EP2609388B1 - High-temperature furnace, use of a spinel ceramic and method for carrying out t(o)c measurements of samples - Google Patents

High-temperature furnace, use of a spinel ceramic and method for carrying out t(o)c measurements of samples Download PDF

Info

Publication number
EP2609388B1
EP2609388B1 EP11748415.4A EP11748415A EP2609388B1 EP 2609388 B1 EP2609388 B1 EP 2609388B1 EP 11748415 A EP11748415 A EP 11748415A EP 2609388 B1 EP2609388 B1 EP 2609388B1
Authority
EP
European Patent Office
Prior art keywords
temperature furnace
sample
vaporization space
spinel ceramic
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11748415.4A
Other languages
German (de)
French (fr)
Other versions
EP2609388A1 (en
Inventor
Christian Heuckeroth
Rudolf Kreutzer
Peter Kawulycz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanxess Deutschland GmbH
Original Assignee
Lanxess Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lanxess Deutschland GmbH filed Critical Lanxess Deutschland GmbH
Priority to EP11748415.4A priority Critical patent/EP2609388B1/en
Publication of EP2609388A1 publication Critical patent/EP2609388A1/en
Application granted granted Critical
Publication of EP2609388B1 publication Critical patent/EP2609388B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/02Furnaces of a kind not covered by any preceding group specially designed for laboratory use

