EP2607088A2 - Printing fluid cartridge - Google Patents
Printing fluid cartridge Download PDFInfo
- Publication number
- EP2607088A2 EP2607088A2 EP12195456.4A EP12195456A EP2607088A2 EP 2607088 A2 EP2607088 A2 EP 2607088A2 EP 12195456 A EP12195456 A EP 12195456A EP 2607088 A2 EP2607088 A2 EP 2607088A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- ink
- ink cartridge
- cartridge
- sub frame
- main body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 58
- 238000007639 printing Methods 0.000 title claims abstract description 56
- 238000004891 communication Methods 0.000 claims description 30
- 229920005989 resin Polymers 0.000 claims description 6
- 239000011347 resin Substances 0.000 claims description 6
- 230000003287 optical effect Effects 0.000 description 147
- 238000001514 detection method Methods 0.000 description 146
- 238000003780 insertion Methods 0.000 description 124
- 230000037431 insertion Effects 0.000 description 124
- 239000000428 dust Substances 0.000 description 11
- 239000004615 ingredient Substances 0.000 description 4
- 239000003086 colorant Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000005192 partition Methods 0.000 description 3
- 239000000049 pigment Substances 0.000 description 3
- 230000000717 retained effect Effects 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 241000656145 Thyrsites atun Species 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17553—Outer structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17506—Refilling of the cartridge
- B41J2/17509—Whilst mounted in the printer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17513—Inner structure
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/1752—Mounting within the printer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/1752—Mounting within the printer
- B41J2/17523—Ink connection
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17526—Electrical contacts to the cartridge
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17526—Electrical contacts to the cartridge
- B41J2/1753—Details of contacts on the cartridge, e.g. protection of contacts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17503—Ink cartridges
- B41J2/17543—Cartridge presence detection or type identification
- B41J2/17546—Cartridge presence detection or type identification electronically
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17566—Ink level or ink residue control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J2/00—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
- B41J2/005—Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
- B41J2/01—Ink jet
- B41J2/17—Ink jet characterised by ink handling
- B41J2/175—Ink supply systems ; Circuit parts therefor
- B41J2/17566—Ink level or ink residue control
- B41J2002/17576—Ink level or ink residue control using a floater for ink level indication
Definitions
- the present invention relates to a printing fluid cartridge comprising a light attenuating portion and an electrical interface.
- a known image printing apparatus as described in Patent Application Publication No. JP 2009-132098 A , is configured to print an image on a sheet of printing paper.
- the known image printing apparatus has an inkjet printing head and is configured to eject ink droplets selectively from nozzles of the printing head onto the sheet of printing paper. The ink droplets land on the sheet of printing paper and thereby a desired image is printed on the sheet of printing paper.
- the known image printing apparatus has an ink cartridge, and the ink cartridge is configured to store ink to be supplied to the printing head.
- the ink cartridge is configured to be mounted to and removed from a mounting portion provided in the known image printing apparatus.
- Another known ink cartridge has an electronic component such as a memory module for storing data about the information of the ink cartridge, e.g., the color of ink, the ingredients of ink, the remaining amount of ink, a maintenance status, and etc.
- a memory module for storing data about the information of the ink cartridge, e.g., the color of ink, the ingredients of ink, the remaining amount of ink, a maintenance status, and etc.
- the memory module contacts and is electrically connected to electrical contacts provided in the mounting portion, such that the data stored in the memory module can be read out.
- another known ink cartridge has a light attenuating portion configured to be detected by an optical sensor for obtaining the information of the ink cartridge.
- a new printing fluid cartridge which comprises a light attenuating portion and an electrical interface.
- the printing fluid cartridge comprises a front side, a rear side positioned opposite the front side with respect to a front-rear direction, an upper side, a lower side positioned opposite the upper side with respect to an up-down direction which is perpendicular to the front-rear direction, a tubular fluid supply portion positioned at the lower side of the front side, a pivotable member configured to pivot about a pivot point and comprising an end portion.
- the pivot point is positioned at the upper side and the end portion is positioned at the rear side.
- the printing fluid cartridge also comprises a light attenuating portion protruding from the upper side of the front side and configured to attenuate light traveling in a left-right direction which is perpendicular to the front-rear direction and the up-down direction, and an electrical interface positioned between the pivotable member and the light attenuating portion with respect to the front-rear direction and comprising a surface extending in the front-rear direction and the left-right direction.
- An upper end of the light attenuating portion is positioned below the electrical interface with respect to the up-down direction.
- the printing fluid cartridge may comprise a first front wall positioned at the front side and a top wall positioned at the upper side.
- the printing fluid cartridge may comprise a main body comprising the first front wall and a sub frame comprising a second front wall positioned at the front side and facing the first front wall in the front-rear direction.
- a front end of the light attenuating portion may be positioned further away from the rear side than a front end of the fluid supply portion is positioned away from the rear side with respect to the front-rear direction.
- the main body may further comprise a first guide portion extending in the front-rear direction and comprising a pair of outer surfaces.
- Each of the first front wall and the first guide portion may have a dimension in the left-right direction, and the dimension of the first guide portion between the pair of outer surfaces of the first guide portion in the left-right direction may be less than the dimension of the first front wall in the left-right direction.
- the main body may further comprise a second guide portion extending in the front-rear direction and comprising a pair of outer surfaces.
- the second guide portion may have a dimension between the pair of outer surfaces of the second guide portion in the left-right direction, which is less than the dimension of the first front wall in the left-right direction.
- the sub frame may comprise a third guide portion and a fourth guide portion, each extending in the front-rear direction.
- the third guide portion may comprise a pair of outer surfaces which is aligned with the pair of outer surfaces of first guide portion in the front-rear direction and the fourth guide portion may comprise a pair of outer surfaces which is aligned with the pair of outer surfaces of the second guide portion in the front-rear direction.
- the third guide portion may comprise a pair of boards defining the pair of outer surfaces of the third guide, respectively.
- the electrical interface may be positioned between the pair of boards of the third guide portion.
- the electrical interface may be positioned on an interface board, and the interface board may be attached to the sub frame at attachment position.
- Each of the pair of boards of the third guide portion may comprise a first portion positioned in line with the attachment position in the left-right direction when viewed from the up-down direction and a second portion, and an upper end of the first portion may be positioned below an upper end of the second portion.
- the second front wall may have a circular opening or a circular recess formed therein below the light attenuating portion with respect to the up-down direction.
- the sub frame may comprise a protrusion positioned at or adjacent to a lower end of the second wall and protruding forward, and the sub frame may have an opening formed therein positioned above the protrusion with respect to the up-down direction.
- the fluid supply portion may be configured to pass through the opening of the sub frame.
- the printing fluid cartridge may further comprise a fluid chamber configured to store printing fluid therein and a protruding portion positioned at a middle portion of the front side with respect to the up-down direction and protruding forward.
- the protruding portion may have an inner space formed therein, and the inner space may be in fluid communication with fluid chamber.
- the printing fluid cartridge may further comprise a further light attenuating portion positioned away from and in front of the protruding portion with respect to the front-rear direction.
- the main body may comprise a first resin configured to allow light traveling in the left-right direction to pass therethrough
- the sub frame may comprise a second resin configured to prevent light traveling in the left-right direction from passing therethrough.
- the sub frame may be configured to move relative to the main body in the up-down direction.
- the sub frame may be configured not to move relative to the main body in the left-right direction.
- the printing fluid cartridge may further comprise a rear wall positioned at the rear side and away from the first front wall in the front-rear direction and a fluid chamber configured to store printing fluid therein.
- the fluid supply portion may be positioned at the first front wall and configured to establish communication between an interior and an exterior of the fluid chamber.
- the rear wall may comprise a first surface extending in parallel with the first front wall and a second surface extending in a direction intersecting the first front wall, and at least a portion of the second surface may be positioned closer to the first front wall than the first surface is positioned to the first front wall.
- Fig. 1 is a schematic, cross-sectional view of a printer comprising a cartridge mounting portion and an ink cartridge, according to an embodiment of the present invention.
- Fig. 2 is a perspective view of the ink cartridge.
- Fig. 3 is a vertical, cross-sectional view of the ink cartridge.
- Fig. 4 is a perspective view of the cartridge mounting portion and the ink cartridge.
- Fig. 5 is a vertical, cross-sectional view of the cartridge mounting portion.
- Fig. 6 is a vertical, partial cross-sectional view of the cartridge mounting portion and the ink cartridge during mounting of the ink cartridge to the cartridge mounting portion.
- Fig. 7 is another vertical, partial cross-sectional view of the cartridge mounting portion and the ink cartridge during mounting of the ink cartridge to the cartridge mounting portion.
- Fig. 8 is a vertical, partial cross-sectional view of the cartridge mounting portion and the ink cartridge, in which the mounting of the ink cartridge to the cartridge mounting portion is completed.
- Fig. 9 is a perspective view of an ink cartridge, according to a modified embodiment.
- a printing apparatus e.g., a printer 10 is an inkjet printer configured to print an image on a sheet of printing paper by ejecting ink droplets selectively on the sheet of printing paper.
- the printer 10 comprises an ink supply device 100.
- the ink supply device 100 comprises a cartridge mounting portion 110.
- the cartridge mounting portion 110 is configured to allow a printing fluid cartridge, e.g., an ink cartridge 30 to be mounted therein.
- the cartridge mounting portion 110 has an opening 112 and the interior of the cartridge mounting portion 110 is exposed to the exterior of the cartridge mounting portion 110 via opening 112.
- the ink cartridge 30 is configured to be inserted into the cartridge mounting portion 110 via the opening 112, such that the ink cartridge 30 is mounted to the cartridge mounting portion 110.
- the ink cartridge 30 is configured to be removed from the cartridge mounting portion 110 via the opening 112.
- the ink cartridge 30 is configured to store ink, which is used by printer 10.
- the printer 10 comprises a print head 21 and an ink tube 20.
- the ink cartridge 30 and the print head 21 are fluidically connected via the ink tube 20 when the ink cartridge 30 is mounted to the cartridge mounting portion 110.
- the print head 21 comprises a sub tank 28.
- the sub tank 28 is configured to temporarily store ink supplied via the ink tube 20 from the ink cartridge 30.
- the print head 21 comprises nozzles 29 and is configured to selectively eject ink supplied from the sub tank 28 through the nozzles 29.
- the printer 10 comprises a paper feed tray 15, a paper feed roller 23, a conveying roller pair 25, a platen 26, a discharge roller pair 22, and a discharge tray 16.
- a conveying path 24 is formed from the paper feed tray 15 up to the discharge tray 16 via the conveying roller pair 25, the platen 26, and the discharge roller pair 22.
- the paper feed roller 23 is configured to feed a sheet of printing paper from the paper feed tray 15 to the conveying path 24.
- the conveying roller pair 25 is configured to convey the sheet of printing paper fed from the paper feed tray 15 onto the platen 26.
- the print head 21 is configured to selectively eject ink onto the sheet of printing paper passing over the platen 26. Accordingly, an image is printed on the sheet of printing paper.
- the sheet of printing paper having passed over the platen 26 is discharged by the discharge roller pair 22 to the paper discharge tray 16 disposed at the most downstream side of the conveying path 24.
- the ink cartridge 30 is configured to be inserted into and removed from the cartridge mounting portion 110 in an insertion/removal direction 50, while the ink cartridge 30 is in an upright position, as shown in Fig. 2 , with a top face of the ink cartridge 30 facing upward and a bottom face of the ink cartridge 30 facing downward.
- the insertion/removal direction 50 extends in a horizontal direction.
- the ink cartridge 30 is in the upright position when the ink cartridge 30 is mounted to the cartridge mounting portion 110 in a mounted position.
- the ink cartridge 30 is configured to be inserted into the cartridge mounting portion 110 in an insertion direction 56 and removed from the cartridge mounting portion 110 in a removal direction 55.
- the insertion/removal direction 50 is a combination of the insertion direction 56 and the removal direction 55.
- the insertion direction 56 extends in a horizontal direction and the removal direction 55 extends in a horizontal direction.
- a height direction (up-down direction) 52 corresponds to the gravitational direction (vertical direction).
- the insertion/removal direction 50 may not extend exactly in a horizontal direction but may extend in a direction intersecting a horizontal direction and the gravitational direction (vertical direction).
- the ink cartridge 30 has a substantially parallelepiped shape and comprises a main body 31 and a sub frame 90.
- the main body 31 and the sub frame 90 form the exterior of the ink cartridge 30.
- the ink cartridge 30 is a container configured to store ink therein.
- the ink cartridge 30 comprises an ink chamber 36, which is a space formed in the interior of ink cartridge 30. More specifically, the main body 31 comprises the ink chamber 36 formed therein, e.g., the main body 31 comprises an inner frame 35, and the ink chamber 36 is formed in the inner frame 35.
- the ink cartridge 30 has a width in a width direction (left-right direction) 51, a height in the height direction (up-down direction) 52, and a depth in a depth direction (front-rear direction) 53.
- the width direction (left-right direction) 51, the height direction (up-down direction) 52, and the depth direction (front-rear direction) 53 are perpendicular to each other.
- the width of the ink cartridge 30 is less than the height and the depth of the ink cartridge 30.
- the width direction (left-right direction) 51 is parallel with a horizontal plane
- the depth direction (front-rear direction) 53 is also parallel with the horizontal plane
- the height direction (up-down direction) 52 is parallel with the gravitational direction (vertical direction).
- the depth direction (front-rear direction) 53 is parallel with the insertion/removal direction 50
- the width direction (left-right direction) 51 and the height direction (up-down direction) 52 are perpendicular to the insertion/removal direction 50.
- the height direction (up-down direction) 52 is parallel with an upward direction and a downward direction and is a combination of the upward direction and the downward direction.
- the ink cartridge 30 comprises a front side and a rear side opposite the front side with respect to the depth direction (front-rear direction) 53.
- the front side of the ink cartridge is positioned in front of the rear side of the ink cartridge with respect to the insertion direction 56 when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
- the front area of the ink cartridge 30 from the center of the ink cartridge with respect to the depth direction (front-rear direction) 53 is the front side of the ink cartridge 30, and the rear area of the ink cartridge 30 from the center of the ink cartridge with respect to the depth direction (front-rear direction) 53 is the rear side of the ink cartridge 30.
- the ink cartridge 30 comprises an upper side and a lower side opposite the upper side with respect to the height direction (up-down direction) 52.
- the upper side of the ink cartridge 30 is positioned above the lower side of the ink cartridge 30 when the ink cartridge 30 is inserted into the cartridge mounting portion 110 and when the ink cartridge 30 is in the mounted position (upright position).
- the upper area of the ink cartridge 30 from the center of the ink cartridge 30 with respect to the height direction (up-down direction) 52 is the upper side of the ink cartridge 30, and the lower area of the ink cartridge 30 from the center of the ink cartridge 30 with respect to the height direction (up-down direction) 52 is the lower side of the ink cartridge 30.
- the front side of the ink cartridge 30 and the upper side of the ink cartridge 30 can occupy the same area.
- a front area of the upper side of the ink cartridge 30 is an upper area of the front side of the ink cartridge 30.
- the rear side of the ink cartridge 30 and the upper side of the ink cartridge 30 can occupy the same area.
- a rear area of the upper side of the ink cartridge 30 is an upper area of the rear side of the ink cartridge 30.
- the front side of the ink cartridge 30 and the lower side of the ink cartridge 30 can occupy the same area.
- a front area of the lower side of the ink cartridge 30 is a lower area of the front side of the ink cartridge 30.
- the rear side of the ink cartridge 30 and the lower side of the ink cartridge 30 can occupy the same area.
- a rear area of the lower side of the ink cartridge 30 is a lower area of the rear side of the ink cartridge 30.
- the main body 31 comprises a front wall 40 and a rear wall 42 opposite the front wall 40 with respect to the insertion direction 56.
- the front wall 40 is positioned at a front side of the main body 31 or the ink cartridge 30 with respect to the insertion direction 56 when the ink cartridge 30 is inserted into the cartridge mounting portion 110. More specifically, the front wall 40 faces in the insertion direction 56, in other words, the front wall 40 is oriented toward the insertion direction 56, when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
- the rear wall 42 is positioned at a rear side of the main body 31 or the ink cartridge 30 with respect to the insertion direction 56 when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
- the rear wall 42 faces in the removal direction 55, in other words, the rear wall 42 is oriented toward the removal direction 55, when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
- the font wall 40 and the rear wall 42 are aligned in depth direction (front-rear direction) 53.
- the front wall 40 and the rear wall 42 are aligned in the insertion/removal direction 50 when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
- the main body 31 comprises side walls 37, 38, each extending in the insertion/removal direction 50 and connected to the front wall 40 and the rear wall 42.
- the side walls 37 and 38 are aligned in the width direction (left-right direction) 51.
- the main body 31 comprises a top wall 39 connected to upper ends of the front wall 40, the rear wall 42, and the side walls 37 and 38.
- the main body 31 comprises a bottom wall 41 connected to lower ends of the front wall 40, the rear wall 42, and the side walls 37, 38.
- the top wall 39 and the bottom wall 41 are aligned in the height direction (up-down direction) 52.
- the top wall 39 is positioned at the upper side of the ink cartridge 30.
- An outer face of the front wall 40 is a front face of the main body 31, and an outer face of the rear wall 42 is a rear face of the main body 31, and also of the ink cartridge 30.
- the front face of the main body 31 is oriented toward the insertion direction 56 when the ink cartridge 30 is inserted into the cartridge mounting portion 110 in the upright position
- the rear face of the main body 31 or the ink cartridge 30 is oriented toward the removal direction 55 when the ink cartridge 30 is inserted into the cartridge mounting portion 110 in the upright position.
- An outer face of the top wall 39 is a top face of the main body 31, and also of the ink cartridge 30, and an outer face of the bottom wall 31 is a bottom face of the main body 31, and also of the ink cartridge 30.
- the top face of the main body 31 or the ink cartridge 30 is oriented in the upward direction when the ink cartridge 30 is inserted into the cartridge mounting portion110 in the upright position, and the bottom face of the main body 31 or the ink cartridge 30 is oriented in the downward direction when the ink cartridge 30 is mounted to the cartridge mounting portion 110 in the upright position.
- the top face is connected to upper ends of the front face and the rear face, and the bottom face is connected to lower ends of the front face and the rear face.
- outer faces of the side walls 37, 38 are side faces of the main body 31, and also of the ink cartridge 30.
- the main body 31 comprises a detection portion 33 at a middle portion of the main body 31 with respect to the height direction (up-down direction) 52.
- the detection portion 33 is positioned at a middle portion of the front side of the ink cartridge 30 with respect to the height direction (up-down direction) 52.
- the detection portion 33 protrudes forward from the front wall 40 of the main body 31 in the insertion direction 56. More specifically, the detection portion 33 is positioned at the front face of the main body 31.
- the sub frame 90 comprises a first protrusion 85 which comprises a detection portion, e.g., a board 88.
- the first protrusion 85 comprises a front end with respect to the insertion direction 56.
- the board 88 comprises a front end with respect to the insertion direction 56.
- the sub frame 90 comprises a second protrusion 86.
- the second protrusion 86 comprises a front end with respect to the insertion direction 56.
- the sub frame 90 comprises another detection portion 89.
- the detection portion 33 is positioned more rearward than the front end of the first protrusion 85, the front end of the board 88, the front end of the second protrusion 86, and the detection portion 89 with respect to the insertion direction 56.
- the detection portion 33 has a box shape having an opening facing the ink chamber 36, such that the inner space of the detection portion 36 is in fluid communication with the ink chamber 36.
- the detection portion 33 comprises a pair of walls made of a translucent, e.g., transparent or semi-transparent material, e.g., transparent or semi-transparent resin, configured to allow light, e.g., visible or infrared light, traveling in a direction perpendicular to the insertion/removal direction 50 to pass therethrough.
- the direction perpendicular to the insertion/removal direction 50 is the width direction (left-right direction) 51.
- the detection portion 33 is exposed to the exterior of the ink cartridge 30 via an opening 95 formed through the sub frame 90.
- an optical sensor 114 (see Fig. 6 ) emits light in the direction perpendicular to the insertion/removal direction 50.
- the detection portion 33 may allow the light which is emitted from the optical sensor 114 and reaches the detection portion 33 via the opening 95 to pass therethrough.
- the main body 31 comprises a sensor arm 60 disposed in the ink chamber 36.
- the sensor arm 60 comprises an arm body 61 extending mainly in the depth direction (front-rear direction) 53, an indicator 62 positioned at one end of the arm body 61, and a float 63 positioned at the other end of the arm body 61.
- the indicator 62 is positioned in the space formed between the pair of walls of the detection portion 33.
- the main body 31 comprises a support shaft 64 extending in the width direction (left-right direction) 51, and the sensor arm 60 is supported by the support shaft 64, such that the sensor arm 60 can pivot about the support shaft 64.
- the sensor arm 60 is configured to pivot based on the amount of ink stored in the ink chamber 36, and therefore the indicator 62 is configured to pivot based on the amount of ink stored in the ink chamber 36.
- the sensor arm 60 is configured to move between an upper position and a lower position. When the sensor arm 60 is in the upper position, the indicator 62 is positioned at an upper side of the detection portion 33 with respect to the gravitational direction (vertical direction).
- Fig. 3 depicts the sensor arm 60 positioned in the lower position when the ink chamber 36 has a predetermined amount or more of ink stored therein.
- the detection portion 33 When the ink cartridge 30 is mounted to the cartridge mounting portion 110, the detection portion 33 is positioned between a light emitter and a light receiver of the optical sensor 114, which are aligned in a horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, and the detection portion 33 is configured to change its state between a first state and a second state.
- the detection portion 33 When the detection portion 33 is in the first state, the detection portion 33 allows light, which is emitted from the light emitter of the optical sensor 114 and travels in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, to pass therethrough.
- the detection portion 33 When the detection portion 33 is in the second state, the detection portion 33 attenuates the light.
- the detection portion 33 when the detection portion 33 is in the first state and the light reaches one side of the detection portion 33 in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, a predetermined amount or more of the light comes out of the other side of the detection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 and reaches the light receiver of the optical sensor 114.
- the detection portion 33 When the detection portion 33 is in the second state and the light reaches one side of the detection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, the amount of light coming out of the other side of the detection portion 33 and reaching the light receiver of the optical sensor 114 is less than the predetermined amount, e.g., zero.
- the detection portion 33 When the sensor arm 60 is in the upper position, the detection portion 33 is in the first state to allow the light to pass therethrough. When the sensor arm 60 is in the in the lower position, the detection portion 33 is in the second state to attenuate the light.
- the attenuation of the light is caused by the indicator 62 completely preventing the light from passing therethrough in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, by the indicator 62 absorbing some amount of the light, by the indicator 62 deflecting the light, by the indicator 62 totally reflecting the light, and etc.
- the amount (intensity) of the light reaching the light receiver of the optical sensor 114 depends on the state of the detection portion 33. By detecting the state of the detection portion 33 with the optical sensor 114, it is determined whether the ink chamber 36 has the predetermined amount or more of ink stored therein.
- the ink cartridge 30 may not comprise the sensor arm 60, and therefore the indicator 62 may not be positioned in the detection portion 33.
- the detection portion 33 when the detection portion 33 stores ink therein, the detection portion 33 may attenuate the light.
- the detection portion 33 may allow the light to pass therethrough.
- the predetermined amount or more of the light may come out of the other side of the detection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 and reaches the light receiver of the optical sensor 114.
- the detection portion 33 When the detection portion 33 stores ink therein and the light reaches one side of the detection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, the amount of light coming out of the other side of the detection portion 33 and reaching the light receiver of the optical sensor 114 is less than the predetermined amount, e.g., zero.
- the attenuation of the light may be caused by the ink absorbing some amount of the light.
- the detection portion 33 may comprise a flexible film forming a space therein. When ink is stored in the space formed by the flexible film, the flexible film bulges.
- the ink cartridge 30 may comprise a pivotable lever contacting the flexible film, and the lever may attenuate the light by completely preventing the light from passing therethrough in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, by absorbing some amount of the light, by deflecting the light, by totally reflecting the light, and etc.
- the lever contacting the flexible film may move to a position in which the lever no longer attenuates the light.
- the detection portion 33 comprises a prism-like structure.
- the prism-like structure when ink contacts the prism-like structure, the prism-like structure may reflect light such that the light does not reach the light receiver of the optical sensor 114.
- the prism-like structure may reflect light such that the light reaches the light receiver of the optical sensor 114.
- the main body 31 has an air communication opening 32 at the front wall 40 of the main body 31 above the detection portion 33.
- the air communication opening 32 is formed through the front wall 40 defining the ink chamber 36 in the depth direction (front-rear direction) 53.
- An air layer formed in the ink chamber 36 and the atmosphere outside of the ink chamber 36 can be brought into fluid communication via the air communication opening 32.
- the sub frame 90 has a circular opening 96 formed through a wall of the first protrusion 85 in the depth direction (front-rear direction) 53, and the air communication opening 32 is accessible via the opening 96 from the exterior of the ink cartridge 30 in the removal direction 55.
- the opening 96 is positioned below the board 88 with respect to the height direction (up-down direction) 52.
- the main body 31 comprises an air communication valve 73 configured to selectively open and close the air communication opening 32.
- the air communication opening 32 When the air communication opening 32 is opened, the pressure in the ink chamber 36 maintained in a negative pressure becomes equal to the atmospheric pressure.
- the air communication opening 32 may not be positioned at the front wall 40 of the main body 31 and may be positioned anywhere as long as the interior and the exterior of the ink chamber 36 can be brought into fluid communication.
- the ink cartridge 30 may be configured to be used in the printer 10 with the ink chamber 36 maintained in negative pressure. In such a case, the ink cartridge 30 may not have the air communication opening 32, and the sub frame 90 may have a circular recess formed therein instead of the opening 96. The recess may extend from the front end of the first protrusion 85 rearward.
- the main body 31 comprises a tubular fluid supply portion, e.g., an ink supply portion 34 at the front wall 40 of the main body 31 below the detection portion 33.
- the ink supply portion 34 is positioned at a lower portion of the front wall 40 of the main body 31, i.e., at a bottom-wall 41 side of the front wall 40 of the main body 31. Therefore, the ink supply portion 34 is positioned at the lower side of the front side of the ink cartridge 30.
- the sub frame 90 has a circular opening 97 formed through a front wall 140 in the depth direction (front-rear direction) 53.
- the ink supply portion 34 has a cylindrical shape and extends through the opening 97 of the front wall 140 in the insertion/removal direction 50. Therefore, the ink supply portion 34 is positioned at the front wall 140 of the sub frame 90.
- the ink supply portion 34 has an ink supply opening 71 formed at the distal end of the ink supply portion 34.
