EP2616571A1 - Dispositif de connexion électrique entre deux cellules successives d'une série de cellules pour la production d'aluminium - Google Patents

Dispositif de connexion électrique entre deux cellules successives d'une série de cellules pour la production d'aluminium

Info

Publication number
EP2616571A1
EP2616571A1 EP11761647.4A EP11761647A EP2616571A1 EP 2616571 A1 EP2616571 A1 EP 2616571A1 EP 11761647 A EP11761647 A EP 11761647A EP 2616571 A1 EP2616571 A1 EP 2616571A1
Authority
EP
European Patent Office
Prior art keywords
conductor
cell
cells
conductors
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11761647.4A
Other languages
German (de)
English (en)
Other versions
EP2616571B1 (fr
Inventor
Serge Despinasse
Yves Rochet
Sandra Berthe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rio Tinto Alcan International Ltd
Original Assignee
Rio Tinto Alcan International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rio Tinto Alcan International Ltd filed Critical Rio Tinto Alcan International Ltd
Publication of EP2616571A1 publication Critical patent/EP2616571A1/fr
Application granted granted Critical
Publication of EP2616571B1 publication Critical patent/EP2616571B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/58Electric connections to or between contacts; Terminals
    • H01H1/5866Electric connections to or between contacts; Terminals characterised by the use of a plug and socket connector
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/16Electric current supply devices, e.g. bus bars
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C7/00Constructional parts, or assemblies thereof, of cells; Servicing or operating of cells
    • C25C7/06Operating or servicing

