surface et au nombre de quatre, ainsi que des butées latérales 31 et 32. Le vitrage bombé est déposé sur le support 3 selon l'une de ses faces principales 20, opposée à la surface 2 à mesurer, la partie convexe 21 du vitrage étant tournée vers le support 3. The measurement is therefore made in two perpendicular directions, considering that the most convex shape should be measured more accurately than the less curved shape, or considering that the knowledge of the shape in the second direction is negligible or that this form is flat in this direction. The support 3 with reference to FIGS. 3 and 4 forms a plane surface table and on which are arranged a plurality of support pads 30, here visible by transparency through the surface and four in number, as well as lateral stops 31 and 32. The curved glazing is deposited on the support 3 according to one of its main faces 20, opposite the surface 2 to be measured, the convex portion 21 of the glazing being turned towards the support 3.
Le vitrage repose donc par sa face 20 sur les plots d'appui 30 qui sont espacés de manière appropriée pour répartir convenablement le poids du vitrage afin de le maintenir en équilibre stable. Les butées latérales 31 et 32 permettent de caler le vitrage par ses tranches latérales 20 et 22. The glazing thus rests by its face 20 on the support pads 30 which are spaced appropriately to properly distribute the weight of the glazing to maintain a stable equilibrium. The lateral stops 31 and 32 make it possible to wedge the glazing by its lateral edges 20 and 22.
Les plots 30 et les butées 31 et 32 servent également à positionner correctement le vitrage, et par conséquent la surface 2, par rapport à la mire 4 qui est destinée à se réfléchir dans cette surface. Le positionnement du vitrage sur le support de mesure peut se faire par l'intermédiaire d'un bras de robot. Il peut plus simplement se faire par l'intermédiaire de deux opérateurs. Bien plus couramment, le positionnement du vitrage sous la mire se fait lors du convoyage du vitrage sur ligne en arrêtant le vitrage sous la mire, puis en le focalisant (en le centrant) à l'aide de vérins amovibles jouant le rôle des butées 31 et 32 associés à un système élévateur assurant une translation verticale de montée ou de descente, et placé sous le vitrage en lieu et place des plots d'appui 30 afin d'amener le vitrage à la bonne distance de la mire. Après les prises de vue, le vitrage est redéposé sur le convoyeur et évacué avant l'arrivée du vitrage suivant. Toutefois, le positionnement n'a pas à être extrêmement précis, il suffit que l'image de la mire soit réfléchie sur l'ensemble de la surface et que la caméra puisse prendre en une seule prise de vue la totalité de la surface. La première mire 4 illustrée en figure 4 est une mire à motif monodirectionnel formant un signal périodique régulier. La mire est constituée d'une alternance régulière de lignes ou traits sombres 40 et clairs 41 , préférentiellement de lignes noires et blanches pour fournir un fort contraste entre elles. La largeur de chaque ligne est constante, par exemple de 10 mm. The studs 30 and the stops 31 and 32 also serve to correctly position the glazing, and therefore the surface 2, relative to the target 4 which is intended to be reflected in this surface. The positioning of the glazing on the measurement support can be done via a robot arm. It can more simply be done through two operators. More commonly, the positioning of the glazing under the test is done during the conveying of the glazing on line by stopping the glazing under the test pattern, then focusing (by centering) with the aid of removable cylinders acting as stops 31 and 32 associated with an elevator system ensuring vertical translation up or down, and placed under the glazing instead of the support pads 30 to bring the glazing at the right distance from the test pattern. After the shots, the glazing is redeposited on the conveyor and evacuated before the arrival of the next glazing. However, positioning does not have to be extremely Specifically, it is sufficient that the image of the pattern is reflected on the entire surface and that the camera can take in one shot the entire surface. The first pattern 4 illustrated in FIG. 4 is a pattern with a one-way pattern forming a regular periodic signal. The pattern consists of a regular alternation of dark lines 40 and lines 41 and clear, preferably black and white lines to provide a strong contrast between them. The width of each line is constant, for example 10 mm.