- the ink supply portion 34 has an ink path 72 formed therein.
- the ink path 72 extends from the ink supply opening 71 up to the ink chamber 36 in the depth direction (front-rear direction) 53.
- the main body 31 comprises an ink supply valve 70 configured to selectively open and close the ink supply opening 71.
- the ink cartridge 30 may not comprise the ink supply valve 70.
- the ink supply opening 71 may be covered and closed by a film.
- the ink pipe 122 may break through the film, such that the ink supply opening 71 is opened.
- the main body 31 comprises an engagement hook 43 at a bottom-wall 41 side and a front-wall 40 side of the main body 31.
- the engagement hook 43 extends forward in the depth direction (front-rear direction) 53 from a lower portion of the front wall 40 of the main body 31.
- the front end of the engagement hook 43 comprises two protrusions extending outward in opposite directions in the width direction (left-right direction) 51.
- the engagement hook 43 has a cut-out formed therein. The cut-out is positioned at a middle portion of the engagement hook 43 with respect to the width direction (left-right direction) 51 and extends in the depth direction (front-rear direction) 53.
- the engagement hook 43 is configured to resiliently deform such that a dimension thereof in the width direction (left-right direction) 51 decreases.
- the protrusions of the front end of the engagement hook 43 are positioned in elongated openings 91, 92 formed through the sub frame 90, respectively, and contact inner surfaces of the walls defining the elongated openings 91, 92, respectively.
- the main body 31 comprises a stopper 45 positioned at the top wall 39 of the main body 31. More specifically, the stopper 45 is positioned at a middle portion of the top wall 39 with respect to the depth direction (front-rear direction) 53.
- the stopper 45 extends upward from the top wall 39 and away from the ink chamber 36 and comprises an engagement surface 46 which extends in the width direction (left-right direction) 51 and the height direction (up-down direction) 52.
- the engagement surface 46 faces rearward with respect to the insertion direction 56, in other wards, faces in the removal direction 55, when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
- the engagement surface 46 may not extend vertically from the top wall 39, but may be inclined with respect to the height direction (left-right direction) 51, and may face rearward with respect to the insertion direction 56, in other wards, face in the removal direction 55, and also face in the upward direction when the ink cartridge 30 is inserted into the cartridge mounting portion 110.
- the engagement surface 46 contacts an engagement member 145 of the cartridge mounting portion 110, and receives an external force. More specifically, when the ink cartridge 30 is mounted to and retained in the cartridge mounting portion 110, the ink cartridge 30 is pushed in the removal direction 55, and therefore, the engagement surface 46 pushes the engagement member 145 in the removal direction 55. As a consequence, the engagement surface 46 receives a reaction force from the engagement member 145 in the insertion direction 56.
- the main body 31 comprises a pivotable member 80 positioned at an upper side of the main body 31 with respect to the height direction (up-down direction) 52 and at a rear-wall 42 side of the main body 31. More specifically, the pivotable member 80 is positioned at a rear portion of the top wall 39.
- the pivotable member 80 has a bent flat-plate shape and its longer dimension extends in a direction substantially parallel with the depth direction (front-rear direction) 53.
- the pivotable member 80 comprises a shaft 83 at its bent point. The bent point is positioned at a middle portion of the pivotable member 80 with respect to the depth direction (front-rear direction) 53.
- the shaft 83 extends in the width direction (left-right direction) 51.
- the shaft 83 is supported by the other portion of the main body 31 at a position spaced away from the engagement surface 46 toward the rear wall 42, such that the pivotable member 80 can pivot about the shaft 83.
- the shaft 83 comprises a pivot point about which the pivotable member 80 pivots.
- the pivotable member 80 comprises a front end portion 81 and a rear end portion 82.
- the front end portion 81 extends from the shaft 83 toward the engagement surface 46.
- the rear end portion 82 extends from the shaft 83 toward the rear wall 42.
- the shaft 83 is positioned at the upper side of the ink cartridge 30, and the rear end portion positioned at the rear side of the ink cartridge 30.
- the pivotable member 80 When no external force is applied to the pivotable member 80, the pivotable member 80 is positioned, such that the front end portion 81 is positioned farthest from the top wall 39, i.e., the front end portion 81 is in the upper most position relative to the top wall 39, due to its own weight, i.e., the rear end portion 82 is heavier than the front end portion 81.
- the front end portion 81 When the pivotable member 80 is in this position, the front end portion 81 may extend outside beyond an upper end of the other portion of the main body 31.
- the front end portion 81 may not extend outside beyond the upper end of the other portion of the main body 31 and may be positioned more inside than the upper end of the other portion of the main body 31, i.e., positioned below the upper end of the other portion of the main body 31.
- the pivotable member 80 pivots in the clockwise direction in Fig. 3 against its own weight.
- the front end portion 81 is positioned below an upper end of the engagement surface 46.
- Fig. 2 illustrates the pivotable member 80 which has pivoted, such that the front end portion 81 is positioned below the upper end of the engagement surface 46.
- the pivotable member 80 may be integrally formed with the other portion of the main body 31.
- the pivotable member 80 may be biased by a spring in the clockwise direction. In such a case, when the rear end portion 82 is pushed down, the pivotable member 80 pivots in the counterclockwise direction against the biasing force of the spring.
- the main body 31 comprises the side walls 37, 38.
- Rear portions of the side walls 37, 38 extends from the rear wall 42 up to a middle portion of the main body 31 with respect to the depth direction (front-rear direction) 53.
- Each of the rear portions of the side walls 37, 38 comprises a flat plate portion, and a tapered portion at the front of the flat plate portion with respect to the depth direction (front-rear direction) 53.
- each of the flat plate portion comprises a planar outer surface extending in the depth direction (front-rear direction) 53 and the height direction (up-down direction) 52 and a planar inner surface extending in the depth direction (front-rear direction) 53 and the height direction (up-down direction) 52.
- the tapered portion comprises a planar inner surface extending in the depth direction (front-rear direction) 53 and the height direction (up-down direction) 52 and an inclined outer surface 47, 48 extending in a direction inclined to the depth direction (front-rear direction) 53 and extending in the height direction (up-down direction) 52.
- the side wall 37 comprises the inclined inner surface 47 and the side wall 38 comprises the inclined inner surface 48.
- the main body 31 comprises a guide portion 65 at the top wall 39.
- the guide portion 65 is a pair of boards 57 extending upward from the top wall 39 and extending in the depth direction (front-rear direction) 53 from a middle portion of the main body 31 with respect to the depth direction (front-rear direction) 53 toward the rear wall 42.
- the width of the guide portion 65 between the pair of outer surfaces of the boards 57 in the width direction (left-right direction) is less than the width of the main body 31 between the outer surfaces of the side walls 37, 38 of the main body 31 in the width direction (left-right direction).
- the width of the guide portion 65 between the pair of outer surfaces of the boards 57 in the width direction (left-right direction) is less than the width of the front wall 40 in the width direction (left-right direction).
- the inner gap of the guide portion 65 between the pair of inner surfaces of the boards 57 in the width direction (left-right direction) is greater than the width of the engagement member 145 in the width direction (left-right direction).
- the guide portion 65 comprises a front end in the insertion direction 56.
- the guide portion 65 is positioned between a groove 87 of the first protrusion 85 and the rear wall 42. More specifically, the guide portion 65 is positioned in rear of the groove 87 with respect to the insertion direction 56.
- the shaft 83 of the pivotable member 80 is pivotably supported by the boards 57, such that the front end portion 81 pivots between the boards 57.
- the main body 31 comprises a guide portion 66 at the bottom wall 41.
- the guide portion 66 is a protrusion extending downward from the bottom wall 41 and extending in the depth direction (front-rear direction) 53 from a middle portion of the main body 31 with respect to the depth direction (front-rear direction) 53 toward the rear wall 42.
- the width of the guide portion 66 between the pair of outer surfaces of the guide portion 66 in the width direction (left-right direction) is less than the width of the main body 31 between the outer surfaces of the side walls 37, 38 of the main body 31 in the width direction (left-right direction).
- the width of the guide portion 66 between the pair of outer surfaces of the guide portion 66 in the width direction (left-right direction) is less than the width of the front wall 40 in the width direction (left-right direction).
- the sub frame 90 is attached to the main body 31.
- the sub frame 90 covers a front portion of the main body 31 extending from around the inner inclined surfaces 47, 48 to the front wall 40 of the main body 31 facing in the insertion direction 56.
- the sub frame 90 comprises the front wall 140 facing and covering the front wall 40 of the main body 31 in the depth direction (front-rear direction) 53, a top wall 141 facing and covering a front portion of the top wall 39 in the height direction (up-down direction) 52, a bottom wall 142 facing and covering a front portion of the bottom wall 41 in the height direction (up-down direction) 52, and side walls 143, 144 facing and covering the front portions of the side walls 37, 38, respectively, in the width direction (left-right direction) 51.
- the front wall 140 is positioned at the front side of the ink cartridge 30, and the top wall 141 is positioned at the upper side of the ink cartridge 30.
- the sub frame 90 has an opening formed therethough, and the opening is defined by rear ends of the top wall 141, the bottom wall 142, and the side walls 143, 144 and is positioned opposite the front wall 140 with respect to the depth direction (front-rear direction) 53.
- the side walls 143, 144 have the elongated openings 91, 92 formed therethrough, respectively.
- the elongated openings 91, 92 are positioned at bottom-wall 142 sides of the side walls 143, 144, respectively. In other words, the elongated openings 91, 92 are positioned at lower portions of the side walls 143, 144.
- Each of the elongated openings 91, 92 has a longer dimension in the height direction (up-down direction) 52.
- the protrusions of the front end of the engagement hook 43 are positioned in the elongated openings 91, 92, respectively, and contact inner surfaces of the walls defining the elongated openings 91, 92, respectively.
- each of the protrusions of the front end of the engagement hook 43 in the height direction (up-down direction) 52 is less than the dimension of each of the elongated openings 91, 92 in the height direction (up-down direction) 52.
- the side walls 143, 144 comprise end portions 67, 68 at the rear thereof, respectively.
- the end portions 67, 68 extend in the height direction (up-down direction) 52 and covers the tapered portions of the rear portions of the side walls 37, 38 of the main body 31, respectively.
- the end portions 67, 68 face the inclined outer surfaces 47, 48 of the tapered portions, respectively, i.e., the end portions 67, 68 overlap the inclined outer surfaces 47, 48 in the width direction (left-right direction) 51.
- the sub frame 90 is configured to move relative to the main body 31 in the height direction (up-down direction) 52 within a range defined by the dimension of the elongated openings 91, 92 in the height direction (up-down direction) 52 allowing the protrusions of the front end of the engagement hook 43 to slide within the elongated openings 91, 92 in the height direction (up-down direction) 52.
- the end portions 67, 68 of the sub frame 90 slides on the inclined outer surfaces 47, 48, respectively.
- the inclined outer surfaces 47, 48 function as guides when the sub frame 90 moves relative to the main body 31.
- the sub frame 90 is supported by the top wall 39 of the front portion of the main body 31 from below in a normal state.
- the sub frame 90 is configured not to move relative to the main body in the width direction (left-right direction) 51.
- the sub frame 90 has the opening 95 formed through the front wall 140 in the width direction (left-right direction) 51.
- the opening 95 is positioned at a middle portion of the top wall 140 with respect to the height direction (left-right direction) 52.
- the opening 95 has a rectangular shape, but can have any other suitable shape according to modified embodiments.
- the opening 95 has dimensions and size corresponding to the detection portion 33 of the main body 31 and is in a position corresponding to the detection portion 33, such that the detection portion 33 is exposed to the exterior of the ink cartridge 30 via the opening 95 in the width direction (left-right direction) 51.
- a portion of the sub frame 90 defining the opening 95 comprises the detection portion 89 extending in the height direction (up-down direction) 52, and a support portion 79 extending from the lower end of the detection portion 89 in the depth direction (front-rear direction) 53 toward the main body 31 and configured to support the detection portion 33 from below.
- the sub frame 90 is supported by the top wall 39 of the main body 31 from below, there is a space between the detection portion 33 and the support portion 79.
- the support portion 79 contacts a lower end of the detection portion 33.
- the range within which the sub frame 90 moves relative to the main body 31 in the height direction (up-down direction) 52 can be defined by the dimension of the elongated openings 91, 92 in the height direction (up-down direction) 52 allowing the protrusions of the front end of the engagement hook 43 to slide within the elongated openings 91, 92 in the height direction (up-down direction) 52 or can be defined by the space between the detection portion 33 and the support portion 79 formed when the sub frame 90 is supported by the upper surface of the front portion of the main body 31 from below.
- the sub frame 90 has the opening 96 formed through a wall of the first protrusion 85 in the depth direction (front-rear direction) 53.
- the opening 96 has a circular shape, but any other shapes are possible as well according to modified embodiments.
- the opening 96 has a dimension and size corresponding to the air communication opening 32 of the main body 31 and is in a position corresponding to the air communication opening 32, such that the air communication opening 32 is accessible via the opening 96 from the exterior of the ink cartridge 30 in the removal direction 55.
- the sub frame 90 has the opening 97 formed through the front wall 140 in the depth direction (front-rear direction) 53, and the opening 97 is positioned at a lower portion of the front wall 140 with respect to the height direction 52.
- the opening 97 has a circular shape, but any other shapes are possible as well according to modified embodiments.
- the opening 97 has a dimension and size corresponding to the ink supply portion 34 of the main body 31 and is in a position corresponding to the ink supply portion 34, such that the ink supply portion 34 extends through the opening 37 in the depth direction (front-rear direction) 53.
- the sub frame 90 comprises the first protrusion 85 and the second protrusion 86 at the front wall 140.
- the first protrusion 85 extends from the upper end of the front wall 140 in the insertion direction 56 away from the rear wall 42.
- the width of the first protrusion 85 in the width direction (left-right direction) 51 is the same as the width of the front wall 140 in the width direction (left-right direction) 51. In another embodiment, the width of first protrusion 85 may be less than the width of the front wall 140.
- the front end of the first protrusion 85 is positioned more forward than the ink supply opening 71 formed at the distal end of the ink supply portion 34 in the insertion direction 56 away from the rear wall 42.
- the first protrusion 85 has a recess, e.g., a groove 87 formed in a middle portion of the first protrusion 85 with respect to the width direction (left-right direction) 52.
- the groove 87 extends in the depth direction (front-rear direction) 53.
- the groove 87 is opened forward in the insertion direction 56 and opened upward in the height direction (up-down direction) 52.
- the both sides of the groove 87 with respect to the width direction (left-right direction) 51 are defined and closed by a pair of surfaces of the first protrusion 85, and the bottom of groove 87 is defined and closed by a surface of the first protrusion 85.
- the cross section of the groove 87 taken along the height direction (up-down direction) 52 and the width direction (left-right direction) 51 is rectangular.
- the first protrusion 85 comprises the board 88 disposed in a middle portion of the groove 87 with respect to the width direction (left-right direction) 51.
- the board 88 extends in the depth direction (front-rear direction) 53 and the height direction (up-down direction) 52.
- the board 88 extends in the upward direction from the surface of the first protrusion 85 defining the bottom of the groove 87.
- the board 88 extends from the front wall 140 of the sub frame 90 in the depth direction 53 or insertion direction 56 at a boundary between the top wall 141 and the front wall 140.
- the board 88 protrudes from the upper side of the front side of the ink cartridge 30.
- the front end of the board 88 is positioned further away from the rear side of the ink cartridge 30 than the front end of the ink supply portion 30 is positioned away from the rear side of the ink cartridge 30 with respect to the depth direction (front-rear direction).
- Each of side surfaces of the board 88 with respect to the width direction (left-right direction) 51 extends in the depth direction (front-rear direction) 53 and the height direction (up-down direction) 52 in parallel with the pair of surfaces of the first protrusion 85 defining the both sides of the groove 87 with respect to the width direction (left-right direction) 51.
- the surfaces of the first protrusion 85 defining the both sides of the groove 87 with respect to the width direction (left-right direction) 51 are opposed to the side surfaces of the board 88 in the width direction (left-right direction ) 52, respectively.
- the board 88 comprises a material, e.g., a resin, configured to attenuate light, e.g., visible or infrared light, traveling in a direction perpendicular to the insertion/removal direction 50.
- the direction perpendicular to the insertion/removal direction 50 is the width direction (left-right direction) 51.
- the board 88 is positioned between a light emitter and a light receiver of an optical sensor 116, which are aligned in a horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50.
- the board 88 is configured to attenuate light, which is emitted from the light emitter of the optical sensor 116 and travels in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50.
- the board 88 When the light reaches one side of the board 88 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, the amount of light coming out of the other side of the board 88 and reaching the light receiver of the optical sensor 116 is less than a predetermined amount, e.g., zero.
- the board 88 is configured to attenuate the amount or the intensity of light to a level sufficient to be detected by the optical sensor 116.
- the attenuation of the light is caused by the board 88 completely preventing the light from passing therethrough in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, by the board 88 absorbing some amount of the light, by the board 88 deflecting the light, by the board 88 totally reflecting the light, and etc.
- the board 88 can be detected by the optical sensor 116.
- the dimension of the board 88 from the front wall 40 up to the front end of the board 88 in the insertion direction 56 away from the rear wall 42 varies from one type of the ink cartridge 30 to another type of the ink cartridge 30.
- Different types of the ink cartridges 30 may comprise different colors of ink, different ingredients of ink such as dye and pigment, different initial amounts of ink stored in the ink chamber 36, and etc.
- the first protrusion 85 may have a recess 87 formed therein.
- the recess 87 may be opened forward in the insertion direction 56, opened upward in the height direction (up-down direction) 52, and opened on one side or the both sides of the first protrusion 85 in the width direction (left-right direction) 51
- the second protrusion 86 extends from the lower end of the front wall 140 in the insertion direction 56 away from the rear wall 42.
- the second protrusion 86 is positioned below the ink supply portion 34.
- the width of the second protrusion 86 in the width direction (left-right direction) 51 is the same as the width of the front wall 140 in the width direction (left-right direction) 51. In another embodiment, the width of second protrusion 86 may be less than the width of the front wall 140.
- the front end of the second protrusion 86 is positioned more forward than the ink supply opening 71 formed at the distal end of the ink supply portion 34 in the insertion direction 56 away from the rear wall 42.
- the dimension of the second protrusion 86 from the front wall 140 up to the front end of the second protrusion 86 in the insertion direction 56 away from the rear wall 42 varies from one type of the ink cartridge 30 to another type of the ink cartridge 30.
- Different types of the ink cartridges 30 may comprise different colors of ink, different ingredients of ink such as dye and pigment, different initial amounts of ink stored in the ink chamber 36, and etc.
- the second protrusion 86 is indirectly detected by an optical sensor 117 (see Fig. 1 ). In another embodiment, the second protrusion 86 may be directly detected by the optical sensor 117.
- the sub frame 90 comprises the detection portion 89 at or adjacent to the front wall 140 between the first protrusion 85 and the second protrusion 86 with respect to the height direction (up-down direction) 52.
- the detection portion 89 is positioned more forward than the detection portion 33 in the insertion direction 56 away from the rear wall 42.
- the detection portion 33 and the detection portion 89 are aligned and space away in the insertion direction 56.
- the width of the detection portion 89 in the width direction (left-right direction) 51 is the same as the width of the detection portion 33 in the width direction (left-right direction) 51, but other larger or smaller widths are possible as well according to modified embodiments.
- the detection portion 89 is configured to attenuate light, e.g., visible or infrared light, traveling in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 to pass therethrough. More specifically, during mounting of the ink cartridge 30 to the cartridge mounting portion 110, the detection portion 89 passes between the light emitter and the light receiver of the optical sensor 114. When this occurs, the detection portion 89 attenuates light, which is emitted from the light emitter of the optical sensor 114 and travels in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50.
- light e.g., visible or infrared light
- the detection portion 89 is configured to attenuate the amount or the intensity of light to a level sufficient to be detected by the optical sensor 114.
- the attenuation of the light is caused by the detection portion 89 completely preventing the light from passing therethrough in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, by the detection portion 89 absorbing some amount of the light, by the detection portion 89 deflecting the light, by the detection portion 89 totally reflecting the light, and etc.
- the detection portion 89 can be detected by the optical sensor 114.
- the detection portion 89 and the detection portion 33 in the depth direction (front-rear direction) 53 There is a gap between the detection portion 89 and the detection portion 33 in the depth direction (front-rear direction) 53.
- the light which is emitted from the light emitter of the optical sensor 114 and travels in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, passes through the gap and reaches the light receiver of the optical sensor 114.
- the amount of light coming out of the gap and reaching the light receiver of the optical sensor 114 is greater than or equal to the predetermined amount.
- the dimension of the detection portion 89 in the depth direction (front-rear direction) 53 varies from one type of the ink cartridge 30 to another type of the ink cartridge 30.
- Different types of the ink cartridges 30 may comprise different colors of ink, different ingredients of ink such as dye and pigment, different initial amounts of ink stored in the ink chamber 36, and etc.
- the front end of the first protrusion 85, the front end of the second protrusion 86, and the detection portion 89 are positioned more forward than the detection portion 33 with respect to the insertion direction 56.
- the detection portion 33 is positioned more rearward than the front end of the first protrusion 85, the front end of the second protrusion 86, and the detection portion 89 with respect to the insertion direction 56.
- Each of the detection portion 33 and the ink supply opening 71 is positioned between the first protrusion 85 and the second protrusion 86 with respect to the height direction 52.
- the sub frame 90 comprises a guide portion 93 at the top wall 141.
- the guide portion 93 is a pair of boards 94 extending upward from the top wall 141 and extending in the depth direction (front-rear direction) 53 from a middle portion of the sub frame 90 to the rear end of the sub frame 90.
- the width of the guide portion 93 between the pair of outer surfaces of the boards 94 in the width direction (left-right direction) is less than the width of the sub frame 90 between the outer surfaces of the side walls 143, 144 of the sub frame 90 in the width direction (left-right direction).
- the guide portion 93 comprises a front end in the insertion direction 56.
- the guide portion 93 is positioned between the groove 87 of the first protrusion 85 and the rear wall 42.
- the guide portion 93 is positioned in rear of the groove 87 with respect to the insertion direction 56.
- the width of the guide portion 93 between the pair of outer surfaces of the boards 94 in the width direction (left-right direction) is equal to the width of the guide portion 65 between the pair of outer surfaces of the boards 57 in the width direction (left-right direction).
- the guide portion 93 is aligned with the guide portion 65 in the depth direction (front-rear direction) 53, i.e., the boards 94 are aligned with the boards 57 in the depth direction (front-rear direction) 53, respectively. Therefore, the outer surfaces of the boards 94 are aligned with the outer surfaces of the boards 57 in the depth direction (front-rear direction) 53, respectively.
- the sub frame 90 comprises a guide portion 99 at the bottom wall 142.
- the guide portion 99 is a protrusion extending downward from the bottom wall 142 and extending in the depth direction (front-rear direction) 53 from the front end of the second protrusion 86 to the rear end of the sub frame 90.
- the width of the guide portion 99 between the outer surfaces of the guide portion 99 in the width direction (left-right direction) is less than the width of the sub frame 90 between the outer surfaces of the side walls 143, 144 of the sub frame 90 in the width direction (left-right direction).
- the width of the guide portion 99 between the outer surfaces of the guide portion 99 in the width direction (left-right direction) is equal to the width of the guide portion 66 between the outer surfaces of the guide portion 66 in the width direction (left-right direction).
- the guide portion 99 is aligned with the guide portion 66 in the depth direction (front-rear direction) 53. Therefore, the outer surfaces of the guide portion 99 are aligned with the outer surfaces of the guide portion 66 in the depth direction (front-rear direction) 53, respectively.
- the ink cartridge 30 comprises an IC board 74 disposed at the sub frame 90 between the pair of boards 94 of the guide portion 90.
- the IC board 74 is positioned between the groove 87 of the first protrusion 85 and the rear wall 42 and between the stopper 45 and the front wall 140.
- the IC board 74 is positioned at the top-wall 141 side of the sub frame 90 between the front wall 140 and the rear wall 42.
- the IC board 74 is positioned more rearward than the front wall 140 and the groove 87 with respect to the insertion direction 56.
- the IC board 74 and the ink supply opening 71 are shifted with respect to the insertion direction 56. More specifically, the IC board 74 is positioned more rearward than the ink supply opening 71 with respect to the insertion direction 56.
- the sub frame 90 comprises a platform on which the IC board 74 is disposed.
- the platform is positioned between the pair of boards 94 of the guide portion 93.
- the platform is a planar surface extending in the width direction (left-right direction) 51 and the depth direction (front-rear direction) 53, and extending in the insertion/removal direction 50 when the ink cartridge 30 is in the mounted position (upright position).
- a plane on which the platform extends i.e., a plane extending in the depth direction (front-rear direction) 53 and the width direction (left-right direction) 51, intersects a plane on which the engagement surface 46 extends, i.e., a plane extending in the height direction (up-down direction) 52 and the width direction (left-right direction) 51.
- the plane on which the platform extends is perpendicular to the plane on which the engagement surface 46 extends.
- the IC board 74 comprises an upper surface extending in the width direction (left-right direction) 51 and the depth direction (front-rear direction) 53. When the ink cartridge 30 is in the mounted position (upright position), the upper surface of the IC board 74 extends horizontally and faces upward.
- a plane on which the upper surface of the IC board 74 extends i.e., a plane extending in the depth direction (front-rear direction) 53 and the width direction (left-right direction) 51, intersects the plane on which the engagement surface 46 extends, i.e., a plane extending in the height direction (up-down direction) 52 and the width direction (left-right direction) 51.
- the plane on which the upper surface of the IC board 74 extends is perpendicular to the plane on which the engagement surface 46 extends. Because the platform is positioned more forward than the engagement surface 46 with respect to the insertion direction 56, the IC board 74 is positioned more forward than the engagement surface 46 with respect to the insertion direction 56.
- the IC board 74 is positioned above (higher than) the board 88 and the groove 87 of the first protrusion 85 with respect to the height direction (up-down direction) 52. In other word, the IC board 74 is positioned more outside than the board 88 and the groove 87. The IC board 74 is positioned above (higher than) at least a portion of the stopper 45 with respect to the height direction (up-down direction) 52. In other words, the IC board 74 is positioned more outside than at least a portion of the stopper 45. The upper end of the board 88 is positioned below the IC board 74 with respect to the height direction (up-down direction) 52.
- the cartridge mounting portion 110 comprises three contacts 106 aligned in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50.
- the IC board 74 contacts and is electrically connected to the three contacts 106 (see Fig. 6 ).
- the IC board 74 still contacts and is electrically connected to the three contacts 106.