Definitions

  • the present invention relates to a device for electrical connection between two successive cells (N-1, N) of a series of cells for the production of aluminum according to the Hall-Héroult method.
  • the invention also relates to a method for short-circuiting a cell (N) belonging to such a series of cells by means of said electrical connection device.
  • Aluminum metal is produced industrially by electrolysis of alumina in solution in an electrolyte bath, consisting essentially of cryolite, according to the Hall-Héroult process.
  • the electrolyte bath is contained in a cell of an electrolysis cell comprising a steel casing lined internally with refractory and / or insulating materials, and at the bottom of which is located a cathode assembly.
  • Anodes typically of carbonaceous material, are partially immersed in the electrolyte bath.
  • Each anode is provided with a metal rod for its electrical and mechanical connection to an anode frame movable relative to a gantry fixed above the electrolytic cell.
  • An aluminum production plant comprises a large number of cells, typically one or more hundreds, aligned along an axis.
  • An electrical connection device comprising an electrical conductor network serially connects the cathode assembly of the cell (N-1) to the anode frame of the cell (N) located immediately downstream, in the flow direction of the current.
  • the ends of the conductors, at the beginning and at the end of the series of cells, are connected to the positive and negative outputs of a rectifying and regulating electrical substation.
  • the intensity passing through the successive cells is very high, and is typically of the order of 200 000 to 500 000 A.
  • the network of electrical conductors is designed so that the effects of the large magnetic fields generated compensate for each other. so that the problems caused by these magnetic fields (deformation of the upper surface of the liquid metal present in the tank, instabilities, etc.) are reduced.
  • the tank Due to the wear caused by the operation of a cell (N), the tank must be periodically repaired or replaced. In order for the other cells in the series to continue to produce, the cell (N) under consideration is bypassed so that the current can flow directly from the (N-1) cell to the (N + 1) cell. time of replacement of the tank of the cell (N).
  • the problem is that the layout of the conductors is constrained by magnetic field compensation issues, as indicated above, but also congestion.
  • the first conductor has a portion between said tanks (N-1) and (N) and wherein the current flows towards the axis of alignment of the tanks;
  • the second conductor has a portion between the tanks (N-1) and (N) and wherein the current flows away from the axis of alignment of the tanks;
  • said portions of the first and second conductors being substantially parallel to each other.
  • a first wedge and a second wedge are interposed between said first and second conductor portions, the latter being located more towards the axis of alignment of the cells.
  • two current flow paths from the first conductor to the second conductor are created, namely a first path via the first wedge and a second path via the second wedge.
  • the two paths have different lengths. More specifically, the second path is longer than the first, and therefore has a greater electrical resistance (due to the similarity of the components, that is to say the wedges and conductors).
  • the first hold can see up to 70% of the total intensity, and the second hold only 30%. This is not desirable. Indeed, on the one hand, the first hold may be damaged prematurely.
  • the imbalance of the currents can lead to a limitation of the current in the first hold, and to an under-utilization of the current capacity in the second hold, thus limiting all of the current capacity of the whole shorting.
  • the present invention aims to remedy the drawbacks mentioned above, by providing an electrical connection device between two successive cells which allows a better electrical balance when shorting a cell, without creating sensitive magnetic imbalance, and taking into account the constraints of drastic encumbrance.
  • the invention relates to a device for electrical connection between two successive cells (N-1, N) of a series of cells for the production of aluminum according to the Hall-Héroult method, the cells being aligned according to a axis, each cell comprising an electrolytic cell comprising a cathode assembly and anode frame carrying anodes, the electrical connection device comprising an array of electrical conductors connecting in series the cathode assembly of the cell (N-1) to the frame anode of the cell (N) located immediately downstream, the electrical conductor network comprising at least:
  • a first conductor connected to the cathode assembly of the cell (N-1) and to the anode frame of the cell (N), said first conductor having a portion located between said tanks (N-1) and (N) and in which current flows in the direction of the axis of alignment of the tanks;
  • a second conductor connected to the cathode assembly of the cell (N) and to the anode frame of the cell (N + 1) located immediately downstream, said second conductor having a portion located between the (N-1) and ( N) and in which the current flows away from the axis of alignment of the tanks, said portions of the first and second conductors being substantially parallel to each other;
  • the conductor network further comprises a third current balancing conductor which extends substantially parallel to said portions, said third conductor being electrically connected to said portion of the first conductor or second conductor, the two receiving housings of a shim being arranged between said third conductor and said portion of the second conductor respectively of the first conductor.
  • the at least two short-circuit shim receiving housings are arranged between said portions of the first and second conductors and the third current-balancing conductor is located between said portions of the first and second conductors and second drivers.
  • the third conductor is advantageously arranged so that when short-circuit shims are inserted in the housings, the current flowing in said third conductor flows in the opposite direction of the flow direction of the current in said portion of the first conductor, respectively of the second driver, to which the third driver is connected.
  • the electrical connection, via the wedges is obtained between two parallel conductors in which the current flows in the same direction, namely the third conductor and said portion of the second conductor or, respectively, the third conductor and said portion of the first conductor.
  • the first conductor is a bypass conductor of the cell (N-1), and / or the second conductor is a bypass conductor of the cell (N).
  • connection device may also comprise an insulating element disposed between the third conductor and said portion of the first conductor, respectively of the second conductor, to which the third conductor is connected. This insulating element makes it possible to avoid deformations of the conductors which could lead to unwanted short circuits.
  • the cells of the cells are substantially rectangular and arranged perpendicularly to the axis of alignment of the cells, said portions of the first and second conductors extending substantially parallel to the long sides of the tanks.
  • At least one receiving housing of a short-circuit wedge can have an inclined face, seen in a plane orthogonal to the direction in which said portions of the first and second conductors extend, so that the housing has a convergent form in the direction of introduction of a wedge.
  • the connecting device may comprise, in each half-space separated by a vertical plane passing through the axis of alignment of the cells, a set of two housing receiving a shim, located near a lateral edge of the tank, and an additional housing for receiving at least one shim located between said set of two housings and the axis of alignment of the cells.
  • the current is short-circuited by sets of two shims.
  • Wedges, called equipotential, located closest to the alignment axis mainly have a current balancing function.
  • the invention relates to a method for short-circuiting a cell (N) belonging to a series of cells for the production of aluminum according to the Hall-Héroult method, by means of an electrical connection device as previously described, in which method is introduced a first and a second wedges in the receiving housing of a short-circuit wedge arranged between said third conductor and said portion of the second conductor, respectively of the first conductor.