Definitions

  • the present invention relates to a high-temperature furnace, with the aid of which T (O) C measurements of samples can be carried out in order to be able to determine, in particular according to DIN EN 1484, the fraction of oxidizable carbon of a wastewater.
  • the present invention further relates to a suitable use of a spinel ceramic and a method for carrying out T (O) C measurements of samples.
  • the proportion of oxidizable carbon of a wastewater is determined by determining the TOC value (English: total organic carbon), whereby the measured carbon content does not necessarily have to be organically bound depending on the sample ( "T (O) C-value").
  • TOC value English: total organic carbon
  • T (O) C-value the concentration of the resulting CO 2 can be determined over time using an NDIR (Non-Dispersive Infrared Detector). The resulting integral of the CO 2 concentration over time is proportional to the carbon released from the sample.
  • the high-temperature reactor is heated to temperatures of about 700 ° C to 1000 ° C.
  • T (O) C measurement it has been found that after some time salts deposit, which impairs the T (O) C measurement, so that the high-temperature furnace aged by the salt deposits has to be slowly cooled and manually cleaned at certain maintenance intervals before the high-temperature reactor is again slow can be heated to the operating temperature.
  • the high-temperature furnace according to the invention for T (O) C measurement of a sample has a furnace housing delimiting a evaporation chamber, which has a sample opening for dripping in the sample.
  • the furnace housing is lined with a spinel ceramic on an inner side facing the evaporation space.
  • the evaporation space is the entire volume, which is limited by the oven housing.
  • the evaporation space is lined by a material that allows particularly high temperatures within the evaporation space and thus the most complete combustion and at the same time is very resistant to thermal shock.
  • This makes it possible to substantially clean the evaporation space at operating temperature with a rinsing liquid and dissolved salts, in particular recrystallized inorganic salts from the evaporation space dissolved in the rinsing liquid or to remove undissolved. Aging of the high-temperature furnace by deposited salts can thereby be avoided or at least significantly delayed, whereby the operating costs over the life of the high-temperature furnace are reduced. Cleaning by hand is not required.
  • a cleaning of the remaining at operating temperature high temperature furnace between two measurements can be provided without the particular continuous T (O) C measurement of samples is significantly delayed.
  • Damage to the spinel ceramic by the impinging rinse liquid can be avoided due to the high thermal shock resistance, so that microcracks and material fatigue of the spinel ceramic during rinsing are substantially avoided.
  • increased corrosion resistance, especially in the case of alkali-containing slags, is achieved, so that the range of application of the high-temperature furnace can be extended to a large number of different, for example particularly alkaline, samples.
  • the spinel ceramic does not react acid with water, whereas, for example, an Al 2 O 3 -SiO 2 ceramic reacts acidically with water as a conventional ceramic.
  • the occurrence of additional acid can be avoided, which relieves in particular the analysis.
  • the measurement accuracy can be improved because subsequent measurements are not affected by deposited salts.
  • This allows fast and accurate online T (O) C measurement, in particular of wastewater, such as those that occur during the operation of chemical plants.
  • the properties of spinel ceramics can be adapted by using different powders with different additives during production.
  • different particle sizes and / or particle size distributions can be set for the spinel ceramic.
  • different activated and / or non-activated phases can be provided in each case with corresponding components provided.
  • a spinel ceramic is understood in particular to mean a ceramic material which has the structure of a spinel.
  • a ceramic is a material which has been sintered in particular by annealing or firing fine-grained, inorganic material at elevated temperatures, for example in a range of ⁇ 900 ° C to ⁇ 1500 ° C. Ceramics often have preferred properties with respect to temperature resistance, hardness, electrical insulation, chemical resistance, et cetera.
  • a spinel structure is a cubic structure which can be formed by a compound of the general type AB 2 X 4 , where A and B are in particular metallic elements. In this case, A may be a divalent metal cation, B may be a trivalent metal cation and X may be an oxide.
  • divalent cations examples include Mg 2+ , Fe 2+ , Zn 2+ , Mn 2+ , Cu 2+ , Ne + , Co 2+
  • trivalent cations may in particular be formed by Al 3+ , Fe 3+ , Mn 3+ , Cr 3+ , Fe 3+ , Ga 3+ .
  • Special spinels which may be suitable according to the invention include in particular the usual spinel (MgAl 2 O 4 ), zinc spinel (ZnAl 2 O 4 ), iron spinel (Fe, Mg) (Al, Fe) O 4 , chromium spinel (Fe, Mg) ( Al, Cr, Fe) 2 O 4 or nickel spinel (NiAl 2 O 4 ).
  • the spinel ceramic according to the invention comprises materials as described above, as well as materials which have mixed mixed crystals as substitution mixed crystals, as well as crystals with defect sites.
  • the composition can vary within wide limits.
  • stoichiometric MgAl 2 O 4 spinels are also included in the invention, such as MgO-rich and Al 2 O 3 -rich spinels, respectively.
  • the furnace housing has at least one flushing opening for introducing a flushing liquid.
  • the flushing opening may in particular be different from the sample opening, so that the flushing liquid does not contaminate the path of the sample and may possibly falsify a subsequent measurement.
  • the flushing opening is oriented substantially vertically, so that the flushing liquid can trickle down in the direction of gravity over the surface of the spinel ceramic facing the evaporation space in order to clean the high-temperature furnace.
  • the at least one flushing opening is preferably aligned substantially horizontally, so that the flushing liquid can run along the boundary of the evaporation space via the side of the spinel ceramic facing the evaporation chamber.
  • the rinsing liquid can be discharged together with the washed out salts, which may be dissolved in the rinsing liquid or undissolved, in particular via a lower outlet in the direction of gravity.
  • Rinsing liquid remaining in the evaporation space can be vaporized and discharged from the evaporation space, comparable to a sample measurement.
  • rinsing liquid water can be used.
  • an organic, in particular carbonaceous, solvent as rinsing liquid. By anyway provided CO 2 measurement can be determined when the rinse liquid is completely evaporated and removed from the vaporizing space.
  • the flushing opening is preferably connected to at least one injection nozzle for introducing an aerosol mist from flushing liquid, wherein the at least one injection nozzle has a substantially horizontally oriented introduction direction.
  • the rinsing liquid can thereby be introduced as mist or vapor and sprayed at a corresponding pressure against the respective rinsing opening opposite region of the spinel ceramic.
  • the rinsing liquid can more easily detach from the baked salts by the impact pressure which can be achieved thereby on the spinel ceramic.
  • a multiplicity of flushing openings is preferably uniformly distributed in the circumferential direction at a substantially common vertical height.
  • the spinel ceramic comprises at least one additive which is selected from liquefiers, ceramic fibers or further inorganic fillers. It is particularly preferred if at least one additive in the ceramic is finely dispersed or distributed. In this way, an adaptation to special requirements of the spinel ceramic can be realized.
  • a condenser also known as water reducer, superplasticizer or dispersant
  • water reducer also known as water reducer, superplasticizer or dispersant
  • dispersant significantly reduces the need for mixing water. Due to the dispersion, all grains can be wetted homogeneously from all sides despite a lower water content.
  • the ceramic can be optimized, for example, with respect to thermal shock resistance or surface finish and adapted to the desired requirements.
  • the spinel ceramic has a discontinuous particle size distribution.
  • the thermal shock resistance or the thermal shock behavior is further improved.
  • the thermal shock resistance is particularly important for flushing the furnace.
  • a discontinuous particle size distribution in the context of the invention means that the particle size distribution has a gap in a certain particle size range.
  • the spinel ceramic may have 60-65 mass% coarse grain and 35-40 mass% fine grain, the fine grain may comprise grain sizes in a range of ⁇ 1 ⁇ m to ⁇ 74 ⁇ m and the coarse grain grain sizes in a range of ⁇ 74 ⁇ m to ⁇ 700 ⁇ m ( ⁇ means greater than or equal to, ⁇ means less than or equal to).
  • the spinel ceramic has pores having a size in a range of ⁇ 10 ⁇ m.
  • Such small pores further improve the thermal shock resistance and, if crack formation nevertheless occurs, result in a rounding of the crack tip, which leads to lower stress at the corresponding point.
  • the pores may in particular have a size of ⁇ 0.1 ⁇ m to ⁇ 10 ⁇ m.
  • the open porosity has a value in a range of ⁇ 10% by volume to ⁇ 30% by volume.
  • the open porosity of the material is the sum of the cavities that communicate with each other and with the environment, and is also referred to as Nutzporostician. As a result, a high thermal shock resistance is achieved at the same time sufficient stability.
  • the spinel ceramic is produced as a substantially isostatically pressed molding or produced by a plasma coating process. It is possible to apply the spinel ceramic to the substrate by means of the plasma coating process, comparable to a rapid prototyping process in several layers. This allows the spinel ceramic to be applied to a substrate that is easier to install to line the evaporation space. If necessary, a plurality of spinel ceramic layers can be provided one above the other, so that during a revision, one or more of the upper layers can be separated from an underlying layer in order to provide a uniform unused surface.
  • the different layers have a different composition and / or particle size distribution.
  • sufficient stability can be ensured, for example, in lower layers, whereas the upper layers are adapted to the measuring task.
  • Overall, an even better adaptation of the spinel ceramic to the measurement tasks is possible.
  • the vapor / CO 2 mixture obtained from the liquid sample to be measured by evaporation and oxidation is typically sent directly to the NDIR (Non-Dispersive) via an outlet port located on the furnace housing defining the evaporation space Infrared detector), via which the concentration of the resulting carbon dioxide is determined.
  • NDIR Non-Dispersive
  • Infrared detector Infrared detector
  • the spontaneous evaporation of the sample to be measured produces pulsed measuring signals at the detector. This correlates with the dripping frequency of the sample at the furnace inlet.
  • the amount of CO2 resulting from the sample thus flows frequently, pulsing past the NDIR detector. Accordingly, the detector determines not constant but highly fluctuating measured values, under which the measuring accuracy of the measuring system can suffer.
  • the high-temperature furnace according to the invention for T (O) C measurement may be modified such that the steam / CO 2 mixture is deflected by structural elements on the way within the evaporation space to the outlet opening.
  • the structural elements may be unattached in the evaporation space by touching each other.
  • the structural elements may be variably mounted by horizontal and / or vertical elevations in the evaporation space of the high-temperature furnace.
  • the constructive elements may be attached to the inner wall of the evaporation space.
  • the constructive elements can also be fastened to one another. In this case, different structural elements can be combined. It is also possible to combine fastened and unpaved constructional elements, both when they are of the same or different shape.
  • the interconnected cavities created by the structural elements act as buffer volumes. As a result, the pressure fluctuations on the way within the evaporation space via the outlet opening to the NDIR are compensated.
  • the constructive elements may be, for example, three-dimensional bodies, such as spheres, cuboids, rings, cones or cylinders or any other shaped three-dimensional body. Other structural elements such as straight or curved plates, struts or other flat elements may also be used.
  • the constructive elements may consist of different materials.
  • the structural elements are preferably made of or coated with spinel ceramic.
  • the structural elements are particularly preferably made of or coated with the same spinel ceramic as used to line the evaporation space of the high-temperature furnace for T (O) C measurement.
  • Another effect of this constructive change is that by diverting the vapor / CO 2 mixture non-vaporizable components, usually inorganic salts, which are formed during the oxidation of the sample or contained in the sample, are preferably retained in the evaporation chamber and not go to the outlet and continue to the NDIR. As a result, maintenance intervals of the entire analysis device are additionally increased and thus reduced operating costs.
  • the invention further relates to a use of a spinel ceramic for lining an evaporation space of a high-temperature furnace for T (O) C measurement of a sample, the high-temperature furnace in particular as described above and further educated.
  • the spinel ceramic is preferably formed and refined as described above with reference to the high temperature furnace. Due to the spinel ceramic, the evaporation space is lined by a material that allows particularly high temperatures within the evaporation space and thus the most complete combustion and at the same time is very resistant to thermal shock.
  • the invention further relates to a method for carrying out T (O) C measurements of samples, in which provision is made of a high-temperature furnace, wherein the high-temperature furnace has an evaporation chamber lined with a spinel ceramic.
  • the high-temperature furnace is in particular as described above and further developed.
  • the evaporation space is heated to operating temperature and a sample is introduced into the evaporation space.
  • a flushing liquid is introduced into the evaporation space substantially at the operating temperature for the removal of inorganic salts which have been recrystallized within the evaporation space from the sample.
  • the method can in particular be designed and developed further as described above with reference to the high-temperature furnace. Due to the spinel ceramic, the evaporation space is lined by a material that allows particularly high temperatures within the evaporation space and thus the most complete combustion and at the same time is very resistant to thermal shock. This makes it possible to substantially clean the evaporation space at operating temperature with a rinsing liquid and dissolved salts, in particular recrystallized inorganic salts from the evaporation space dissolved in the rinsing liquid or to remove undissolved. An aging of the high-temperature furnace by deposited salts can be avoided or at least significantly delayed.
  • a method for TOC measurement of samples comprising the steps of providing a high-temperature furnace, wherein the high-temperature furnace has a spinel-lined evaporation chamber, heating the evaporation space to operating temperature, introducing a sample into the evaporation space, evaporating and / or oxidizing the sample in the vaporizing space, measuring the amount of CO 2 produced, and introducing a rinsing liquid into the vaporizing space substantially at the operating temperature to remove inorganic salts recrystallized within the vaporizing space from the sample.
  • the rinsing liquid is injected into the evaporation space as an aerosol mist.
  • the rinsing liquid can thereby be introduced as mist or vapor and sprayed at a corresponding pressure against the respective rinsing opening opposite region of the spinel ceramic.
  • the rinsing liquid can more easily detach from the baked salts by the impact pressure that can be achieved thereby on the spinel ceramic.
  • a multiplicity of flushing openings is preferably uniformly distributed in the circumferential direction at a substantially common vertical height.
  • the evaporation space is dried essentially at operating temperature and subsequently another sample for T (O) C measurement is introduced into the evaporation space.
  • rinsing liquid water can be used.
  • organic, in particular carbonaceous, solvent as rinsing liquid.
  • CO 2 measurement can be determined when the rinse liquid is completely evaporated and removed from the evaporation chamber. Contamination of the T (O) C measurement by residues of the rinsing liquid remaining in the evaporation space is thereby avoided.
  • An operating temperature T O of 500 ° C. ⁇ T O ⁇ 2000 ° C., in particular 800 ° C. ⁇ T O ⁇ 1700 ° C., preferably 1000 ° C. ⁇ T O ⁇ 1500 ° C. and particularly preferably 1200 ° C. ⁇ T is particularly preferred O ⁇ 1300 ° C set.
  • substantially complete oxidation of the carbon can be achieved without risking material damage in the spinel ceramic due to temperature effects.
  • the operating costs can be further reduced.
  • the use of catalyst balls can be reduced by means of an internal predetermined, constructive gas path.
  • the same operating temperature is regulated immediately after the introduction of the sample and immediately after the introduction of the rinsing liquid as the target variable.
  • the temperature control of the high-temperature furnace does not have to differentiate between a normal operation and a flushing operation, so that the control is simplified.
  • unsteady temperature effects for example by heat conduction, can be avoided or at least significantly reduced, since interim cooling and heating as well as waiting until reaching a stationary operating state are avoided.
  • the stability and thermal shock resistance of the spinel ceramic is also caused by their chemical constitution.
  • the formulation of the spinel ceramic used can combine the properties of an oxide and a non-oxide ceramic by a suitable choice of the ceramic components.
  • oxide ceramics are harder, more wear-resistant and heat-resistant, but also more brittle than hard metals.
  • Non-oxide ceramics, such as nitrides, carbides or borides, for example, are characterized by high chemical and thermal stability, hardness and strength compared to oxide ceramics, however, accompanied by low ductility and quite high brittleness, caused by higher covalent and lower ionic bond fractions and thus by the strong binding energies. Therefore, the selection of modified spinel ceramics is possible. For example, in the case of a MgAl 2 O 4 ceramic, additional alumina or magnesium oxide may be added to obtain, for example, an Al 2 O 3 -rich or MgO-rich spinel ceramic.

Landscapes

  • Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Health & Medical Sciences (AREA)
  • Clinical Laboratory Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)

Description

Die vorliegende Erfindung betrifft einen Hochtemperaturofen, mit dessen Hilfe T(O)C-Messungen von Proben durchgeführt werden können, um insbesondere gemäß DIN EN 1484 den Anteil oxidierbaren Kohlenstoffs eines Abwassers bestimmen zu können. Die vorliegende Erfindung betrifft ferner eine hierfür geeignete Verwendung einer Spinell-Keramik sowie ein Verfahren zur Durchführung von T(O)C-Messungen von Proben.The present invention relates to a high-temperature furnace, with the aid of which T (O) C measurements of samples can be carried out in order to be able to determine, in particular according to DIN EN 1484, the fraction of oxidizable carbon of a wastewater. The present invention further relates to a suitable use of a spinel ceramic and a method for carrying out T (O) C measurements of samples.