- the IC board 74 comprises an IC (not shown), and electrical interfaces, e.g., a HOT electrode 75, a GND electrode 76, and a signal electrode 77.
- the IC is a semiconductor integrated circuit and stores data about the information of the ink cartridge 30, e.g., the lot number of the ink cartridge 30, the manufacturing date of the ink cartridge 30, the color of ink stored in the ink cartridge 30, and etc.
- the data stored in the IC can be read out by the printer 10.
- Each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 is electrically connected to the IC.
- Each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 has a surface extending in the depth direction (front-rear direction) 53 and the width direction (left-right direction) 51.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are aligned and spaced apart from each other in the width direction (left-right direction) 51.
- the GND electrode 76 is positioned between the HOT electrode 75 and the signal electrode 77.
- the IC board 74 has a width in the width direction (left-right direction) 51 and the board 88 of the first protrusion 85 has a width in the width direction (left-right direction) 51, and the width of the IC board 74 is greater than the width of the board 88.
- Each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 has a width in the width direction (left-right direction) 51, and the width of each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 is greater than the width of the board 88.
- the center of the IC board 74 in the width direction (left-right direction) 51 and the center of the board 88 of the first protrusion 85 in the width direction (left-right direction) is positioned on a plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. Therefore, the IC board 74 and the board 88 intersect the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. In other words, the IC board 74 and the board 88 are not offset in the width direction (left-right direction) 51.
- the center of the GND electrode 76 in the width direction (left-right direction) 51 and the center of the board 88 is positioned on the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53.
- the center of the GND electrode 76 in the width direction (left-right direction) 51 and the center of the board 88 are not offset in the width direction (left-right direction) 51. Therefore, the GND electrode 76 and the board 88 intersect the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. In other words, the GND electrode 76 and the rib 86 are not offset in the width direction (left-right direction) 51.
- the HOT electrode 75, the GND electrode 76, the signal electrode 77, and the board 88 are symmetrically arranged with respect to the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53.
- the engagement surface 46, the IC board 74, and the groove 87 intersect the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. In other words, the engagement surface 46, the IC board 74, and the groove 87 are not offset in the width direction (left-right direction) 51.
- the engagement surface 46, the GND electrode 76, and the groove 87 intersect the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53
- the engagement surface 46, the HOT electrode 75, and the groove 87 intersect another plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53
- the engagement surface 46, the signal electrode 77, and the groove 87 intersect yet another plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53.
- the engagement surface 46, each one of the HOT electrode 75, the GND electrode 76, and the signal electrode 77, and the groove 87 are not offset in the width direction (left-right direction) 51.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 contact and are electrically connected to the three contacts 106 (see Fig. 6 ), respectively.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 still contact and are electrically connected to the three contacts 106, respectively.
- the engagement surface 46, the IC board 74, and the groove 87 are exposed upward with respect to the height direction 52 to the exterior of the ink cartridge 30 at the top-wall 39 side of the main body 30 and the top-wall 141 side of the sub frame 90.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are exposed upward to the exterior of the ink cartridge 30 at the upper surface of the IC board 74, such that the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are accessible from above when the ink cartridge 30 is in the mounted position.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are accessible in the downward direction which is perpendicular to the width direction (left-right direction) 51 and the insertion/removal direction 50.
- the engagement surface 46 is accessible from above when the ink cartridge 30 is in the mounted position. In other words, the engagement surface 46 is accessible in the downward direction which is perpendicular to the width direction (left-right direction) 51 and the insertion/removal direction 50.
- the IC board 74 is attached to the top wall 141 of the sub frame 90 at at least one attachment position.
- a boss extends upward from each of the at least one attachment position of the sub frame 90 and the boss extends through an opening formed through the IC board 74.
- An upper portion of the boss is melted by heat and contacts the upper surface of the IC board 74.
- the at least one attachment position is positioned in rear of the HOT electrode 75, the GND electrode, and the signal electrode 77.
- Each of the pair of boards 94 comprises a first portion positioned in line with the attachment position in the width direction (left-right direction) 51 when viewed from the height direction (up-down direction) 52 and a second portion. The upper end of the first portion is positioned below the second portion. With the first portion of the boards 94, a heater, which has a wider width than the width of the guide portion 93 in the width direction (left-right direction) 51 can contact the upper portion of the boss, such that the upper portion of the boss is melted.
- the pair of boards 94 of the guide portion 93 extends beyond the IC board 74 upward and forward in the insertion direction 56.
- the pair of boards 94 of the guide portion 65 extend outward beyond the IC board 74.
- the sub frame 90 comprises a ramp 49 connecting the pair of boards 94 of the guide portion 65.
- the ramp 49 is positioned between the groove 87 of the first protrusion 85 and the rear wall 42 and between the IC board 74 and the front wall 140.
- the ramp 49 is positioned between the groove 87 of the first protrusion 85 and the IC board 74.
- the ramp 49 is inclined downward with respect to the insertion direction 56, such that a front portion of the ramp 49 is positioned lower than a rear portion of the ramp 49.
- a recess 78 is formed between the stopper 45 and the sub frame 90 at a boundary between the stopper 45 and the sub frame 90 at an upper portion of the ink cartridge 30.
- the sub frame 90 covers the front wall 40 of the main body 31, the side-wall 37 side of the front portion of the main body 31, the side-wall 38 side of the front portion of the main body 31, the top-wall 39 side of the front portion of the main body 31, and the bottom-wall 41 side of the front portion of the main body 31.
- the sub frame 90 may cover the front portion of the main body 31 differently.
- the sub frame 90 may not cover the side-wall 37 side of the front portion of the main body 31.
- the sub frame 90 may not cover the bottom-wall 41 side of the front portion of the main body 31.
- the printer 10 comprises the ink supply device 100.
- the ink supply device 100 is configured to supply ink to the print head 21.
- the ink supply device 100 comprises the cartridge mounting portion 110 to which the ink cartridge 30 is mountable.
- the ink cartridge 30 is mounted to the cartridge mounting portion 110.
- the cartridge mounting portion 110 comprises a case 101, and the case 101 has the opening 112 formed through one face of the case 101.
- the ink cartridge 30 is configured to be inserted into or removed from the case 101 through the opening 112.
- the case 101 has the groove 109 formed in a top surface defining the upper end of the inner space of the case 101 and also has the groove 109 formed in a bottom surface defining the lower end of the inner space of the case 101.
- the grooves 109 extend in the insertion/removal direction 50.
- the ink cartridge 30 is guided in the insertion/removal direction 50 with the guide portions 65, 93 inserted in the groove 109 formed in the top surface of the case 101 and the guide portions 66, 99 inserted in the groove 109 formed in the bottom surface of the case 101.
- the case 101 is configured to receive four ink cartridges 30 storing cyan ink, magenta ink, yellow ink, and black ink, respectively.
- the case 101 comprises three partition plates 102 extending in the vertical direction and the insertion/removal direction 50.
- the three partition plates 102 partition the inner space of the case 101 into four spaces.
- the four ink cartridges 30 are configured to be mounted in the four spaces, respectively.
- the case 101 comprises an end surface opposite the opening 112 in the insertion/removal direction 50.
- the cartridge mounting portion 110 comprises a connection portion 103 provided at a lower portion of the end surface of the case 101 at a position corresponding to the ink supply portion 34 of the ink cartridge 30 mounted to the case 101.
- four connection portions 103 are provided for the four ink cartridges 30 mountable to the case 101.
- the connection portion 103 comprises a printing fluid supply pipe, e.g., the ink pipe 122, and a holding portion 121.
- the ink pipe 122 is a cylindrical pipe made of a synthetic resin.
- the ink pipe 122 is connected to the ink tube 20 at the exterior of the case 101.
- the ink tube 20 connected to the ink pipe 20 extends to the printing head 21 to supply ink to the printing head 21. In Fig. 4 and 5 , the ink tube 20 is not depicted.
- the holding portion 121 has a cylindrical shape.
- the ink pipe 122 is positioned at the center of the holding portion 121. Referring to Fig. 8 , when the ink cartridge 30 is mounted to the cartridge mounting portion 110, the ink supply portion 34 is inserted into the holding portion 121. When this occurs, the ink supply portion 34 is positioned relative to the holding portion 121 with respect to the height direction (up-down direction) 52 by an outer surface of the ink supply portion 34 contacting an inner surface of the holding portion 121. When the ink supply portion 34 is inserted into the holding portion 121, the ink pipe 122 is inserted into the ink supply opening 71. This allows ink stored in the ink chamber 36 to flow out into the ink pipe 122.
- the cartridge mounting portion 110 comprises a senor unit 104 above the connection portion 103.
- the sensor unit 104 comprises a board 113 and the optical senor 114 mounted to the board 113. More specifically, the sensor unit 104 comprises one board 113 and four optical sensors 114 mounted to the one board 113, corresponding to the four ink cartridges 30 mountable to the case 101.
- the optical sensor 114 comprises the light emitter, e.g., a light emitting diode, and the light receiver, e.g., a photo-transistor.
- the light emitter and the light receiver are housed in a housing, and the housing extends from the board 113 in the insertion/removal direction 50 toward the opening 112.
- the housing has substantially a U-shape when view from the above.
- the light emitter and the light receiver of the optical sensor 114 are aligned in a horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 with a space formed therebetween.
- the light emitter is configured to emit light, e.g., infrared or visible light, toward the light receiver in the horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, and the light receiver is configured to receive the light emitted from the light emitter.
- the detection portion 33 and the detection portion 89 can be inserted into the space between the light emitter and the light receiver.
- the optical sensor 114 is configured to detect the change in the amount (intensity) of the light when the detection portion 33 or the detection portion 89 enters an optical path (detection point) formed between the light emitter and the light receiver.
- the optical sensor 114 is electrically connected to a controller (described later) of the printer 10, and when the optical sensor 114 detects the detection portion 33 or the detection portion 89, a signal output from the optical sensor 114 to the controller changes.
- the cartridge mounting portion 110 comprises a senor unit 105 positioned at the top surface of the case 101 adjacent to the end surface of the case 101.
- the sensor unit 105 comprises a board 115 and the optical sensor 116 mounted to the board 115. More specifically, the sensor unit 105 comprises one board 115 and four optical sensors 116 mounted to the one board 115, corresponding to the four ink cartridges 30 mountable to the case 101.
- the optical sensor 116 comprises the light emitter, e.g., a light emitting diode, and the light receiver, e.g., a photo-transistor.
- the light emitter and the light receiver are housed in a housing, and the housing extends from the board 115 downward in the vertical direction.
- the housing has substantially an up-side-down U-Shape when viewed in the insertion/removal direction 50.
- the light emitter and the light receiver of the optical sensor 116 are aligned in the horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 with a space formed therebetween.
- the light emitter is configured to emit light, e.g., infrared or visible light, toward the light receiver in the horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50
- the light receiver is configured to receive the light emitted from the light emitter.
- the optical sensor 116 is configured to detect the change in the amount (intensity) of the light when the board 88 enters an optical path (detection point) formed between the light emitter and the light receiver.
- the optical sensor 116 is electrically connected to the controller of the printer 10, and when the optical sensor 116 detects the board 88, a signal output from the optical sensor 116 to the controller changes. Based on the signal change, whether the ink cartridge 30 is mounted to the cartridge mounting portion 110 can be determined by the controller.
- the board 88 is configured to provide information as to the presence of the ink cartridge 30 in the cartridge mounting portion 110 by attenuating the light of the optical sensor 116.
- the cartridge mounting portion 110 comprises electrical contacts 106 positioned at the top surface of the case 101 between the end surface of the case 101 and the opening 112. Three contacts 106 are provided and aligned in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50. Three contacts 106 are arranged at positions corresponding to the HOT electrode 75, the GND electrode 76, the signal electrode 77 of the ink cartridge 30. The contacts 106 have electrical conductivity and resiliency. The contacts 106 are configured to be resiliently deformed in the upward direction. Four sets of three contacts 106 are provided, corresponding to the four ink cartridges 30 mountable to the case 101.
- the printer 10 comprises the controller, and the contacts 106 are electrically connected to the controller via an electrical circuit.
- the controller may comprise a CPU, a ROM, a RAM, and etc.
- a voltage Vc is applied to the HOT electrode 75.
- the GND electrode 76 contacts and is electrically connected to a corresponding one of the contacts 106, the GND electrode 76 is grounded.
- the HOT electrode 75 and the GND electrode 76 contact and are electrically connected to the corresponding contacts 106, respectively, power is supplied to the IC.
- the signal electrode 77 contacts and is electrically connected to a corresponding one of the contacts 106, data stored in the IC is accessible. Outputs from the electrical circuit are input to the controller.
- the case 101 has a space 130 formed at the lower end of the end surface of the case 101.
- the cartridge mounting portion 110 comprises a slider 135 disposed in the space 130.
- Four sliders 135 are provided corresponding to the four ink cartridges 30 mountable to the case 101.
- the space 130 is contiguous with the inner space of the case 101.
- the slider 135 is configured to move in the space 130 in the insertion/removal direction 50.
- the slider 135 has substantially a rectangular parallelepiped shape.
- the slider 135 is positioned in the line of travel of the second protrusion 86 of the ink cartridge 30 and is configured to contact the second protrusion 86.
- the cartridge mounting portion 110 comprises a coil spring 139 disposed in the space 130.
- the coil spring 139 is configured to bias the slider 135 toward the opening 112, i.e., in the removal direction 55.
- the coil spring 139 is in a normal length, i.e., when no external force is applied to the slider 135, the slider 135 is positioned at an opening 112 side of the space 130.
- the second protrusion 86 of the ink cartridge 30 contacts the slider 135 and pushes the slider 135 in the insertion direction 56.
- the coil spring 139 contracts and the slider 135 slides in the insertion direction 56.
- the coil spring 139 in a contracted state biases the ink cartridge 30 in the removal direction 55 via the slider 135.
- the cartridge mounting portion 110 comprises the optical sensor 117 at an upper portion of the space 130.
- Four optical sensors 117 are provided corresponding to the four ink cartridges 30 mountable to the case 101.
- the four optical sensors 117 are provided corresponding to the four sliders 135.
- the four optical sensors 117 are aligned in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50.
- the optical sensor 117 has the same structure as the optical sensor 116.
- the slider 135 When the ink cartridge 30 is mounted to the case 101, the slider 135 is pushed and inserted into a space between a light emitter and a light receiver of the optical sensor 117.
- the optical sensor 117 is configured to detect the change in the amount (intensity) of light when the slider 135 enters an optical path (detection point) formed between the light emitter and the light receiver of the optical sensor 117.
- the optical sensor 117 is electrically connected to the controller of the printer 10, and when the optical sensor 117 detects the slider 135, a signal output from the optical sensor 117 to the controller changes. In Figs. 5 to 8 , the slider 135, the coil spring 139, and the optical sensor 117 are not depicted.
- the detection point (optical path) of the optical sensor 114 is positioned more rearward than the detection point (optical path) of the optical sensor 116 and the detection point (optical path) of the optical sensor 117 in the insertion direction 56.
- the cartridge mounting portion 110 comprises a rod 125 at the end surface of the case 101.
- the position of the rod 125 with respect to the height direction (up-down direction) 52 corresponds to the position of the air communication valve 73 of the ink cartridge 30 mounted to the cartridge mounting portion 110 with respect to the height direction (up-down direction) 52.
- Four rods 125 are provided corresponding to the four ink cartridges 30 mountable to the case 101.
- the rod 125 has a cylindrical shape and extends from the end surface of the case 101 in the insertion/removal direction 50 toward the opening 112.
- the rod 125 is inserted through the opening 96 of the sub frame 90, and the distal end of the rod 125 contacts the air communication valve 73.
- the air communication valve 73 is pushed by the rod 125, such that the air communication opening 32 is opened.
- An outer surface of the rod 125 contacts an inner surface 98 of the sub frame 90 defining the opening 96, and thereby the sub frame 90 is positioned relative to the cartridge mounting portion 110 with respect to the height direction (up-down direction) 52.
- the cartridge mounting portion 110 comprises the engagement member 145 positioned at an upper portion of the case 101.
- the engagement member 145 is configured to retain the ink cartridge 30 in the mounted position.
- the engagement member 145 is positioned adjacent to the upper end of the opening 112.
- the engagement member 145 is positioned between the opening 112 and the contacts 106.
- Each of the contacts 106 and the engagement member 145 intersect a plane which is parallel with the insertion/removal direction 50 and the vertical (gravitational) direction. In other words, each of the contacts 106 and the engagement member 145 are not offset in the width direction (left-right direction) 51.
- Four engagement members 145 are provided corresponding to the four ink cartridges 30 mountable to the case 101.
- the cartridge mounting portion 110 comprises a shaft 147 positioned adjacent to the upper end of the opening 112.
- the shaft 147 is attached to the case 101 and extends in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50.
- the shaft 147 extends through an end of the engagement member 145 adjacent to the opening 112, in other words, a rear end of the engagement member 145 with respect to the insertion direction 56.
- the engagement member 145 is supported by the shaft 147, such that the engagement member 145 can pivot about the shaft 147 selectively toward and away from the inner space of the case 101.
- the engagement member 145 comprises an engagement end 146 opposite the end of the engagement member 145 through which the shaft 147 extends.
- the engagement end 146 is positioned at a front end of the engagement member 145 with respect to the insertion direction 56.
- the engagement end 146 is configured to contact the stopper 45 of the ink cartridge 30.
- the ink cartridge 30 is retained in the mounted position in the case 101 against the biasing force from the slider 135.
- the engagement end 146 contacts the engagement surface 46, the engagement end 146 extends substantially in the width direction (left-right direction) 51 and the height direction (up-down direction) 52.
- the engagement member 145 is configured to move between a lock position and an unlock position. When the engagement member 145 is in the lock position, the engagement end 146 can contact the stopper 45. When the engagement member 145 is in the unlock position, the engagement end 146 cannot contact the stopper 45.
- the engagement member 145 comprises a slide surface 148 extending from the engagement end 146 toward the shaft 147.
- the slide surface 148 extends substantially in the width direction (left-right direction) 51 and the depth direction (front-rear direction) 53.
- the slide surface 148 has a width in the width direction (left-right direction) 51, such that the slide surface 148 contacts and slides on all the HOT electrode 75, the GND electrode 76, and the signal electrode 77 at the same time when the ink cartridge 30 is inserted into and/or removed from the cartridge mounting portion 110.
- the engagement member 145 is configured to pivot downward due to its own weight or biased by a spring (not shown).
- a spring not shown.
- the engagement end 146 contacting the stopper 45 is positioned above the front end portion 81 of the pivotable member 80.
- the engagement member 145 pivots upward about the shaft 147 from the lock position to the unlock position.
- the movable range of the engagement member 145 is limited, such that the engagement member 145 does not pivot downward beyond the lock position.
- FIGs. 6 to 8 it is described how the ink cartridge 30 is mounted to the cartridge mounting portion 110.
- the cartridge mounting portion 110 is depicted in cross-section, but only a top-wall 39 side portion of the main body 31 and a top-wall 141 side portion of the sub frame 90 is depicted in cross-section.
- the sub frame 90 is movable in the upward direction relative to the main body 31 before the ink cartridge 30 is mounted to the cartridge mounting portion 110.
- the guide portions 65, 66, 93, 99 of the ink cartridge 30 are inserted into the grooves 109 of the case 101, and thereby the ink cartridge 30 is roughly positioned relative to the cartridge mounting portion 110 with respect to the width direction (left-right direction) 51 and the height direction (up-down direction) 52.
- the ink cartridge 30 is configured to slide toward the end surface of the case 101 while the guide portions 65, 66, 93, 99 are inserted in the grooves 109.
- the second protrusion 86 contacts the slider 135.
- the slider 135 is pushed in the insertion direction 56 against the biasing force from the coil spring 139 into the detection point (optical path) of the optical sensor 117.
- the signal output from the optical sensor 117 to the controller changes from a HI level signal to a LOW level signal.
- the detection portion 89 enters the detection point (optical path) of the optical sensor 114.
- the signal output from the optical sensor 114 to the controller changes from a HI level signal to a LOW level signal.
- the board 88 of the first protrusion 85 enters the detection point (optical path) of the optical sensor 116.
- the signal output from the optical sensor 116 to the controller changes from a HI level signal to a LOW level signal.
- the gap between the detection portion 89 and the detection portion 33 passes the detection point (optical path) of the optical sensor 114.
- the signal output from the optical sensor 114 to the controller changes from the LOW level signal to the HI level signal.
- the signal output from the optical sensor 114 to the controller changes from the HI level signal to the LOW level signal if the sensor arm 60 is in the lower position.
- the detection portion 89 is longer in the depth direction (front-rear direction) 53 in one type of the ink cartridge 30, the detection portion 89 is still in the detection point (optical path) of the optical sensor 114 when the board 88 starts to enter the detection point (optical path) of the optical sensor 116, and therefore, the signal output from the optical sensor 114 is the LOW level signal at a time that the signal output from the optical sensor 116 changes from the HI level signal to the LOW level signal.
- the detection portion 89 is shorter in the depth direction (front-rear direction) 53 in another type of the ink cartridge 30, the detection portion 89 is no longer in the detection point (optical path) of the optical sensor 114 when the board 88 starts to enter the detection point (optical path) of the optical sensor 116, and therefore, the signal output from the optical sensor 114 is the HI level signal at a time that the signal output from the optical sensor 116 changes from the HI level signal to the LOW level signal.
- the board 88 and the detection portion 89 are configured to provide information as to the type of the ink cartridge 30 by attenuating the light of the optical sensor 116 and the optical sensor 114.
- the slider 135 is already in the detection point (optical path) of the optical sensor 117 when the board 88 starts to enter the detection point (optical path) of the optical sensor 116, and therefore, the signal output from the optical sensor 117 is the LOW level signal at a time that the signal output from the optical sensor 116 changes from the HI level signal to the LOW level signal.
- the slider 135 is not yet in the detection point (optical path) of the optical sensor 117 when the board 88 starts to enter the detection point (optical path) of the optical sensor 116, and therefore, the signal output from the optical sensor 117 is the HI level signal at a time that the signal output from the optical sensor 116 changes from the HI level signal to the LOW level signal.
- the board 88 and the second protrusion 86 are configured to provide information as to the type of the ink cartridge 30 by attenuating the light of the optical sensor 116 and the optical sensor 117.
- the ink supply portion 34 of the ink cartridge 30 is inserted into the holding portion 121 and the ink pipe 122 is inserted into the ink supply opening 71.
- the ink supply portion 34 is positioned relative to the holding portion 121 with respect to the height direction (up-down direction) 52 by the outer surface of the ink supply portion 34 contacting the inner surface of the holding portion 121, i.e., the main body 31 is positioned relative to the cartridge mounting portion 110 with respect to the height direction (up-down direction) 52.
- the ink supply valve 70 is pushed by the ink pipe 122, such that the ink supply opening 71 is opened.
- the ink pipe 122 has an ink introduction opening formed in the distal end thereof, and ink stored in the ink chamber 36 flows into the ink pipe 122 via the ink introduction opening in the insertion direction 56.
- the rod 125 enters the opening 96 of the sub frame 90.
- the sub frame 90 is movable in the upward direction relative to the main body 31.
- an upper portion of the outer surface of the rod 125 contact an upper portion of the inner surface 98 of the sub frame 90 defining the opening 96, and pushes up the sub frame 90, such that the sub frame 90 slides on the main body 31 in the upward direction.
- the sub frame 90 cannot move in the downward direction relative to the cartridge mounting portion 110 because the upper portion of the outer surface of the rod 125 contacts the upper portion of the inner surface 98 of the sub frame 90 defining the opening 96 from below.
- the rod 125 contacts and pushes the air communication valve 73.
- the air communication valve 73 moves away from the air communication opening 32, such that air flows into the ink chamber 36 via the air communication opening 32.
- the contacts 106 contact the ramp 49 of the sub frame 90. Because the ramp 49 is inclined upward when the contact 106 moves toward the rear wall 42 of the ink cartridge 30 and because the sub frame 90 cannot move in the downward direction with the upper portion of the outer surface of the rod 125 contacting the upper portion of the inner surface 98 of the sub frame 90 defining the opening 96, the contacts 106 are resiliently deformed in the upward direction when the contacts 106 slides on the ramp 49 and the IC board 74. The resiliently-deformed contacts 106 bias the IC board 74 in the downward direction. When the contacts 106 reach the IC board 74, the sub frame 90 is positioned relative to the cartridge mounting portion 110 with respect to the height direction (up-down direction) 52 by the contacts 106 and rod 125 sandwiching the sub frame 90 from above and from below, respectively.
- the contacts 106 contact and are electrically connected to the HOT electrode 75, the GND electrode 76, the signal electrode 77 of the IC board 74, respectively.
- the mounting of the ink cartridge 30 reaches the mounted position, the HOT electrode 75, the GND electrode 76, and the signal electrode 77 still contact and are electrically connected to the three contacts 106, respectively.
- the engagement surface 46 of the stopper 45 of the ink cartridge 30 has passed the engagement end 146 of the engagement member 145 in the insertion direction 56.
- the engagement member 145 pivots in the clockwise direction in Fig. 8 to the lock position, and the engagement end 146 contacts the engagement surface 46.
- the ink cartridge 30 is retained in the mounted position against the biasing force from the coil spring 139.
- the ink cartridge 30 is positioned relative to the cartridge mounting portion 110 with respect to the insertion/removal direction 50. As such, the mounting of the ink cartridge 30 to the cartridge mounting portion 110 is completed.
- the main body 31 When the ink cartridge 30 is in the mounted position in the cartridge mounting portion 110, the main body 31 is positioned with the ink supply portion 34 inserted into the holding portion 121 and the ink pipe 122 inserted into the ink supply opening 71, and the sub frame 90 is positioned sandwiched by the contacts 106 and the rod 125 in a position between the ends of its movable range.
- the front end portion 81 of the pivotable member 80 is positioned below the engagement end 146 of the engagement member 145.
- the rear end portion 82 of the pivotable member 80 is positioned away from the top wall 39.
- the board 88 is configured to provide information as to the presence of the ink cartridge 30 in the cartridge mounting portion 110 by attenuating the light of the optical sensor 116. Based on the level of the output signal from the optical sensor 114 and/or based on the level of the output signal from the optical sensor 117 at the time that the signal output from the optical sensor 116 changes from the HI level signal to the LOW level signal, the type of the ink cartridge 30 is determined by the controller.
- the board 88, and the detection portion 89 or the second protrusion 86 are configured to provide information as to the type of the ink cartridge 30 by attenuating the light of the optical sensor 116 and the optical sensor 114 or the optical sensor 117.
- the amount of ink stored in the ink chamber 36 is determined by the controller, i.e., whether the ink chamber 36 has the predetermined amount or more of ink stored therein is determined.