  • Figure 1 is a schematic sectional representation of a series of electrolysis cells (N-1), (N), (N + 1) successive electrically connected in series;
  • FIG. 2 is a partial top view of the (N-1) and (N) cells of FIG. 1, showing, in a simplified manner, the network of conductors between the cells, and showing the arrangement of short-circuit shims according to the prior art;
  • Figure 3 is a schematic representation of the portion of the electrical conductor network located in the vicinity of the two shims, according to the prior art
  • Figure 4 is a schematic representation of the portion of the electrical conductor network located in the vicinity of the two shims, according to a first embodiment of the invention
  • Figure 5 is a schematic representation of the portion of the electrical conductor network located in the vicinity of the two shims, according to a second embodiment of the invention.
  • Figure 6 is a sectional view of the conductors, transversely thereto, in the area of the receiving housing of a shim.
  • an electrolysis cell 100 comprises a tank 1 of generally rectangular shape having two small sides and two long sides.
  • the axis (x) is defined as being parallel to the short sides and substantially median to the vessel 1, and the direction (y) as the horizontal direction orthogonal to (x).
  • the vessel 1 typically comprises a metal box 2 internally lined with refractory materials (not shown) and cathode assemblies which are oriented substantially parallel to (x) and which each comprise a cathode 3 made of carbon material connected to a conductive bar 4.
  • the cell 100 also comprises an anode assembly comprising an anode frame 5 oriented along (y) and located in height above the tank 1. On the anode frame 5 are fixed rods 7 each provided with a multipode 8 fixed on a anode 6 made of carbonaceous material.
  • the vessel 1 comprises a liquid aluminum bed, a liquid bath bed and a solid bath-based blanket and alumina.
  • FIG. 1 represents three successive (N-1), (N), (N + 1) electrolysis cells
  • FIG. 2 represents two successive (N-1), (N) electrolysis cells.
  • the cells 100 are electrically connected in series.
  • a network of conductors connecting in series the cathode assembly of an upstream cell to the anode frame of the cell located immediately downstream.
  • upstream and downstream are defined in the flow direction of the current, which is also the direction of the axis (x).
  • the current flowing through the series of cells has a very high intensity I, typically of the order of 200 000 to 500 000 A.
  • the conductor network is designed so that the magnetic field generated, at the intensities considered, is compatible with a stable operation of the tank.
  • the conductor network comprises, briefly:
  • an upstream cathode collector 9 connected to some of the conducting bars 4 and to conductors 10 passing under the tank 1;
  • At least one downstream cathode collector 12 connected to at least some of the conductive bars 4.
  • climbs 13, here four in number The electrical connection between the cathodic collectors 9, 1 1, 12 of the tank (N-1) and the anode frame 5 of the tank (N) is provided by climbs 13, here four in number. Some climbs may be double and have a first branch 13a directly connected to a downstream cathode collector 12 and a second branch 13b connected to an upstream cathode collector 9, 1 by a conductor 10 passing under the vessel 1 or a conductor bypassing the vessel 1 (see Figure 2).
  • Each conductor may comprise a rigid portion 14, in the form of a metal bar, typically an aluminum bar, and a flexible portion 15 allowing in particular the production of bent portions.
  • bypass conductors are not shown in FIG. 1.
  • the conductor network of the (N) cell is only partially shown with respect to the links of the cathode sets.
  • a given cell comprises a bypass conductor around each of the short sides of the vessel 1, disposed substantially symmetrically with respect to the axis (x). This bypass conductor sees most, typically 70-95%, of the intensity exiting the cathode assembly of the (N-1) cell when the N cell is short-circuited.
  • each bypass driver and typically the bypass driver 16 of the (N-1) cell comprises:
  • a set of two lateral shims namely a first wedge 20 and a second wedge 21 closer to the axis (x) than the first wedge 20.
  • These wedges 20, 21 are located between the downstream portion 19 the bypass conductor 16 of the cell (N-1) and the upstream portion 23 of the bypass conductor 24 of the cell (N);
  • the shims 20, 21 are interposed directly between the downstream portion 19 of the bypass conductor 16 of the cell (N-1) and the upstream portion 23 of the bypass conductor 24 of the cell (N).
  • a first flow path 25 of the current I of the first conductor 16 is thus created towards the second conductor 24 via the first wedge 20 (shown in thick lines in FIG. 3) and a second path 26 for the circulation of the current I of the first conductor 16. to the second conductor 24 via the second shim 21 (shown in fine line in Figure 3).
  • the second path 26 has a longer length than the first path 25, resulting in a greater electrical resistance.
  • the electrical intensity passing through the first shim 20 is greater than that through the second shim 21, which has the disadvantages mentioned above.
  • FIGS. 4 and 5 First and second embodiments of the electrical connection device according to the invention are illustrated respectively in FIGS. 4 and 5.
  • a third conductor 27 for balancing the current I.
  • This third conductor 27 is situated between the downstream portion 19 of the bypass conductor 16 of the cell (N-1 ) and the upstream portion 23 of the bypass conductor 24 of the cell (N) and extends substantially parallel to said portions 19, 23.
  • This third conductor 27 has a first end 28 electrically connected to the downstream portion 19 of the bypass conductor 16 of the cell (N-1) and a second free end 29, farther from the axis (x) than the first end 28.
  • the current I flows in the third conductor 27 in the direction opposite to the direction of circulation in the portion 19 and in the same direction as in the portion 23.
  • the shims 20, 21 are interposed between the third conductor 27 and the upstream portion 23 of the bypass conductor 24 of the cell (N), that is to say in two parallel conductors in which the current flows in the same direction, away from the axis (x).
  • an insulating member 30 is placed between the third conductor 27 and the downstream portion 19 of the bypass conductor 16 of the cell (N-1) to prevent undesired short circuits.
  • FIG. 5 A second embodiment of the invention is shown in FIG. 5.
  • the third current balancing conductor 27 is also located between the portion downstream 19 of the bypass conductor 16 of the cell (N-1) and the upstream portion 23 of the bypass conductor 24 of the cell (N) and extends substantially parallel to said portions 19, 23.
  • the third conductor 27 has a first end 28 electrically connected to the upstream portion 23 of the bypass conductor 24 of the cell (N) and a second end 29 free, further from the axis (x) than the first end 28.
  • the current I flows in the third conductor 27 in the direction opposite to the direction of circulation in the portion 23 and in the same direction as in the portion 19.
  • the shims 20, 21 are interposed between the third conductor 27 and the downstream portion 19 of the bypass conductor 16 of the (N-1) cell, that is to say in two parallel conductors in which the current flows in the same direction. direction, in the direction of the axis (x).
  • an insulating member 30 is placed between the third conductor 27 and the upstream portion 23 of the bypass conductor 24 of the cell (N) to prevent undesired short circuits.
  • Each of the shims 20, 21 is placed in a receiving housing 31 situated between the two conductors which it must connect electrically.
  • This housing 31 is formed in the space separating said conductors.
  • Figure 6 are shown the conductors of Figure 4 in cross section thereof.
  • the housing 31 has an inclined face 32 so that the housing 31 has a convergent shape facilitating the introduction of a shim 20.
  • the invention is not limited to the embodiments described above as examples but that it encompasses all variants.
  • Other receiving housing assemblies for shorting shims and shims may in particular be provided between the tanks compared to what is described with reference to Figure 2.
  • the sets of short-circuits can include more than two reception accommodations, including three.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)