Insbesondere in der Wasser- und Abwasseranalytik wird gemäß DIN EN 1484 der Anteil oxidierbaren Kohlenstoffs eines Abwassers bestimmt, indem der TOC-Wert (engl.: total organic carbon) ermittelt wird, wobei der gemessene Kohlenstoffanteil je nach Probe nicht notwendigerweise organisch gebunden vorliegen muss ("T(O)C-Wert"). Hierzu wird in einem Hochtemperaturofen, wie z.B. in DE 102 008 025 877 A1 beschrieben, eine insbesondere flüssige Probe in einen Verdampfungsraum eingetropft und im Wesentlichen vollständig oxidiert, so dass der gesamte Kohlenstoff als CO2 vorliegt. Die Konzentration des entstandenen CO2 kann mit einem NDIR (Non-Dispersive Infrarotdetektor) über die Zeit ermittelt werden. Das resultierende Integral aus der CO2-Konzentration über die Zeit ist proportional zu dem aus der Probe freigesetzten Kohlenstoff. Für die Oxidation der Probe wird der Hochtemperaturreaktor auf Temperaturen von ca. 700°C bis 1000°C geheizt. Hierzu ist der Verdampfungsraum des Hochtemperaturreaktors mit einer entsprechend temperaturfesten Oxid-Keramik, z. B. Al2O3, ausgekleidet. Es hat sich jedoch gezeigt, dass sich nach einiger Zeit Salze ablagern, welche die T(O)C-Messung beeinträchtigen, so dass der durch die Salzablagerungen gealterte Hochtemperaturofen in bestimmten Wartungsintervallen langsam abgekühlt und von Hand gereinigt werden muss, bevor der Hochtemperaturreaktor wieder langsam auf die Betriebstemperatur erwärmt werden kann.In particular, in water and wastewater analysis according to DIN EN 1484, the proportion of oxidizable carbon of a wastewater is determined by determining the TOC value (English: total organic carbon), whereby the measured carbon content does not necessarily have to be organically bound depending on the sample ( "T (O) C-value"). This is done in a high temperature oven, such as in DE 102 008 025 877 A1 described, dripped a particular liquid sample into a vaporizing space and substantially completely oxidized, so that the entire carbon is present as CO 2 . The concentration of the resulting CO 2 can be determined over time using an NDIR (Non-Dispersive Infrared Detector). The resulting integral of the CO 2 concentration over time is proportional to the carbon released from the sample. For the oxidation of the sample, the high-temperature reactor is heated to temperatures of about 700 ° C to 1000 ° C. For this purpose, the evaporation space of the high-temperature reactor with a correspondingly temperature-resistant oxide ceramic, z. B. Al 2 O 3 , lined. However, it has been found that after some time salts deposit, which impairs the T (O) C measurement, so that the high-temperature furnace aged by the salt deposits has to be slowly cooled and manually cleaned at certain maintenance intervals before the high-temperature reactor is again slow can be heated to the operating temperature.

Es ist die Aufgabe der Erfindung Maßnahmen anzugeben, die eine Reduktion des Ausmaßes von Alterungseffekten eines Hochtemperaturofens zur T(O)C-Messung ermöglichen.It is the object of the invention to provide measures that allow a reduction in the extent of aging effects of a high-temperature furnace for T (O) C measurement.

Die Lösung der Aufgabe erfolgt erfindungsgemäß durch einen Hochtemperaturofen mit den Merkmalen des Anspruch 1, eine Verwendung mit den Merkmalen des Anspruchs 10 sowie ein Verfahren zur Durchführung von T(O)C-Messungen von Proben mit den Merkmalen des Anspruchs 11. Bevorzugte Ausgestaltungen der Erfindung sind in den Unteransprüchen angegeben.The object is achieved according to the invention by a high-temperature furnace with the features of claim 1, a use with the features of claim 10 and a method for performing T (O) C measurements of samples having the features of claim 11. Preferred embodiments of the invention are given in the subclaims.

Der erfindungsgemäße Hochtemperaturofen zur T(O)C-Messung einer Probe weist ein einen Verdainpfungsraum begrenzendes Ofengehäuse auf, das eine Probenöffnung zum Eintropfen der Probe aufweist. Erfindungsgemäß ist das Ofengehäuse an einer zum Verdampfungsraum weisenden Innenseite mit einer Spinell-Keramik ausgekleidet. Als Verdampfungsraum wird das gesamte Volumen bezeichnet, das durch das Ofengehäuse begrenzt wird.The high-temperature furnace according to the invention for T (O) C measurement of a sample has a furnace housing delimiting a evaporation chamber, which has a sample opening for dripping in the sample. According to the invention, the furnace housing is lined with a spinel ceramic on an inner side facing the evaporation space. The evaporation space is the entire volume, which is limited by the oven housing.

Durch die Spinell-Keramik ist der Verdampfungsraum durch ein Material ausgekleidet, das besonders hohe Temperaturen innerhalb des Verdampfungsraums und somit eine möglichst vollständige Verbrennung ermöglicht und gleichzeitig sehr temperaturwechselbeständig ist. Dies ermöglicht es im Wesentlichen bei Betriebstemperatur den Verdampfungsraum mit einer Spülflüssigkeit zu reinigen und abgelagerte Salze, insbesondere rekristallisierte anorganische Salze aus dem Verdampfungsraum in der Spülflüssigkeit gelöst oder ungelöst zu entfernen. Eine Alterung des Hochtemperaturofens durch abgelagerte Salze kann dadurch vermieden oder zumindest deutlich verzögert werden, wodurch die Betriebskosten über die Lebensdauer des Hochtemperaturofens reduziert sind. Eine Reinigung von Hand ist nicht erforderlich. Insbesondere kann eine Reinigung des auf Betriebstemperatur verbleibenden Hochtemperaturofens zwischen zwei Messungen vorgesehen werden, ohne dass die insbesondere kontinuierliche T(O)C-Messung von Proben dadurch wesentlich verzögert wird. Eine Beschädigung der Spinell-Keramik durch die auftreffende Spülflüssigkeit kann aufgrund der hohen Temperaturwechselbeständigkeit vermieden werden, so dass Mikrorisse und Materialermüdungen der Spinell-Keramik beim Spülen im Wesentlichen vermieden sind. Ferner ist eine erhöhte Korrosionsbeständigkeit, insbesondere bei alkalihaltigen Schlacken, erreicht, so dass der Einsatzbereich des Hochtemperaturofens auf eine Vielzahl unterschiedlicher, beispielsweise besonders alkalihaltiger, Proben erweitert werden kann. Weiterhin reagiert die Spinell-Keramik mit Wasser nicht sauer, wohingegen beispielsweise eine Al2O3-SiO2-Keramik als herkömmliche Keramik mit Wasser sauer reagiert. Erfindungsgemäß kann daher das Auftreten von zusätzlicher Säure vermieden werden, was insbesondere die Analytik entlastet. Gleichzeitig kann die Messgenauigkeit verbessert werden, da nachfolgende Messungen durch abgelagerte Salze nicht beeinträchtigt werden. Dies ermöglicht eine schnelle und genaue online-T(O)C-Messung insbesondere von Abwässern, wie sie beispielsweise beim Betrieb chemischer Anlagen entstehen. Die Eigenschaften der Spinell-Keramik können je nach Anwendungsfall angepasst werden, indem bei der Herstellung verschiedene Pulver mit verschiedenen Zusätzen verwendet werden. Ferner können für die Spinell-Keramik unterschiedliche Korngrößen und/oder Korngrößenverteilungen eingestellt werden. Darüber hinaus können insbesondere je nach Mischungsverhältnis der Einsatzstoffe und/oder Temperaturverläufen beim Brennprozess verschiedene aktivierte und/oder nicht-aktivierte Phasen mit entsprechenden vorgesehen Zusammensetzungsanteilen vorgesehen werden.Due to the spinel ceramic, the evaporation space is lined by a material that allows particularly high temperatures within the evaporation space and thus the most complete combustion and at the same time is very resistant to thermal shock. This makes it possible to substantially clean the evaporation space at operating temperature with a rinsing liquid and dissolved salts, in particular recrystallized inorganic salts from the evaporation space dissolved in the rinsing liquid or to remove undissolved. Aging of the high-temperature furnace by deposited salts can thereby be avoided or at least significantly delayed, whereby the operating costs over the life of the high-temperature furnace are reduced. Cleaning by hand is not required. In particular, a cleaning of the remaining at operating temperature high temperature furnace between two measurements can be provided without the particular continuous T (O) C measurement of samples is significantly delayed. Damage to the spinel ceramic by the impinging rinse liquid can be avoided due to the high thermal shock resistance, so that microcracks and material fatigue of the spinel ceramic during rinsing are substantially avoided. Furthermore, increased corrosion resistance, especially in the case of alkali-containing slags, is achieved, so that the range of application of the high-temperature furnace can be extended to a large number of different, for example particularly alkaline, samples. Furthermore, the spinel ceramic does not react acid with water, whereas, for example, an Al 2 O 3 -SiO 2 ceramic reacts acidically with water as a conventional ceramic. According to the invention, therefore, the occurrence of additional acid can be avoided, which relieves in particular the analysis. At the same time, the measurement accuracy can be improved because subsequent measurements are not affected by deposited salts. This allows fast and accurate online T (O) C measurement, in particular of wastewater, such as those that occur during the operation of chemical plants. Depending on the application, the properties of spinel ceramics can be adapted by using different powders with different additives during production. Furthermore, different particle sizes and / or particle size distributions can be set for the spinel ceramic. In addition, depending on the mixing ratio of the starting materials and / or temperature profiles during the firing process, different activated and / or non-activated phases can be provided in each case with corresponding components provided.