Chaque ligne constitue un objet, optiquement parlant. Chaque ligne présente un bord amont et un bord aval dont le positionnement est pris en référence dans les moyens de traitement 6. La caméra 5 est destinée à prendre l'image de la mire en réflexion sur la surface, et par conséquent l'image de chaque bord amont et aval des lignes ; les moyens de traitement établiront une comparaison du positionnement des bords de chacune des lignes entre l'image et la référence, fournissant le grandissement optique de chaque ligne. Le procédé de traitement sera vu plus en détail ultérieurement. La mire 4 fait face à la surface 2 à mesurer et est agencée à distance. Elle s'étend selon une surface carrée ou rectangulaire. Les dimensions de la mire et sa distance de séparation de la surface 2 sont adaptées de sorte que l'ensemble de la mire puisse se réfléchir dans la surface 2, ces grandeurs tenant compte en outre du type d'objectif (angle de prise de vue) affecté à la caméra. A titre d'exemple, pour la mesure de forme d'un vitrage de dimensions 1700x1600 mm, la distance mire-surface est de 2500 mm, et les dimensions de la mire sont de 3600 x 1800 mm. Each line is an object, optically speaking. Each line has an upstream edge and a downstream edge whose positioning is referenced in the processing means 6. The camera 5 is intended to take the image of the pattern in reflection on the surface, and therefore the image of each upstream and downstream edge of the lines; the processing means will establish a comparison of the positioning of the edges of each of the lines between the image and the reference, providing the optical magnification of each line. The treatment process will be seen in more detail later. The target 4 faces the surface 2 to be measured and is arranged at a distance. It extends along a square or rectangular surface. The dimensions of the test pattern and its separation distance from the surface 2 are adapted so that the whole of the test pattern can be reflected in the surface 2, these magnitudes also taking into account the type of objective (viewing angle ) assigned to the camera. For example, for the measurement of the shape of a glazing of dimensions 1700x1600 mm, the distance sight-surface is 2500 mm, and the dimensions of the target are of 3600 x 1800 mm.
L'objectif 50 de la caméra 5 (figure 2) est situé dans le même plan que celui de la mire 4 et pointé en direction de la surface 2. Le type d'objectif et la distance jusqu'à la surface autorisent de mesurer en plein champ, c'est-à-dire sur la totalité de la surface en une seule prise de vue. La mire 4 est par exemple supportée par un panneau 42 rigide en PVC blanc sur lequel sont sérigraphiées les lignes noires de largeur identique et régulièrement espacées. Le panneau 42 comporte en son centre un orifice 43 accueillant l'objectif de la caméra. L'orifice sera le plus petit possible car la portion de la surface 2 en regard de celui-ci ne pourra pas être mesurée. En pratique, pour estimer négligeable la perte de mesure au niveau de cette zone d'observation, on veillera à avoir un rapport entre la surface de l'orifice et la surface de la mire inférieur à 1/1000. La partie manquante de la mire correspondant à cet orifice pourra cependant être artificiellement reconstituée par une technique adaptée afin de ne pas altérer la mesure dans cette zone. The objective 50 of the camera 5 (FIG. 2) is located in the same plane as that of the target 4 and pointed towards the surface 2. The type of objective and the distance to the surface allow to measure in full field, that is to say on the entire surface in a single shot. The target 4 is for example supported by a rigid panel 42 of white PVC on which are screen printed black lines of identical width and regularly spaced. The panel 42 has in its center an orifice 43 accommodating the camera lens. The orifice will be as small as possible because the portion of the surface 2 facing it can not be measured. In practice, in order to estimate negligible loss of measurement at this observation area, care must be taken to have a ratio between the surface of the orifice and the surface of the target less than 1/1000. The missing part of the pattern corresponding to this orifice may however be artificially reconstituted by a suitable technique so as not to alter the measurement in this area.
La mire est éclairée par sa face avant (faisant face à la surface 2) grâce aux premiers moyens d'éclairage 7, tels que des projecteurs. Les moyens d'éclairage sont selon un nombre et un agencement qui sont appropriés à fournir un éclairage homogène de l'ensemble de la mire. The target is illuminated by its front face (facing the surface 2) with the first lighting means 7, such as projectors. The lighting means are in a number and arrangement that are suitable for providing uniform illumination of the entire pattern.
Lorsque la mire 4 est éclairée par les premiers moyens d'éclairage 7, l'ensemble de son image se réfléchissant dans la surface spéculaire 2 est destinée à être photographiée en une seule prise par la caméra qui couvre par son objectif l'ensemble de l'aire du vitrage. When the target 4 is illuminated by the first illumination means 7, the whole of its image reflecting in the specular surface 2 is intended to be photographed in a single take by the camera which covers by its objective the whole of the glazing area.