Abstract

Le dispositif de connexion électrique reliant les cellules en série comprend; un premier conducteur (16) relié à l'ensemble cathodique de la cellule (N-1) et au cadre anodique de la cellule (N), possédant une portion (19) située entre lesdites cuves (N-1) et (N) et dans laquelle le courant (I) circule en direction de l'axe (x) d'alignement des cuves; un deuxième conducteur (24) relié à l'ensemble cathodique de la cellule (N) et au cadre anodique de la cellule (N+1 ), possédant une portion (23) située entre les cuves (N- 1 ) et (N) et dans laquelle le courant circule en s'éloignant de l'axe (x). des cales (20, 21) de court-circuit logées entre lesdites portions (19, 23) desdits conducteurs (16, 24); un troisième conducteur (27) permettant d'équilibrer le courant passant par les cales.

Description

DISPOSITIF DE CONNEXION ÉLECTRIQUE ENTRE DEUX CELLULES SUCCESSIVES D'UNE SÉRIE DE
CELLULES POUR LA PRODUCTION D'ALUMINIUM
La présente invention concerne un dispositif de connexion électrique entre deux cellules (N-1 , N) successives d'une série de cellules pour la production d'aluminium selon le procédé de Hall-Héroult. L'invention concerne également un procédé pour court- circuiter une cellule (N) appartenant à une telle série de cellules au moyen dudit dispositif de connexion électrique.
L'aluminium métal est produit industriellement par électrolyse de l'alumine en solution dans un bain d'électrolyte, essentiellement constitué de cryolithe, selon le procédé de Hall-Héroult. Le bain d'électrolyte est contenu dans une cuve d'une Cellule d'électrolyse comprenant un caisson en acier revêtu intérieurement de matériaux réfractaires et/ou isolants, et au fond duquel est situé un ensemble cathodique.
Des anodes, typiquement en matériau carboné, sont partiellement immergées dans le bain d'électrolyte. Chaque anode est munie d'une tige métallique destinée à son raccordement électrique et mécanique à un cadre anodique mobile par rapport à un portique fixé au-dessus de la cuve d'électrolyse.
Une usine de production d'aluminium comprend un grand nombre de cellules, typiquement une ou plusieurs centaines, alignées selon un axe. Un dispositif de connexion électrique comprenant un réseau de conducteurs électriques relie en série l'ensemble cathodique de la cellule (N-1 ) au cadre anodique de la cellule (N) située immédiatement en aval, dans le sens de circulation du courant. Les extrémités des conducteurs, en début et en fin de la série des cellules, sont reliées aux sorties positives et négatives d'une sous-station électrique de redressement et de régulation.
L'intensité traversant les cellules successives est très élevée, et est typiquement de l'ordre de 200 000 à 500 000 A. De ce fait, le réseau de conducteurs électriques est étudié pour que les effets des importants champs magnétiques générés se compensent, de sorte que les problèmes occasionnés par ces champs magnétiques (déformation de la surface supérieure du métal liquide présent dans la cuve, instabilités, etc.) soient réduits.
Du fait de l'usure causée par le fonctionnement d'une cellule (N), la cuve doit être périodiquement réparée ou remplacée. Afin que les autres cellules de la série puissent continuer à produire, on court-circuite la cellule (N) considérée, de sorte que le courant puisse directement passer de la cellule (N-1 ) à la cellule (N+1 ), le temps du remplacement de la cuve de la cellule (N).
A cet effet, il est connu de placer des cales de court-circuit entre un premier conducteur relié à l'ensemble cathodique de la cellule (N-1 ) et un deuxième conducteur relié à l'ensemble cathodique de la cellule (N). De ce fait, le courant circule depuis l'ensemble cathodique de la cellule (N-1 ) jusqu'à l'ensemble cathodique de la cellule (N), sans passer par le cadre anodique de la cellule (N), et est ensuite acheminé vers le cadre anodique de la cellule (N+1 ).
Du fait de la très forte intensité circulant dans les conducteurs, il est généralement nécessaire d'utiliser au moins deux cales en parallèle, de sorte que chacune des cales voit seulement une partie de l'intensité globale circulant dans les conducteurs.
Le problème rencontré est que la disposition des conducteurs est contrainte par des questions de compensation des champs magnétiques, comme indiqué plus haut, mais également d'encombrement.
Ainsi, on a généralement une disposition des conducteurs dans laquelle :
- le premier conducteur possède une portion située entre lesdites cuves (N-1) et (N) et dans laquelle le courant circule en direction de l'axe d'alignement des cuves ;
- le deuxième conducteur possède une portion située entre les cuves (N-1 ) et (N) et dans laquelle le courant circule en s'éloignant de l'axe d'alignement des cuves ;
lesdites portions des premier et deuxième conducteurs étant sensiblement parallèles entre elles.
Afin de réaliser le court-circuit de la cellule (N), on interpose entre lesdites portions des premier et deuxième conducteurs une première cale et une deuxième cale, cette dernière étant située davantage vers l'axe d'alignement des cellules. De ce fait, on crée deux chemins de circulation du courant du premier conducteur vers le deuxième conducteur, à savoir un premier chemin via la première cale et un deuxième chemin via la deuxième cale. Du fait des sens de circulation opposés dans les premier et deuxième conducteurs, les deux chemins présentent des longueurs différentes. Plus précisément, le deuxième chemin est plus long que le premier, et possède donc une résistance électrique plus importante (du fait de la similitude des composants, c'est-à-dire les cales et les conducteurs).
II s'ensuit un déséquilibre important entre les intensités traversant les cales. A titre d'exemple, la première cale peut voir jusqu'à 70 % de l'intensité totale, et la deuxième cale seulement 30 %. Ceci n'est pas souhaitable. En effet, d'une part, la première cale risque d'être altérée prématurément. D'autre part, le déséquilibre des intensités peut conduire à une limitation du courant dans la première cale, et à une sous-utilisation de la capacité de courant dans la deuxième cale, ceci limitant par conséquent l'ensemble de la capacité de courant de l'ensemble de court-circuitage.
La présente invention vise à remédier aux inconvénients mentionnés ci-dessus, en fournissant un dispositif de connexion électrique entre deux cellules successives qui permette un meilleur équilibrage électrique lors du court-circuit d'une cellule, sans créer de déséquilibre magnétique sensible, et en tenant compte des contraintes d'encombrement drastiques.
A cet effet, l'invention concerne un dispositif de connexion électrique entre deux cellules (N-1 , N) successives d'une série de cellules pour la production d'aluminium selon le procédé de Hall-Héroult, les cellules étant alignées selon un axe, chaque cellule comprenant une cuve d'électrolyse comportant un ensemble cathodique et un cadre anodique portant des anodes, le dispositif de connexion électrique comprenant un réseau de conducteurs électriques reliant en série l'ensemble cathodique de la cellule (N-1) au cadre anodique de la cellule (N) située immédiatement en aval, le réseau de conducteurs électriques comprenant au moins :
- un premier conducteur relié à l'ensemble cathodique de la cellule (N-1) et au cadre anodique de la cellule (N), ledit premier conducteur possédant une portion située entre lesdites cuves (N-1 ) et (N) et dans laquelle le courant circule e direction, de l'axe d'alignement des cuves ;
- un deuxième conducteur relié à l'ensemble cathodique de la cellule (N) et au cadre anodique de la cellule (N+1 ) située immédiatement en aval, ledit deuxième conducteur possédant une portion située entre les cuves (N-1) et (N) et dans laquelle le courant circule en s'éloignant de l'axe d'alignement des cuves, lesdites portions des premier et deuxième conducteurs étant sensiblement parallèles entre elles ;
- au moins deux logements de réception d'une cale de court-circuit.
Selon une définition générale de l'invention, le réseau de conducteurs comprend en outre un troisième conducteur d'équilibrage du courant qui s'étend sensiblement parallèlement auxdites portions, ledit troisième conducteur étant électriquement relié à ladite portion du premier conducteur ou du deuxième conducteur, les deux logements de réception d'une cale étant agencés entre ledit troisième conducteur et ladite portion du deuxième conducteur, respectivement du premier conducteur.