Unter einer Spinell-Keramik wird insbesondere ein Keramikmaterial verstanden, das die Struktur eines Spinells aufweist. Eine Keramik ist dabei ein Material, das insbesondere durch Glühen beziehungsweise Brennen von feinkörnigem, anorganischem Material bei erhöhten Temperaturen, beispielsweise in einem Bereich von ≥ 900°C bis ≤ 1500°C, gesintert wurde. Keramiken weisen dabei oftmals bevorzugte Eigenschaften mit Bezug auf Temperaturbeständigkeit, Härte, elektrische Isolation, chemische Beständigkeit, et cetera auf. Eine Spinellstruktur ist eine kubische Struktur, die durch eine Verbindung des allgemeinen Typs AB2X4 gebildet sein kann, wobei A und B insbesondere metallische Elemente sind. Dabei kann A ein zweiwertiges Metallkation, B ein dreiwertiges Metallkation und X ein Oxid sein. Beispiele für die zweiwertigen Kationen sind Mg2+, Fe2+, Zn2+, Mn2+, Cu2+,Ne+, Co2+, wohingegen die dreiwertigen Kationen insbesondere gebildet sein können durch Al3+, Fe3+, Mn3+, Cr3+, Fe3+, Ga3+. Zwischen den Kationen besteht dabei in weiten Grenzen eine Austauschbarkeit. Spezielle Spinelle, die erfindungsgemäß geeignet sein können, umfassen insbesondere das gewöhnliche Spinell (MgAl2O4), Zinkspinell (ZnAl2O4), Eisenspinell (Fe, Mg)(Al, Fe)O4, Chromspinell (Fe, Mg)(Al, Cr, Fe)2O4 oder Nickelspinell (NiAl2O4). Die erfindungsgemäße Spinell-Keramik umfasst dabei Materialien wie oben beschrieben, sowie Materialien, die als Mischspinelle Substitutionsmischkristalle aufweisen, als auch Kristalle mit Defektstellen. Darüber hinaus kann die Zusammensetzung in weiten Grenzen schwanken. Mit Bezug auf den gewöhnlichen Spinell beispielsweise sind stöchiometrische MgAl2O4-Spinelle ebenso von der Erfindung umfasst wie etwa MgO-reiche beziehungsweise Al2O3-reiche Spinelle.A spinel ceramic is understood in particular to mean a ceramic material which has the structure of a spinel. A ceramic is a material which has been sintered in particular by annealing or firing fine-grained, inorganic material at elevated temperatures, for example in a range of ≥ 900 ° C to ≤ 1500 ° C. Ceramics often have preferred properties with respect to temperature resistance, hardness, electrical insulation, chemical resistance, et cetera. A spinel structure is a cubic structure which can be formed by a compound of the general type AB 2 X 4 , where A and B are in particular metallic elements. In this case, A may be a divalent metal cation, B may be a trivalent metal cation and X may be an oxide. Examples of the divalent cations are Mg 2+ , Fe 2+ , Zn 2+ , Mn 2+ , Cu 2+ , Ne + , Co 2+ , whereas the trivalent cations may in particular be formed by Al 3+ , Fe 3+ , Mn 3+ , Cr 3+ , Fe 3+ , Ga 3+ . There is an interchangeability between the cations within wide limits. Special spinels which may be suitable according to the invention include in particular the usual spinel (MgAl 2 O 4 ), zinc spinel (ZnAl 2 O 4 ), iron spinel (Fe, Mg) (Al, Fe) O 4 , chromium spinel (Fe, Mg) ( Al, Cr, Fe) 2 O 4 or nickel spinel (NiAl 2 O 4 ). The spinel ceramic according to the invention comprises materials as described above, as well as materials which have mixed mixed crystals as substitution mixed crystals, as well as crystals with defect sites. In addition, the composition can vary within wide limits. For example, with respect to the ordinary spinel, stoichiometric MgAl 2 O 4 spinels are also included in the invention, such as MgO-rich and Al 2 O 3 -rich spinels, respectively.

Das Ofengehäuse weist mindestens eine Spülöffnung zum Einleiten einer Spülflüssigkeit auf. Die Spülöffnung kann insbesondere von der Probenöffnung verschieden sein, so dass die Spülflüssigkeit nicht den Weg der Probe kontaminieren und gegebenenfalls eine nachfolgende Messung verfälschen kann. Beispielsweise ist die Spülöffnung im Wesentlichen vertikal ausgerichtet, so dass die Spülflüssigkeit in Schwerkraftrichtung über die zum Verdampfungsraum weisende Oberfläche der Spinell-Keramik herunterrieseln kann, um den Hochtemperaturofen zu reinigen. Vorzugsweise ist die mindestens eine Spülöffnung im Wesentlichen horizontal ausgerichtet, so dass die Spülflüssigkeit an der Begrenzung des Verdampfungsraums über die zum Verdampfungsraum weisende Seite der Spinell-Keramik entlanglaufen kann. Die Spülflüssigkeit kann zusammen mit den ausgewaschenen Salzen, die in der Spülflüssigkeit gelöst oder ungelöst vorliegen können, insbesondere über einen in Schwerkraftrichtung unteren Abfluss ausgetragen werden. Im Verdampfungsraum verbleibende Spülflüssigkeit kann verdampft werden und vergleichbar zu einer Probenmessung aus dem Verdampfungsraum ausgetragen werden. Als Spülflüssigkeit kann Wasser verwendet werden. Es ist aber auch möglich ein organisches, insbesondere kohlenstoffhaltiges, Lösungsmittel als Spülflüssigkeit zu verwenden. Durch die sowieso vorgesehene CO2-Messung kann festgestellt werden, wann die Spülflüssigkeit vollständig verdampft und aus dem Verdampfungsraum entfernt ist.The furnace housing has at least one flushing opening for introducing a flushing liquid. The flushing opening may in particular be different from the sample opening, so that the flushing liquid does not contaminate the path of the sample and may possibly falsify a subsequent measurement. For example, the flushing opening is oriented substantially vertically, so that the flushing liquid can trickle down in the direction of gravity over the surface of the spinel ceramic facing the evaporation space in order to clean the high-temperature furnace. The at least one flushing opening is preferably aligned substantially horizontally, so that the flushing liquid can run along the boundary of the evaporation space via the side of the spinel ceramic facing the evaporation chamber. The rinsing liquid can be discharged together with the washed out salts, which may be dissolved in the rinsing liquid or undissolved, in particular via a lower outlet in the direction of gravity. Rinsing liquid remaining in the evaporation space can be vaporized and discharged from the evaporation space, comparable to a sample measurement. As rinsing liquid, water can be used. However, it is also possible to use an organic, in particular carbonaceous, solvent as rinsing liquid. By anyway provided CO 2 measurement can be determined when the rinse liquid is completely evaporated and removed from the vaporizing space.

Vorzugsweise ist die Spülöffnung mit mindestens einer Einspritzdüse zum Einleiten eines Aerosol-Nebels aus Spülflüssigkeit verbunden, wobei die mindestens eine Einspritzdüse eine im Wesentlichen horizontal ausgerichtete Einleitrichtung aufweist. Die Spülflüssigkeit kann dadurch als Nebel oder Dampf eingeleitet werden und bei einem entsprechenden Druck gegen den der Spülöffnung jeweils gegenüberliegenden Bereich der Spinell-Keramik gesprüht werden. Die Spülflüssigkeit kann durch den dadurch erreichbaren Aufpralldruck an der Spinell-Keramik festgebackene Salze leichter ablösen. Besonders bevorzugt ist eine Vielzahl von Spülöffnungen auf einer im Wesentlichen gemeinsamen vertikalen Höhe in Umfangsrichtung vorzugsweise gleichmäßig verteilt.The flushing opening is preferably connected to at least one injection nozzle for introducing an aerosol mist from flushing liquid, wherein the at least one injection nozzle has a substantially horizontally oriented introduction direction. The rinsing liquid can thereby be introduced as mist or vapor and sprayed at a corresponding pressure against the respective rinsing opening opposite region of the spinel ceramic. The rinsing liquid can more easily detach from the baked salts by the impact pressure which can be achieved thereby on the spinel ceramic. Particularly preferably, a multiplicity of flushing openings is preferably uniformly distributed in the circumferential direction at a substantially common vertical height.