- the detection portion 33 is configured to indicate the presence or absence of ink within the ink chamber 36 by attenuating or not attenuating the light of the optical sensor 114.
- the information of the ink cartridge 30, e.g., the lot number of the ink cartridge 30, the manufacturing date of the ink cartridge 30, the color of ink stored in the ink cartridge 30, and etc. is determined.
- the sub frame 90 may be movable in the downward direction relative to the main body 31 in the initial position before the ink cartridge 30 is mounted to the cartridge mounting portion 110.
- the sub frame 90 is supported by static friction between the end portions 67, 68 of the sub frame 90 and the inclined outer surfaces 47, 48 of the main body 31.
- the outer surface of the rod 125 may not contact the inner surface 98 of the sub frame 90 defining the opening 96 initially.
- the contacts 106 contacts the ramp 49 and the IC board 74 and pushes down the sub frame 90, such that the upper portion of the outer surface of the rod 125 contacts the upper portion of the inner surface 98 of the sub frame 90 defining the opening 96.
- the contacts 106 reach the IC board 74, the sub frame 90 is positioned relative to the cartridge mounting portion 110 with respect to the height direction (up-down direction) 52 by the contacts 106 and rod 125 sandwiching the sub frame 90 from above and from below, respectively.
- the time profile of the evens which occur during the insertion of the ink cartridge 30 to the cartridge mounting portion 110 is described in more detail here.
- the slide surface 148 of the engagement portion 145 starts to slide on the IC board 74.
- the second protrusion 86 then contacts the slider 135 and starts to push the slider 135.
- the detection portion 89 then starts to enter the detection point (optical path) of the optical sensor 114.
- the board 88 then starts to enter the detection point (optical path) of the optical sensor 116.
- the rod 125 then contacts the air communication valve 73 and starts to push the air communication valve 73.
- the contacts 106 then starts to contact the IC board 74.
- the gap between the detection portion 89 and the detection portion 33 then starts to enter the detection point (optical path) of the optical sensor 114.
- the ink pike 122 then contacts the ink supply valve 70 and starts to push the ink supply valve 70.
- the detection portion 33 then starts to enter the detection point (optical path) of the optical sensor 114.
- the engagement end 146 then contacts the engagement surface 46.
- the printer 10 After the mounting of the ink cartridge 30 to the cartridge mounting portion 110 is completed.
- the printer 10 starts printing.
- the used ink cartridge 30 is removed from the cartridge mounting portion 110, and a new ink cartridge 30 is mounted to the cartridge mounting portion 110.
- the rear end portion 82 of the pivotable member 80 When the ink cartridge 30 is intended to be removed from the cartridge mounting portion 110, the rear end portion 82 of the pivotable member 80 is pushed down by a user. Accordingly, the front end portion 81 of the pivotable member 80 moves up and separates from the top wall 39. When this occurs, the engagement member 145 is pushed up by the front end portion 81 of the pivotable member 80, and the engagement end 146 of the engagement member 145 moves to a position above the engagement surface 46, i.e., to a position separated from the engagement surface 46. As such, the engagement member 145 moves from the lock position to the unlock position, and the ink cartridge 30 is released from the state held by the engagement member 145.
- an external force applied to the ink cartridge 30 e.g., the biasing force of the coil spring 139 moves the ink cartridge 30 in the removal direction 55. Nevertheless, because a finger of the user still contacts the pushed-down rear end portion 82 of the pivotable member 80, the ink cartridge 30 moving in the removal direction 55 is stopped by the user. The biasing force of the coil spring 139 is received by the user's finger via the pivotable member 80.
- the ink cartridge 30 moves following the finger, pushed by the slider 135 and the coil spring 139.
- the IC board 74 disposed on the sub frame 90 is released from the downward biasing force of the contacts 106 of the cartridge mounting portion 110.
- the slide surface 148 of the engagement member 145 passes over the recess 78 and slides on the IC board 74 and the ramp 49.
- the slide surface 148 After sliding on the ramp 49, the slide surface 148 passes over the groove 87. When this occurs, the dust wiped off by the slide surface 148 falls into the groove 87. Accordingly, a likelihood that the dust falls down and adheres to a portion of the ink supply portion 34 surrounding the ink supply opening 71 is reduced.
- the outer surface of the rod 125 separates away from the inner surface 98 of the sub frame 90 defining the opening 96, such that the sub frame 90 moves down relative to the main body 31 to the initial position in which the sub frame 90 is supported by the upper surface of the front portion of the main body 31.
- the ink pipe 122 is pulled out of the ink supply portion 34. As such, the ink cartridge 30 is removed from the cartridge mounting portion 110.
- the ink cartridge 30 comprises the detection portion 89 and the board 88 configured to be detected by the optical sensors 114, 116 independent of the IC board 74, even if the electrical connection between the IC board 74 and the contacts 106 fails to be established or the data fails to be read out from the IC via the signal electrode 77, it can be determined that the ink cartridge 30 is mounted to the printer 10 based on the information obtained from the detection portion 89 and the board 88. Therefore , the ink cartridge 30 can be used even if the electrical connection between the IC board 74 and the contacts 106 fails to be established or the data fails to be read out from the IC via the signal electrode 77.
- the detection portion 89 and the board 88 can enter the detection point (optical path) of the optical sensor 114, 116 in the insertion direction 50 at desired timings.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are accessible in the downward direction perpendicular to the insertion direction 50 and the direction in which the light travels, even if the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are accessed by the contacts 106 in the downward direction, such that the ink cartridge 30 moves in the downward direction, such movement does not affect the timings of the detection portion 89 and the board 88 entering the detection point (optical path) of the optical sensor 114, 116 in the insertion direction 56. This is because the timings are determined by the movement of the ink cartridge 30 in the insertion direction 56, and not determined by the downward movement of the ink cartridge 30. Generally speaking, when events occur in directions perpendicular to each other, such events can be independent events and cannot be mutually affected.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are positioned between the front wall 40 and the rear wall 42, the biasing force from the slider 135 and the coil spring 139 in the removal direction 55 is not directly received by the HOT electrode 75, the GND electrode 76, and the signal electrode 77. Therefore, a likelihood that excessive load is applied to t the HOT electrode 75, the GND electrode 76, and the signal electrode 77 is reduced. Moreover, a likelihood that ink leaks from the ink supply portion 34 and the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are contaminated with ink is reduced.
- the contact between the HOT electrode 75, the GND electrode 76, and the signal electrode 77 and the contacts 106 might be unstable because the ink cartridge 30 is biased in the removal direction 55, i.e., a direction that the HOT electrode 75, the GND electrode 76, and the signal electrode 77 separate away from the contacts 106.
- the deformation range of the contacts 106 and the resiliency of the contacts 106 would have to be set greater in order to secure the contact between the HOT electrode 75, the GND electrode 76, and the signal electrode 77 and the contacts 106 even when the HOT electrode 75, the GND electrode 76, and the signal electrode 77 move away from the contacts 106 by the biasing force biasing the ink cartridge 30.
- the greater deformation range and greater resiliency of the contacts 106 might apply a great biasing force to the HOT electrode 75, the GND electrode 76, and the signal electrode 77, i.e., excessive load might be applied to the HOT electrode 75, the GND electrode 76, and the signal electrode 77.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 and the stopper 45 are provided at the same side, e.g., the top-wall 39 side, of the ink cartridge 30, the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are positioned adjacent to the stopper 45. Because the stopper 45 determines the position of the ink cartridge 30 relative to the cartridge mounting portion 110 with respect to the insertion/removal direction 50 when the stopper 45 contacts the engagement member 145, the HOT electrode 75, the GND electrode 76, and the signal electrode 77, which are positioned adjacent to the stopper 45, can be accurately positioned relative to the contacts 106 with respect to the insertion/removal direction 50.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are positioned more forward than the engagement surface 46 with respect to the insertion direction 56, and the engagement surface 46 and each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 intersect the respective plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53, the engagement member 145 slides on the HOT electrode 75, the GND electrode 76, and the signal electrode 77during the insertion of the ink cartridge 30 into the cartridge mounting portion 110. Therefore dust on the HOT electrode 75, the GND electrode 76, and the signal electrode 77 is wiped off and a likelihood that the electrical connection between the HOT electrode 75, the GND electrode 76, and the signal electrode 77 and the contacts 106 becomes unstable is reduced.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are positioned above at least a portion of the engagement surface 46 of the stopper 45. Because the engagement member 145 is configured to pivot downward due to its own weight or biased by a spring, dust on the HOT electrode 75, the GND electrode 76, and the signal electrode 77 can be wiped off by the engagement member 145 with stronger downward force. Moreover, the movable range of the engagement member 145 is limited, such that the engagement member 145 does not pivot downward beyond the lock position, if the HOT electrode 75, the GND electrode 76, and the signal electrode 77 were positioned below the engagement surface 46, the engagement member 145 could not contact the HOT electrode 75, the GND electrode 76, and the signal electrode 77.. The position of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 above at least a portion of the engagement surface 46 thus facilitates the wiping function of the engagement member 145.
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are positioned more rearward than the ink supply opening 71 of the ink supply portion 34 with respect to the insertion direction 56, even if dust on the HOT electrode 75, the GND electrode 76, and the signal electrode 77 is wiped off when the ink cartridge 30 is inserted into and/or removed from the cartridge mounting portion 110, a likelihood that such dust adheres to the portion of the ink supply portion 34 surrounding the ink supply opening 71 is reduced. Therefore, a likelihood that ink is contaminated by the dust is reduced.
- the recess e.g., groove 87 is positioned more forward than the HOT electrode 75, the GND electrode 76, and the signal electrode 77 with respect to the insertion direction 56
- the groove 87 and each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 intersect the respective plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53
- the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are positioned above the groove 87, dust wiped off of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 falls into the groove 87. Accordingly, a likelihood that the dust falls down and adheres to the portion of the ink supply portion 34 surrounding the ink supply opening 71 is reduced.
- the ink supply portion 34 is positioned at the front wall 40 and the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are positioned at the top wall 39, a likelihood that ink spattered from the ink supply portion 34 reaches and contaminates the HOT electrode 75, the GND electrode 76, and the signal electrode 77 is reduced.
- the sub frame 90 is movable relative to the main body 31 in the height direction (up-down direction) 52
- the sub frame 90 and the main body 31 can be independently positioned relative to the cartridge mounting portion 110 with respect to the height direction (up-down direction) 52. Therefore, elements provided at the sub frame 90, e.g., the IC board 74, the board 88, and the detection portion 89, and elements provided at the main body 31, e.g., the ink supply portion 34, can be independently positioned relative to corresponding elements provided at the cartridge mounting portion 110, e.g., the contacts 106, the optical sensors 114, 116, and the ink pipe 122.
- the ink cartridge 30 is assembled from a plurality of elements, the dimensional tolerance of each element generally needs to be set small, which requires high accuracy in designing and manufacturing each element. If the dimensional tolerance of each element is relatively big, the accumulated dimensional error of the ink cartridge 30 generally becomes big.
- the ink pipe 122 may not be inserted into the ink supply opening 71 and may contact the distal end of the ink supply portion 34 and be broken, the contacts 106 may contact the IC board 74 with high pressure and may be broken, on the contrary the contacts 106 may fail to contact the IC board 74, or the board 88 and the detection portion 89 may fail to enter between the light emitter and the light receiver of the optical sensor 114, 116.
- the sub frame 90 and the main body 31 can be independently positioned relative to the cartridge mounting portion 110, elements provided at the sub frame 90, e.g., the IC board 74, the board 88, and the detection portion 89, and elements provided at the main body 31, e.g., the ink supply portion 34, can be independently positioned relative to corresponding elements provided at the cartridge mounting portion 110, e.g., the contacts 106, the optical sensors 114, 116, and the ink pipe 122, with moderate dimensional tolerances of the elements.
- the width of each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77 is greater than the width of the board 88, in other words, the width of the board 88 is less than the width of each of the HOT electrode 75, the GND electrode 76, and the signal electrode 77, the board 88 is suitable for non-contact detection by the optical sensor 116 while the HOT electrode 75, the GND electrode 76, and the signal electrode 77 are suitable for physical contact with the contacts 106.
- the second protrusion 86 may comprise a rib, which is similar to the board 88 of the first protrusion 85, and the optical sensor 117 may be configured to directly detect the rib of the second protrusion 86.
- the range within which the sub frame 90 moves relative to the main body 31 may be determined by a known structure, e.g., guide grooves formed in the main body 31 or the sub frame 90, other than the elongated openings 91, 92 or the detection portion 33 and the support portion 79.
- the movement of the sub frame 90 may be guided by a known structure, e.g., guide rails formed at the main body 31 or the sub frame 90, other than the inclined inner surfaces 47, 48.
- the inner surface 98 of the sub frame 90 defining the opening 96 may not contact the outer surface of the rod 125 to move the sub frame 90 relative to the main body 31.
- the sub frame 90 may comprise a surface extending in a direction intersecting the insertion/removal direction 50 at the top face or the bottom face, and when the ink cartridge 30 is inserted into the cartridge mounting portion 110, the surface may contact and slide on a protrusion provided in the cartridge mounting portion 110, such that the sub frame 90 moves relative to the main body 31
- the cartridge mounting portion 110 may not comprise the slider 135, the coil spring 139, and the optical sensor 117.
- the ink cartridge 30 may be biased in the removal direction 55 by springs coupled to the ink supply valve 70 and/or the air communication valve 73.
- the IC may not be disposed on the same board on which the HOT electrode 75, the GND electrode 75, and the signal electrode 77 are disposed.
- the IC may be disposed at or adjacent to the rear wall 42 and may be wired to the HOT electrode 75, the GND electrode 75, and the signal electrode 77 which are disposed at or adjacent to the top wall 39.
- the ink cartridge 30 may not comprise the sub frame 90 and the detection portion 89, the board 88, and the IC board 74 may be disposed on the main body 31.
- the width of the ink cartridge 30 in the width direction (left-right direction) 51 may be greater than the width of the ink cartridge 30 of Fig. 2 , and the guide portions 65, 66, 93, 99 may be offset from the center of the ink cartridge 30 in the width direction (left-right direction) 51.
- the rear wall 42 may comprise a first surface 58 extending in parallel with the front wall 40 and the front wall 140, and a second surface 59 extending in a direction intersecting the front wall 40 and the front wall 140.
- the second surface 59 is contiguous with the first surface 58 and is inclined, such that a front portion of the second surface 59 is positioned closer to the front wall 40 and the front wall 140 than a rear portion of the second surface 59 is positioned to the front wall 40 and the front wall 140. At least a portion of the second surface 59 is positioned closer to the front wall 40 and the front wall 140 than the first surface 58 is positioned to the front wall 40 and the front wall 140.
Landscapes
- Ink Jet (AREA)
Abstract
Description
- The present invention relates to a printing fluid cartridge comprising a light attenuating portion and an electrical interface.
- A known image printing apparatus, as described in Patent Application Publication No.
JP 2009-132098 A - Another known ink cartridge, as described in Patent Application Publication No.
JP 2000-37880 - Similarly, another known ink cartridge has a light attenuating portion configured to be detected by an optical sensor for obtaining the information of the ink cartridge.
- According to an embodiment of the present invention, a new printing fluid cartridge is provided, which comprises a light attenuating portion and an electrical interface. The printing fluid cartridge comprises a front side, a rear side positioned opposite the front side with respect to a front-rear direction, an upper side, a lower side positioned opposite the upper side with respect to an up-down direction which is perpendicular to the front-rear direction, a tubular fluid supply portion positioned at the lower side of the front side, a pivotable member configured to pivot about a pivot point and comprising an end portion. The pivot point is positioned at the upper side and the end portion is positioned at the rear side. The printing fluid cartridge also comprises a light attenuating portion protruding from the upper side of the front side and configured to attenuate light traveling in a left-right direction which is perpendicular to the front-rear direction and the up-down direction, and an electrical interface positioned between the pivotable member and the light attenuating portion with respect to the front-rear direction and comprising a surface extending in the front-rear direction and the left-right direction. An upper end of the light attenuating portion is positioned below the electrical interface with respect to the up-down direction.
- The printing fluid cartridge may comprise a first front wall positioned at the front side and a top wall positioned at the upper side.
- The printing fluid cartridge may comprise a main body comprising the first front wall and a sub frame comprising a second front wall positioned at the front side and facing the first front wall in the front-rear direction.
- A front end of the light attenuating portion may be positioned further away from the rear side than a front end of the fluid supply portion is positioned away from the rear side with respect to the front-rear direction.
- The printing fluid cartridge may further comprise a stopper comprising a surface extending in the up-down direction and the left-right direction. The pivotable member may be positioned in rear of the electrical interface with respect to the front-rear direction and is configured to pivot about a shaft extending in the left-right direction. The shaft may comprise the pivot point, and the stopper may be positioned between the pivotable member and the electrical interface with respect to the front-rear direction.
- The main body may further comprise a first guide portion extending in the front-rear direction and comprising a pair of outer surfaces. Each of the first front wall and the first guide portion may have a dimension in the left-right direction, and the dimension of the first guide portion between the pair of outer surfaces of the first guide portion in the left-right direction may be less than the dimension of the first front wall in the left-right direction. The main body may further comprise a second guide portion extending in the front-rear direction and comprising a pair of outer surfaces. The second guide portion may have a dimension between the pair of outer surfaces of the second guide portion in the left-right direction, which is less than the dimension of the first front wall in the left-right direction. The sub frame may comprise a third guide portion and a fourth guide portion, each extending in the front-rear direction. The third guide portion may comprise a pair of outer surfaces which is aligned with the pair of outer surfaces of first guide portion in the front-rear direction and the fourth guide portion may comprise a pair of outer surfaces which is aligned with the pair of outer surfaces of the second guide portion in the front-rear direction.
- The third guide portion may comprise a pair of boards defining the pair of outer surfaces of the third guide, respectively. The electrical interface may be positioned between the pair of boards of the third guide portion.
- The electrical interface may be positioned on an interface board, and the interface board may be attached to the sub frame at attachment position. Each of the pair of boards of the third guide portion may comprise a first portion positioned in line with the attachment position in the left-right direction when viewed from the up-down direction and a second portion, and an upper end of the first portion may be positioned below an upper end of the second portion.
- The second front wall may have a circular opening or a circular recess formed therein below the light attenuating portion with respect to the up-down direction.
- The sub frame may comprise a protrusion positioned at or adjacent to a lower end of the second wall and protruding forward, and the sub frame may have an opening formed therein positioned above the protrusion with respect to the up-down direction. The fluid supply portion may be configured to pass through the opening of the sub frame.
- The printing fluid cartridge may further comprise a fluid chamber configured to store printing fluid therein and a protruding portion positioned at a middle portion of the front side with respect to the up-down direction and protruding forward. The protruding portion may have an inner space formed therein, and the inner space may be in fluid communication with fluid chamber.
- The printing fluid cartridge may further comprise a further light attenuating portion positioned away from and in front of the protruding portion with respect to the front-rear direction.
- The main body may comprise a first resin configured to allow light traveling in the left-right direction to pass therethrough, and the sub frame may comprise a second resin configured to prevent light traveling in the left-right direction from passing therethrough.
- The sub frame may be configured to move relative to the main body in the up-down direction.
- The sub frame may be configured not to move relative to the main body in the left-right direction.
- The printing fluid cartridge may further comprise a rear wall positioned at the rear side and away from the first front wall in the front-rear direction and a fluid chamber configured to store printing fluid therein. The fluid supply portion may be positioned at the first front wall and configured to establish communication between an interior and an exterior of the fluid chamber. The rear wall may comprise a first surface extending in parallel with the first front wall and a second surface extending in a direction intersecting the first front wall, and at least a portion of the second surface may be positioned closer to the first front wall than the first surface is positioned to the first front wall.
- Objects, features, and advantages will be apparent to persons of ordinary skill in the art from the following detailed description of the invention and the accompanying drawings.
- For a more complete understanding of the present invention, needs satisfied thereby, and the objects, features, and advantages thereof, reference now is made to the following description taken in connection with the accompanying drawings.