Selon un mode de réalisation avantageux de l'invention, les au moins deux logements de réception de cale de court circuit sont agencés entres lesdites portions des premier et deuxième conducteurs et le troisième conducteur d'équilibrage du courant est situé entre lesdites portions des premier et deuxième conducteurs.
Le troisième conducteur est avantageusement agencé de sorte que lorsque des cales de court-circuit sont insérées dans les logements, le courant circulant dans ledit troisième conducteur circule dans le sens opposé du sens de circulation du courant dans ladite portion du premier conducteur, respectivement du deuxième conducteur, auquel le troisième conducteur est relié. Ainsi, grâce à l'invention, lorsque l'on court-circuite la cellule (N), on obtient la connexion électrique, par l'intermédiaire des cales, entre deux conducteurs parallèles dans lesquels le courant circule dans le même sens, à savoir : le troisième conducteur et ladite portion du deuxième conducteur ou, respectivement, le troisième conducteur et ladite portion du premier conducteur.
On a ainsi créé deux chemins de circulation du courant qui présentent sensiblement la même longueur et qui possèdent des composants sensiblement identiques. Ces deux chemins ont donc sensiblement la même résistance d'où l'obtention d'un équilibrage du courant entre les deux cales.
Typiquement, le premier conducteur est un conducteur de contournement de la cellule (N-1 ), et/ou le deuxième conducteur est un conducteur de contournement de la cellule (N).
Le dispositif de connexion peut également comprendre un élément isolant disposé entre le troisième conducteur et ladite portion du premier conducteur, respectivement du deuxième conducteur, auquel le troisième conducteur est relié. Cet élément isolant permet d'éviter les déformations des conducteurs qui pourraient conduire à des courts- circuits non souhaités.
Selon une réalisation possible, les cuves des cellules sont sensiblement rectangulaires et agencées perpendiculairement à l'axe d'alignement des cellules, lesdites portions des premier et deuxième conducteurs s'étendant sensiblement parallèlement aux grands côtés des cuves.
Avantageusement, au moins un logement de réception d'une cale de court-circuit peut présenter une face inclinée, vue dans un plan orthogonal à la direction dans laquelle s'étendent lesdites portions des premier et deuxième conducteurs, de sorte que le logement présente une forme convergente dans le sens d'introduction d'une cale.
Le dispositif de connexion peut comprendre, dans chaque demi-espace séparé par un plan vertical passant par l'axe d'alignement des cellules, un ensemble de deux logements de réception d'une cale, situé à proximité d'un bord latéral de la cuve, et un logement additionnel de réception d'au moins une cale situé entre ledit ensemble de deux logements et l'axe d'alignement des cellules.
En pratique, le courant est court-circuité par les ensembles de deux cales. Les cales, dites équipotentielles, situées le plus près de l'axe d'alignement ont principalement une fonction d'équilibrage du courant.
Selon un deuxième aspect, l'invention concerne un procédé pour court-circuiter une cellule (N) appartenant à une série de cellules pour la production d'aluminium selon le procédé de Hall-Héroult, au moyen d'un dispositif de connexion électrique tel que précédemment décrit, procédé dans lequel on introduit une première et une deuxième cales dans les logements de réception d'une cale de court-circuit agencés entre ledit troisième conducteur et ladite portion du deuxième conducteur, respectivement du premier conducteur.
On décrit à présent, à titre d'exemples non limitatifs, plusieurs modes de réalisation possibles de l'invention, en référence aux figures annexées :
La figure 1 est une représentation schématique en coupe d'une série de cellules d'électrolyse (N-1 ), (N), (N+1) successives branchées électriquement en série ;
La figure 2 est une vue de dessus partielle des cellules (N-1 ) et (N) de la figure 1 , montrant, de façon simplifiée, le réseau de conducteurs entre les cellules, et montrant la disposition de cales de court-circuit selon l'art antérieur ;
La figure 3 est une représentation schématique de la partie du réseau de conducteurs électriques située au voisinage des deux cales, selon l'art antérieur ;
La figure 4 est une représentation schématique de la partie du réseau de conducteurs électriques située au voisinage des deux cales, selon un premier mode de réalisation de l'invention ;
La figure 5 est une représentation schématique de la partie du réseau de conducteurs électriques située au voisinage des deux cales, selon un deuxième mode de réalisation de l'invention ;
La figure 6 est une vue en coupe des conducteurs, transversalement à ceux-ci, dans la zone du logement de réception d'une cale.
Comme le montrent les figures 1 et 2, une cellule 100 d'électrolyse comprend une cuve 1 de forme générale rectangulaire possédant deux petits côtés et deux grands côtés. On définit l'axe (x) comme étant parallèle aux petits côtés et sensiblement médian à la cuve 1 , et la direction (y) comme la direction horizontale orthogonale à (x).
La cuve 1 comporte typiquement un caisson métallique 2 garni intérieurement de matériaux réfractaires (non représentés) et des ensembles cathodiques qui sont orientés sensiblement parallèlement à (x) et qui comportent chacun une cathode 3 en matériau carboné reliée à une barre conductrice 4.
La cellule 100 comprend également un ensemble anodique comportant un cadre anodique 5 orienté selon (y) et situé en hauteur au-dessus de la cuve 1. Sur le cadre anodique 5 sont fixées des tiges 7 chacune pourvue d'un multipode 8 fixé sur une anode 6 en matériau carboné. En fonctionnement, la cuve 1 comprend un lit d'aluminium liquide, un lit de bain liquide et une couverture à base de bain solide et d'alumine.
De nombreuses cellules 100 sont alignées successivement selon l'axe (x) comme on le voit sur les figures 1 et 2, les petits côtés des cuves formant sensiblement deux lignes droites parallèles. La figure 1 représente trois cellules d'électrolyse (N-1 ), (N), (N+1 ) successives, tandis que la figure 2 représente deux cellules d'électrolyse (N-1 ), (N) successives.
Les cellules 100 sont branchées électriquement en série. A cet effet, il est prévu un réseau de conducteurs reliant en série l'ensemble cathodique d'une cellule amont au cadre anodique de la cellule située immédiatement en aval. Les termes « amont » et « aval » sont définis dans le sens de circulation du courant, qui est également le sens de l'axe (x). le courant traversant la série de cellules présente une intensité I très élevée, typiquement de l'ordre de 200 000 à 500 000 A.
Le réseau de conducteurs est conçu pour que le champ magnétique engendré, aux intensités considérées, soit compatible avec un fonctionnement stable de la cuve.
Pour une cellule 100 donnée, le réseau de conducteurs comprend, succinctement :
- un collecteur cathodique amont 9 relié à certaines des barres conductrices 4 et à des conducteurs 10 passant sous la cuve 1 ;
- un autre collecteur cathodique amont 1 1 relié aux autres barres conductrices 4 et prolongé par un conducteur de contournement de la cuve 1 de cette cellule (N-1 ) ;
- au moins un collecteur cathodique aval 12 relié à au moins certaines des barres conductrices 4.
La liaison électrique entre les collecteurs cathodiques 9, 1 1 , 12 de la cuve (N-1 ) et le cadre anodique 5 de la cuve (N) est assurée par des montées 13, ici au nombre de quatre. Certaines montées peuvent être doubles et comporter une première branche 13a directement reliée à un collecteur cathodique aval 12 et une deuxième branche 13b reliée à un collecteur cathodique amont 9, 1 par un conducteur 10 passant sous la cuve 1 ou un conducteur de contournement de la cuve 1 (voir figure 2).
Chaque conducteur peut comporter une partie rigide 14, sous forme d'une barre métallique, typiquement une barre d'aluminium, et une partie flexible 15 permettant notamment la réalisation de portions coudées.