Besonders bevorzugt umfasst die Spinell-Keramik wenigstens einen Zusatzstoff, der ausgewählt ist aus Verflüssigern, Keramikfasern oder weiteren anorganischen Füllstoffen. Dabei ist es besonders bevorzugt, wenn wenigstens ein Zusatzstoff in der Keramik fein dispergiert beziehungsweise verteilt ist. Auf diese Weise kann eine Anpassung an besondere Anforderungen der Spinell-Keramik realisiert werden.Particularly preferably, the spinel ceramic comprises at least one additive which is selected from liquefiers, ceramic fibers or further inorganic fillers. It is particularly preferred if at least one additive in the ceramic is finely dispersed or distributed. In this way, an adaptation to special requirements of the spinel ceramic can be realized.

Die Zugabe eines Verflüssigers, auch Wasserreduzierer, Superplastifizierer oder Dispergiermittel genannt, reduziert den Anmachwasserbedarf deutlich. Aufgrund der Dispergierung können alle Körner trotz eines geringeren Wassergehalts homogen von allen Seiten benetzt werden. Durch den gezielten Einsatz von Keramikfasern kann die Keramik beispielsweise mit Bezug auf Temperaturwechselbeständigkeit oder Oberflächenbeschaffenheit optimiert und an die gewünschten Anforderungen angepasst werden.The addition of a condenser, also known as water reducer, superplasticizer or dispersant, significantly reduces the need for mixing water. Due to the dispersion, all grains can be wetted homogeneously from all sides despite a lower water content. Through the targeted use of ceramic fibers, the ceramic can be optimized, for example, with respect to thermal shock resistance or surface finish and adapted to the desired requirements.

Es ist ferner bevorzugt, wenn die Spinell-Keramik eine diskontinuierliche Korngrößenverteilung aufweist. Dadurch wird die Temperaturwechselbeständigkeit beziehungsweise das Thermoschockverhalten noch weiter verbessert. Die Temperaturwechselbeständigkeit ist insbesondere für ein Spülen des Ofens von Bedeutung. Eine diskontinuierliche Korngrößenverteilung im Rahmen der Erfindung bedeutet, dass die Korngrößenverteilung eine Lücke in einem bestimmten Korngrößenbereich aufweist. Beispielsweise kann die Spinell-Keramik 60-65Masse-% Grobkorn und 35-40Masse-% Feinkorn aufweisen, wobei das Feinkorn Korngrößen in einem Bereich von ≥ 1µm bis ≤ 74µm und das Grobkorn Korngrößen in einem Bereich von ≥ 74µm bis ≤ 700µm umfassen kann (≥ bedeutet größer als oder gleich, ≤ bedeutet kleiner als oder gleich).It is further preferred if the spinel ceramic has a discontinuous particle size distribution. As a result, the thermal shock resistance or the thermal shock behavior is further improved. The thermal shock resistance is particularly important for flushing the furnace. A discontinuous particle size distribution in the context of the invention means that the particle size distribution has a gap in a certain particle size range. For example, the spinel ceramic may have 60-65 mass% coarse grain and 35-40 mass% fine grain, the fine grain may comprise grain sizes in a range of ≥ 1μm to ≤ 74μm and the coarse grain grain sizes in a range of ≥ 74μm to ≤ 700μm ( ≥ means greater than or equal to, ≤ means less than or equal to).

Insbesondere weist die Spinell-Keramik Poren auf, die eine Größe in einem Bereich von ≤ 10µm aufweisen. Derartig kleine Poren verbessern die Temperaturwechselbeständigkeit noch weiter und führen bei einer dennoch auftretenden Rissbildung zu einem Runden der Rissspitze, was an der entsprechenden Stelle zu geringeren Spannung führt. Dabei können die Poren insbesondere eine Größe von ≥ 0,1 µm bis ≤ 10 µm aufweisen. Mit Bezug auf die Poren ist ferner vorteilhaft, wenn die offene Porosität einen Wert in einem Bereich von ≥ 10 Vol.-% bis ≤ 30 Vol.-% aufweist. Dabei ist die offene Porosität des Materials die Summe der Hohlräume, die untereinander und mit der Umgebung in Verbindung stehen, und wird auch als Nutzporosität bezeichnet. Dadurch wird eine hohe Temperaturwechselbeständigkeit bei gleichzeitig ausreichender Stabilität erreicht.In particular, the spinel ceramic has pores having a size in a range of ≤ 10 μm. Such small pores further improve the thermal shock resistance and, if crack formation nevertheless occurs, result in a rounding of the crack tip, which leads to lower stress at the corresponding point. The pores may in particular have a size of ≥ 0.1 μm to ≤ 10 μm. With respect to the pores, it is further advantageous if the open porosity has a value in a range of ≥ 10% by volume to ≤ 30% by volume. Here, the open porosity of the material is the sum of the cavities that communicate with each other and with the environment, and is also referred to as Nutzporosität. As a result, a high thermal shock resistance is achieved at the same time sufficient stability.

Insbesondere ist die Spinell-Keramik als im Wesentlichen iso-statisch gepresstes Formteil hergestellt oder durch ein Plasmabeschichtungsverfahren hergestellt. Es ist möglich die Spinell-Keramik mit Hilfe des Plasmabeschichtungsverfahrens vergleichbar zu einem Rapid Prototyping Verfahren in mehreren Schichten auf ein Substrat aufzubringen. Dies ermöglicht es die Spinell-Keramik auf ein Trägermaterial aufzubringen, das leichter verbaut werden kann, um den Verdampfungsraum auszukleiden. Erforderlichenfalls können mehrere Spinell-Keramik-Schichten übereinander vorgesehen werden, so dass bei einer Revision eine oder mehrere der oberen Schichten von einer darunterliegenden Schicht abgetrennt werden können, um eine einheitliche unverbrauchte Oberfläche bereitstellen zu können.In particular, the spinel ceramic is produced as a substantially isostatically pressed molding or produced by a plasma coating process. It is possible to apply the spinel ceramic to the substrate by means of the plasma coating process, comparable to a rapid prototyping process in several layers. This allows the spinel ceramic to be applied to a substrate that is easier to install to line the evaporation space. If necessary, a plurality of spinel ceramic layers can be provided one above the other, so that during a revision, one or more of the upper layers can be separated from an underlying layer in order to provide a uniform unused surface.

Insbesondere weisen die unterschiedlichen Schichten eine unterschiedliche Zusammensetzung und/oder Korngrößenverteilung auf. Dadurch kann beispielsweise in unteren Schichten für eine ausreichende Stabilität gesorgt werden, wohingegen die oberen Schichten an die Messaufgabe angepasst werden. Insgesamt ist so eine noch bessere Anpassung der Spinell-Keramik an die Messaufgaben möglich.In particular, the different layers have a different composition and / or particle size distribution. As a result, sufficient stability can be ensured, for example, in lower layers, whereas the upper layers are adapted to the measuring task. Overall, an even better adaptation of the spinel ceramic to the measurement tasks is possible.