-
Fig. 1 is a schematic, cross-sectional view of a printer comprising a cartridge mounting portion and an ink cartridge, according to an embodiment of the present invention. -
Fig. 2 is a perspective view of the ink cartridge. -
Fig. 3 is a vertical, cross-sectional view of the ink cartridge. -
Fig. 4 is a perspective view of the cartridge mounting portion and the ink cartridge. -
Fig. 5 is a vertical, cross-sectional view of the cartridge mounting portion. -
Fig. 6 is a vertical, partial cross-sectional view of the cartridge mounting portion and the ink cartridge during mounting of the ink cartridge to the cartridge mounting portion. -
Fig. 7 is another vertical, partial cross-sectional view of the cartridge mounting portion and the ink cartridge during mounting of the ink cartridge to the cartridge mounting portion. -
Fig. 8 is a vertical, partial cross-sectional view of the cartridge mounting portion and the ink cartridge, in which the mounting of the ink cartridge to the cartridge mounting portion is completed. -
Fig. 9 is a perspective view of an ink cartridge, according to a modified embodiment. - Embodiments of the present invention, and their features and advantages, may be understood by referring to
Figs 1-9 , like numerals being used for like corresponding parts in the various drawings. - Referring to
Fig. 1 , a printing apparatus, e.g., aprinter 10 is an inkjet printer configured to print an image on a sheet of printing paper by ejecting ink droplets selectively on the sheet of printing paper. Theprinter 10 comprises anink supply device 100. Theink supply device 100 comprises acartridge mounting portion 110. Thecartridge mounting portion 110 is configured to allow a printing fluid cartridge, e.g., anink cartridge 30 to be mounted therein. Thecartridge mounting portion 110 has anopening 112 and the interior of thecartridge mounting portion 110 is exposed to the exterior of thecartridge mounting portion 110 viaopening 112. Theink cartridge 30 is configured to be inserted into thecartridge mounting portion 110 via theopening 112, such that theink cartridge 30 is mounted to thecartridge mounting portion 110. Theink cartridge 30 is configured to be removed from thecartridge mounting portion 110 via theopening 112. - The
ink cartridge 30 is configured to store ink, which is used byprinter 10. Theprinter 10 comprises aprint head 21 and anink tube 20. Theink cartridge 30 and theprint head 21 are fluidically connected via theink tube 20 when theink cartridge 30 is mounted to thecartridge mounting portion 110. Theprint head 21 comprises asub tank 28. Thesub tank 28 is configured to temporarily store ink supplied via theink tube 20 from theink cartridge 30. Theprint head 21 comprisesnozzles 29 and is configured to selectively eject ink supplied from thesub tank 28 through thenozzles 29. - The
printer 10 comprises apaper feed tray 15, apaper feed roller 23, a conveyingroller pair 25, aplaten 26, adischarge roller pair 22, and adischarge tray 16. A conveyingpath 24 is formed from thepaper feed tray 15 up to thedischarge tray 16 via the conveyingroller pair 25, theplaten 26, and thedischarge roller pair 22. Thepaper feed roller 23 is configured to feed a sheet of printing paper from thepaper feed tray 15 to the conveyingpath 24. The conveyingroller pair 25 is configured to convey the sheet of printing paper fed from thepaper feed tray 15 onto theplaten 26. Theprint head 21 is configured to selectively eject ink onto the sheet of printing paper passing over theplaten 26. Accordingly, an image is printed on the sheet of printing paper. The sheet of printing paper having passed over theplaten 26 is discharged by thedischarge roller pair 22 to thepaper discharge tray 16 disposed at the most downstream side of the conveyingpath 24. - Referring to
Figs. 2 and5 , theink cartridge 30 is configured to be inserted into and removed from thecartridge mounting portion 110 in an insertion/removal direction 50, while theink cartridge 30 is in an upright position, as shown inFig. 2 , with a top face of theink cartridge 30 facing upward and a bottom face of theink cartridge 30 facing downward. The insertion/removal direction 50 extends in a horizontal direction. Theink cartridge 30 is in the upright position when theink cartridge 30 is mounted to thecartridge mounting portion 110 in a mounted position. Theink cartridge 30 is configured to be inserted into thecartridge mounting portion 110 in aninsertion direction 56 and removed from thecartridge mounting portion 110 in aremoval direction 55. The insertion/removal direction 50 is a combination of theinsertion direction 56 and theremoval direction 55. Theinsertion direction 56 extends in a horizontal direction and theremoval direction 55 extends in a horizontal direction. When theink cartridge 30 is in the upright position, a height direction (up-down direction) 52 corresponds to the gravitational direction (vertical direction). In another embodiment, the insertion/removal direction 50 may not extend exactly in a horizontal direction but may extend in a direction intersecting a horizontal direction and the gravitational direction (vertical direction). - The
ink cartridge 30 has a substantially parallelepiped shape and comprises amain body 31 and asub frame 90. Themain body 31 and thesub frame 90 form the exterior of theink cartridge 30. Theink cartridge 30 is a container configured to store ink therein. Theink cartridge 30 comprises anink chamber 36, which is a space formed in the interior ofink cartridge 30. More specifically, themain body 31 comprises theink chamber 36 formed therein, e.g., themain body 31 comprises aninner frame 35, and theink chamber 36 is formed in theinner frame 35. Theink cartridge 30 has a width in a width direction (left-right direction) 51, a height in the height direction (up-down direction) 52, and a depth in a depth direction (front-rear direction) 53. The width direction (left-right direction) 51, the height direction (up-down direction) 52, and the depth direction (front-rear direction) 53 are perpendicular to each other. The width of theink cartridge 30 is less than the height and the depth of theink cartridge 30. Whenink cartridge 30 is in the mounted position (upright position), the width direction (left-right direction) 51 is parallel with a horizontal plane, the depth direction (front-rear direction) 53 is also parallel with the horizontal plane, and the height direction (up-down direction) 52 is parallel with the gravitational direction (vertical direction). When theink cartridge 30 is inserted into/removed from thecartridge mounting portion 110, the depth direction (front-rear direction) 53 is parallel with the insertion/removal direction 50, and the width direction (left-right direction) 51 and the height direction (up-down direction) 52 are perpendicular to the insertion/removal direction 50. The height direction (up-down direction) 52 is parallel with an upward direction and a downward direction and is a combination of the upward direction and the downward direction. - The
ink cartridge 30 comprises a front side and a rear side opposite the front side with respect to the depth direction (front-rear direction) 53. The front side of the ink cartridge is positioned in front of the rear side of the ink cartridge with respect to theinsertion direction 56 when theink cartridge 30 is inserted into thecartridge mounting portion 110. The front area of theink cartridge 30 from the center of the ink cartridge with respect to the depth direction (front-rear direction) 53 is the front side of theink cartridge 30, and the rear area of theink cartridge 30 from the center of the ink cartridge with respect to the depth direction (front-rear direction) 53 is the rear side of theink cartridge 30. Theink cartridge 30 comprises an upper side and a lower side opposite the upper side with respect to the height direction (up-down direction) 52. The upper side of theink cartridge 30 is positioned above the lower side of theink cartridge 30 when theink cartridge 30 is inserted into thecartridge mounting portion 110 and when theink cartridge 30 is in the mounted position (upright position). The upper area of theink cartridge 30 from the center of theink cartridge 30 with respect to the height direction (up-down direction) 52 is the upper side of theink cartridge 30, and the lower area of theink cartridge 30 from the center of theink cartridge 30 with respect to the height direction (up-down direction) 52 is the lower side of theink cartridge 30. The front side of theink cartridge 30 and the upper side of theink cartridge 30 can occupy the same area. For example, a front area of the upper side of theink cartridge 30 is an upper area of the front side of theink cartridge 30. The rear side of theink cartridge 30 and the upper side of theink cartridge 30 can occupy the same area. For example, a rear area of the upper side of theink cartridge 30 is an upper area of the rear side of theink cartridge 30. The front side of theink cartridge 30 and the lower side of theink cartridge 30 can occupy the same area. For example, a front area of the lower side of theink cartridge 30 is a lower area of the front side of theink cartridge 30. The rear side of theink cartridge 30 and the lower side of theink cartridge 30 can occupy the same area. For example, a rear area of the lower side of theink cartridge 30 is a lower area of the rear side of theink cartridge 30. - The
main body 31 comprises afront wall 40 and arear wall 42 opposite thefront wall 40 with respect to theinsertion direction 56. Thefront wall 40 is positioned at a front side of themain body 31 or theink cartridge 30 with respect to theinsertion direction 56 when theink cartridge 30 is inserted into thecartridge mounting portion 110. More specifically, thefront wall 40 faces in theinsertion direction 56, in other words, thefront wall 40 is oriented toward theinsertion direction 56, when theink cartridge 30 is inserted into thecartridge mounting portion 110. Therear wall 42 is positioned at a rear side of themain body 31 or theink cartridge 30 with respect to theinsertion direction 56 when theink cartridge 30 is inserted into thecartridge mounting portion 110. More specifically, therear wall 42 faces in theremoval direction 55, in other words, therear wall 42 is oriented toward theremoval direction 55, when theink cartridge 30 is inserted into thecartridge mounting portion 110. Thefont wall 40 and therear wall 42 are aligned in depth direction (front-rear direction) 53. Thefront wall 40 and therear wall 42 are aligned in the insertion/removal direction 50 when theink cartridge 30 is inserted into thecartridge mounting portion 110. Themain body 31 comprisesside walls removal direction 50 and connected to thefront wall 40 and therear wall 42. Theside walls main body 31 comprises atop wall 39 connected to upper ends of thefront wall 40, therear wall 42, and theside walls main body 31 comprises abottom wall 41 connected to lower ends of thefront wall 40, therear wall 42, and theside walls top wall 39 and thebottom wall 41 are aligned in the height direction (up-down direction) 52. Thetop wall 39 is positioned at the upper side of theink cartridge 30. An outer face of thefront wall 40 is a front face of themain body 31, and an outer face of therear wall 42 is a rear face of themain body 31, and also of theink cartridge 30. Therefore, the front face of themain body 31 is oriented toward theinsertion direction 56 when theink cartridge 30 is inserted into thecartridge mounting portion 110 in the upright position, and the rear face of themain body 31 or theink cartridge 30 is oriented toward theremoval direction 55 when theink cartridge 30 is inserted into thecartridge mounting portion 110 in the upright position. An outer face of thetop wall 39 is a top face of themain body 31, and also of theink cartridge 30, and an outer face of thebottom wall 31 is a bottom face of themain body 31, and also of theink cartridge 30. Therefore, the top face of themain body 31 or theink cartridge 30 is oriented in the upward direction when theink cartridge 30 is inserted into the cartridge mounting portion110 in the upright position, and the bottom face of themain body 31 or theink cartridge 30 is oriented in the downward direction when theink cartridge 30 is mounted to thecartridge mounting portion 110 in the upright position. The top face is connected to upper ends of the front face and the rear face, and the bottom face is connected to lower ends of the front face and the rear face. Similarly, outer faces of theside walls main body 31, and also of theink cartridge 30. - Referring to
Figs. 2 to 4 , themain body 31 comprises adetection portion 33 at a middle portion of themain body 31 with respect to the height direction (up-down direction) 52. Thedetection portion 33 is positioned at a middle portion of the front side of theink cartridge 30 with respect to the height direction (up-down direction) 52. Thedetection portion 33 protrudes forward from thefront wall 40 of themain body 31 in theinsertion direction 56. More specifically, thedetection portion 33 is positioned at the front face of themain body 31. Thesub frame 90 comprises afirst protrusion 85 which comprises a detection portion, e.g., aboard 88. Thefirst protrusion 85 comprises a front end with respect to theinsertion direction 56. Theboard 88 comprises a front end with respect to theinsertion direction 56. Thesub frame 90 comprises asecond protrusion 86. Thesecond protrusion 86 comprises a front end with respect to theinsertion direction 56. Thesub frame 90 comprises anotherdetection portion 89. Thedetection portion 33 is positioned more rearward than the front end of thefirst protrusion 85, the front end of theboard 88, the front end of thesecond protrusion 86, and thedetection portion 89 with respect to theinsertion direction 56. Thedetection portion 33 has a box shape having an opening facing theink chamber 36, such that the inner space of thedetection portion 36 is in fluid communication with theink chamber 36. Thedetection portion 33 comprises a pair of walls made of a translucent, e.g., transparent or semi-transparent material, e.g., transparent or semi-transparent resin, configured to allow light, e.g., visible or infrared light, traveling in a direction perpendicular to the insertion/removal direction 50 to pass therethrough. In this embodiment, the direction perpendicular to the insertion/removal direction 50 is the width direction (left-right direction) 51. Thedetection portion 33 is exposed to the exterior of theink cartridge 30 via anopening 95 formed through thesub frame 90. When theink cartridge 30 is mounted to thecartridge mounting portion 110, an optical sensor 114 (seeFig. 6 ) emits light in the direction perpendicular to the insertion/removal direction 50. Thedetection portion 33 may allow the light which is emitted from theoptical sensor 114 and reaches thedetection portion 33 via theopening 95 to pass therethrough. - The pair of walls of the
detection portion 33 is aligned in the width direction (left-right direction) 51, and a space is formed between the pair of walls of thedetection portion 33. Ink stored in theink chamber 36 can reach this space. Referring toFig. 3 , themain body 31 comprises asensor arm 60 disposed in theink chamber 36. Thesensor arm 60 comprises anarm body 61 extending mainly in the depth direction (front-rear direction) 53, anindicator 62 positioned at one end of thearm body 61, and afloat 63 positioned at the other end of thearm body 61. Theindicator 62 is positioned in the space formed between the pair of walls of thedetection portion 33. Themain body 31 comprises asupport shaft 64 extending in the width direction (left-right direction) 51, and thesensor arm 60 is supported by thesupport shaft 64, such that thesensor arm 60 can pivot about thesupport shaft 64. Thesensor arm 60 is configured to pivot based on the amount of ink stored in theink chamber 36, and therefore theindicator 62 is configured to pivot based on the amount of ink stored in theink chamber 36. Thesensor arm 60 is configured to move between an upper position and a lower position. When thesensor arm 60 is in the upper position, theindicator 62 is positioned at an upper side of thedetection portion 33 with respect to the gravitational direction (vertical direction). When thesensor arm 60 is in the lower position, theindicator 62 is positioned at a lower side of thedetection portion 33 with respect to the gravitational direction.Fig. 3 depicts thesensor arm 60 positioned in the lower position when theink chamber 36 has a predetermined amount or more of ink stored therein. - When the
ink cartridge 30 is mounted to thecartridge mounting portion 110, thedetection portion 33 is positioned between a light emitter and a light receiver of theoptical sensor 114, which are aligned in a horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, and thedetection portion 33 is configured to change its state between a first state and a second state. When thedetection portion 33 is in the first state, thedetection portion 33 allows light, which is emitted from the light emitter of theoptical sensor 114 and travels in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, to pass therethrough. When thedetection portion 33 is in the second state, thedetection portion 33 attenuates the light. More specifically, when thedetection portion 33 is in the first state and the light reaches one side of thedetection portion 33 in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, a predetermined amount or more of the light comes out of the other side of thedetection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 and reaches the light receiver of theoptical sensor 114. When thedetection portion 33 is in the second state and the light reaches one side of thedetection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, the amount of light coming out of the other side of thedetection portion 33 and reaching the light receiver of theoptical sensor 114 is less than the predetermined amount, e.g., zero. When thesensor arm 60 is in the upper position, thedetection portion 33 is in the first state to allow the light to pass therethrough. When thesensor arm 60 is in the in the lower position, thedetection portion 33 is in the second state to attenuate the light. The attenuation of the light is caused by theindicator 62 completely preventing the light from passing therethrough in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, by theindicator 62 absorbing some amount of the light, by theindicator 62 deflecting the light, by theindicator 62 totally reflecting the light, and etc. As such, the amount (intensity) of the light reaching the light receiver of theoptical sensor 114 depends on the state of thedetection portion 33. By detecting the state of thedetection portion 33 with theoptical sensor 114, it is determined whether theink chamber 36 has the predetermined amount or more of ink stored therein. - In another embodiment, the
ink cartridge 30 may not comprise thesensor arm 60, and therefore theindicator 62 may not be positioned in thedetection portion 33. In such a case, when thedetection portion 33 stores ink therein, thedetection portion 33 may attenuate the light. When thedetection portion 33 does not store ink therein, thedetection portion 33 may allow the light to pass therethrough. More specifically, when thedetection portion 33 does not store ink therein and the light reaches one side of thedetection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, the predetermined amount or more of the light may come out of the other side of thedetection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 and reaches the light receiver of theoptical sensor 114. When thedetection portion 33 stores ink therein and the light reaches one side of thedetection portion 33 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, the amount of light coming out of the other side of thedetection portion 33 and reaching the light receiver of theoptical sensor 114 is less than the predetermined amount, e.g., zero. The attenuation of the light may be caused by the ink absorbing some amount of the light. In yet another embodiment, thedetection portion 33 may comprise a flexible film forming a space therein. When ink is stored in the space formed by the flexible film, the flexible film bulges. Theink cartridge 30 may comprise a pivotable lever contacting the flexible film, and the lever may attenuate the light by completely preventing the light from passing therethrough in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, by absorbing some amount of the light, by deflecting the light, by totally reflecting the light, and etc. When the ink moves out of the space formed by the flexible film and the flexible film shrinks, the lever contacting the flexible film may move to a position in which the lever no longer attenuates the light. In still another embodiment, thedetection portion 33 comprises a prism-like structure. In such a case, when ink contacts the prism-like structure, the prism-like structure may reflect light such that the light does not reach the light receiver of theoptical sensor 114. When ink does not contact the prism-like structure, the prism-like structure may reflect light such that the light reaches the light receiver of theoptical sensor 114. - The
main body 31 has anair communication opening 32 at thefront wall 40 of themain body 31 above thedetection portion 33. Theair communication opening 32 is formed through thefront wall 40 defining theink chamber 36 in the depth direction (front-rear direction) 53. An air layer formed in theink chamber 36 and the atmosphere outside of theink chamber 36 can be brought into fluid communication via theair communication opening 32. Thesub frame 90 has acircular opening 96 formed through a wall of thefirst protrusion 85 in the depth direction (front-rear direction) 53, and theair communication opening 32 is accessible via theopening 96 from the exterior of theink cartridge 30 in theremoval direction 55. Theopening 96 is positioned below theboard 88 with respect to the height direction (up-down direction) 52. - The
main body 31 comprises anair communication valve 73 configured to selectively open and close theair communication opening 32. When theair communication opening 32 is opened, the pressure in theink chamber 36 maintained in a negative pressure becomes equal to the atmospheric pressure. In another embodiment, theair communication opening 32 may not be positioned at thefront wall 40 of themain body 31 and may be positioned anywhere as long as the interior and the exterior of theink chamber 36 can be brought into fluid communication. In yet another embodiment, theink cartridge 30 may be configured to be used in theprinter 10 with theink chamber 36 maintained in negative pressure. In such a case, theink cartridge 30 may not have theair communication opening 32, and thesub frame 90 may have a circular recess formed therein instead of theopening 96. The recess may extend from the front end of thefirst protrusion 85 rearward. - The
main body 31 comprises a tubular fluid supply portion, e.g., anink supply portion 34 at thefront wall 40 of themain body 31 below thedetection portion 33. Theink supply portion 34 is positioned at a lower portion of thefront wall 40 of themain body 31, i.e., at a bottom-wall 41 side of thefront wall 40 of themain body 31. Therefore, theink supply portion 34 is positioned at the lower side of the front side of theink cartridge 30. Thesub frame 90 has acircular opening 97 formed through afront wall 140 in the depth direction (front-rear direction) 53. Theink supply portion 34 has a cylindrical shape and extends through theopening 97 of thefront wall 140 in the insertion/removal direction 50. Therefore, theink supply portion 34 is positioned at thefront wall 140 of thesub frame 90. Theink supply portion 34 has anink supply opening 71 formed at the distal end of theink supply portion 34. - The
ink supply portion 34 has anink path 72 formed therein. Theink path 72 extends from theink supply opening 71 up to theink chamber 36 in the depth direction (front-rear direction) 53. Themain body 31 comprises anink supply valve 70 configured to selectively open and close theink supply opening 71. When theink cartridge 30 is mounted to thecartridge mounting portion 110, anink pipe 122 provided in thecartridge mounting portion 110 is inserted through theink supply opening 71 and pushes theink supply valve 70 such that theink supply opening 71 is opened. When this occurs, ink is flowed out of theink chamber 36 into theink pipe 122 via theink path 72 in theinsertion direction 56. - In another embodiment, the
ink cartridge 30 may not comprise theink supply valve 70. In such a case, theink supply opening 71 may be covered and closed by a film. When theink cartridge 30 is mounted to thecartridge mounting portion 110, theink pipe 122 may break through the film, such that theink supply opening 71 is opened. - Referring to
Figs. 2 and3 , themain body 31 comprises anengagement hook 43 at a bottom-wall 41 side and a front-wall 40 side of themain body 31. Theengagement hook 43 extends forward in the depth direction (front-rear direction) 53 from a lower portion of thefront wall 40 of themain body 31. The front end of theengagement hook 43 comprises two protrusions extending outward in opposite directions in the width direction (left-right direction) 51. Theengagement hook 43 has a cut-out formed therein. The cut-out is positioned at a middle portion of theengagement hook 43 with respect to the width direction (left-right direction) 51 and extends in the depth direction (front-rear direction) 53. With this cut-out, theengagement hook 43 is configured to resiliently deform such that a dimension thereof in the width direction (left-right direction) 51 decreases. The protrusions of the front end of theengagement hook 43 are positioned inelongated openings sub frame 90, respectively, and contact inner surfaces of the walls defining theelongated openings - The
main body 31 comprises astopper 45 positioned at thetop wall 39 of themain body 31. More specifically, thestopper 45 is positioned at a middle portion of thetop wall 39 with respect to the depth direction (front-rear direction) 53. Thestopper 45 extends upward from thetop wall 39 and away from theink chamber 36 and comprises anengagement surface 46 which extends in the width direction (left-right direction) 51 and the height direction (up-down direction) 52. Theengagement surface 46 faces rearward with respect to theinsertion direction 56, in other wards, faces in theremoval direction 55, when theink cartridge 30 is inserted into thecartridge mounting portion 110. In another embodiment, theengagement surface 46 may not extend vertically from thetop wall 39, but may be inclined with respect to the height direction (left-right direction) 51, and may face rearward with respect to theinsertion direction 56, in other wards, face in theremoval direction 55, and also face in the upward direction when theink cartridge 30 is inserted into thecartridge mounting portion 110. When theink cartridge 30 is mounted to thecartridge mounting portion 110, theengagement surface 46 contacts anengagement member 145 of thecartridge mounting portion 110, and receives an external force. More specifically, when theink cartridge 30 is mounted to and retained in thecartridge mounting portion 110, theink cartridge 30 is pushed in theremoval direction 55, and therefore, theengagement surface 46 pushes theengagement member 145 in theremoval direction 55. As a consequence, theengagement surface 46 receives a reaction force from theengagement member 145 in theinsertion direction 56. - The
main body 31 comprises apivotable member 80 positioned at an upper side of themain body 31 with respect to the height direction (up-down direction) 52 and at a rear-wall 42 side of themain body 31. More specifically, thepivotable member 80 is positioned at a rear portion of thetop wall 39. Thepivotable member 80 has a bent flat-plate shape and its longer dimension extends in a direction substantially parallel with the depth direction (front-rear direction) 53. Thepivotable member 80 comprises ashaft 83 at its bent point. The bent point is positioned at a middle portion of thepivotable member 80 with respect to the depth direction (front-rear direction) 53. Theshaft 83 extends in the width direction (left-right direction) 51. Theshaft 83 is supported by the other portion of themain body 31 at a position spaced away from theengagement surface 46 toward therear wall 42, such that thepivotable member 80 can pivot about theshaft 83. In other words, theshaft 83 comprises a pivot point about which thepivotable member 80 pivots. Thepivotable member 80 comprises afront end portion 81 and arear end portion 82. Thefront end portion 81 extends from theshaft 83 toward theengagement surface 46. Therear end portion 82 extends from theshaft 83 toward therear wall 42. Theshaft 83 is positioned at the upper side of theink cartridge 30, and the rear end portion positioned at the rear side of theink cartridge 30. - When no external force is applied to the
pivotable member 80, thepivotable member 80 is positioned, such that thefront end portion 81 is positioned farthest from thetop wall 39, i.e., thefront end portion 81 is in the upper most position relative to thetop wall 39, due to its own weight, i.e., therear end portion 82 is heavier than thefront end portion 81. When thepivotable member 80 is in this position, thefront end portion 81 may extend outside beyond an upper end of the other portion of themain body 31. In another embodiment, thefront end portion 81 may not extend outside beyond the upper end of the other portion of themain body 31 and may be positioned more inside than the upper end of the other portion of themain body 31, i.e., positioned below the upper end of the other portion of themain body 31. When thefront end portion 81 is pushed down, thepivotable member 80 pivots in the clockwise direction inFig. 3 against its own weight. When thepivotable member 80 pivots in the clockwise direction to the extent possible, thefront end portion 81 is positioned below an upper end of theengagement surface 46.Fig. 2 illustrates thepivotable member 80 which has pivoted, such that thefront end portion 81 is positioned below the upper end of theengagement surface 46. In another embodiment, thepivotable member 80 may be integrally formed with the other portion of themain body 31. In yet another embodiment, thepivotable member 80 may be biased by a spring in the clockwise direction. In such a case, when therear end portion 82 is pushed down, thepivotable member 80 pivots in the counterclockwise direction against the biasing force of the spring. - As mentioned above, the
main body 31 comprises theside walls side walls rear wall 42 up to a middle portion of themain body 31 with respect to the depth direction (front-rear direction) 53. Each of the rear portions of theside walls outer surface side wall 37 comprises the inclinedinner surface 47 and theside wall 38 comprises the inclinedinner surface 48. When thesub frame 90 is not attached to themain body 31 before theink cartridge 30 is assembled, a front portion of theinner frame 35 defining theink chamber 36 is not covered by thesub frame 90 and is exposed. Therefore, the front portion of theinner frame 35 comprises front portions of theside walls - The
main body 31 comprises aguide portion 65 at thetop wall 39. Theguide portion 65 is a pair ofboards 57 extending upward from thetop wall 39 and extending in the depth direction (front-rear direction) 53 from a middle portion of themain body 31 with respect to the depth direction (front-rear direction) 53 toward therear wall 42. The width of theguide portion 65 between the pair of outer surfaces of theboards 57 in the width direction (left-right direction) is less than the width of themain body 31 between the outer surfaces of theside walls main body 31 in the width direction (left-right direction). The width of theguide portion 65 between the pair of outer surfaces of theboards 57 in the width direction (left-right direction) is less than the width of thefront wall 40 in the width direction (left-right direction). The inner gap of theguide portion 65 between the pair of inner surfaces of theboards 57 in the width direction (left-right direction) is greater than the width of theengagement member 145 in the width direction (left-right direction). Theguide portion 65 comprises a front end in theinsertion direction 56. Theguide portion 65 is positioned between agroove 87 of thefirst protrusion 85 and therear wall 42. More specifically, theguide portion 65 is positioned in rear of thegroove 87 with respect to theinsertion direction 56. Theshaft 83 of thepivotable member 80 is pivotably supported by theboards 57, such that thefront end portion 81 pivots between theboards 57. - The
main body 31 comprises aguide portion 66 at thebottom wall 41. Theguide portion 66 is a protrusion extending downward from thebottom wall 41 and extending in the depth direction (front-rear direction) 53 from a middle portion of themain body 31 with respect to the depth direction (front-rear direction) 53 toward therear wall 42. The width of theguide portion 66 between the pair of outer surfaces of theguide portion 66 in the width direction (left-right direction) is less than the width of themain body 31 between the outer surfaces of theside walls main body 31 in the width direction (left-right direction). The width of theguide portion 66 between the pair of outer surfaces of theguide portion 66 in the width direction (left-right direction) is less than the width of thefront wall 40 in the width direction (left-right direction). When theink cartridge 30 is inserted into and removed from thecartridge mounting portion 110, theguide portions guide grooves 109 of thecartridge mounting portion 110. - The
sub frame 90 is attached to themain body 31. Thesub frame 90 covers a front portion of themain body 31 extending from around the innerinclined surfaces front wall 40 of themain body 31 facing in theinsertion direction 56. More specifically, thesub frame 90 comprises thefront wall 140 facing and covering thefront wall 40 of themain body 31 in the depth direction (front-rear direction) 53, atop wall 141 facing and covering a front portion of thetop wall 39 in the height direction (up-down direction) 52, abottom wall 142 facing and covering a front portion of thebottom wall 41 in the height direction (up-down direction) 52, andside walls side walls front wall 140 is positioned at the front side of theink cartridge 30, and thetop wall 141 is positioned at the upper side of theink cartridge 30. Thesub frame 90 has an opening formed therethough, and the opening is defined by rear ends of thetop wall 141, thebottom wall 142, and theside walls front wall 140 with respect to the depth direction (front-rear direction) 53. - The
side walls elongated openings elongated openings wall 142 sides of theside walls elongated openings side walls elongated openings engagement hook 43 are positioned in theelongated openings elongated openings sub frame 90 is attempted to be removed from themain body 31 by pulling thesub frame 90 in the depth direction (front-rear direction) 53, the protrusions of the front end of theengagement hook 43 are hooked on the inner surfaces of the walls defining theelongated openings sub frame 90 cannot be removed from themain body 31. The dimension of each of the protrusions of the front end of theengagement hook 43 in the height direction (up-down direction) 52 is less than the dimension of each of theelongated openings side walls end portions end portions side walls main body 31, respectively. Theend portions outer surfaces end portions outer surfaces sub frame 90 is configured to move relative to themain body 31 in the height direction (up-down direction) 52 within a range defined by the dimension of theelongated openings engagement hook 43 to slide within theelongated openings engagement hook 43 and an end of a corresponding one of theelongated openings sub frame 90 can slide on themain body 31 in the height direction (up-down direction) 52. When thesub frame 90 moves relative to themain body 31, theend portions sub frame 90 slides on the inclinedouter surfaces outer surfaces sub frame 90 moves relative to themain body 31. Thesub frame 90 is supported by thetop wall 39 of the front portion of themain body 31 from below in a normal state. Thesub frame 90 is configured not to move relative to the main body in the width direction (left-right direction) 51. - The
sub frame 90 has theopening 95 formed through thefront wall 140 in the width direction (left-right direction) 51. Theopening 95 is positioned at a middle portion of thetop wall 140 with respect to the height direction (left-right direction) 52. In this embodiment, theopening 95 has a rectangular shape, but can have any other suitable shape according to modified embodiments. Theopening 95 has dimensions and size corresponding to thedetection portion 33 of themain body 31 and is in a position corresponding to thedetection portion 33, such that thedetection portion 33 is exposed to the exterior of theink cartridge 30 via theopening 95 in the width direction (left-right direction) 51. A portion of thesub frame 90 defining theopening 95 comprises thedetection portion 89 extending in the height direction (up-down direction) 52, and a support portion 79 extending from the lower end of thedetection portion 89 in the depth direction (front-rear direction) 53 toward themain body 31 and configured to support thedetection portion 33 from below. When thesub frame 90 is supported by thetop wall 39 of themain body 31 from below, there is a space between thedetection portion 33 and the support portion 79. When thesub frame 90 moves in the upward direction relative to themain body 31, the support portion 79 contacts a lower end of thedetection portion 33. The range within which thesub frame 90 moves relative to themain body 31 in the height direction (up-down direction) 52 can be defined by the dimension of theelongated openings engagement hook 43 to slide within theelongated openings detection portion 33 and the support portion 79 formed when thesub frame 90 is supported by the upper surface of the front portion of themain body 31 from below. - The