La caméra 5 est par exemple une caméra matricielle de type connu comprenant une décomposition de pixels carrés selon 1700 colonnes sur 1200 lignes. Chaque pixel est associé à une zone précise de l'image de la mire prise en référence ce qui permet de référencer la position de chacun des bords de lignes de la mire. Chaque pixel correspond par ailleurs à une zone (point) de la surface à mesurer. La comparaison entre la mire acquise soit sur un vitrage parfait, soit sur un vitrage plan et dans des conditions géométriques de mesure identiques à celle du vitrage à mesurer, et son image réfléchie par le vitrage à mesurer permettra de déduire le grandissement optique de chacune des lignes au niveau de chaque pixel et donc de chaque point de la surface 2. Grâce aux moyens de traitement 6, on déduira du grandissement optique mesuré, la pente en chacun des points et par suite l'altitude pour établir au final le profil de la surface (sa forme). The camera 5 is for example a matrix camera of known type comprising a decomposition of square pixels according to 1700 columns on 1200 lines. Each pixel is associated with a specific area of the image of the reference pattern which allows the position of each of the line edges of the pattern to be referenced. Each pixel also corresponds to a zone (point) of the surface to be measured. The comparison between the acquired pattern is on a perfect glazing, or on a flat glazing and in measurement geometric conditions identical to that of the glazing to be measured, and its image reflected by the glazing to be measured will allow to deduce the optical magnification of each of lines at each pixel and therefore each point of the surface 2. Thanks to the processing means 6, the measured optical magnification will be deduced, the slope in each of the points and consequently the altitude to establish finally the profile of the surface (its form).
Selon l'invention, afin d'avoir la meilleure résolution pour mesurer la forme correspondant à la concavité la plus prononcée (direction principale), il convient d'orienter le vitrage par rapport à la mire de façon que les lignes de la mire soient disposées perpendiculairement à cette direction principale. Ainsi, en regard de la figure 3, si la concavité la plus prononcée est de direction principale X, la mire 4 agencée en vis-à-vis de la surface 2 sera telle que les lignes 40 et 41 seront perpendiculaires à l'axe X et parallèle à l'axe Y orthogonal. Utiliser cette mire à motif en lignes parallèles correspond à mesurer les déformations observées selon la largeur de chacune des lignes, ce qui assure une plus forte résolution de mesure qu'avec l'autre type de mire dont le motif sera vu plus loin, et est donc adapté au profil de la concavité le plus prononcé. According to the invention, in order to have the best resolution for measuring the shape corresponding to the most pronounced concavity (principal direction), it is advisable to orient the glazing with respect to the sight so that the lines of the sight are arranged perpendicular to this principal direction. Thus, with reference to FIG. 3, if the most pronounced concavity is of principal direction X, the pattern 4 arranged vis-à-vis the surface 2 will be such that the lines 40 and 41 will be perpendicular to the X axis and parallel to the orthogonal Y axis. Using this pattern pattern in parallel lines corresponds to measuring the deformations observed according to the width of each of the lines, which ensures a higher resolution of measurement than with the other type of pattern whose motive will be seen further, and is therefore adapted to the profile of the most pronounced concavity.
La prise de vue de l'image de la mire et son traitement pour déduire la forme de la surface 2 selon la direction principale du bombage sont effectués dans un temps très court, de l'ordre de 10 s. The shooting of the image of the test pattern and its processing to deduce the shape of the surface 2 according to the main direction of the bending are performed in a very short time, of the order of 10 s.
Selon l'invention, le dispositif permet de mesurer extrêmement rapidement également, la forme correspondant à la direction secondaire du bombage sans bouger le vitrage. Selon l'invention, il est donc créé une seconde mire selon un motif monodirectionnel perpendiculaire au motif de la première mire, la première étant alors en quelque sorte « effacée » (n'étant plus visualisée) pour ne prendre une image en réflexion dans la surface 2 que de la seule seconde mire. Afin de ne plus visualiser la première mire et créer la seconde mire, sont prévus les moyens supplémentaire d'éclairage 8 et mis en fonctionnement par des moyens de commande 80, tandis que les premiers moyens d'éclairage 7 sont éteints contrôlés par des moyens de commande 70. Les moyens de commande 70 et 80 sont pilotés de manière commune pour assurer un éclairage et une extinction concomitante. Le temps d'exposition de la caméra en particulier pourra également être adapté à l'intensité lumineuse de la seconde mire, nettement plus lumineuse que la première mire qui n'est plus éclairée afin « d'effacer » encore plus efficacement cette première mire. According to the invention, the device makes it possible to measure extremely rapidly also the shape corresponding to the secondary direction of the bending without moving the glazing. According to the invention, a second pattern is thus created in a monodirectional pattern perpendicular to the pattern of the first pattern, the first being then somehow "erased" (no longer being visualized) to take an image in reflection in the first pattern. surface 2 than the only second sight. In order to no longer visualize the first sight and create the second sight, the additional lighting means 8 are provided and put into operation by control means 80, while the first illumination means 7 are extinguished controlled by means of control. 70. The control means 70 and 80 are controlled jointly to provide illumination and control. concomitant extinction. The exposure time of the camera in particular can also be adapted to the luminous intensity of the second sight, much brighter than the first sight that is no longer illuminated in order to "erase" even more effectively this first sight.