Das Dampf/CO2-Gemisch, das aus der flüssigen zu messenden Probe durch Verdampfen und Oxidation erhalten wird, wird in der Regel direkt über eine Auslassöffnung, die sich an dem Ofengehäuse befindet, das den Verdampfungsraum begrenzt, zu dem NDIR (Non-Dispersive Infrarotdetektor) geleitet, über den die Konzentration des entstandenen Kohlendioxids ermittelt wird. Durch das spontane Verdampfen der zu messenden Probe entstehen am Detektor pulsierende Messsignale. Dies korreliert mit der Eintropfungsfrequenz des Messgutes am Ofeneingang. Die aus der Probe entstehende CO2-Menge strömt somit frequentiell, pulsierend am NDIR Detektor vorbei. Der Detektor ermittelt dementsprechend nicht konstante sondern stark schwankende Messwerte, worunter die Messgenauigkeit des Messsystems leiden kann. Um konstantere Messsignale zu erhalten, kann der erfindungsgemäße Hochtemperaturofen zur T(O)C-Messung dahingehend modifiziert sein, dass das Dampf/CO2-Gemisch durch konstruktive Elemente auf dem Weg innerhalb des Verdampfungsraumes zur Auslassöffnung umgelenkt wird. Die konstruktiven Elemente können sich unbefestigt im Verdampfungsraum befinden, indem sie sich gegenseitig berühren. Alternativ können die konstruktiven Elemente durch horizontale und/oder vertikale Erhebungen variabel im Verdampfungsraum des Hochtemperatur-Ofens angebracht werden. Die konstruktiven Elemente können an der Innenwand des Verdampfungsraumes befestigt sein. Alternativ können die konstruktiven Elemente auch untereinander befestigt sein. Dabei können unterschiedliche konstruktive Elemente miteinander kombiniert werden. Es können auch befestigte und unbefestigte konstruktive Elemente miteinander kombiniert werden, sowohl wenn sie von gleicher als auch von unterschiedlicher Form sind. Die durch die konstruktiven Elemente erzeugten untereinander verbundenen Hohlräume wirken als Puffervolumina. Dadurch werden die Druckschwankungen auf dem Weg innerhalb vom Verdampfungsraumes über die Auslassöffnung zum NDIR kompensiert. Die konstruktiven Elemente können z.B. dreidimensionale Körper sein, wie z.B. Kugeln, Quader, Ringe, Kegel oder Zylinder oder auch jegliche anders geformte dreidimensionale Körper. Es können auch andere konstruktive Elemente wie gerade oder gebogene Platten, Streben oder andere flache Elemente verwendet werden. Die konstruktiven Elemente können aus unterschiedlichen Materialien bestehen. Bevorzugt bestehen die konstruktiven Elemente aus Spinell-Keramik oder sind mit dieser beschichtet Besonders bevorzugt bestehen die konstruktiven Elemente aus bzw. sind beschichtet mit derselben Spinell-Keramik, wie sie zur Auskleidung des Verdampfungsraums des Hochtemperaturofen zur T(O)C-Messung eingesetzt wird. Ein weiterer Effekt dieser konstruktiven Veränderung ist, dass durch das Umlenken des Dampf/CO2-Gemisches nicht verdampfbare Bestandteile, in der Regel anorganische Salze, die bei der Oxidation der Probe entstehen oder in der Probe enthalten sind, bevorzugt im Verdampfungsraum festgehalten werden und nicht zur Auslassöffnung und weiter bis zum NDIR gelangen. Dadurch werden Wartungsintervalle der gesamten Analysenvorrichtung zusätzlich vergrößert und damit die Betriebskosten gesenkt.The vapor / CO 2 mixture obtained from the liquid sample to be measured by evaporation and oxidation is typically sent directly to the NDIR (Non-Dispersive) via an outlet port located on the furnace housing defining the evaporation space Infrared detector), via which the concentration of the resulting carbon dioxide is determined. The spontaneous evaporation of the sample to be measured produces pulsed measuring signals at the detector. This correlates with the dripping frequency of the sample at the furnace inlet. The amount of CO2 resulting from the sample thus flows frequently, pulsing past the NDIR detector. Accordingly, the detector determines not constant but highly fluctuating measured values, under which the measuring accuracy of the measuring system can suffer. In order to obtain more constant measurement signals, the high-temperature furnace according to the invention for T (O) C measurement may be modified such that the steam / CO 2 mixture is deflected by structural elements on the way within the evaporation space to the outlet opening. The structural elements may be unattached in the evaporation space by touching each other. Alternatively, the structural elements may be variably mounted by horizontal and / or vertical elevations in the evaporation space of the high-temperature furnace. The constructive elements may be attached to the inner wall of the evaporation space. Alternatively, the constructive elements can also be fastened to one another. In this case, different structural elements can be combined. It is also possible to combine fastened and unpaved constructional elements, both when they are of the same or different shape. The interconnected cavities created by the structural elements act as buffer volumes. As a result, the pressure fluctuations on the way within the evaporation space via the outlet opening to the NDIR are compensated. The constructive elements may be, for example, three-dimensional bodies, such as spheres, cuboids, rings, cones or cylinders or any other shaped three-dimensional body. Other structural elements such as straight or curved plates, struts or other flat elements may also be used. The constructive elements may consist of different materials. The structural elements are preferably made of or coated with spinel ceramic. The structural elements are particularly preferably made of or coated with the same spinel ceramic as used to line the evaporation space of the high-temperature furnace for T (O) C measurement. Another effect of this constructive change is that by diverting the vapor / CO 2 mixture non-vaporizable components, usually inorganic salts, which are formed during the oxidation of the sample or contained in the sample, are preferably retained in the evaporation chamber and not go to the outlet and continue to the NDIR. As a result, maintenance intervals of the entire analysis device are additionally increased and thus reduced operating costs.

Die Erfindung betrifft ferner eine Verwendung einer Spinell-Keramik zum Auskleiden eines Verdampfungsraums eines Hochtemperaturofen zur T(O)C-Messung einer Probe, wobei der Hochtemperaturofen insbesondere wie vorstehend beschrieben aus- und weitergebildet ist. Die Spinell-Keramik ist vorzugsweise wie vorstehend anhand des Hochtemperaturofens beschrieben ausund weitergebildet. Durch die Spinell-Keramik ist der Verdampfungsraum durch ein Material ausgekleidet, das besonders hohe Temperaturen innerhalb des Verdampfungsraums und somit eine möglichst vollständige Verbrennung ermöglicht und gleichzeitig sehr temperaturwechselbeständig ist. Dies ermöglicht es im Wesentlichen bei Betriebstemperatur den Verdampfungsraum mit einer Spülflüssigkeit zu reinigen und abgelagerte Salze, insbesondere rekristallisierte anorganische Salze aus dem Verdampfungsraum in der Spülflüssigkeit gelöst oder ungelöst zu entfernen. Eine Alterung des Hochtemperaturofens durch abgelagerte Salze kann dadurch vermieden oder zumindest deutlich verzögert werden. Hierbei wird die Erkenntnis ausgenutzt, dass eine Spinell-Keramik nicht nur beim Umgang mit flüssigen Metallschmelzen oder Metallschlacken, beispielsweise als Gießform, gut einsetzbar ist, sondern auch bei Analytikgeräten, wie beispielsweise bei der T(O)C-Messung, wobei es hierbei nicht so sehr auf die ansonsten im Vordergrund stehende Temperaturformbeständigkeit sondern auf die Temperaturwechselbeständigkeit ankommt.The invention further relates to a use of a spinel ceramic for lining an evaporation space of a high-temperature furnace for T (O) C measurement of a sample, the high-temperature furnace in particular as described above and further educated. The spinel ceramic is preferably formed and refined as described above with reference to the high temperature furnace. Due to the spinel ceramic, the evaporation space is lined by a material that allows particularly high temperatures within the evaporation space and thus the most complete combustion and at the same time is very resistant to thermal shock. This makes it possible to substantially clean the evaporation space at room temperature with a rinsing liquid and deposited salts, in particular recrystallized inorganic salts dissolved in the rinsing liquid from the evaporation space or to remove undissolved. An aging of the high-temperature furnace by deposited salts can be avoided or at least significantly delayed. Here, the knowledge is exploited that a spinel ceramic is not only good for handling liquid metal melts or metal slags, for example as a casting mold, but also in analytical equipment, such as in the T (O) C measurement, which is not so much depends on the otherwise in the foreground standing temperature stability but on the thermal shock resistance.

Die Erfindung betrifft ferner ein Verfahren zur Durchführung von T(O)C-Messungen von Proben, bei dem ein Bereitstellen eines Hochtemperaturofen erfolgt, wobei der Hochtemperaturofen einen mit einer Spinell-Keramik ausgekleideten Verdampfungsraum aufweist. Der Hochtemperaturofen ist insbesondere wie vorstehend beschrieben aus- und weitergebildet. Ferner erfolgt ein Aufheizen des Verdampfungsraums auf Betriebstemperatur und ein Einleiten einer Probe in den Verdampfungsraum. Zusätzlich erfolgt ein Verdampfen und/oder Oxidieren der Probe in dem Verdampfungsraum und ein Messen der entstandenen CO2-Menge. Erfindungsgemäß erfolgt ein Einleiten einer Spülflüssigkeit in den Verdampfungsraum im Wesentlichen bei Betriebstemperatur zur Entfernung von innerhalb des Verdampfungsraums rekristallisierten anorganischen Salzen aus der Probe. Das Verfahren kann insbesondere wie vorstehend anhand des Hochtemperaturofens beschrieben aus- und weitergebildet sein. Durch die Spinell-Keramik ist der Verdampfungsraum durch ein Material ausgekleidet, das besonders hohe Temperaturen innerhalb des Verdampfungsraums und somit eine möglichst vollständige Verbrennung ermöglicht und gleichzeitig sehr temperaturwechselbeständig ist. Dies ermöglicht es im Wesentlichen bei Betriebstemperatur den Verdampfungsraum mit einer Spülflüssigkeit zu reinigen und abgelagerte Salze, insbesondere rekristallisierte anorganische Salze aus dem Verdampfungsraum in der Spülflüssigkeit gelöst oder ungelöst zu entfernen. Eine Alterung des Hochtemperaturofens durch abgelagerte Salze kann dadurch vermieden oder zumindest deutlich verzögert werden.The invention further relates to a method for carrying out T (O) C measurements of samples, in which provision is made of a high-temperature furnace, wherein the high-temperature furnace has an evaporation chamber lined with a spinel ceramic. The high-temperature furnace is in particular as described above and further developed. Furthermore, the evaporation space is heated to operating temperature and a sample is introduced into the evaporation space. In addition, evaporation and / or oxidation of the sample in the evaporation space and measurement of the amount of CO 2 produced . According to the invention, a flushing liquid is introduced into the evaporation space substantially at the operating temperature for the removal of inorganic salts which have been recrystallized within the evaporation space from the sample. The method can in particular be designed and developed further as described above with reference to the high-temperature furnace. Due to the spinel ceramic, the evaporation space is lined by a material that allows particularly high temperatures within the evaporation space and thus the most complete combustion and at the same time is very resistant to thermal shock. This makes it possible to substantially clean the evaporation space at operating temperature with a rinsing liquid and dissolved salts, in particular recrystallized inorganic salts from the evaporation space dissolved in the rinsing liquid or to remove undissolved. An aging of the high-temperature furnace by deposited salts can be avoided or at least significantly delayed.