sub frame 90 has theopening 96 formed through a wall of thefirst protrusion 85 in the depth direction (front-rear direction) 53. In this embodiment, theopening 96 has a circular shape, but any other shapes are possible as well according to modified embodiments. Theopening 96 has a dimension and size corresponding to theair communication opening 32 of themain body 31 and is in a position corresponding to theair communication opening 32, such that theair communication opening 32 is accessible via theopening 96 from the exterior of theink cartridge 30 in theremoval direction 55. - The
sub frame 90 has theopening 97 formed through thefront wall 140 in the depth direction (front-rear direction) 53, and theopening 97 is positioned at a lower portion of thefront wall 140 with respect to theheight direction 52. In this embodiment, theopening 97 has a circular shape, but any other shapes are possible as well according to modified embodiments. Theopening 97 has a dimension and size corresponding to theink supply portion 34 of themain body 31 and is in a position corresponding to theink supply portion 34, such that theink supply portion 34 extends through theopening 37 in the depth direction (front-rear direction) 53. - The
sub frame 90 comprises thefirst protrusion 85 and thesecond protrusion 86 at thefront wall 140. Thefirst protrusion 85 extends from the upper end of thefront wall 140 in theinsertion direction 56 away from therear wall 42. The width of thefirst protrusion 85 in the width direction (left-right direction) 51 is the same as the width of thefront wall 140 in the width direction (left-right direction) 51. In another embodiment, the width offirst protrusion 85 may be less than the width of thefront wall 140. The front end of thefirst protrusion 85 is positioned more forward than theink supply opening 71 formed at the distal end of theink supply portion 34 in theinsertion direction 56 away from therear wall 42. Thefirst protrusion 85 has a recess, e.g., agroove 87 formed in a middle portion of thefirst protrusion 85 with respect to the width direction (left-right direction) 52. Thegroove 87 extends in the depth direction (front-rear direction) 53. Thegroove 87 is opened forward in theinsertion direction 56 and opened upward in the height direction (up-down direction) 52. The both sides of thegroove 87 with respect to the width direction (left-right direction) 51 are defined and closed by a pair of surfaces of thefirst protrusion 85, and the bottom ofgroove 87 is defined and closed by a surface of thefirst protrusion 85. The cross section of thegroove 87 taken along the height direction (up-down direction) 52 and the width direction (left-right direction) 51 is rectangular. - The
first protrusion 85 comprises theboard 88 disposed in a middle portion of thegroove 87 with respect to the width direction (left-right direction) 51. Theboard 88 extends in the depth direction (front-rear direction) 53 and the height direction (up-down direction) 52. Theboard 88 extends in the upward direction from the surface of thefirst protrusion 85 defining the bottom of thegroove 87. Theboard 88 extends from thefront wall 140 of thesub frame 90 in thedepth direction 53 orinsertion direction 56 at a boundary between thetop wall 141 and thefront wall 140. Theboard 88 protrudes from the upper side of the front side of theink cartridge 30. The front end of theboard 88 is positioned further away from the rear side of theink cartridge 30 than the front end of theink supply portion 30 is positioned away from the rear side of theink cartridge 30 with respect to the depth direction (front-rear direction). Each of side surfaces of theboard 88 with respect to the width direction (left-right direction) 51 extends in the depth direction (front-rear direction) 53 and the height direction (up-down direction) 52 in parallel with the pair of surfaces of thefirst protrusion 85 defining the both sides of thegroove 87 with respect to the width direction (left-right direction) 51. The surfaces of thefirst protrusion 85 defining the both sides of thegroove 87 with respect to the width direction (left-right direction) 51 are opposed to the side surfaces of theboard 88 in the width direction (left-right direction ) 52, respectively. Theboard 88 comprises a material, e.g., a resin, configured to attenuate light, e.g., visible or infrared light, traveling in a direction perpendicular to the insertion/removal direction 50. In this embodiment, the direction perpendicular to the insertion/removal direction 50 is the width direction (left-right direction) 51. More specifically, when theink cartridge 30 is mounted to thecartridge mounting portion 110, theboard 88 is positioned between a light emitter and a light receiver of anoptical sensor 116, which are aligned in a horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50. Theboard 88 is configured to attenuate light, which is emitted from the light emitter of theoptical sensor 116 and travels in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50. When the light reaches one side of theboard 88 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, the amount of light coming out of the other side of theboard 88 and reaching the light receiver of theoptical sensor 116 is less than a predetermined amount, e.g., zero. In other words, theboard 88 is configured to attenuate the amount or the intensity of light to a level sufficient to be detected by theoptical sensor 116. The attenuation of the light is caused by theboard 88 completely preventing the light from passing therethrough in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, by theboard 88 absorbing some amount of the light, by theboard 88 deflecting the light, by theboard 88 totally reflecting the light, and etc. As such, theboard 88 can be detected by theoptical sensor 116. The dimension of theboard 88 from thefront wall 40 up to the front end of theboard 88 in theinsertion direction 56 away from therear wall 42 varies from one type of theink cartridge 30 to another type of theink cartridge 30. Different types of theink cartridges 30 may comprise different colors of ink, different ingredients of ink such as dye and pigment, different initial amounts of ink stored in theink chamber 36, and etc. - In another embodiment, the
first protrusion 85 may have arecess 87 formed therein. Therecess 87 may be opened forward in theinsertion direction 56, opened upward in the height direction (up-down direction) 52, and opened on one side or the both sides of thefirst protrusion 85 in the width direction (left-right direction) 51 - The
second protrusion 86 extends from the lower end of thefront wall 140 in theinsertion direction 56 away from therear wall 42. Thesecond protrusion 86 is positioned below theink supply portion 34. The width of thesecond protrusion 86 in the width direction (left-right direction) 51 is the same as the width of thefront wall 140 in the width direction (left-right direction) 51. In another embodiment, the width ofsecond protrusion 86 may be less than the width of thefront wall 140. The front end of thesecond protrusion 86 is positioned more forward than theink supply opening 71 formed at the distal end of theink supply portion 34 in theinsertion direction 56 away from therear wall 42. The dimension of thesecond protrusion 86 from thefront wall 140 up to the front end of thesecond protrusion 86 in theinsertion direction 56 away from therear wall 42 varies from one type of theink cartridge 30 to another type of theink cartridge 30. Different types of theink cartridges 30 may comprise different colors of ink, different ingredients of ink such as dye and pigment, different initial amounts of ink stored in theink chamber 36, and etc. In this embodiment, thesecond protrusion 86 is indirectly detected by an optical sensor 117 (seeFig. 1 ). In another embodiment, thesecond protrusion 86 may be directly detected by theoptical sensor 117. - The
sub frame 90 comprises thedetection portion 89 at or adjacent to thefront wall 140 between thefirst protrusion 85 and thesecond protrusion 86 with respect to the height direction (up-down direction) 52. Thedetection portion 89 is positioned more forward than thedetection portion 33 in theinsertion direction 56 away from therear wall 42. Thedetection portion 33 and thedetection portion 89 are aligned and space away in theinsertion direction 56. The width of thedetection portion 89 in the width direction (left-right direction) 51 is the same as the width of thedetection portion 33 in the width direction (left-right direction) 51, but other larger or smaller widths are possible as well according to modified embodiments. Thedetection portion 89 is configured to attenuate light, e.g., visible or infrared light, traveling in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 to pass therethrough. More specifically, during mounting of theink cartridge 30 to thecartridge mounting portion 110, thedetection portion 89 passes between the light emitter and the light receiver of theoptical sensor 114. When this occurs, thedetection portion 89 attenuates light, which is emitted from the light emitter of theoptical sensor 114 and travels in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50. When the light reaches one side of thedetection portion 89 in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, the amount of light coming out of the other side of thedetection portion 89 and reaching the light receiver of theoptical sensor 114 is less than the predetermined amount, e.g., zero. In other words, thedetection portion 89 is configured to attenuate the amount or the intensity of light to a level sufficient to be detected by theoptical sensor 114. The attenuation of the light is caused by thedetection portion 89 completely preventing the light from passing therethrough in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, by thedetection portion 89 absorbing some amount of the light, by thedetection portion 89 deflecting the light, by thedetection portion 89 totally reflecting the light, and etc. As such, thedetection portion 89 can be detected by theoptical sensor 114. - There is a gap between the
detection portion 89 and thedetection portion 33 in the depth direction (front-rear direction) 53. During mounting of theink cartridge 30 to thecartridge mounting portion 110, the light, which is emitted from the light emitter of theoptical sensor 114 and travels in the direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, passes through the gap and reaches the light receiver of theoptical sensor 114. The amount of light coming out of the gap and reaching the light receiver of theoptical sensor 114 is greater than or equal to the predetermined amount. The dimension of thedetection portion 89 in the depth direction (front-rear direction) 53 varies from one type of theink cartridge 30 to another type of theink cartridge 30. Different types of theink cartridges 30 may comprise different colors of ink, different ingredients of ink such as dye and pigment, different initial amounts of ink stored in theink chamber 36, and etc. - The front end of the
first protrusion 85, the front end of thesecond protrusion 86, and thedetection portion 89 are positioned more forward than thedetection portion 33 with respect to theinsertion direction 56. In other words, thedetection portion 33 is positioned more rearward than the front end of thefirst protrusion 85, the front end of thesecond protrusion 86, and thedetection portion 89 with respect to theinsertion direction 56. Each of thedetection portion 33 and theink supply opening 71 is positioned between thefirst protrusion 85 and thesecond protrusion 86 with respect to theheight direction 52. - The
sub frame 90 comprises aguide portion 93 at thetop wall 141. Theguide portion 93 is a pair ofboards 94 extending upward from thetop wall 141 and extending in the depth direction (front-rear direction) 53 from a middle portion of thesub frame 90 to the rear end of thesub frame 90. The width of theguide portion 93 between the pair of outer surfaces of theboards 94 in the width direction (left-right direction) is less than the width of thesub frame 90 between the outer surfaces of theside walls sub frame 90 in the width direction (left-right direction). Theguide portion 93 comprises a front end in theinsertion direction 56. Theguide portion 93 is positioned between thegroove 87 of thefirst protrusion 85 and therear wall 42. More specifically, theguide portion 93 is positioned in rear of thegroove 87 with respect to theinsertion direction 56. The width of theguide portion 93 between the pair of outer surfaces of theboards 94 in the width direction (left-right direction) is equal to the width of theguide portion 65 between the pair of outer surfaces of theboards 57 in the width direction (left-right direction). Theguide portion 93 is aligned with theguide portion 65 in the depth direction (front-rear direction) 53, i.e., theboards 94 are aligned with theboards 57 in the depth direction (front-rear direction) 53, respectively. Therefore, the outer surfaces of theboards 94 are aligned with the outer surfaces of theboards 57 in the depth direction (front-rear direction) 53, respectively. - The
sub frame 90 comprises aguide portion 99 at thebottom wall 142. Theguide portion 99 is a protrusion extending downward from thebottom wall 142 and extending in the depth direction (front-rear direction) 53 from the front end of thesecond protrusion 86 to the rear end of thesub frame 90. The width of theguide portion 99 between the outer surfaces of theguide portion 99 in the width direction (left-right direction) is less than the width of thesub frame 90 between the outer surfaces of theside walls sub frame 90 in the width direction (left-right direction). The width of theguide portion 99 between the outer surfaces of theguide portion 99 in the width direction (left-right direction) is equal to the width of theguide portion 66 between the outer surfaces of theguide portion 66 in the width direction (left-right direction). Theguide portion 99 is aligned with theguide portion 66 in the depth direction (front-rear direction) 53. Therefore, the outer surfaces of theguide portion 99 are aligned with the outer surfaces of theguide portion 66 in the depth direction (front-rear direction) 53, respectively. When theink cartridge 30 is inserted into and removed from thecartridge mounting portion 110, theguide portions guide grooves 109 of thecartridge mounting portion 110. - The
ink cartridge 30 comprises anIC board 74 disposed at thesub frame 90 between the pair ofboards 94 of theguide portion 90. TheIC board 74 is positioned between thegroove 87 of thefirst protrusion 85 and therear wall 42 and between thestopper 45 and thefront wall 140. TheIC board 74 is positioned at the top-wall 141 side of thesub frame 90 between thefront wall 140 and therear wall 42. TheIC board 74 is positioned more rearward than thefront wall 140 and thegroove 87 with respect to theinsertion direction 56. TheIC board 74 and theink supply opening 71 are shifted with respect to theinsertion direction 56. More specifically, theIC board 74 is positioned more rearward than theink supply opening 71 with respect to theinsertion direction 56. - The
sub frame 90 comprises a platform on which theIC board 74 is disposed. The platform is positioned between the pair ofboards 94 of theguide portion 93. The platform is a planar surface extending in the width direction (left-right direction) 51 and the depth direction (front-rear direction) 53, and extending in the insertion/removal direction 50 when theink cartridge 30 is in the mounted position (upright position). A plane on which the platform extends, i.e., a plane extending in the depth direction (front-rear direction) 53 and the width direction (left-right direction) 51, intersects a plane on which theengagement surface 46 extends, i.e., a plane extending in the height direction (up-down direction) 52 and the width direction (left-right direction) 51. In this embodiment, the plane on which the platform extends is perpendicular to the plane on which theengagement surface 46 extends. TheIC board 74 comprises an upper surface extending in the width direction (left-right direction) 51 and the depth direction (front-rear direction) 53. When theink cartridge 30 is in the mounted position (upright position), the upper surface of theIC board 74 extends horizontally and faces upward. A plane on which the upper surface of theIC board 74 extends, i.e., a plane extending in the depth direction (front-rear direction) 53 and the width direction (left-right direction) 51, intersects the plane on which theengagement surface 46 extends, i.e., a plane extending in the height direction (up-down direction) 52 and the width direction (left-right direction) 51. In this embodiment, the plane on which the upper surface of theIC board 74 extends is perpendicular to the plane on which theengagement surface 46 extends. Because the platform is positioned more forward than theengagement surface 46 with respect to theinsertion direction 56, theIC board 74 is positioned more forward than theengagement surface 46 with respect to theinsertion direction 56. TheIC board 74 is positioned above (higher than) theboard 88 and thegroove 87 of thefirst protrusion 85 with respect to the height direction (up-down direction) 52. In other word, theIC board 74 is positioned more outside than theboard 88 and thegroove 87. TheIC board 74 is positioned above (higher than) at least a portion of thestopper 45 with respect to the height direction (up-down direction) 52. In other words, theIC board 74 is positioned more outside than at least a portion of thestopper 45. The upper end of theboard 88 is positioned below theIC board 74 with respect to the height direction (up-down direction) 52. Thecartridge mounting portion 110 comprises threecontacts 106 aligned in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50. During mounting of theink cartridge 30 to thecartridge mounting portion 110, theIC board 74 contacts and is electrically connected to the three contacts 106 (seeFig. 6 ). When the mounting of theink cartridge 30 to thecartridge mounting portion 110 is completed, theIC board 74 still contacts and is electrically connected to the threecontacts 106. - Referring to
Figs. 2 and3 , theIC board 74 comprises an IC (not shown), and electrical interfaces, e.g., aHOT electrode 75, aGND electrode 76, and asignal electrode 77. The IC is a semiconductor integrated circuit and stores data about the information of theink cartridge 30, e.g., the lot number of theink cartridge 30, the manufacturing date of theink cartridge 30, the color of ink stored in theink cartridge 30, and etc. When theink cartridge 30 is mounted to thecartridge mounting portion 110, the data stored in the IC can be read out by theprinter 10. - Each of the
HOT electrode 75, theGND electrode 76, and thesignal electrode 77 is electrically connected to the IC. Each of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 has a surface extending in the depth direction (front-rear direction) 53 and the width direction (left-right direction) 51. TheHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are aligned and spaced apart from each other in the width direction (left-right direction) 51. TheGND electrode 76 is positioned between theHOT electrode 75 and thesignal electrode 77. TheIC board 74 has a width in the width direction (left-right direction) 51 and theboard 88 of thefirst protrusion 85 has a width in the width direction (left-right direction) 51, and the width of theIC board 74 is greater than the width of theboard 88. Each of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 has a width in the width direction (left-right direction) 51, and the width of each of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 is greater than the width of theboard 88. The center of theIC board 74 in the width direction (left-right direction) 51 and the center of theboard 88 of thefirst protrusion 85 in the width direction (left-right direction) is positioned on a plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. Therefore, theIC board 74 and theboard 88 intersect the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. In other words, theIC board 74 and theboard 88 are not offset in the width direction (left-right direction) 51. More specifically, the center of theGND electrode 76 in the width direction (left-right direction) 51 and the center of theboard 88 is positioned on the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. In other words, the center of theGND electrode 76 in the width direction (left-right direction) 51 and the center of theboard 88 are not offset in the width direction (left-right direction) 51. Therefore, theGND electrode 76 and theboard 88 intersect the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. In other words, theGND electrode 76 and therib 86 are not offset in the width direction (left-right direction) 51. TheHOT electrode 75, theGND electrode 76, thesignal electrode 77, and theboard 88 are symmetrically arranged with respect to the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. Theengagement surface 46, theIC board 74, and thegroove 87 intersect the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. In other words, theengagement surface 46, theIC board 74, and thegroove 87 are not offset in the width direction (left-right direction) 51. More specifically, theengagement surface 46, theGND electrode 76, and thegroove 87 intersect the plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53, theengagement surface 46, theHOT electrode 75, and thegroove 87 intersect another plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53, and theengagement surface 46, thesignal electrode 77, and thegroove 87 intersect yet another plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53. In other words, theengagement surface 46, each one of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77, and thegroove 87 are not offset in the width direction (left-right direction) 51. During mounting of theink cartridge 30 to thecartridge mounting portion 110, theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 contact and are electrically connected to the three contacts 106 (seeFig. 6 ), respectively. When the mounting of theink cartridge 30 to thecartridge mounting portion 110 is completed, theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 still contact and are electrically connected to the threecontacts 106, respectively. - The
engagement surface 46, theIC board 74, and thegroove 87 are exposed upward with respect to theheight direction 52 to the exterior of theink cartridge 30 at the top-wall 39 side of themain body 30 and the top-wall 141 side of thesub frame 90. TheHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are exposed upward to the exterior of theink cartridge 30 at the upper surface of theIC board 74, such that theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are accessible from above when theink cartridge 30 is in the mounted position. In other words, theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are accessible in the downward direction which is perpendicular to the width direction (left-right direction) 51 and the insertion/removal direction 50. Theengagement surface 46 is accessible from above when theink cartridge 30 is in the mounted position. In other words, theengagement surface 46 is accessible in the downward direction which is perpendicular to the width direction (left-right direction) 51 and the insertion/removal direction 50. - The
IC board 74 is attached to thetop wall 141 of thesub frame 90 at at least one attachment position. A boss extends upward from each of the at least one attachment position of thesub frame 90 and the boss extends through an opening formed through theIC board 74. An upper portion of the boss is melted by heat and contacts the upper surface of theIC board 74. The at least one attachment position is positioned in rear of theHOT electrode 75, the GND electrode, and thesignal electrode 77. Each of the pair ofboards 94 comprises a first portion positioned in line with the attachment position in the width direction (left-right direction) 51 when viewed from the height direction (up-down direction) 52 and a second portion. The upper end of the first portion is positioned below the second portion. With the first portion of theboards 94, a heater, which has a wider width than the width of theguide portion 93 in the width direction (left-right direction) 51 can contact the upper portion of the boss, such that the upper portion of the boss is melted. - The pair of
boards 94 of theguide portion 93 extends beyond theIC board 74 upward and forward in theinsertion direction 56. In other words, the pair ofboards 94 of theguide portion 65 extend outward beyond theIC board 74. Thesub frame 90 comprises aramp 49 connecting the pair ofboards 94 of theguide portion 65. Theramp 49 is positioned between thegroove 87 of thefirst protrusion 85 and therear wall 42 and between theIC board 74 and thefront wall 140. Theramp 49 is positioned between thegroove 87 of thefirst protrusion 85 and theIC board 74. Theramp 49 is inclined downward with respect to theinsertion direction 56, such that a front portion of theramp 49 is positioned lower than a rear portion of theramp 49. When theink cartridge 30 is inserted into and/or removed from thecartridge mounting portion 110, theengagement member 145 slides on theramp 49. - A
recess 78 is formed between thestopper 45 and thesub frame 90 at a boundary between thestopper 45 and thesub frame 90 at an upper portion of theink cartridge 30. When themain body 31 and thesub frame 90 are positioned relative to thecartridge mounting portion 110, respectively, as described below, there is no level difference between thestopper 45 and thesub frame 90 in the height direction (up-down direction) 50 on both sides of therecess 78. Therefore, when theink cartridge 30 is inserted into or removed from thecartridge mounting portion 110, theengagement member 145 is not caught in therecess 78. - In this embodiment, the
sub frame 90 covers thefront wall 40 of themain body 31, the side-wall 37 side of the front portion of themain body 31, the side-wall 38 side of the front portion of themain body 31, the top-wall 39 side of the front portion of themain body 31, and the bottom-wall 41 side of the front portion of themain body 31. However, thesub frame 90 may cover the front portion of themain body 31 differently. In a modified embodiment, thesub frame 90 may not cover the side-wall 37 side of the front portion of themain body 31. In another modified embodiment, thesub frame 90 may not cover the bottom-wall 41 side of the front portion of themain body 31. - Referring to
Fig. 1 , theprinter 10 comprises theink supply device 100. Theink supply device 100 is configured to supply ink to theprint head 21. Theink supply device 100 comprises thecartridge mounting portion 110 to which theink cartridge 30 is mountable. InFig. 1 , theink cartridge 30 is mounted to thecartridge mounting portion 110. - Referring to
Figs. 4 and5 , thecartridge mounting portion 110 comprises acase 101, and thecase 101 has theopening 112 formed through one face of thecase 101. Theink cartridge 30 is configured to be inserted into or removed from thecase 101 through theopening 112. Thecase 101 has thegroove 109 formed in a top surface defining the upper end of the inner space of thecase 101 and also has thegroove 109 formed in a bottom surface defining the lower end of the inner space of thecase 101. Thegrooves 109 extend in the insertion/removal direction 50. Theink cartridge 30 is guided in the insertion/removal direction 50 with theguide portions groove 109 formed in the top surface of thecase 101 and theguide portions groove 109 formed in the bottom surface of thecase 101. Thecase 101 is configured to receive fourink cartridges 30 storing cyan ink, magenta ink, yellow ink, and black ink, respectively. - The
case 101 comprises threepartition plates 102 extending in the vertical direction and the insertion/removal direction 50. The threepartition plates 102 partition the inner space of thecase 101 into four spaces. The fourink cartridges 30 are configured to be mounted in the four spaces, respectively. - Referring to
Fig. 5 , thecase 101 comprises an end surface opposite theopening 112 in the insertion/removal direction 50. Thecartridge mounting portion 110 comprises aconnection portion 103 provided at a lower portion of the end surface of thecase 101 at a position corresponding to theink supply portion 34 of theink cartridge 30 mounted to thecase 101. In this embodiment, fourconnection portions 103 are provided for the fourink cartridges 30 mountable to thecase 101. - The
connection portion 103 comprises a printing fluid supply pipe, e.g., theink pipe 122, and a holdingportion 121. Theink pipe 122 is a cylindrical pipe made of a synthetic resin. Theink pipe 122 is connected to theink tube 20 at the exterior of thecase 101. Theink tube 20 connected to theink pipe 20 extends to theprinting head 21 to supply ink to theprinting head 21. InFig. 4 and5 , theink tube 20 is not depicted. - The holding
portion 121 has a cylindrical shape. Theink pipe 122 is positioned at the center of the holdingportion 121. Referring toFig. 8 , when theink cartridge 30 is mounted to thecartridge mounting portion 110, theink supply portion 34 is inserted into the holdingportion 121. When this occurs, theink supply portion 34 is positioned relative to the holdingportion 121 with respect to the height direction (up-down direction) 52 by an outer surface of theink supply portion 34 contacting an inner surface of the holdingportion 121. When theink supply portion 34 is inserted into the holdingportion 121, theink pipe 122 is inserted into theink supply opening 71. This allows ink stored in theink chamber 36 to flow out into theink pipe 122. - Referring to
Fig. 5 , thecartridge mounting portion 110 comprises asenor unit 104 above theconnection portion 103. Thesensor unit 104 comprises aboard 113 and theoptical senor 114 mounted to theboard 113. More specifically, thesensor unit 104 comprises oneboard 113 and fouroptical sensors 114 mounted to the oneboard 113, corresponding to the fourink cartridges 30 mountable to thecase 101. - As described above, the
optical sensor 114 comprises the light emitter, e.g., a light emitting diode, and the light receiver, e.g., a photo-transistor. The light emitter and the light receiver are housed in a housing, and the housing extends from theboard 113 in the insertion/removal direction 50 toward theopening 112. The housing has substantially a U-shape when view from the above. The light emitter and the light receiver of theoptical sensor 114 are aligned in a horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 with a space formed therebetween. The light emitter is configured to emit light, e.g., infrared or visible light, toward the light receiver in the horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, and the light receiver is configured to receive the light emitted from the light emitter. Thedetection portion 33 and thedetection portion 89 can be inserted into the space between the light emitter and the light receiver. Theoptical sensor 114 is configured to detect the change in the amount (intensity) of the light when thedetection portion 33 or thedetection portion 89 enters an optical path (detection point) formed between the light emitter and the light receiver. Theoptical sensor 114 is electrically connected to a controller (described later) of theprinter 10, and when theoptical sensor 114 detects thedetection portion 33 or thedetection portion 89, a signal output from theoptical sensor 114 to the controller changes. - Referring to
Fig. 5 , thecartridge mounting portion 110 comprises asenor unit 105 positioned at the top surface of thecase 101 adjacent to the end surface of thecase 101. Thesensor unit 105 comprises aboard 115 and theoptical sensor 116 mounted to theboard 115. More specifically, thesensor unit 105 comprises oneboard 115 and fouroptical sensors 116 mounted to the oneboard 115, corresponding to the fourink cartridges 30 mountable to thecase 101. - As described above, the
optical sensor 116 comprises the light emitter, e.g., a light emitting diode, and the light receiver, e.g., a photo-transistor. The light emitter and the light receiver are housed in a housing, and the housing extends from theboard 115 downward in the vertical direction. The housing has substantially an up-side-down U-Shape when viewed in the insertion/removal direction 50. - The light emitter and the light receiver of the
optical sensor 116 are aligned in the horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50 with a space formed therebetween. The light emitter is configured to emit light, e.g., infrared or visible light, toward the light receiver in the horizontal direction (the width direction or left-right direction 51) perpendicular to the insertion/removal direction 50, and the light receiver is configured to receive the light emitted from the light emitter. When theink cartridge 30 is mounted to thecartridge mounting portion 110, theboard 88 of thefirst protrusion 85 is inserted into the space between the light emitter and the light receiver. Theoptical sensor 116 is configured to detect the change in the amount (intensity) of the light when theboard 88 enters an optical path (detection point) formed between the light emitter and the light receiver. Theoptical sensor 116 is electrically connected to the controller of theprinter 10, and when theoptical sensor 116 detects theboard 88, a signal output from theoptical sensor 116 to the controller changes. Based on the signal change, whether theink cartridge 30 is mounted to thecartridge mounting portion 110 can be determined by the controller. In other words, theboard 88 is configured to provide information as to the presence of theink cartridge 30 in thecartridge mounting portion 110 by attenuating the light of theoptical sensor 116. - The
cartridge mounting portion 110 compriseselectrical contacts 106 positioned at the top surface of thecase 101 between the end surface of thecase 101 and theopening 112. Threecontacts 106 are provided and aligned in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50. Threecontacts 106 are arranged at positions corresponding to theHOT electrode 75, theGND electrode 76, thesignal electrode 77 of theink cartridge 30. Thecontacts 106 have electrical conductivity and resiliency. Thecontacts 106 are configured to be resiliently deformed in the upward direction. Four sets of threecontacts 106 are provided, corresponding to the fourink cartridges 30 mountable to thecase 101. - The
printer 10 comprises the controller, and thecontacts 106 are electrically connected to the controller via an electrical circuit. The controller may comprise a CPU, a ROM, a RAM, and etc. When theHOT electrode 75 contacts and is electrically connected to a corresponding one of thecontacts 106, a voltage Vc is applied to theHOT electrode 75. When theGND electrode 76 contacts and is electrically connected to a corresponding one of thecontacts 106, theGND electrode 76 is grounded. When theHOT electrode 75 and theGND electrode 76 contact and are electrically connected to the correspondingcontacts 106, respectively, power is supplied to the IC. When thesignal electrode 77 contacts and is electrically connected to a corresponding one of thecontacts 106, data stored in the IC is accessible. Outputs from the electrical circuit are input to the controller. - Referring to
Fig. 1 , thecase 101 has aspace 130 formed at the lower end of the end surface of thecase 101. Thecartridge mounting portion 110 comprises aslider 135 disposed in thespace 130. Foursliders 135 are provided corresponding to the fourink cartridges 30 mountable to thecase 101. Thespace 130 is contiguous with the inner space of thecase 101. Theslider 135 is configured to move in thespace 130 in the insertion/removal direction 50. Theslider 135 has substantially a rectangular parallelepiped shape. Theslider 135 is positioned in the line of travel of thesecond protrusion 86 of theink cartridge 30 and is configured to contact thesecond protrusion 86. - The
cartridge mounting portion 110 comprises acoil spring 139 disposed in thespace 130. Thecoil spring 139 is configured to bias theslider 135 toward theopening 112, i.e., in theremoval direction 55. When thecoil spring 139 is in a normal length, i.e., when no external force is applied to theslider 135, theslider 135 is positioned at anopening 112 side of thespace 130. When theink cartridge 30 is inserted into thecase 101, thesecond protrusion 86 of theink cartridge 30 contacts theslider 135 and pushes theslider 135 in theinsertion direction 56. When this occurs, thecoil spring 139 contracts and theslider 135 slides in theinsertion direction 56. Thecoil spring 139 in a contracted state biases theink cartridge 30 in theremoval direction 55 via theslider 135. - The
cartridge mounting portion 110 comprises theoptical sensor 117 at an upper portion of thespace 130. Fouroptical sensors 117 are provided corresponding to the fourink cartridges 30 mountable to thecase 101. In other words, the fouroptical sensors 117 are provided corresponding to the foursliders 135. The fouroptical sensors 117 are aligned in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50. Theoptical sensor 117 has the same structure as theoptical sensor 116. - When the