L'éclairage supplémentaire 8 est agencé au niveau du plan de la mire, dans le plan de façade précisément de la mire ou à sa proximité immédiate. En outre, cet éclairage est situé dans l'espace des lignes sombres de la première mire monodirectionnelle 4. The additional lighting 8 is arranged at the plane of the test pattern, in the plane of the facade precisely the target or in its immediate vicinity. In addition, this lighting is located in the space of the dark lines of the first monodirectional pattern 4.
A titre d'exemple, les moyens supplémentaires d'éclairage 8 consistent en regard de la figure 5, en une pluralité de points lumineux espacés régulièrement le long de chacune des lignes sombres 41 de la mire 4 formant la seconde mire 9. Ces moyens supplémentaires d'éclairage sont par exemple constitués d'une multiplicité de sources lumineuses ponctuelles 90, telles que des diodes électroluminescentes ou de terminaisons de fibres optiques. By way of example, the additional lighting means 8 consist, with regard to FIG. 5, in a plurality of light points regularly spaced along each of the dark lines 41 of the pattern 4 forming the second pattern 9. These additional means For example, the lighting elements consist of a multiplicity of point light sources 90, such as light-emitting diodes or optical fiber terminations.
Le motif de la seconde mire ainsi créé engendre une multitude d'objets, formés optiquement parlant par la largeur de séparation entre deux points lumineux consécutifs pour chacune des lignes. Cette seconde mire, une fois réfléchie dans la surface 2, renvoie une image pour laquelle est mesurée dans la direction parallèle à la direction secondaire la déformation éventuelle (grandissement optique) de la distance de séparation d'un point lumineux à un autre. Cette mire 9 permet de mesurer la forme selon la direction secondaire du bombage, c'est-à-dire selon la direction Y. Un tel motif de la mire, en raison de sa résolution moindre que celle du motif de la première, est en effet utilisé pour le profil le moins bombé de la surface. The pattern of the second pattern thus created generates a multitude of objects, formed optically speaking by the separation width between two consecutive light spots for each of the lines. This second pattern, once reflected in the surface 2, returns an image for which is measured in the direction parallel to the secondary direction the possible deformation (optical magnification) of the separation distance from one light point to another. This pattern 9 makes it possible to measure the shape in the secondary direction of the bending, that is to say in the direction Y. Such a pattern of the pattern, because of its resolution less than that of the pattern of the first, is in effect used for the less curved profile of the surface.
Dans le procédé de mesure, une fois que la caméra 5 a effectué une prise de vue de la première mire 4 éclairée, les premiers moyens d'éclairage 7 sont éteints tandis que les moyens supplémentaires d'éclairage 8 sont allumés. La caméra prend alors une autre prise de vue de la surface 2 dans laquelle se réfléchit la seconde mire 9 monodirectionnelle, assurant la mesure de forme selon la direction secondaire du bombage. Les moyens de traitement et de calcul 6 sont connectés à la caméra 5 pour élaborer les traitements et analyses mathématiques qui suivent les deux prises de vue. In the measurement method, once the camera 5 has taken a shot of the first illuminated pattern 4, the first illumination means 7 are extinguished while the additional illumination means 8 are turned on. The camera then takes another shot of the surface 2 in which is reflected the second pattern 9 monodirectional, ensuring the shape measurement in the secondary direction of the bending. The processing and calculation means 6 are connected to the camera 5 to develop the mathematical treatments and analyzes that follow the two shots.