Somit ist es erfindungsgemäß möglich, ein Verfahren zur TOC-Messung von Proben durchzuführen, das die Schritte Bereitstellen eines Hochtemperaturofen, wobei der Hochtemperaturofen einen mit einer Spinell-Keramik ausgekleideten Verdampfungsraum aufweist, Aufheizen des Verdampfungsraums auf Betriebstemperatur, Einleiten einer Probe in den Verdampfungsraum, Verdampfen und/oder Oxidieren der Probe in dem Verdampfungsraum, Messen der entstandenen CO2-Menge und Einleiten einer Spülflüssigkeit in den Verdampfungsraum im Wesentlichen bei Betriebstemperatur zur Entfernung von innerhalb des Verdampfungsraums rekristallisierten anorganischen Salzen aus der Probe umfasst.Thus, it is possible according to the invention to carry out a method for TOC measurement of samples, comprising the steps of providing a high-temperature furnace, wherein the high-temperature furnace has a spinel-lined evaporation chamber, heating the evaporation space to operating temperature, introducing a sample into the evaporation space, evaporating and / or oxidizing the sample in the vaporizing space, measuring the amount of CO 2 produced, and introducing a rinsing liquid into the vaporizing space substantially at the operating temperature to remove inorganic salts recrystallized within the vaporizing space from the sample.

Insbesondere wird die Spülflüssigkeit in den Verdampfungsraum als Aerosol-Nebel eingedüst. Die Spülflüssigkeit kann dadurch als Nebel oder Dampf eingeleitet werden und bei einem entsprechenden Druck gegen den der Spülöffnung jeweils gegenüberliegenden Bereich der Spinell-Keramik gesprüht werden. Die Spülflüssigkeit kann durch den dadurch erreichbaren Aufpralldruck an der Spinell-Keramik festgebackene Salze leichter ablösen. Besonders bevorzugt ist eine Vielzahl von Spülöffnungen auf einer im Wesentlichen gemeinsamen vertikalen Höhe in Umfangsrichtung vorzugsweise gleichmäßig verteilt.In particular, the rinsing liquid is injected into the evaporation space as an aerosol mist. The rinsing liquid can thereby be introduced as mist or vapor and sprayed at a corresponding pressure against the respective rinsing opening opposite region of the spinel ceramic. The rinsing liquid can more easily detach from the baked salts by the impact pressure that can be achieved thereby on the spinel ceramic. Particularly preferably, a multiplicity of flushing openings is preferably uniformly distributed in the circumferential direction at a substantially common vertical height.

Vorzugsweise wird der Verdampfungsraum nach dem Entfernen der anorganischen Salze im Wesentlichen bei Betriebstemperatur getrocknet und nachfolgend eine weitere Probe zur T(O)C-Messung in den Verdampfungsraum eingeleitet. Als Spülflüssigkeit kann Wasser verwendet werden. Es ist aber auch möglich ein organisches, insbesondere kohlenstoffhaltiges, Lösungsmittel als Spülflüssigkeit zu verwenden. Durch die sowieso vorgesehene CO2-Messung kann festgestellt werden, wann die Spülflüssigkeit vollständig verdampft und aus dem Verdampfungsraum entfernt ist. Eine Kontaminierung der T(O)C-Messung durch im Verdampfungsraum verbliebene Reste der Spülflüssigkeit wird dadurch vermieden.Preferably, after the removal of the inorganic salts, the evaporation space is dried essentially at operating temperature and subsequently another sample for T (O) C measurement is introduced into the evaporation space. As rinsing liquid, water can be used. However, it is also possible to use an organic, in particular carbonaceous, solvent as rinsing liquid. By anyway provided CO 2 measurement can be determined when the rinse liquid is completely evaporated and removed from the evaporation chamber. Contamination of the T (O) C measurement by residues of the rinsing liquid remaining in the evaporation space is thereby avoided.

Besonders bevorzugt wird eine Betriebstemperatur TO von 500°C ≤ TO ≤ 2000°C, insbesondere 800°C ≤ TO ≤ 1700°C, vorzugsweise 1000°C ≤ TO ≤ 1500°C und besonders bevorzugt 1200°C ≤ TO ≤ 1300°C eingestellt. Bei derartig hohen Temperaturen kann eine im Wesentlichen vollständige Oxidation des Kohlenstoffs erreicht werden ohne in der Spinell-Keramik Materialschädigungen durch Temperatureffekte zu riskieren. Insbesondere ist es möglich im Vergleich zu bekannten Hochtemperaturöfen zur T(O)C-Messung deutlich höhere Temperaturen zu erreichen, so dass der Einsatz von (Kugel-)Katalysatoren reduziert oder sogar entfallen kann. Die Betriebskosten können dadurch weiter reduziert werden. Zusätzlich oder alternativ kann der Einsatz von Katalysatorkugeln mittels eines internen vorgegebenen, konstruktiven Gaswegs verringert werden.An operating temperature T O of 500 ° C. ≦ T O ≦ 2000 ° C., in particular 800 ° C. ≦ T O ≦ 1700 ° C., preferably 1000 ° C. ≦ T O ≦ 1500 ° C. and particularly preferably 1200 ° C. ≦ T is particularly preferred O ≤ 1300 ° C set. At such high temperatures, substantially complete oxidation of the carbon can be achieved without risking material damage in the spinel ceramic due to temperature effects. In particular, it is possible to achieve significantly higher temperatures compared to known high-temperature furnaces for T (O) C measurement, so that the use of (spherical) catalysts can be reduced or even eliminated. The operating costs can be further reduced. Additionally or alternatively, the use of catalyst balls can be reduced by means of an internal predetermined, constructive gas path.

Insbesondere wird unmittelbar nach dem Einleiten der Probe und unmittelbar nach dem Einleiten der Spülflüssigkeit als Zielgröße die gleiche Betriebstemperatur geregelt. Die Temperatur-Regelung des Hochtemperaturofens muss dadurch nicht zwischen einem Normalbetrieb und einem Spülbetrieb differenzieren, so dass die Regelung vereinfacht ist. Gleichzeitig können instationäre Temperatureffekte, beispielsweise durch Wärmeleitung, vermieden oder zumindest deutlich reduziert werden, da ein zwischenzeitliches Abkühlen und Aufheizen sowie ein Abwarten bis zum Erreichen eines stationären Betriebszustands vermieden ist.In particular, the same operating temperature is regulated immediately after the introduction of the sample and immediately after the introduction of the rinsing liquid as the target variable. The temperature control of the high-temperature furnace does not have to differentiate between a normal operation and a flushing operation, so that the control is simplified. At the same time, unsteady temperature effects, for example by heat conduction, can be avoided or at least significantly reduced, since interim cooling and heating as well as waiting until reaching a stationary operating state are avoided.

Die Stabilität und Temperaturwechselbeständigkeit der Spinell-Keramik wird ferner auch durch ihre chemische Konstitution hervorgerufen. Die verwendete Rezeptur der Spinell-Keramik kann dabei durch geeignete Wahl der Keramikkomponenten die Eigenschaften einer oxidischen und einer nichtoxidischen Keramik vereinen. So sind Oxidkeramiken härter, verschleißfester und wärmebeständiger, allerdings auch spröder als Hartmetalle. Nichtoxidkeramiken, wie etwa beispielsweise Nitride, Carbide oder Boride zeichnen sich gegenüber Oxidkeramiken durch hohe chemische und thermische Stabilität, Härte und Festigkeit aus, was jedoch einhergeht mit geringer Duktilität und recht hoher Sprödigkeit, hervorgerufen durch höhere kovalente und geringere ionische Bindungsanteile und damit durch die starken Bindungsenergien. Daher ist auch die Auswahl modifizierter Spinell-Keramiken möglich. So kann beispielweise im Falle einer MgAl2O4-Keramik zusätzliches Alumina beziehungsweise Magnesiumoxid hinzugefügt werden, um beispielsweise eine Al2O3-reiche oder eine MgO-reiche Spinell-Keramik zu erhalten.The stability and thermal shock resistance of the spinel ceramic is also caused by their chemical constitution. The formulation of the spinel ceramic used can combine the properties of an oxide and a non-oxide ceramic by a suitable choice of the ceramic components. For example, oxide ceramics are harder, more wear-resistant and heat-resistant, but also more brittle than hard metals. Non-oxide ceramics, such as nitrides, carbides or borides, for example, are characterized by high chemical and thermal stability, hardness and strength compared to oxide ceramics, however, accompanied by low ductility and quite high brittleness, caused by higher covalent and lower ionic bond fractions and thus by the strong binding energies. Therefore, the selection of modified spinel ceramics is possible. For example, in the case of a MgAl 2 O 4 ceramic, additional alumina or magnesium oxide may be added to obtain, for example, an Al 2 O 3 -rich or MgO-rich spinel ceramic.