ink cartridge 30 is mounted to thecase 101, theslider 135 is pushed and inserted into a space between a light emitter and a light receiver of theoptical sensor 117. Theoptical sensor 117 is configured to detect the change in the amount (intensity) of light when theslider 135 enters an optical path (detection point) formed between the light emitter and the light receiver of theoptical sensor 117. Theoptical sensor 117 is electrically connected to the controller of theprinter 10, and when theoptical sensor 117 detects theslider 135, a signal output from theoptical sensor 117 to the controller changes. InFigs. 5 to 8 , theslider 135, thecoil spring 139, and theoptical sensor 117 are not depicted. - In the
cartridge mounting portion 110, the detection point (optical path) of theoptical sensor 114 is positioned more rearward than the detection point (optical path) of theoptical sensor 116 and the detection point (optical path) of theoptical sensor 117 in theinsertion direction 56. - Referring to
Fig. 5 , thecartridge mounting portion 110 comprises arod 125 at the end surface of thecase 101. The position of therod 125 with respect to the height direction (up-down direction) 52 corresponds to the position of theair communication valve 73 of theink cartridge 30 mounted to thecartridge mounting portion 110 with respect to the height direction (up-down direction) 52. Fourrods 125 are provided corresponding to the fourink cartridges 30 mountable to thecase 101. Therod 125 has a cylindrical shape and extends from the end surface of thecase 101 in the insertion/removal direction 50 toward theopening 112. During the mounting of theink cartridge 30 to thecartridge mounting portion 110, therod 125 is inserted through theopening 96 of thesub frame 90, and the distal end of therod 125 contacts theair communication valve 73. Theair communication valve 73 is pushed by therod 125, such that theair communication opening 32 is opened. An outer surface of therod 125 contacts aninner surface 98 of thesub frame 90 defining theopening 96, and thereby thesub frame 90 is positioned relative to thecartridge mounting portion 110 with respect to the height direction (up-down direction) 52. - Referring to
Fig. 5 , thecartridge mounting portion 110 comprises theengagement member 145 positioned at an upper portion of thecase 101. Theengagement member 145 is configured to retain theink cartridge 30 in the mounted position. Theengagement member 145 is positioned adjacent to the upper end of theopening 112. Theengagement member 145 is positioned between theopening 112 and thecontacts 106. Each of thecontacts 106 and theengagement member 145 intersect a plane which is parallel with the insertion/removal direction 50 and the vertical (gravitational) direction. In other words, each of thecontacts 106 and theengagement member 145 are not offset in the width direction (left-right direction) 51. Fourengagement members 145 are provided corresponding to the fourink cartridges 30 mountable to thecase 101. - The
cartridge mounting portion 110 comprises ashaft 147 positioned adjacent to the upper end of theopening 112. Theshaft 147 is attached to thecase 101 and extends in the direction (width direction or left-right direction 51) perpendicular to the insertion/removal direction 50. Theshaft 147 extends through an end of theengagement member 145 adjacent to theopening 112, in other words, a rear end of theengagement member 145 with respect to theinsertion direction 56. Theengagement member 145 is supported by theshaft 147, such that theengagement member 145 can pivot about theshaft 147 selectively toward and away from the inner space of thecase 101. Theengagement member 145 comprises anengagement end 146 opposite the end of theengagement member 145 through which theshaft 147 extends. In other words, theengagement end 146 is positioned at a front end of theengagement member 145 with respect to theinsertion direction 56. Theengagement end 146 is configured to contact thestopper 45 of theink cartridge 30. By the contact between theengagement end 146 and theengagement surface 46 of thestopper 45, theink cartridge 30 is retained in the mounted position in thecase 101 against the biasing force from theslider 135. When theengagement end 146 contacts theengagement surface 46, theengagement end 146 extends substantially in the width direction (left-right direction) 51 and the height direction (up-down direction) 52. Theengagement member 145 is configured to move between a lock position and an unlock position. When theengagement member 145 is in the lock position, theengagement end 146 can contact thestopper 45. When theengagement member 145 is in the unlock position, theengagement end 146 cannot contact thestopper 45. - The
engagement member 145 comprises aslide surface 148 extending from theengagement end 146 toward theshaft 147. When theengagement end 146 contacts theengagement surface 46, theslide surface 148 extends substantially in the width direction (left-right direction) 51 and the depth direction (front-rear direction) 53. Theslide surface 148 has a width in the width direction (left-right direction) 51, such that theslide surface 148 contacts and slides on all theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 at the same time when theink cartridge 30 is inserted into and/or removed from thecartridge mounting portion 110. - The
engagement member 145 is configured to pivot downward due to its own weight or biased by a spring (not shown). When theink cartridge 30 is mounted to thecartridge mounting portion 110, theengagement end 146 contacting thestopper 45 is positioned above thefront end portion 81 of thepivotable member 80. When thefront end portion 81 moves upward and pushes up theengagement end 146, theengagement member 145 pivots upward about theshaft 147 from the lock position to the unlock position. The movable range of theengagement member 145 is limited, such that theengagement member 145 does not pivot downward beyond the lock position. - Referring to
Figs. 6 to 8 , it is described how theink cartridge 30 is mounted to thecartridge mounting portion 110. InFigs. 6 to 8 , thecartridge mounting portion 110 is depicted in cross-section, but only a top-wall 39 side portion of themain body 31 and a top-wall 141 side portion of thesub frame 90 is depicted in cross-section. - As described above, because the
sub frame 90 is supported by thetop wall 39 of the front portion of themain body 31 from below, thesub frame 90 is movable in the upward direction relative to themain body 31 before theink cartridge 30 is mounted to thecartridge mounting portion 110. Referring toFig. 6 , when theink cartridge 30 is inserted into thecartridge mounting portion 110 in theinsertion direction 56, theguide portions ink cartridge 30 are inserted into thegrooves 109 of thecase 101, and thereby theink cartridge 30 is roughly positioned relative to thecartridge mounting portion 110 with respect to the width direction (left-right direction) 51 and the height direction (up-down direction) 52. Theink cartridge 30 is configured to slide toward the end surface of thecase 101 while theguide portions grooves 109. - Referring to
Figs. 6 and7 , when theink cartridge 30 is inserted into thecase 101, the front end of thefirst protrusion 85 contacts theslide surface 148 of theengagement member 145. When theink cartridge 30 is further inserted, theslide surface 148 climbs onto thefirst protrusion 85 and theramp 49. When this occurs, theengagement member 145 pivots upward in the counterclockwise direction inFig. 6 from the lock position to the unlock position. When theink cartridge 30 is further inserted, theslide surface 148 of theengagement member 145 slides on theramp 49 and theIC board 74 and passes over therecess 78. When theslide surface 148 slides on theHOT electrode 75, theGND electrode 76, and thesignal electrode 77, dust is wiped off theHOT electrode 75, theGND electrode 76, and thesignal electrode 77. - Referring to
Fig. 1 , when theink cartridge 30 is inserted into thecase 101, thesecond protrusion 86 contacts theslider 135. When theink cartridge 30 is further inserted, theslider 135 is pushed in theinsertion direction 56 against the biasing force from thecoil spring 139 into the detection point (optical path) of theoptical sensor 117. When theoptical sensor 117 detects theslider 135, the signal output from theoptical sensor 117 to the controller changes from a HI level signal to a LOW level signal. - Referring to
Fig. 7 , after thesecond protrusion 86 starts to push theslider 135, thedetection portion 89 enters the detection point (optical path) of theoptical sensor 114. When theoptical sensor 114 detects thedetection portion 89, the signal output from theoptical sensor 114 to the controller changes from a HI level signal to a LOW level signal. - Referring to
Fig. 7 , after thedetection portion 89 enters the detection point (optical path) of theoptical sensor 114, theboard 88 of thefirst protrusion 85 enters the detection point (optical path) of theoptical sensor 116. When theoptical sensor 116 detects theboard 88, the signal output from theoptical sensor 116 to the controller changes from a HI level signal to a LOW level signal. After thedetection portion 89 passes the detection point (optical path) of theoptical sensor 114, the gap between thedetection portion 89 and thedetection portion 33 passes the detection point (optical path) of theoptical sensor 114. When this occurs, the signal output from theoptical sensor 114 to the controller changes from the LOW level signal to the HI level signal. And then, when thedetection portion 33 enters the detection point (optical path) of theoptical sensor 114, the signal output from theoptical sensor 114 to the controller changes from the HI level signal to the LOW level signal if thesensor arm 60 is in the lower position. - If the
detection portion 89 is longer in the depth direction (front-rear direction) 53 in one type of theink cartridge 30, thedetection portion 89 is still in the detection point (optical path) of theoptical sensor 114 when theboard 88 starts to enter the detection point (optical path) of theoptical sensor 116, and therefore, the signal output from theoptical sensor 114 is the LOW level signal at a time that the signal output from theoptical sensor 116 changes from the HI level signal to the LOW level signal. If thedetection portion 89 is shorter in the depth direction (front-rear direction) 53 in another type of theink cartridge 30, thedetection portion 89 is no longer in the detection point (optical path) of theoptical sensor 114 when theboard 88 starts to enter the detection point (optical path) of theoptical sensor 116, and therefore, the signal output from theoptical sensor 114 is the HI level signal at a time that the signal output from theoptical sensor 116 changes from the HI level signal to the LOW level signal. In other words, theboard 88 and thedetection portion 89 are configured to provide information as to the type of theink cartridge 30 by attenuating the light of theoptical sensor 116 and theoptical sensor 114. - If the
second protrusion 86 is longer in the depth direction (front-rear direction) 53 in one type of theink cartridge 30, theslider 135 is already in the detection point (optical path) of theoptical sensor 117 when theboard 88 starts to enter the detection point (optical path) of theoptical sensor 116, and therefore, the signal output from theoptical sensor 117 is the LOW level signal at a time that the signal output from theoptical sensor 116 changes from the HI level signal to the LOW level signal. If thesecond protrusion 86 is shorter in the depth direction (front-rear direction) 53 in another type of theink cartridge 30, theslider 135 is not yet in the detection point (optical path) of theoptical sensor 117 when theboard 88 starts to enter the detection point (optical path) of theoptical sensor 116, and therefore, the signal output from theoptical sensor 117 is the HI level signal at a time that the signal output from theoptical sensor 116 changes from the HI level signal to the LOW level signal. In other words, theboard 88 and thesecond protrusion 86 are configured to provide information as to the type of theink cartridge 30 by attenuating the light of theoptical sensor 116 and theoptical sensor 117. - Referring to
Fig. 7 , during the insertion of theink cartridge 30 into thecase 101, theink supply portion 34 of theink cartridge 30 is inserted into the holdingportion 121 and theink pipe 122 is inserted into theink supply opening 71. When this occurs, theink supply portion 34 is positioned relative to the holdingportion 121 with respect to the height direction (up-down direction) 52 by the outer surface of theink supply portion 34 contacting the inner surface of the holdingportion 121, i.e., themain body 31 is positioned relative to thecartridge mounting portion 110 with respect to the height direction (up-down direction) 52. Theink supply valve 70 is pushed by theink pipe 122, such that theink supply opening 71 is opened. Theink pipe 122 has an ink introduction opening formed in the distal end thereof, and ink stored in theink chamber 36 flows into theink pipe 122 via the ink introduction opening in theinsertion direction 56. - Referring to
Fig. 7 , during the insertion of theink cartridge 30 into thecase 101, therod 125 enters theopening 96 of thesub frame 90. Thesub frame 90 is movable in the upward direction relative to themain body 31. When therod 125 enters theopening 96, an upper portion of the outer surface of therod 125 contact an upper portion of theinner surface 98 of thesub frame 90 defining theopening 96, and pushes up thesub frame 90, such that thesub frame 90 slides on themain body 31 in the upward direction. Thesub frame 90 cannot move in the downward direction relative to thecartridge mounting portion 110 because the upper portion of the outer surface of therod 125 contacts the upper portion of theinner surface 98 of thesub frame 90 defining the opening 96 from below. Referring toFig. 8 , therod 125 contacts and pushes theair communication valve 73. Theair communication valve 73 moves away from theair communication opening 32, such that air flows into theink chamber 36 via theair communication opening 32. - Meanwhile, referring to
Figs, 7 and8 , thecontacts 106 contact theramp 49 of thesub frame 90. Because theramp 49 is inclined upward when thecontact 106 moves toward therear wall 42 of theink cartridge 30 and because thesub frame 90 cannot move in the downward direction with the upper portion of the outer surface of therod 125 contacting the upper portion of theinner surface 98 of thesub frame 90 defining theopening 96, thecontacts 106 are resiliently deformed in the upward direction when thecontacts 106 slides on theramp 49 and theIC board 74. The resiliently-deformedcontacts 106 bias theIC board 74 in the downward direction. When thecontacts 106 reach theIC board 74, thesub frame 90 is positioned relative to thecartridge mounting portion 110 with respect to the height direction (up-down direction) 52 by thecontacts 106 androd 125 sandwiching thesub frame 90 from above and from below, respectively. - When the
ink cartridge 30 is further inserted toward the end surface of thecase 101, referring toFig. 9 , thecontacts 106 contact and are electrically connected to theHOT electrode 75, theGND electrode 76, thesignal electrode 77 of theIC board 74, respectively. When the mounting of theink cartridge 30 reaches the mounted position, theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 still contact and are electrically connected to the threecontacts 106, respectively. - When the
ink cartridge 30 reaches the mounted position, theengagement surface 46 of thestopper 45 of theink cartridge 30 has passed theengagement end 146 of theengagement member 145 in theinsertion direction 56. Theengagement member 145 pivots in the clockwise direction inFig. 8 to the lock position, and theengagement end 146 contacts theengagement surface 46. With this contact between theengagement member 145 and thestopper 45, theink cartridge 30 is retained in the mounted position against the biasing force from thecoil spring 139. In other words, theink cartridge 30 is positioned relative to thecartridge mounting portion 110 with respect to the insertion/removal direction 50. As such, the mounting of theink cartridge 30 to thecartridge mounting portion 110 is completed. - When the
ink cartridge 30 is in the mounted position in thecartridge mounting portion 110, themain body 31 is positioned with theink supply portion 34 inserted into the holdingportion 121 and theink pipe 122 inserted into theink supply opening 71, and thesub frame 90 is positioned sandwiched by thecontacts 106 and therod 125 in a position between the ends of its movable range. - When the
ink cartridge 30 is in the mounted position in thecartridge mounting portion 110, thefront end portion 81 of thepivotable member 80 is positioned below theengagement end 146 of theengagement member 145. Therear end portion 82 of thepivotable member 80 is positioned away from thetop wall 39. - Based on the level of the output signal from the
optical sensor 116, whether theink cartridge 30 is mounted to thecartridge mounting portion 110 is determined by the controller. In other words, theboard 88 is configured to provide information as to the presence of theink cartridge 30 in thecartridge mounting portion 110 by attenuating the light of theoptical sensor 116. Based on the level of the output signal from theoptical sensor 114 and/or based on the level of the output signal from theoptical sensor 117 at the time that the signal output from theoptical sensor 116 changes from the HI level signal to the LOW level signal, the type of theink cartridge 30 is determined by the controller. In other words, theboard 88, and thedetection portion 89 or thesecond protrusion 86 are configured to provide information as to the type of theink cartridge 30 by attenuating the light of theoptical sensor 116 and theoptical sensor 114 or theoptical sensor 117. By periodically checking the level of the output signal from theoptical sensor 114, the amount of ink stored in theink chamber 36 is determined by the controller, i.e., whether theink chamber 36 has the predetermined amount or more of ink stored therein is determined. In other words, thedetection portion 33 is configured to indicate the presence or absence of ink within theink chamber 36 by attenuating or not attenuating the light of theoptical sensor 114. Based on the data read out from theIC board 74, the information of theink cartridge 30, e.g., the lot number of theink cartridge 30, the manufacturing date of theink cartridge 30, the color of ink stored in theink cartridge 30, and etc. is determined. - In another embodiment, the
sub frame 90 may be movable in the downward direction relative to themain body 31 in the initial position before theink cartridge 30 is mounted to thecartridge mounting portion 110. In such a case, thesub frame 90 is supported by static friction between theend portions sub frame 90 and the inclinedouter surfaces main body 31. When theink cartridge 30 is inserted into thecase 101 and therod 125 is inserted into theopening 96 of thesub frame 90, the outer surface of therod 125 may not contact theinner surface 98 of thesub frame 90 defining theopening 96 initially. When theink cartridge 30 is further inserted, thecontacts 106 contacts theramp 49 and theIC board 74 and pushes down thesub frame 90, such that the upper portion of the outer surface of therod 125 contacts the upper portion of theinner surface 98 of thesub frame 90 defining theopening 96. When thecontacts 106 reach theIC board 74, thesub frame 90 is positioned relative to thecartridge mounting portion 110 with respect to the height direction (up-down direction) 52 by thecontacts 106 androd 125 sandwiching thesub frame 90 from above and from below, respectively. - The time profile of the evens which occur during the insertion of the
ink cartridge 30 to thecartridge mounting portion 110 is described in more detail here. When the insertion is started, theslide surface 148 of theengagement portion 145 starts to slide on theIC board 74. Thesecond protrusion 86 then contacts theslider 135 and starts to push theslider 135. Thedetection portion 89 then starts to enter the detection point (optical path) of theoptical sensor 114. Theboard 88 then starts to enter the detection point (optical path) of theoptical sensor 116. Therod 125 then contacts theair communication valve 73 and starts to push theair communication valve 73. Thecontacts 106 then starts to contact theIC board 74. The gap between thedetection portion 89 and thedetection portion 33 then starts to enter the detection point (optical path) of theoptical sensor 114. Theink pike 122 then contacts theink supply valve 70 and starts to push theink supply valve 70. Thedetection portion 33 then starts to enter the detection point (optical path) of theoptical sensor 114. Theengagement end 146 then contacts theengagement surface 46. - After the mounting of the
ink cartridge 30 to thecartridge mounting portion 110 is completed. Theprinter 10 starts printing. When the ink stored in theink chamber 36 is used up by theprinter 10, the usedink cartridge 30 is removed from thecartridge mounting portion 110, and anew ink cartridge 30 is mounted to thecartridge mounting portion 110. - When the
ink cartridge 30 is intended to be removed from thecartridge mounting portion 110, therear end portion 82 of thepivotable member 80 is pushed down by a user. Accordingly, thefront end portion 81 of thepivotable member 80 moves up and separates from thetop wall 39. When this occurs, theengagement member 145 is pushed up by thefront end portion 81 of thepivotable member 80, and theengagement end 146 of theengagement member 145 moves to a position above theengagement surface 46, i.e., to a position separated from theengagement surface 46. As such, theengagement member 145 moves from the lock position to the unlock position, and theink cartridge 30 is released from the state held by theengagement member 145. - When the
engagement end 146 separates away from theengagement surface 46, an external force applied to theink cartridge 30 e.g., the biasing force of thecoil spring 139 moves theink cartridge 30 in theremoval direction 55. Nevertheless, because a finger of the user still contacts the pushed-downrear end portion 82 of thepivotable member 80, theink cartridge 30 moving in theremoval direction 55 is stopped by the user. The biasing force of thecoil spring 139 is received by the user's finger via thepivotable member 80. - When the user moves his/her finger in the
removal direction 55, theink cartridge 30 moves following the finger, pushed by theslider 135 and thecoil spring 139. When this occurs, theIC board 74 disposed on thesub frame 90 is released from the downward biasing force of thecontacts 106 of thecartridge mounting portion 110. While theink caitridge 30 moves in theremoval direction 55 following the user's finger, theslide surface 148 of theengagement member 145 passes over therecess 78 and slides on theIC board 74 and theramp 49. When theslide surface 148 slides on theHOT electrode 75, theGND electrode 76, and thesignal electrode 77, dust is wiped off theHOT electrode 75, theGND electrode 76, and thesignal electrode 77. After sliding on theramp 49, theslide surface 148 passes over thegroove 87. When this occurs, the dust wiped off by theslide surface 148 falls into thegroove 87. Accordingly, a likelihood that the dust falls down and adheres to a portion of theink supply portion 34 surrounding theink supply opening 71 is reduced. - Meanwhile, the outer surface of the
rod 125 separates away from theinner surface 98 of thesub frame 90 defining theopening 96, such that thesub frame 90 moves down relative to themain body 31 to the initial position in which thesub frame 90 is supported by the upper surface of the front portion of themain body 31. Theink pipe 122 is pulled out of theink supply portion 34. As such, theink cartridge 30 is removed from thecartridge mounting portion 110. - In this embodiment, because the
ink cartridge 30 comprises thedetection portion 89 and theboard 88 configured to be detected by theoptical sensors IC board 74, even if the electrical connection between theIC board 74 and thecontacts 106 fails to be established or the data fails to be read out from the IC via thesignal electrode 77, it can be determined that theink cartridge 30 is mounted to theprinter 10 based on the information obtained from thedetection portion 89 and theboard 88. Therefore , theink cartridge 30 can be used even if the electrical connection between theIC board 74 and thecontacts 106 fails to be established or the data fails to be read out from the IC via thesignal electrode 77. - In this embodiment, because the light emitted from the
optical sensor insertion direction 50, thedetection portion 89 and theboard 88 can enter the detection point (optical path) of theoptical sensor insertion direction 50 at desired timings. Moreover, because theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are accessible in the downward direction perpendicular to theinsertion direction 50 and the direction in which the light travels, even if theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are accessed by thecontacts 106 in the downward direction, such that theink cartridge 30 moves in the downward direction, such movement does not affect the timings of thedetection portion 89 and theboard 88 entering the detection point (optical path) of theoptical sensor insertion direction 56. This is because the timings are determined by the movement of theink cartridge 30 in theinsertion direction 56, and not determined by the downward movement of theink cartridge 30. Generally speaking, when events occur in directions perpendicular to each other, such events can be independent events and cannot be mutually affected. - In this embodiment, because the
HOT electrode 75, theGND electrode 76, and thesignal electrode 77 are positioned between thefront wall 40 and therear wall 42, the biasing force from theslider 135 and thecoil spring 139 in theremoval direction 55 is not directly received by theHOT electrode 75, theGND electrode 76, and thesignal electrode 77. Therefore, a likelihood that excessive load is applied to t theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 is reduced. Moreover, a likelihood that ink leaks from theink supply portion 34 and theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are contaminated with ink is reduced. - If the
IC board 74 were disposed at thefront wall 40 facing theinsertion direction 56, the contact between theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 and thecontacts 106 might be unstable because theink cartridge 30 is biased in theremoval direction 55, i.e., a direction that theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 separate away from thecontacts 106. Consequently, in such a case, the deformation range of thecontacts 106 and the resiliency of thecontacts 106 would have to be set greater in order to secure the contact between theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 and thecontacts 106 even when theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 move away from thecontacts 106 by the biasing force biasing theink cartridge 30. Nevertheless, the greater deformation range and greater resiliency of thecontacts 106 might apply a great biasing force to theHOT electrode 75, theGND electrode 76, and thesignal electrode 77, i.e., excessive load might be applied to theHOT electrode 75, theGND electrode 76, and thesignal electrode 77. Moreover, if theIC board 74 were disposed at thefront wall 40, ink which has leaked from theink supply portion 34 might reach theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 and cause shortcircuit between theHOT electrode 75, theGND electrode 76, and thesignal electrode 77. - In this embodiment, because the
HOT electrode 75, theGND electrode 76, and thesignal electrode 77 and thestopper 45 are provided at the same side, e.g., the top-wall 39 side, of theink cartridge 30, theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are positioned adjacent to thestopper 45. Because thestopper 45 determines the position of theink cartridge 30 relative to thecartridge mounting portion 110 with respect to the insertion/removal direction 50 when thestopper 45 contacts theengagement member 145, theHOT electrode 75, theGND electrode 76, and thesignal electrode 77, which are positioned adjacent to thestopper 45, can be accurately positioned relative to thecontacts 106 with respect to the insertion/removal direction 50. - In this embodiment, because the
HOT electrode 75, theGND electrode 76, and thesignal electrode 77 are positioned more forward than theengagement surface 46 with respect to theinsertion direction 56, and theengagement surface 46 and each of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 intersect the respective plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53, theengagement member 145 slides on theHOT electrode 75, theGND electrode 76, and the signal electrode 77during the insertion of theink cartridge 30 into thecartridge mounting portion 110. Therefore dust on theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 is wiped off and a likelihood that the electrical connection between theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 and thecontacts 106 becomes unstable is reduced. - In this embodiment, the
HOT electrode 75, theGND electrode 76, and thesignal electrode 77 are positioned above at least a portion of theengagement surface 46 of thestopper 45. Because theengagement member 145 is configured to pivot downward due to its own weight or biased by a spring, dust on theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 can be wiped off by theengagement member 145 with stronger downward force. Moreover, the movable range of theengagement member 145 is limited, such that theengagement member 145 does not pivot downward beyond the lock position, if theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 were positioned below theengagement surface 46, theengagement member 145 could not contact theHOT electrode 75, theGND electrode 76, and thesignal electrode 77.. The position of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 above at least a portion of theengagement surface 46 thus facilitates the wiping function of theengagement member 145. - In this embodiment, because the
HOT electrode 75, theGND electrode 76, and thesignal electrode 77 are positioned more rearward than theink supply opening 71 of theink supply portion 34 with respect to theinsertion direction 56, even if dust on theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 is wiped off when theink cartridge 30 is inserted into and/or removed from thecartridge mounting portion 110, a likelihood that such dust adheres to the portion of theink supply portion 34 surrounding theink supply opening 71 is reduced. Therefore, a likelihood that ink is contaminated by the dust is reduced. - In this embodiment, because the recess, e.g., groove 87 is positioned more forward than the
HOT electrode 75, theGND electrode 76, and thesignal electrode 77 with respect to theinsertion direction 56, thegroove 87 and each of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 intersect the respective plane which is parallel with the height direction (up-down direction) 52 and the depth direction (front-rear direction) 53, and theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are positioned above thegroove 87, dust wiped off of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 falls into thegroove 87. Accordingly, a likelihood that the dust falls down and adheres to the portion of theink supply portion 34 surrounding theink supply opening 71 is reduced. - In this embodiment, because the
ink supply portion 34 is positioned at thefront wall 40 and theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are positioned at thetop wall 39, a likelihood that ink spattered from theink supply portion 34 reaches and contaminates theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 is reduced. - In this embodiment, because the
sub frame 90 is movable relative to themain body 31 in the height direction (up-down direction) 52, thesub frame 90 and themain body 31 can be independently positioned relative to thecartridge mounting portion 110 with respect to the height direction (up-down direction) 52. Therefore, elements provided at thesub frame 90, e.g., theIC board 74, theboard 88, and thedetection portion 89, and elements provided at themain body 31, e.g., theink supply portion 34, can be independently positioned relative to corresponding elements provided at thecartridge mounting portion 110, e.g., thecontacts 106, theoptical sensors ink pipe 122. - Because the
ink cartridge 30 is assembled from a plurality of elements, the dimensional tolerance of each element generally needs to be set small, which requires high accuracy in designing and manufacturing each element. If the dimensional tolerance of each element is relatively big, the accumulated dimensional error of theink cartridge 30 generally becomes big. In such a case, theink pipe 122 may not be inserted into theink supply opening 71 and may contact the distal end of theink supply portion 34 and be broken, thecontacts 106 may contact theIC board 74 with high pressure and may be broken, on the contrary thecontacts 106 may fail to contact theIC board 74, or theboard 88 and thedetection portion 89 may fail to enter between the light emitter and the light receiver of theoptical sensor sub frame 90 is movable relative to themain body 31, thesub frame 90 and themain body 31 can be independently positioned relative to thecartridge mounting portion 110, elements provided at thesub frame 90, e.g., theIC board 74, theboard 88, and thedetection portion 89, and elements provided at themain body 31, e.g., theink supply portion 34, can be independently positioned relative to corresponding elements provided at thecartridge mounting portion 110, e.g., thecontacts 106, theoptical sensors ink pipe 122, with moderate dimensional tolerances of the elements. - In this embodiment, because the width of each of the
HOT electrode 75, theGND electrode 76, and thesignal electrode 77 is greater than the width of theboard 88, in other words, the width of theboard 88 is less than the width of each of theHOT electrode 75, theGND electrode 76, and thesignal electrode 77, theboard 88 is suitable for non-contact detection by theoptical sensor 116 while theHOT electrode 75, theGND electrode 76, and thesignal electrode 77 are suitable for physical contact with thecontacts 106. - In another embodiment, the
second protrusion 86 may comprise a rib, which is similar to theboard 88 of thefirst protrusion 85, and theoptical sensor 117 may be configured to directly detect the rib of thesecond protrusion 86. - In another embodiment, the range within which the
sub frame 90 moves relative to themain body 31 may be determined by a known structure, e.g., guide grooves formed in themain body 31 or thesub frame 90, other than theelongated openings detection portion 33 and the support portion 79. Moreover, the movement of thesub frame 90 may be guided by a known structure, e.g., guide rails formed at themain body 31 or thesub frame 90, other than the inclinedinner surfaces - In another embodiment, the
inner surface 98 of thesub frame 90 defining theopening 96 may not contact the outer surface of therod 125 to move thesub frame 90 relative to themain body 31. In such a case, thesub frame 90 may comprise a surface extending in a direction intersecting the insertion/removal direction 50 at the top face or the bottom face, and when theink cartridge 30 is inserted into thecartridge mounting portion 110, the surface may contact and slide on a protrusion provided in thecartridge mounting portion 110, such that thesub frame 90 moves relative to themain body 31 - In another embodiment, the
cartridge mounting portion 110 may not comprise theslider 135, thecoil spring 139, and theoptical sensor 117. In such a case, theink cartridge 30 may be biased in theremoval direction 55 by springs coupled to theink supply valve 70 and/or theair communication valve 73. - In another embodiment, the IC may not be disposed on the same board on which the
HOT electrode 75, theGND electrode 75, and thesignal electrode 77 are disposed. For example, the IC may be disposed at or adjacent to therear wall 42 and may be wired to theHOT electrode 75, theGND electrode 75, and thesignal electrode 77 which are disposed at or adjacent to thetop wall 39. - In another embodiment, the
ink cartridge 30 may not comprise thesub frame 90 and thedetection portion 89, theboard 88, and theIC board 74 may be disposed on themain body 31. - Referring to
Fig. 9 , in another embodiment, the width of theink cartridge 30 in the width direction (left-right direction) 51 may be greater than the width of theink cartridge 30 ofFig. 2 , and theguide portions ink cartridge 30 in the width direction (left-right direction) 51. Therear wall 42 may comprise afirst surface 58 extending in parallel with thefront wall 40 and thefront wall 140, and asecond surface 59 extending in a direction intersecting thefront wall 40 and thefront wall 140. Thesecond surface 59 is contiguous with thefirst surface 58 and is inclined, such that a front portion of thesecond surface 59 is positioned closer to thefront wall 40 and thefront wall 140 than a rear portion of thesecond surface 59 is positioned to thefront wall 40 and thefront wall 140. At least a portion of thesecond surface 59 is positioned closer to thefront wall 40 and thefront wall 140 than thefirst surface 58 is positioned to thefront wall 40 and thefront wall 140. - While the invention has been described in connection with various example structures and illustrative embodiments, it will be understood by those skilled in the art that other variations and modifications of the structures and embodiments described above may be made without departing from the scope of the invention. Other structures and embodiments will be understood by those skilled in the art from a consideration of the specification or practice of the invention disclosed herein. It is intended that the specification and the described examples are merely illustrative and that the scope of the invention is defined by the following claims.