Le procédé de traitement consiste, à partir du grandissement optique mesuré γ, en un point de la surface (correspondant au pixel i de la caméra), tout en connaissant la distance mire-surface dsm à mesurer, à calculer la distance focale fi' du miroir sphérique équivalent qui donnerait un grandissement γί de la mire à la distance dsm. The processing method consists, from the optical magnification measured γ, at a point on the surface (corresponding to the pixel i of the camera), while knowing the distance target-surface d sm to be measured, to calculate the focal distance fi ' equivalent spherical mirror which would give a magnification γί of the test pattern at the distance d sm .
La relation mathématique suivante fournit le calcul de la distance focale f,' au point associé au pixel i: The following mathematical relationship provides the computation of the focal length f, 'at the point associated with the pixel i:
fi' = γι * dsm /( l-γι ) pour une image en réflexion, fi '= γι * d sm / (l-γι) for an image in reflection,
Il est à noter que cette relation qui ne fait intervenir que la distance dsm surface- mire facilement mesurable donne un accès direct à la distance focale en tout point du miroir associé à chacun des pixels de la caméra. Cette méthode de mesure est donc absolue, c'est-à-dire qu'elle ne nécessite aucun étalonnage préalable, ni ne fait intervenir aucun coefficient de sensibilité de la caméra. Seule la géométrie du montage optique est à connaître, ce qui ne pose aucun problème. Cette méthode de mesure assure au dispositif une robustesse industrielle très élevée. It should be noted that this relationship involves only the distance sm surface- easily measurable target gives direct access to the focal length anywhere in the mirror associated with each of camera pixels. This measurement method is therefore absolute, that is to say that it does not require any prior calibration, nor does it involve any sensitivity coefficient of the camera. Only the geometry of the optical assembly is known, which poses no problem. This measurement method ensures the device a very high industrial robustness.
A partir de la distance focale calculée en chaque point, on peut en déduire de manière connue la courbure locale (en chaque point), puis en intégrant une première fois la courbure locale, on en déduit la pente locale, ce qui donne ensuite accès après une autre intégration mathématique à l'altitude de chacun des points de la surface, et par conséquent à la forme de cette surface. Le dispositif de l'invention procure ainsi, par ses deux mires monodirectionnelles visualisables alternativement très rapidement, par la prise de vue de seulement deux images, et par une méthode de calcul aisée, un système de mesure extrêmement rapide, reproductible, ne nécessitant qu'un bref temps d'arrêt du vitrage (d'au plus 10 secondes) suivi d'un temps de traitement d'au plus 10 secondes lorsque celui-ci avance sur ligne industrielle. From the focal length calculated at each point, the local curvature (at each point) can be deduced in a known manner, and then by integrating the local curvature a first time, the local slope is deduced, which then gives access after another mathematical integration at the altitude of each of the points of the surface, and consequently to the shape of this surface. The device of the invention thus provides, by its two monodirectional patterns visualizable alternately very quickly, by shooting only two images, and by an easy calculation method, an extremely fast measurement system, reproducible, requiring only a brief shutdown time of the glazing (no more than 10 seconds) followed by a processing time of not more than 10 seconds when it advances on an industrial line.

Claims

REVENDICATIONS
1 . Dispositif (1 ) de mesure de la forme d'un miroir ou d'une surface spéculaire (2) comportant une première mire plane (4) de motif monodirectionnel destinée à être à distance de la surface à mesurer, une caméra (5) pour la prise de vue de l'image destinée à se réfléchir dans la surface spéculaire, des moyens de traitement (6) des informations qui sont enregistrées par la caméra, des premiers moyens d'éclairage (7) de l'ensemble la mire, caractérisé en ce qu'il comporte des moyens supplémentaires d'éclairage (8) agencés à proximité immédiate et parallèlement au plan de la mire, ou dans le plan même de la mire, et en regard de la surface à mesurer, les premiers moyens d'éclairage (7) et ceux supplémentaires (8) éclairant alternativement de manière à ne visualiser respectivement que la première mire (4) ou bien une seconde mire (9) de motif monodirectionnel engendrée à partir des moyens supplémentaires d'éclairage (8).  1. Device (1) for measuring the shape of a mirror or a specular surface (2) having a first plane pattern (4) of a one-way pattern intended to be remote from the surface to be measured, a camera (5) for the shooting of the image intended to be reflected in the specular surface, the processing means (6) of the information which is recorded by the camera, the first illumination means (7) of the set of sights, characterized in that it comprises additional lighting means (8) arranged in the immediate vicinity and parallel to the plane of the test pattern, or in the plane of the test pattern, and facing the surface to be measured, the first means of illumination (7) and those additional (8) alternately illuminating so as to display respectively the first pattern (4) or a second pattern (9) of one-way pattern generated from the additional lighting means (8).