On notera que, pour simplifier les dessins et faciliter la compréhension de l'invention, les conducteurs de contournement ne sont pas représentés sur la figure 1. De plus, sur la figure 2, le réseau de conducteurs de la cellule (N) n'est que partiellement représenté en ce qui concerne les liaisons des ensembles cathodiques. Comme on le voit sur la figure 2, une cellule donnée comprend un conducteur de contournement autour de chacun des petits côtés de la cuve 1 , disposés de façon sensiblement symétrique par rapport à l'axe (x). Ce conducteur de contournement voit la majeure partie, typiquement 70 à 95%, de l'intensité sortant de l'ensemble cathodique de la cellule (N-1) lorsque la cellule N est court-circuitée.
Aussi, chaque conducteur de contournement et typiquement le conducteur de contournement 16 de la cellule (N-1) comporte :
- une portion amont 17 sensiblement parallèle à (y), qui est située entre la cellule (N-2) et la cellule (N-1) et dans laquelle le courant circule en s'éloignant de l'axe (x) ;
- une portion 18 sensiblement parallèle à (x) et longeant le petit côté de la cellule
(N-1), dans laquelle le courant circule dans le sens de l'axe (x) ;
- et une portion aval 9 sensiblement parallèle à (y), qui est située entre la cellule (N-1 ) et la cellule (N) et dans laquelle le courant circule en direction de l'axe (x).
Lorsque l'on souhaite court-circuiter la cuve (N), on place plusieurs cales permettant la circulation du courant directement de l'ensemble cathodique de la cellule (N-1) à l'ensemble anodique de la cellule (N+1). Les cales sont introduites dans des logements de réception appropriés entre les conducteurs considérés.
Sur la figure 2, on a représenté, de chaque côté de l'axe (x) :
- d'une part un ensemble de deux cales latérales, à savoir une première cale 20 et une deuxième cale 21 plus proche de l'axe (x) que la première cale 20. Ces cales 20, 21 sont situées entre la portion aval 19 du conducteur de contournement 16 de la cellule (N- 1 ) et la portion amont 23 du conducteur de contournement 24 de la cellule (N) ;
- d'autre part une cale 22 dite équipotentielle située plus près de l'axe (x) que les deux cales 20, 21.
On s'intéresse plus particulièrement aux ensembles de deux cales latérales, c'est-à- dire à la première cale 20 et à la deuxième cale 21.
Comme illustré sur les figures 2 et 3, dans l'art antérieur, les cales 20, 21 sont interposées directement entre la portion aval 19 du conducteur de contournement 16 de la cellule (N-1) et la portion amont 23 du conducteur de contournement 24 de la cellule (N).
On crée ainsi un premier chemin 25 de circulation du courant I du premier conducteur 16 vers le deuxième conducteur 24 via la première cale 20 (représenté en trait épais sur la figure 3) et un deuxième chemin 26 de circulation du courant I du premier conducteur 16 vers le deuxième conducteur 24 via la deuxième cale 21 (représenté en trait fin sur la figure 3). Comme cela apparaît sur la figure 3, du fait des sens de circulation opposés du courant dans les portions 19 et 23, le deuxième chemin 26 présente une longueur plus importante que le premier chemin 25, d'où une résistance électrique plus importante. Ainsi, l'intensité électrique traversant la première cale 20 est plus importante que celle traversant la deuxième cale 21 , ce qui présente les inconvénients mentionnés plus haut.
Un premier et un deuxième modes de réalisation du dispositif de connexion électrique selon l'invention sont illustrés respectivement sur les figures 4 et 5.
Selon un premier mode de réalisation, représenté sur la figure 4, il est prévu un troisième conducteur 27 d'équilibrage du courant I. Ce troisième conducteur 27 est situé entre la portion aval 19 du conducteur de contournement 16 de la cellule (N-1 ) et la portion amont 23 du conducteur de contournement 24 de la cellule (N) et s'étend sensiblement parallèlement auxdites portions 19, 23. Ce troisième conducteur 27 possède une première extrémité 28 électriquement reliée à la portion aval 19 du conducteur de contournement 16 de la cellule (N-1) et une deuxième extrémité 29 libre, plus éloignée de l'axe (x) que la première extrémité 28.
Ainsi, comme illustré sur la figure 4, le courant I circule dans le troisième conducteur 27 dans le sens opposé au sens de circulation dans la portion 19 et dans le même sens que dans la portion 23.
Les cales 20, 21 sont interposées entre le troisième conducteur 27 et la portion amont 23 du conducteur de contournement 24 de la cellule (N), c'est-à-dire dans deux conducteurs parallèles dans lesquels le courant circule dans le même sens, en s'éloignant de l'axe (x).
De ce fait, on crée deux chemins de circulation du courant I du premier conducteur 16 vers le deuxième conducteur 24 - un premier chemin 25 via la première cale 20 et un deuxième chemin 26 via la deuxième cale 21 - qui présentent sensiblement la même longueur, donc sensiblement la même résistance d'où l'obtention d'un équilibrage du courant entre les deux cales.
Avantageusement, un élément isolant 30 est placé entre le troisième conducteur 27 et la portion aval 19 du conducteur de contournement 16 de la cellule (N-1 ) afin d'empêcher des courts-circuits non souhaités.
Grâce à l'invention, on estime qu'il est possible d'obtenir le passage d'environ 55 % du courant dans la première cale 20 et environ 45 % du courant dans la deuxième cale 21.
Un deuxième mode de réalisation de l'invention est représenté sur la figure 5. Le troisième conducteur 27 d'équilibrage du courant I est également situé entre la portion aval 19 du conducteur de contournement 16 de la cellule (N-1 ) et la portion amont 23 du conducteur de contournement 24 de la cellule (N) et s'étend sensiblement parallèlement auxdites portions 19, 23.
Dans ce deuxième mode de réalisation, le troisième conducteur 27 possède une première extrémité 28 électriquement reliée à la portion amont 23 du conducteur de contournement 24 de la cellule (N) et une deuxième extrémité 29 libre, plus éloignée de l'axe (x) que la première extrémité 28.
Ainsi, comme illustré sur la figure 5, le courant I circule dans le troisième conducteur 27 dans le sens opposé au sens de circulation dans la portion 23 et dans le même sens que dans la portion 19.
Les cales 20, 21 sont interposées entre le troisième conducteur 27 et la portion aval 19 du conducteur de contournement 16 de la cellule (N-1 ), c'est-à-dire dans deux conducteurs parallèles dans lesquels le courant circule dans le même sens, en direction de l'axe (x).
De ce fait, on crée deux chemins de circulation du courant I du premier conducteur
16 vers le deuxième conducteur 24 - un premier chemin 25 via la première cale 20 et un deuxième chemin 26 via la deuxième cale 21 - qui présentent sensiblement la même longueur, donc sensiblement la même résistance d'où l'obtention d'un équilibrage du courant entre les deux cales.
Avantageusement, un élément isolant 30 est placé entre le troisième conducteur 27 et la portion amont 23 du conducteur de contournement 24 de la cellule (N) afin d'empêcher des courts-circuits non souhaités.
Chacune des cales 20, 21 est placée dans un logement de réception 31 situé entre les deux conducteurs qu'elle doit relier électriquement. Ce logement 31 est formé dans l'espace séparant lesdits conducteurs. Par exemple, sur la figure 6 sont représentés les conducteurs de la figure 4 selon une coupe transversale à ceux-ci. Comme on le voit sur cette figure, selon une réalisation avantageuse de l'invention, le logement 31 présente une face inclinée 32 de sorte que le logement 31 présente une forme convergente facilitant l'introduction d'une cale 20.
II va de soi que l'invention n'est pas limitée aux modes de réalisation décrits ci- dessus à titre d'exemples mais qu'elle en embrasse au contraire toutes les variantes de réalisation. D'autres ensembles de logements de réception pour cales de court-circuitages et cales de court-circuitage peuvent notamment être prévus entre les cuves par rapport à ce qui est décrit en référence à la figure 2. Aussi, les ensembles de court-circuitages peuvent comprendre plus de deux logements de réception, notamment trois.