Claims (15)

  1. High-temperature furnace for T(O)C measurement on a sample, having
    a furnace housing which bounds a vaporization space and has a sample opening for introducing the sample dropwise,
    characterized in that
    the furnace housing is lined with a spinel ceramic on an inner side facing the vaporization space and has at least one flushing opening for introduction of a flushing liquid.
  2. High-temperature furnace according to Claim 1, characterized in that the flushing opening is connected to at least one spraying-in nozzle for introducing an aerosol mist as flushing liquid, where the at least one spraying-in nozzle has an essentially horizontally oriented input direction.
  3. High-temperature furnace according to either Claim 1 or 2, characterized in that the spinel ceramic comprises at least one additive selected from among plasticizers, ceramic fibers and further inorganic fillers.
  4. High-temperature furnace according to any of Claims 1 to 3, characterized in that the spinel ceramic has a discontinuous grain size distribution.
  5. High-temperature furnace according to any of Claims 1 to 4, characterized in that the spinel ceramic has pores having a size in the range ≤ 10 µm.
  6. High-temperature furnace according to any of Claims 1 to 5, characterized in that the spinel ceramic has an open porosity in the range from ≥ 10% by volume to ≤ 30% by volume.
  7. High-temperature furnace according to any of Claims 1 to 6, characterized in that the spinel ceramic has been produced as an essentially isostatically pressed shaped part or has been produced by a plasma coating process.
  8. High-temperature furnace according to Claim 7, characterized in that the spinel ceramic has various layers having a different composition and/or grain size distribution.
  9. High-temperature furnace according to any of Claims 1 to 8, characterized in that structural elements which deflect the vapor/Co2 mixture produced in the high-temperature furnace on the path within the vaporization space to the outlet opening and are selected from the group consisting of three-dimensional bodies are installed in the interior of the furnace housing.
  10. Use of a spinel ceramic for lining a vaporization space of a high-temperature furnace according to any of Claims 1 to 9, for T(O)C measurement of a sample.
  11. Method for carrying out T(O)C measurements on samples, which comprises the steps of
    provision of a high-temperature furnace according to any of Claims 1 to 9, which has a vaporization space lined with a spinel ceramic,
    heating of the vaporization space to operating temperature,
    introduction of a sample into the vaporization space,
    vaporization and/or oxidation of the sample in the vaporization space,
    measurement of the amount of CO2 formed,
    introduction of a flushing liquid into the vaporization space at essentially the operating temperature in order to remove inorganic salts from the sample which have recrystallized within the vaporization space.
  12. Method according to Claim 11, wherein the flushing liquid is sprayed as an aerosol mist into the vaporization space.
  13. Method according to Claim 11 or 12, wherein the vaporization space is dried essentially at operating temperature after removal of the inorganic salts and a further sample for T(O)C measurement is subsequently introduced into the vaporization space.
  14. Method according to any of Claims 11 to 13, wherein an operating temperature TO of 500°C ≤ TO ≤ 2000°C, in particular 800°C ≤ TO ≤ 1700°C, preferably 1000°C ≤ TO ≤ 1500°C and particularly preferably 1200°C ≤ TO ≤ 1300°C, is set.
  15. Method according to any of Claims 11 to 14, wherein the same operating temperature is set as target parameter immediately after introduction of the sample and immediately after introduction of the flushing liquid.
EP11748415.4A 2010-08-27 2011-08-26 High-temperature furnace, use of a spinel ceramic and method for carrying out t(o)c measurements of samples Not-in-force EP2609388B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11748415.4A EP2609388B1 (en) 2010-08-27 2011-08-26 High-temperature furnace, use of a spinel ceramic and method for carrying out t(o)c measurements of samples

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP10174403A EP2423627A1 (en) 2010-08-27 2010-08-27 High temperature oven, use of a spinel ceramic and method for T(O)C inspection of samples
PCT/EP2011/064698 WO2012025611A1 (en) 2010-08-27 2011-08-26 High-temperature furnace, use of a spinel ceramic and method for carrying out t(o)c measurements of samples
EP11748415.4A EP2609388B1 (en) 2010-08-27 2011-08-26 High-temperature furnace, use of a spinel ceramic and method for carrying out t(o)c measurements of samples

Publications (2)

Publication Number Publication Date
EP2609388A1 EP2609388A1 (en) 2013-07-03
EP2609388B1 true EP2609388B1 (en) 2015-01-07

Family

ID=43466515

Family Applications (2)

Application Number Title Priority Date Filing Date
EP10174403A Withdrawn EP2423627A1 (en) 2010-08-27 2010-08-27 High temperature oven, use of a spinel ceramic and method for T(O)C inspection of samples
EP11748415.4A Not-in-force EP2609388B1 (en) 2010-08-27 2011-08-26 High-temperature furnace, use of a spinel ceramic and method for carrying out t(o)c measurements of samples

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP10174403A Withdrawn EP2423627A1 (en) 2010-08-27 2010-08-27 High temperature oven, use of a spinel ceramic and method for T(O)C inspection of samples

Country Status (3)

Country Link
EP (2) EP2423627A1 (en)
CN (1) CN103080683A (en)
WO (1) WO2012025611A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6631817B2 (en) 2018-03-30 2020-01-15 株式会社エコロ TOC measuring method and TOC measuring device used for the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4078894A (en) * 1976-11-12 1978-03-14 Raytheon Company Analyzer system with salt extractor
DE4417247B4 (en) * 1994-05-17 2006-06-08 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Incinerator for liquid samples
CN2826430Y (en) * 2005-08-19 2006-10-11 徐滋秋 Laboratory total organic carbon determinator
CN2856999Y (en) * 2005-12-12 2007-01-10 叶大林 Analyzer for TOC in water
CN101241067A (en) * 2008-03-14 2008-08-13 赵双平 Total organic carbon total nitrogen combined measuring instrument
DE102008025877A1 (en) * 2008-05-29 2009-12-03 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Apparatus for determining the content of at least one oxidisable ingredient in an aqueous fluid sample
CN201488944U (en) * 2009-08-10 2010-05-26 重庆川仪自动化股份有限公司 Total organic carbon (TOC) analyzer
CN101776606A (en) * 2010-02-05 2010-07-14 江苏扬农化工集团有限公司 Method for analyzing total carbon and total organic carbon in liquid

Also Published As

Publication number Publication date
EP2609388A1 (en) 2013-07-03
CN103080683A (en) 2013-05-01
WO2012025611A1 (en) 2012-03-01
EP2423627A1 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
DE3004712C2 (en) Unfired refractory carbon brick
DE60201922T2 (en) Spray powder and process for its preparation
EP0984839A1 (en) Metal-ceramic graded-index material, product produced from said material, and method for producing the material
DE112009004278B4 (en) Method for producing a tile and tile
WO2017076941A1 (en) Sintered zirconia mullite refractory composite material, method for the production thereof and use of the same
DE102017003006A1 (en) Sensor element and gas sensor
EP3472366B1 (en) Self-healing heat damping layers and method for producing same
DE102006040269B4 (en) Burnt refractory ceramic product
DE4433514C2 (en) Product with a self-regenerating protective layer for use in a reactive environment
EP4251589A1 (en) Method for producing coated substrates, coated substrate, and use thereof
EP2609388B1 (en) High-temperature furnace, use of a spinel ceramic and method for carrying out t(o)c measurements of samples
EP2057106B1 (en) Baked refractory product
De Morais et al. Transmission electron microscopy characterization of a Nb microalloyed steel for carburizing at high temperatures
EP1614946B1 (en) Metallic valve
DE102011003977A1 (en) Protective coating especially for aerospace components and their manufacture
WO2023012106A1 (en) Method for producing coated substrates, coated substrate, and use thereof
DE102011114737B3 (en) Hochofenblasform
Paydar et al. Microstructure, mechanical properties and ionic conductivity of BICUVOX-ZrO 2 composite solid electrolytes
EP0515400B1 (en) Material based on refractory oxides for coating a lining of a metallurgical smelting vessel
Csáki et al. Mechanically alloyed CoCrFeNiMo high entropy alloy behavior in geothermal steam
DE976381C (en) Process for producing a protective layer on thermally highly stressed, scale-resistant metal parts
US9040306B2 (en) High-temperature furnace, use of a spinel ceramic and method for carrying out T(O)C measurements of samples
DE112018001695T5 (en) THERMAL INSULATION LAYER AND TURBINE ELEMENT
DE3604845C2 (en) Procedure for determining the behavior of refractory materials
AT398580B (en) COATING FOR METAL OR NON-METAL SUBSTRATES, METHOD AND DEVICE FOR THE PRODUCTION THEREOF

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130327

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LANXESS DEUTSCHLAND GMBH

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 706004

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011005569

Country of ref document: DE

Effective date: 20150219

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150107

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150407

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150407

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150507

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011005569

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150818

Year of fee payment: 5

Ref country code: GB

Payment date: 20150826

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20150629

Year of fee payment: 5

26N No opposition filed

Effective date: 20151008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150826

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150826

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502011005569

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20160826

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160826

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170301

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 706004

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160826

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150107