2. Dispositif selon la revendication 1 , caractérisé en ce que le temps d'éclairage, respectivement des premiers moyens d'éclairage (7) et des moyens supplémentaires d'éclairage (8), dure le temps d'une prise de vue respective de la totalité de la surface (2) par la caméra (5).  2. Device according to claim 1, characterized in that the lighting time, respectively of the first lighting means (7) and additional lighting means (8), lasts the time of a respective shooting of the entire surface (2) by the camera (5).
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que la première mire (4) comprend une alternance de lignes parallèles sombres (40) et claires (41 ) de largeur identique, telle que de 10 mm.  3. Device according to claim 1 or 2, characterized in that the first pattern (4) comprises an alternation of dark parallel lines (40) and clear (41) of identical width, such as 10 mm.
4. Dispositif selon la revendication 3, caractérisé en ce que la seconde mire (9) fournie par les moyens supplémentaires d'éclairage comprend une multiplicité de sources lumineuses (90) ponctuelles, du type diodes électroluminescentes ou terminaisons de fibres optiques, qui sont régulièrement espacées selon un alignement parallèle aux lignes de la première mire.  4. Device according to claim 3, characterized in that the second pattern (9) provided by the additional lighting means comprises a multiplicity of light sources (90) point, of the type light emitting diodes or optical fiber terminations, which are regularly spaced in alignment parallel to the lines of the first pattern.
5. Dispositif selon la revendication 4, caractérisé en ce que les sources lumineuses (90) sont alignées de manière centrée dans la largeur d'au moins une ligne sombre.  5. Device according to claim 4, characterized in that the light sources (90) are aligned centrally in the width of at least one dark line.
6. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un panneau (42) portant la première mire (4), le panneau comprenant un orifice central (43) qui accueille l'objectif (50) de la caméra (5), de préférence l'orifice étant dimensionné de sorte que le rapport entre sa surface et la surface totale de la mire soit inférieur à 1/1000. 6. Device according to any one of the preceding claims, characterized in that it comprises a panel (42) carrying the first pattern (4), the panel comprising a central orifice (43) which accommodates the objective (50) of the camera (5), preferably the orifice being dimensioned so that the ratio between its surface and the total area of the target is less than 1/1000.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la distance entre la première mire (4) et la surface (2) à mesurer, et les dimensions de la mire sont adaptées de sorte que l'ensemble de la mire soit réfléchie sur la totalité de la surface à mesurer, et en ce que l'objectif (50) de la caméra est adapté pour enregistrer en une seule prise de vue la totalité de la surface à mesurer. 7. Device according to any one of the preceding claims, characterized in that the distance between the first pattern (4) and the surface (2) to be measured, and the dimensions of the pattern are adapted so that the whole of the The target (50) of the camera is adapted to record in a single shot the entire surface to be measured.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est associé à un support plan (3) portant la surface (2) à mesurer, ce support s'étendant parallèlement à la première mire (4), et la surface (2) à mesurer étant destinée à être agencée de manière centrée par rapport à l'axe optique de l'objectif (50) de la caméra.  8. Device according to any one of the preceding claims, characterized in that it is associated with a plane support (3) carrying the surface (2) to be measured, this support extending parallel to the first target (4), and the surface (2) to be measured being intended to be arranged centrally with respect to the optical axis of the lens (50) of the camera.
9. Dispositif selon la revendication 8, caractérisé en ce que lorsque la surface (2) à mesurer est bombée, sa concavité est dirigée en regard de la mire (4), et elle est destinée à être agencée sur ledit support (3) de façon que le motif monodirectionnel de la première mire soit orienté perpendiculairement à la direction principale du bombage.  9. Device according to claim 8, characterized in that when the surface (2) to be measured is curved, its concavity is directed opposite the pattern (4), and it is intended to be arranged on said support (3) of so that the monodirectional pattern of the first pattern is oriented perpendicular to the main direction of the bending.
10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il est appliqué à la mesure de forme d'un vitrage comportant une surface courbe ou d'un miroir solaire parabolique.  10. Device according to any one of the preceding claims, characterized in that it is applied to the shape measurement of a glazing having a curved surface or a parabolic solar mirror.