Claims

REVENDICATIONS
1. Dispositif de connexion électrique entre deux cellules (N-1, N) successives d'une série de cellules (100) pour la production d'aluminium selon le procédé de Hall- Héroult, les cellules étant alignées selon un axe (x), chaque cellule comprenant une cuve d'électrolyse (1) comportant un ensemble cathodique (3, 4) et un cadre anodique (5) portant des anodes (6), le dispositif de connexion électrique comprenant un réseau de conducteurs électriques reliant en série l'ensemble cathodique (3, 4) de la cellule (N-1) au cadre anodique (5) de la cellule (N) située immédiatement en aval, le réseau de conducteurs électriques comprenant au moins :
un premier conducteur (16) relié à l'ensemble cathodique de la cellule (N-1) et au cadre anodique de la cellule (N), ledit premier conducteur (16) possédant une portion (19) située entre lesdites cuves (N-1 ) et (N) et dans laquelle le courant (I) circule en direction de l'axe (x) d'alignement des cuves (1) ;
un deuxième conducteur (24) relié à l'ensemble cathodique de la cellule (N) et au cadre anodique de la cellule (N+1 ) située immédiatement en aval, ledit deuxième conducteur (24) possédant une portion (23) située entre les cuves (N-1) et (N) et dans laquelle le courant (I) circule en s'éloignant de l'axe (x) d'alignement des cuves (1), lesdites portions (19, 23) des premier et deuxième conducteurs (16, 24) étant sensiblement parallèles entre elles ;
au moins deux logements (31 ) de réception d'une cale (20, 21) de court-circuit; caractérisé en ce que le réseau de conducteurs comprend en outre un troisième conducteur (27) d'équilibrage du courant qui s'étend sensiblement parallèlement auxdites portions (19, 23), ledit troisième conducteur (27) étant électriquement relié à ladite portion du premier conducteur (16) ou du deuxième conducteur (24), les deux logements (31 ) de réception d'une cale (20, 21) étant agencés entre ledit troisième conducteur (27) et ladite portion du deuxième conducteur (24), respectivement du premier conducteur (16).
2. Dispositif selon la revendication 1 , caractérisé en ce que les au moins deux logements (31 ) de réception de cale de court circuit sont agencés entres lesdites portions (19, 23) des premier et deuxième conducteurs (16, 24), et en ce que le troisième conducteur (27) d'équilibrage du courant est situé entre lesdites portions (19,23) des premier et deuxième conducteurs (16,24).
3. Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que le troisième conducteur est agencé de sorte que lorsque des cales de court-circuit sont insérées dans les logements (31), le courant circulant dans ledit troisième conducteur (27) circule dans le sens opposé du sens de circulation du courant dans ladite portion du premier conducteur (16), respectivement du deuxième conducteur (24), auquel le troisième conducteur (27) est relié.
4. Dispositif selon l'une des revendications 1 à 3, caractérisé en ce que le premier conducteur (16) est un conducteur de contournement de la cellule (N-1).
5. Dispositif selon l'une des revendications 1 à 4, caractérisé en ce que le deuxième conducteur (24) est un conducteur de contournement de la cellule (N).
6. Dispositif selon l'une des revendications 1 à 5, caractérisé en ce qu'il comprend un élément isolant (30) disposé entre le troisième conducteur (27) et ladite portion (19,
23) du premier conducteur (16), respectivement du deuxième conducteur (24), auquel le troisième conducteur (27) est relié.
7. Dispositif selon l'une des revendications 1 à 6, caractérisé en ce que les cuves (1 ) des cellules (100) sont sensiblement rectangulaires et agencées perpendiculairement à l'axe (x) d'alignement des cellules, lesdites portions (19, 23) des premier et deuxième conducteurs (16, 24) s'étendant sensiblement parallèlement aux grands côtés des cuves
(D- 8. Dispositif selon l'une des revendications 1 à 7, caractérisé en ce qu'au moins un logement (31) de réception d'une cale (20, 21) de court-circuit présente une face inclinée (32), vue dans un plan orthogonal à la direction (y) dans laquelle s'étendent lesdites portions (19, 23) des premier et deuxième conducteurs (16, 24), de sorte que le logement (31) présente une forme convergente dans le sens d'introduction d'une cale (20, 21).
9. Dispositif selon l'une des revendications 1 à 8, caractérisé en ce qu'il comprend, dans chaque demi-espace séparé par un plan vertical passant par l'axe (x) d'alignement des cellules (100), un ensemble de deux logements de réception d'une cale (20, 21), situé à proximité d'un bord latéral de la cuve (1 ), et au moins un logement additionnel de réception d'une cale (22) situé entre ledit ensemble de deux logements et l'axe (x) d'alignement des cellules.
10. Procédé pour court-circuiter une cellule (N) appartenant à une série de cellules pour la production d'aluminium selon le procédé de Hall-Héroult, au moyen d'un dispositif de connexion électrique selon l'une des revendications précédentes, caractérisé en ce qu'on introduit une première et une deuxième cales (20, 21) dans les logements (31) de réception d'une cale de court-circuit agencés entre ledit troisième conducteur (27) et ladite portion (23, 19) du deuxième conducteur (24), respectivement du premier conducteur (16).
EP11761647.4A 2010-09-17 2011-09-06 Dispositif de connexion électrique entre deux cellules successives d'une série de cellules pour la production d'aluminium Active EP2616571B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1003695A FR2964984B1 (fr) 2010-09-17 2010-09-17 Dispositif de connexion electrique entre deux cellules successives d'aluminium
PCT/FR2011/000491 WO2012035212A1 (fr) 2010-09-17 2011-09-06 Dispositif de connexion électrique entre deux cellules successives d'une série de cellules pour la production d'aluminium

Publications (2)

Publication Number Publication Date
EP2616571A1 true EP2616571A1 (fr) 2013-07-24
EP2616571B1 EP2616571B1 (fr) 2015-02-11

Family

ID=43415374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11761647.4A Active EP2616571B1 (fr) 2010-09-17 2011-09-06 Dispositif de connexion électrique entre deux cellules successives d'une série de cellules pour la production d'aluminium

Country Status (15)