Claims (16)
- A printing fluid cartridge (30) comprising:a front side;a rear side positioned opposite the front side with respect to a front-rear direction;an upper side;a lower side positioned opposite the upper side with respect to an up-down direction which is perpendicular to the front-rear direction;a tubular fluid supply portion (34) positioned at the lower side of the front side;a pivotable member (80) configured to pivot about a pivot point and comprising an end portion, wherein the pivot point is positioned at the upper side and the end portion is positioned at the rear side;a light attenuating portion (88) protruding from the upper side of the front side and configured to attenuate light traveling in a left-right direction which is perpendicular to the front-rear direction and the up-down direction; andan electrical interface (75, 76, 77) positioned between the pivotable member and the light attenuating portion with respect to the front-rear direction and comprising a surface extending in the front-rear direction and the left-right direction,wherein an upper end of the light attenuating portion is positioned below the electrical interface with respect to the up-down direction.
- The printing fluid cartridge of claim 1, comprising:a first front wall (40, 140) positioned at the front side; anda top wall (39, 141) positioned at the upper side.
- The printing fluid cartridge of claim 1 or 2, comprising:a main body comprising the first front wall (40) ; anda sub frame comprising a second front wall (140) positioned at the front side and facing the first front wall in the front-rear direction.
- The printing fluid cartridge of any of the preceding claims, wherein a front end of the light attenuating portion is positioned further away from the rear side than a front end of the fluid supply portion is positioned away from the rear side with respect to the front-rear direction.
- The printing fluid cartridge of any of the preceding claims, further comprising a stopper (45) comprising a surface (46) extending in the up-down direction and the left-right direction, wherein the pivotable member is positioned in rear of the electrical interface with respect to the front-rear direction and is configured to pivot about a shaft extending in the left-right direction, wherein the shaft comprising the pivot point, wherein the stopper is positioned between the pivotable member and the electrical interface with respect to the front-rear direction.
- The printing fluid cartridge of claim 3, wherein the main body further comprises a first guide portion (65) extending in the front-rear direction and comprising a pair of outer surfaces, wherein each of the first front wall and the first guide portion has a dimension in the left-right direction, and the dimension of the first guide portion between the pair of outer surfaces of the first guide portion in the left-right direction is less than the dimension of the first front wall in the left-right direction, wherein the main body further comprises a second guide portion (66) extending in the front-rear direction and comprising a pair of outer surfaces, wherein the second guide portion has a dimension between the pair of outer surfaces of the second guide portion in the left-right direction, which is less than the dimension of the first front wall in the left-right direction, wherein the sub frame comprises a third guide portion (93) and a fourth guide portion (99), each extending in the front-rear direction, wherein the third guide portion comprises a pair of outer surfaces which is aligned with the pair of outer surfaces of first guide portion in the front-rear direction and the fourth guide portion comprises a pair of outer surfaces which is aligned with the pair of outer surfaces of the second guide portion in the front-rear direction.
- The printing fluid cartridge of claim 6, wherein the third guide portion comprises a pair of boards (94) defining the pair of outer surfaces of the third guide, respectively, wherein the electrical interface is positioned between the pair of boards of the third guide portion.
- The printing fluid cartridge of claim 7, wherein the electrical interface is positioned on an interface board, and the interface board is attached to the sub frame at attachment position, wherein each of the pair of boards of the third guide portion comprises a first portion positioned in line with the attachment position in the left-right direction when viewed from the up-down direction and a second portion, and an upper end of the first portion is positioned below an upper end of the second portion,
- The printing fluid cartridge of claim 3, wherein the second front wall has a circular opening (96) or a circular recess formed therein below the light attenuating portion with respect to the up-down direction.
- The printing fluid cartridge of claim 3, wherein the sub frame comprises a protrusion (86) positioned at or adjacent to a lower end of the second wall and protruding forward, and the sub frame has an opening (97) formed therein positioned above the protrusion with respect to the up-down direction, wherein the fluid supply portion is configured to pass through the opening of the sub frame.
- The printing fluid cartridge of any of the preceding claims, further comprising:a fluid chamber (36) configured to store printing fluid therein;a protruding portion (33) positioned at a middle portion of the front side with respect to the up-down direction and protruding forward, wherein the protruding portion has an inner space formed therein, and the inner space is in fluid communication with fluid chamber.
- The printing fluid cartridge of claim 11, further comprising a further light attenuating portion (89) positioned away from and in front of the protruding portion with respect to the front-rear direction.
- The printing fluid cartridge of any of claims 3, 6 to 10, wherein the main body comprises a first resin configured to allow light traveling in the left-right direction to pass therethrough, and the sub frame comprises a second resin configured to prevent light traveling in the left-right direction from passing therethrough.
- The printing fluid cartridge of any of claims 3, 6 to 10 or 13, wherein the sub frame is configured to move relative to the main body in the up-down direction.
- The printing fluid cartridge of claim 14, wherein the sub frame is configured not to move relative to the main body in the left-right direction.
- The printing fluid cartridge of claim 2, further comprising:a rear wall (42) positioned at the rear side and away from the first front wall in the front-rear direction; anda fluid chamber (36) configured to store printing fluid therein,wherein the fluid supply portion is positioned at the first front wall and configured to establish communication between an interior and an exterior of the fluid chamber,the rear wall comprises a first surface (58) extending in parallel with the first front wall and a second surface (59) extending in a direction intersecting the first front wall, and at least a portion of the second surface is positioned closer to the first front wall than the first surface is positioned to the first front wall.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP18208670.2A EP3480023B1 (en) | 2011-12-22 | 2012-12-04 | Printing fluid cartridge |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011282301A JP2013129178A (en) | 2011-12-22 | 2011-12-22 | Printing fluid cartridge |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18208670.2A Division EP3480023B1 (en) | 2011-12-22 | 2012-12-04 | Printing fluid cartridge |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2607088A2 true EP2607088A2 (en) | 2013-06-26 |
EP2607088A3 EP2607088A3 (en) | 2017-11-22 |
EP2607088B1 EP2607088B1 (en) | 2018-11-28 |
Family
ID=47263177
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12195456.4A Active EP2607088B1 (en) | 2011-12-22 | 2012-12-04 | Printing fluid cartridge |
EP18208670.2A Active EP3480023B1 (en) | 2011-12-22 | 2012-12-04 | Printing fluid cartridge |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18208670.2A Active EP3480023B1 (en) | 2011-12-22 | 2012-12-04 | Printing fluid cartridge |
Country Status (4)
Country | Link |
---|---|
EP (2) | EP2607088B1 (en) |
JP (1) | JP2013129178A (en) |
CN (1) | CN203004524U (en) |
ES (2) | ES2774157T3 (en) |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107264041A (en) * | 2016-03-31 | 2017-10-20 | 兄弟工业株式会社 | Fluid cartridge |
US10022975B2 (en) | 2016-03-31 | 2018-07-17 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge having detection member movable in accordance with deformation of deformable member |
EP3305531A3 (en) * | 2016-10-06 | 2018-07-18 | Seiko Epson Corporation | Liquid container and a liquid ejection apparatus |
US10086621B2 (en) | 2016-03-31 | 2018-10-02 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge having movable member and contact member, and system using the same |
US10118399B2 (en) | 2017-03-27 | 2018-11-06 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with snap-fit mechanism capable of suppressing detachment of cap |
EP3437878A1 (en) * | 2017-07-31 | 2019-02-06 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge and system including the printing-fluid cartridge and printing-fluid consuming apparatus |
WO2019026135A1 (en) * | 2017-07-31 | 2019-02-07 | Brother Kogyo Kabushiki Kaisha | System including printing-fluid cartridge and printing-fluid consuming device |
US10328706B2 (en) | 2016-12-28 | 2019-06-25 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including contact surface for providing positioning of the printing-fluid cartridge |
US10343410B2 (en) | 2017-03-27 | 2019-07-09 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of reducing remaining amount of liquid in liquid storage chamber |
US10357976B2 (en) | 2017-03-27 | 2019-07-23 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with liquid supply portion having guide groove |
US10363750B2 (en) | 2016-12-28 | 2019-07-30 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including protrusion and interface |
US10384459B2 (en) | 2016-12-28 | 2019-08-20 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including electrical interface and locking surface |
US10391777B2 (en) | 2016-12-28 | 2019-08-27 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge having interfering surface, and set of the printing-fluid cartridges |
US10391778B2 (en) | 2016-03-31 | 2019-08-27 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with deformable member, movable member, and urging member for detection of remaining amount of liquid |
US10449771B2 (en) | 2017-03-27 | 2019-10-22 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of improving visibility to liquid stored in liquid storage chamber |
US10493765B2 (en) | 2017-03-27 | 2019-12-03 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of reducing leakage of liquid from liquid storage chamber |
EP3616927A1 (en) * | 2018-08-31 | 2020-03-04 | Brother Kogyo Kabushiki Kaisha | System including a liquid cartridge storing liquid and an attachment portion |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6923020B2 (en) * | 2015-03-31 | 2021-08-18 | セイコーエプソン株式会社 | printer |
WO2017006368A1 (en) * | 2015-07-07 | 2017-01-12 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge, liquid consuming apparatus, method of inserting liquid cartridge into cartridge mounting portion of liquid consuming apparatus, and use of liquid cartridge |
WO2017006364A1 (en) * | 2015-07-07 | 2017-01-12 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge |
CA2990341C (en) * | 2015-07-07 | 2020-07-21 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge, liquid consuming apparatus, method of inserting liquid cartridge into cartridge mounting portion of liquid consuming apparatus, and use of liquid cartridge |
MY192264A (en) * | 2015-07-07 | 2022-08-15 | Brother Ind Ltd | Liquid cartridge |
US10391776B2 (en) | 2015-11-30 | 2019-08-27 | Canon Kabushiki Kaisha | Liquid storage container and printing apparatus |
JP7009054B2 (en) * | 2015-11-30 | 2022-01-25 | キヤノン株式会社 | Recording device |
JP6961919B2 (en) * | 2016-09-30 | 2021-11-05 | ブラザー工業株式会社 | Liquid cartridge and liquid consuming device |
JP6874313B2 (en) * | 2016-09-30 | 2021-05-19 | ブラザー工業株式会社 | Printing fluid containment device, printing fluid supply device, and adapter |
JP7327538B2 (en) * | 2016-12-28 | 2023-08-16 | ブラザー工業株式会社 | Printing fluid cartridge and system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000037880A (en) | 1998-05-18 | 2000-02-08 | Seiko Epson Corp | Ink cartridge, ink jet recording apparatus and label member |
JP2009132098A (en) | 2007-11-30 | 2009-06-18 | Brother Ind Ltd | Ink supply device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2877578B2 (en) * | 1990-09-22 | 1999-03-31 | キヤノン株式会社 | Ink jet recording apparatus and ink cartridge mountable on the recording apparatus |
EP2103434B1 (en) * | 2008-02-28 | 2011-04-06 | Brother Kogyo Kabushiki Kaisha | Ink cartridge and identifying device and identifying method for identifying ink cartridge |
DK2433801T3 (en) * | 2008-02-28 | 2013-11-25 | Brother Ind Ltd | Ink Cartridge, Ink Cartridge Set, and Ink Cartridge Determination System |
CN102161278B (en) * | 2008-06-30 | 2014-03-05 | 兄弟工业株式会社 | Adaptor for ink cartridge |
-
2011
- 2011-12-22 JP JP2011282301A patent/JP2013129178A/en active Pending
-
2012
- 2012-12-04 ES ES18208670T patent/ES2774157T3/en active Active
- 2012-12-04 ES ES12195456T patent/ES2701031T3/en active Active
- 2012-12-04 EP EP12195456.4A patent/EP2607088B1/en active Active
- 2012-12-04 EP EP18208670.2A patent/EP3480023B1/en active Active
- 2012-12-21 CN CN2012207172043U patent/CN203004524U/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000037880A (en) | 1998-05-18 | 2000-02-08 | Seiko Epson Corp | Ink cartridge, ink jet recording apparatus and label member |
JP2009132098A (en) | 2007-11-30 | 2009-06-18 | Brother Ind Ltd | Ink supply device |
Cited By (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107264041A (en) * | 2016-03-31 | 2017-10-20 | 兄弟工业株式会社 | Fluid cartridge |
US10391778B2 (en) | 2016-03-31 | 2019-08-27 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with deformable member, movable member, and urging member for detection of remaining amount of liquid |
US10654281B2 (en) | 2016-03-31 | 2020-05-19 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge having movable member and contact member, and system using the same |
US10752011B2 (en) | 2016-03-31 | 2020-08-25 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge having detection member movable in accordance with deformation of deformable member |
US10029472B2 (en) | 2016-03-31 | 2018-07-24 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with deformable member and movable member for detection of remaining amount of liquid |
US10086621B2 (en) | 2016-03-31 | 2018-10-02 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge having movable member and contact member, and system using the same |
US10399352B2 (en) | 2016-03-31 | 2019-09-03 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge having detection member movable in accordance with deformation of deformable member |
EP3260298A1 (en) * | 2016-03-31 | 2017-12-27 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge |
US10384460B2 (en) | 2016-03-31 | 2019-08-20 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with deformable member and movable member for detection of remaining amount of liquid |
US10022975B2 (en) | 2016-03-31 | 2018-07-17 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge having detection member movable in accordance with deformation of deformable member |
EP3305531A3 (en) * | 2016-10-06 | 2018-07-18 | Seiko Epson Corporation | Liquid container and a liquid ejection apparatus |
US10668735B2 (en) | 2016-12-28 | 2020-06-02 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including contact surface for providing positioning of the printing-fluid cartridge |
US10328706B2 (en) | 2016-12-28 | 2019-06-25 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including contact surface for providing positioning of the printing-fluid cartridge |
US11529812B2 (en) | 2016-12-28 | 2022-12-20 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including contact surface for providing positioning of the printing-fluid cartridge |
US10384459B2 (en) | 2016-12-28 | 2019-08-20 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including electrical interface and locking surface |
US10363750B2 (en) | 2016-12-28 | 2019-07-30 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including protrusion and interface |
US10391777B2 (en) | 2016-12-28 | 2019-08-27 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge having interfering surface, and set of the printing-fluid cartridges |
US11590758B2 (en) | 2016-12-28 | 2023-02-28 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge having interfering surface, and set of the printing-fluid cartridges |
US11884077B2 (en) | 2016-12-28 | 2024-01-30 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including contact surface for providing positioning of the printing-fluid cartridge |
US11027552B2 (en) | 2016-12-28 | 2021-06-08 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge having interfering surface, and set of the printing-fluid cartridges |
US11020978B2 (en) | 2016-12-28 | 2021-06-01 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including electrical interface and locking surface |
US11027555B2 (en) | 2016-12-28 | 2021-06-08 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge including protrusion and interface |
US11065880B2 (en) | 2017-03-27 | 2021-07-20 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with liquid supply portion having guide groove |
US11077669B2 (en) | 2017-03-27 | 2021-08-03 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of reducing leakage of liquid from liquid storage chamber |
US10703107B2 (en) | 2017-03-27 | 2020-07-07 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with liquid supply portion having guide groove |
US11897267B2 (en) | 2017-03-27 | 2024-02-13 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of reducing leakage of liquid from liquid storage chamber |
US11890876B2 (en) | 2017-03-27 | 2024-02-06 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with liquid supply portion having guide groove |
US10493765B2 (en) | 2017-03-27 | 2019-12-03 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of reducing leakage of liquid from liquid storage chamber |
US10449771B2 (en) | 2017-03-27 | 2019-10-22 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of improving visibility to liquid stored in liquid storage chamber |
US10357976B2 (en) | 2017-03-27 | 2019-07-23 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with liquid supply portion having guide groove |
US10343410B2 (en) | 2017-03-27 | 2019-07-09 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of reducing remaining amount of liquid in liquid storage chamber |
US10118399B2 (en) | 2017-03-27 | 2018-11-06 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with snap-fit mechanism capable of suppressing detachment of cap |
US20220016897A1 (en) | 2017-03-27 | 2022-01-20 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge capable of reducing leakage of liquid from liquid storage chamber |
US11571907B2 (en) | 2017-03-27 | 2023-02-07 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge provided with liquid supply portion having guide groove |
WO2019026135A1 (en) * | 2017-07-31 | 2019-02-07 | Brother Kogyo Kabushiki Kaisha | System including printing-fluid cartridge and printing-fluid consuming device |
EP3437878A1 (en) * | 2017-07-31 | 2019-02-06 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge and system including the printing-fluid cartridge and printing-fluid consuming apparatus |
EP3628499A1 (en) * | 2017-07-31 | 2020-04-01 | Brother Kogyo Kabushiki Kaisha | Printing-fluid cartridge and system including the printing-fluid cartridge and printing-fluid consuming apparatus |
US11285727B2 (en) | 2018-08-31 | 2022-03-29 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge including circuit board and deformable member |
US10894421B2 (en) | 2018-08-31 | 2021-01-19 | Brother Kogyo Kabushiki Kaisha | Liquid cartridge including circuit board and deformable member |
EP3616927A1 (en) * | 2018-08-31 | 2020-03-04 | Brother Kogyo Kabushiki Kaisha | System including a liquid cartridge storing liquid and an attachment portion |
Also Published As
Publication number | Publication date |
---|---|
JP2013129178A (en) | 2013-07-04 |
ES2701031T3 (en) | 2019-02-20 |
ES2774157T3 (en) | 2020-07-17 |
EP2607088A3 (en) | 2017-11-22 |
EP2607088B1 (en) | 2018-11-28 |
EP3480023A1 (en) | 2019-05-08 |
EP3480023B1 (en) | 2020-02-05 |
CN203004524U (en) | 2013-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11919316B2 (en) | Printing fluid cartridge, printing apparatus, and use of printing fluid cartridge | |
US10220630B2 (en) | Printing fluid cartridge, printing apparatus, and use of printing fluid cartridge | |
EP2607088B1 (en) | Printing fluid cartridge | |
US8678573B2 (en) | Printing fluid cartridge | |
US9233548B2 (en) | Printing fluid cartridge and printing apparatus | |
EP2607082B1 (en) | Printing fluid cartridge, printing apparatus, and use of printing fluid cartridge | |
US8596772B2 (en) | Printing fluid cartridge, printing apparatus, and use of printing fluid cartridge | |
EP2607084A1 (en) | Printing fluid cartridge and printing apparatus | |
EP2803491A2 (en) | Printing fluid cartridge and printing apparatus | |
EP2607083A1 (en) | Printing fluid cartridge, printing apparatus, and use of printing fluid cartridge | |
AU2015200268B2 (en) | Printing fluid cartridge, printing apparatus, and use of printing fluid cartridge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: B41J 2/175 20060101AFI20171017BHEP |
|
17P | Request for examination filed |
Effective date: 20180327 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20180619 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1069757 Country of ref document: AT Kind code of ref document: T Effective date: 20181215 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012054008 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2701031 Country of ref document: ES Kind code of ref document: T3 Effective date: 20190220 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1069757 Country of ref document: AT Kind code of ref document: T Effective date: 20181128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190228 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190228 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190328 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190301 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012054008 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181204 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20181231 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181204 |
|
26N | No opposition filed |
Effective date: 20190829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181204 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181128 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20181128 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121204 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230529 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20231110 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231108 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231215 Year of fee payment: 12 Ref country code: FR Payment date: 20231108 Year of fee payment: 12 Ref country code: DE Payment date: 20231108 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240109 Year of fee payment: 12 |