1 1 . Procédé de mesure de la forme d'un miroir ou d'une surface spéculaire ayant une concavité fortement marquée selon une direction principale et nettement moins marquée selon une direction secondaire perpendiculaire à la direction principale, le procédé incluant un éclairage alterné mettant en évidence alternativement :  1 1. A method of measuring the shape of a mirror or specular surface having a strongly marked concavity in a main direction and significantly less marked in a secondary direction perpendicular to the main direction, the method including an alternating illumination alternately highlighting:
- une première mire de motif monodirectionnel perpendiculaire à la direction principale pour mesurer la forme dans la direction principale, au moyen de premiers moyens d'éclairage, et a first pattern of one-way pattern perpendicular to the main direction for measuring the shape in the main direction, by means of first lighting means, and
- une seconde mire de motif monodirectionnel et perpendiculaire au motif de la première mire pour mesurer la forme dans la direction secondaire, au moyen de seconds moyens d'éclairage, les premiers moyens d'éclairage étant éteints, dans lequel les moyens supplémentaires d'éclairage éclairent à travers les zones sombres de la première mire et engendrent ainsi le motif de la seconde mire. a second pattern of monodirectional pattern perpendicular to the pattern of the first pattern for measuring the shape in the secondary direction, by means of second lighting means, the first lighting means being extinguished, in which the additional lighting means illuminate through the dark areas of the first sight and thus engender the motive of the second sight.
12. Procédé selon la revendication 1 1 , dans lequel la seconde mire est dissimulée dans la première mire lorsque les premiers moyens d'éclairage sont allumés et les seconds moyens d'éclairage éteints. 12. The method of claim 1 1, wherein the second test pattern is concealed in the first test pattern when the first illumination means are switched on and the second illumination means extinguished.
13. Procédé selon la revendication 1 1 ou 12, dans lequel les premiers moyens d'éclairage éclairent la face avant de la première mire, les seconds moyens d'éclairage éclairant à travers la première mire depuis l'arrière de la première mire.  13. The method of claim 1 1 or 12, wherein the first illumination means illuminate the front face of the first test pattern, the second illumination means illuminating through the first pattern from the rear of the first pattern.
14. Procédé selon l'une quelconque des revendications 1 1 à 13, dans lequel le motif de la seconde mire comprend des points lumineux agencés en rangées perpendiculaires à la direction secondaire, le motif de la première mire étant constitué de lignes sombres et claires alternées et les motifs ponctuels de la seconde mire apparaissant dans les lignes sombres.  14. A method according to any one of claims 1 1 to 13, wherein the pattern of the second pattern comprises light points arranged in rows perpendicular to the secondary direction, the pattern of the first pattern consisting of alternating dark and light lines. and the point patterns of the second pattern appearing in the dark lines.
15. Procédé selon l'une quelconque des revendications 1 1 à 14, dans lequel, lors de leur exposition respective, l'intensité lumineuse de la seconde mire est nettement supérieure à celle de la première mire.  15. Method according to any one of claims 1 1 to 14, wherein, during their respective exposure, the light intensity of the second test pattern is significantly higher than that of the first test pattern.
EP11773081.2A 2010-09-17 2011-09-14 Device and method for measuring the shape of a mirror or of a specular surface Withdrawn EP2616764A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1057466A FR2965045A1 (en) 2010-09-17 2010-09-17 DEVICE FOR MEASURING THE SHAPE OF A MIRROR OR A SPECULAR SURFACE
PCT/FR2011/052100 WO2012035257A1 (en) 2010-09-17 2011-09-14 Device and method for measuring the shape of a mirror or of a specular surface

Publications (1)

Publication Number Publication Date
EP2616764A1 true EP2616764A1 (en) 2013-07-24

Family

ID=43414256

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11773081.2A Withdrawn EP2616764A1 (en) 2010-09-17 2011-09-14 Device and method for measuring the shape of a mirror or of a specular surface

Country Status (5)

Country Link
US (1) US20130162816A1 (en)
EP (1) EP2616764A1 (en)