Country Link
US (1) US8961749B2 (fr)
EP (1) EP2616571B1 (fr)
CN (1) CN103108996B (fr)
AR (1) AR083013A1 (fr)
AU (1) AU2011303728B2 (fr)
BR (1) BR112013006137A2 (fr)
CA (1) CA2808355C (fr)
DK (1) DK201370151A (fr)
EG (1) EG27090A (fr)
FR (1) FR2964984B1 (fr)
MY (1) MY166818A (fr)
NZ (1) NZ608174A (fr)
RU (1) RU2566106C2 (fr)
WO (1) WO2012035212A1 (fr)
ZA (1) ZA201301281B (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3009564A1 (fr) * 2013-08-09 2015-02-13 Rio Tinto Alcan Int Ltd Aluminerie comprenant un circuit electrique de compensation
GB2549731A (en) * 2016-04-26 2017-11-01 Dubai Aluminium Pjsc Busbar system for electrolytic cells arranged side by side in series
GB2554702A (en) * 2016-10-05 2018-04-11 Dubai Aluminium Pjsc Cathode assembly for electrolytic cell suitable for the Hall-Héroult process

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2583069B1 (fr) * 1985-06-05 1987-07-31 Pechiney Aluminium Dispositif de connexion entre cuves d'electrolyse a tres haute intensite, pour la production d'aluminium, comportant un circuit d'alimentation et un circuit independant de correction du champ magnetique
IT1264952B1 (it) * 1993-07-20 1996-10-17 Permelec Spa Nora Tipo di cotocircuitatore per elettrolizzatori collegati in serie elettrica
CN100482028C (zh) * 2003-07-08 2009-04-22 达方电子股份有限公司 发光模块及运用发光模块的键盘
RU2288976C1 (ru) * 2005-05-04 2006-12-10 Общество с ограниченной ответственностью "Инженерно-технологический центр" Ошиновка модульная мощных электролизеров для производства алюминия
CN2835264Y (zh) * 2005-08-05 2006-11-08 贵阳铝镁设计研究院 电解槽短路装置
SI2080820T1 (sl) * 2008-01-21 2011-01-31 Alcan Int Ltd Naprava in postopek za kratkostičenje ene ali več celic v razoreditvi elektroliznih celic namenjenih za proizvodnjo aluminija

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012035212A1 *

Also Published As

Publication number Publication date
AU2011303728B2 (en) 2015-01-22
NZ608174A (en) 2014-05-30
CA2808355C (fr) 2018-10-30
MY166818A (en) 2018-07-23
ZA201301281B (en) 2014-04-30
WO2012035212A1 (fr) 2012-03-22
EG27090A (en) 2015-05-25
EP2616571B1 (fr) 2015-02-11
US20130168218A1 (en) 2013-07-04
BR112013006137A2 (pt) 2019-09-24
CA2808355A1 (fr) 2012-03-22
FR2964984B1 (fr) 2012-08-31
RU2566106C2 (ru) 2015-10-20
US8961749B2 (en) 2015-02-24
CN103108996A (zh) 2013-05-15
RU2013117453A (ru) 2014-10-27
FR2964984A1 (fr) 2012-03-23
AU2011303728A1 (en) 2013-03-07
DK201370151A (en) 2013-03-13
CN103108996B (zh) 2016-06-29
AR083013A1 (es) 2013-01-23

Similar Documents

Publication Publication Date Title
CA2559372C (fr) Element cathodique pour l'equipement d'une cellule d'electrolyse destinee a la production d'aluminium
EP0204647B1 (fr) Dispositif de connexion entre cuves d'électrolyse à tres haute intensité pour la production d'aluminium, comportant un circuit d'alimentation et un circuit indépendant de correction du champ magnétique
CH619006A5 (fr)
CA2561258C (fr) Serie de cellules d'electrolyse pour la production d'aluminium comportant des moyens pour equilibrer les champs magnetiques en extremite de file
CA2919331C (fr) Dispositif d'electrolyse et ensemble anodique destines a la production d'aluminium, cellule d'electrolyse et installation comportant un tel dispositif
EP2616571B1 (fr) Dispositif de connexion électrique entre deux cellules successives d'une série de cellules pour la production d'aluminium
CA1232869A (fr) Cuve d'electrolyse a intensite superieure a 250 000 amperes pour la production d'aluminium par le procede hall-heroult
CA2919050C (fr) Aluminerie comprenant un circuit electrique de compensation
EP3030694B1 (fr) Cuve d'electrolyse destinee a la production d'aluminium et usine d'electrolyse comprenant cette cuve
CA1143695A (fr) Procede et dispositif pour la suppression des perturbations magnetiques dans les cuves d'electrolyse a tres haute intensite placees en travers
EP3256623B1 (fr) Aluminerie et procédé de compensation d'un champ magnétique créé par la circulation du courant d'électrolyse de cette aluminerie
EP0945935B1 (fr) Dispositif de contact électrique pour alimentation électrique et ensemble propulseur et directeur pour navire incorporant un tel dispositif
CH631213A5 (fr) Dispositif de liaison electrique pour la reduction des perturbations magnetiques dans les series de cuves d'electrolyse a tres haute intensite pour la production d'aluminium.
CH643601A5 (fr) Installation pour la production d'aluminium, comportant des cuves d'electrolyse a haute intensite connectees en serie avec leur champ magnetique vertical symetrique.
FR2522021A1 (fr) Cellules electrolytiques pour la production d'aluminium
OA18402A (fr) Aluminerie et procédé de compensation d'un champ magnétique crée par la circulation du courant d'électrolyse de cette aluminerie.
WO2016128826A1 (fr) Cuve d'electrolyse
OA17792A (fr) Cuve d'électrolyse destinée à la production d'aluminium et usine d'électrolyse comprenant cette cuve
FR2505368A1 (fr) Dispositif pour la production d'aluminium par electrolyse ignee sous tres haute densite
OA17793A (fr) Aluminerie comprenant un circuit électrique de compensation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01H 1/58 20060101ALI20140610BHEP

Ipc: C25C 7/06 20060101ALI20140610BHEP

Ipc: C25C 3/16 20060101AFI20140610BHEP

INTG Intention to grant announced

Effective date: 20140704

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 709961

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011013665

Country of ref document: DE

Effective date: 20150326

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150211

REG Reference to a national code

Ref country code: NO

Ref legal event code: T2

Effective date: 20150211

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 709961

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150211

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150512

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011013665

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

26N No opposition filed

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150906

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150906

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IS

Payment date: 20160819

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160926

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160928

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110906

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011013665

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150211

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190927

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200906

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NO

Payment date: 20230911

Year of fee payment: 13