CN (1) CN103189714A (en)
FR (1) FR2965045A1 (en)
WO (1) WO2012035257A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011085322A1 (en) * 2011-10-27 2013-05-02 Siemens Aktiengesellschaft Apparatus and method for inspecting a specular coating
EP3169971A4 (en) * 2014-07-18 2018-05-30 Arizona Optical Systems, LLC Method and apparatus for measuring optical systems and surfaces with optical ray metrology
US9470641B1 (en) * 2015-06-26 2016-10-18 Glasstech, Inc. System and method for measuring reflected optical distortion in contoured glass sheets
CN107203994B (en) * 2017-06-08 2021-03-26 广东嘉铭智能科技有限公司 Method and device for detecting curvature of cambered surface glass

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19643018B4 (en) * 1996-10-18 2010-06-17 Isra Surface Vision Gmbh Method and device for measuring the course of reflective surfaces
WO2004013572A1 (en) * 2002-08-01 2004-02-12 Asahi Glass Company, Limited Curved shape inspection method and device
DE10345586B4 (en) * 2003-09-29 2007-03-15 BIAS - Bremer Institut für angewandte Strahltechnik GmbH Method and device for determining the structure of a surface
US7589844B2 (en) * 2005-07-15 2009-09-15 Asahi Glass Company, Limited Shape inspection method and apparatus
JPWO2008149712A1 (en) * 2007-06-01 2010-08-26 国立大学法人 宮崎大学 Strain inspection apparatus and strain inspection method
FR2936605B1 (en) * 2008-10-01 2014-10-31 Saint Gobain DEVICE FOR ANALYZING THE SURFACE OF A SUBSTRATE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012035257A1 *

Also Published As

Publication number Publication date
FR2965045A1 (en) 2012-03-23
CN103189714A (en) 2013-07-03
US20130162816A1 (en) 2013-06-27
WO2012035257A1 (en) 2012-03-22

Similar Documents

Publication Publication Date Title
EP1771714B1 (en) method for testing an optical component of the ophtalmic industry
US7471383B2 (en) Method of automated quantitative analysis of distortion in shaped vehicle glass by reflected optical imaging
EP2225608B1 (en) Device for evaluating the surface of a tyre
EP2813434B1 (en) Test bench for star sensor, and test method
FR2591329A1 (en) APPARATUS AND METHOD FOR PROCESSING THREE-DIMENSIONAL INFORMATION
JP2001502800A (en) Method and apparatus for measuring the path of a reflective surface
FR2725532A1 (en) AUTOFOCUS MICROSCOPE
BE1017316A7 (en) Method and apparatus for scanning gemstone, comprises platform adapted to support gemstone, scanning system adapted to provide geometrical information concerning three-dimensional convex envelope of gemstone
US20140240489A1 (en) Optical inspection systems and methods for detecting surface discontinuity defects
EP0484237B1 (en) Process and apparatus for measuring the optical quality of a glass sheet
FR2921719A1 (en) Physical object e.g. apple, three-dimensional surface's synthesis image creating method for e.g. industrial farm, involves calculating depth coordinate measured at axis for each point of dusty seeds from projection of point on surface
WO2012035257A1 (en) Device and method for measuring the shape of a mirror or of a specular surface
FR3087891A1 (en) OPTICAL DEVICE FOR MEASURING OPTICAL PROPERTIES OF MATERIALS.
CA2880145A1 (en) Method for the non-destructive testing of a blade preform
EP1617208A1 (en) Device for detecting defects of a transparent or translucent object
FR2814808A1 (en) PROCESS FOR OPTICALLY READING THE SHAPE OF A PROFILE AND APPLICATION TO THE SURVEY OF THE INNER EDGE OF A GLASSES MOUNTING CIRCLE.
EP0756152B1 (en) Method and device for detecting the state of the surface of parts with a reflecting surface, applicable for controlling the roughness of polished parts
WO2010072912A1 (en) Device for three-dimensional scanning with dense reconstruction
US20100295939A1 (en) Table gauge
FR2606522A1 (en) OPTICAL PHOTOELECTRIC FOCUSING DEVICE AND METHOD, PARTICULARLY FOR MICROSCOPES OF SURGICAL OPERATIONS
KR101403926B1 (en) Apparatus for inspecting curved surface
FR2921732A1 (en) Contactless scanning device for constructing synthesis image of apple in e.g. industrial field, has camera including sensor placed in optical axle, where distance between sensor and mirror is less than distance between pattern and mirror
FR2558959A1 (en) APPARATUS FOR CONTROLLING OBJECT SURFACES
FR3087539A1 (en) MEASURING INSTRUMENT WITH MEASUREMENT SPOT VISUALIZATION SYSTEM AND VISUALIZATION ACCESSORY FOR SUCH MEASURING INSTRUMENT
FR3069065A1 (en) METHOD AND DEVICE FOR DETERMINING THE ORIENTATION OF A FIXED SCANNING LASER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20131105