EP2606527A1 - Direct-transfer biopile - Google Patents

Direct-transfer biopile

Info

Publication number
EP2606527A1
EP2606527A1 EP11758521.6A EP11758521A EP2606527A1 EP 2606527 A1 EP2606527 A1 EP 2606527A1 EP 11758521 A EP11758521 A EP 11758521A EP 2606527 A1 EP2606527 A1 EP 2606527A1
Authority
EP
European Patent Office
Prior art keywords
enzyme
anode
cathode
electrode
biopile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11758521.6A
Other languages
German (de)
French (fr)
Inventor
Serge Cosnier
Michael Holzinger
Alan Le Goff
Abdelkader Zebda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Joseph Fourier Grenoble 1
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Joseph Fourier Grenoble 1
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Joseph Fourier Grenoble 1 filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP2606527A1 publication Critical patent/EP2606527A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3271Amperometric enzyme electrodes for analytes in body fluids, e.g. glucose in blood
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • H01M4/8878Treatment steps after deposition of the catalytic active composition or after shaping of the electrode being free-standing body
    • H01M4/8896Pressing, rolling, calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9008Organic or organo-metallic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making

Definitions

  • the present invention relates to bioelectrodes adapted to biofuels (in English biofuel cells) or biosensors, for example of the sugar-oxygen type, for example glucose-oxygen.
  • a biosensor has the same structure as a biopile but is used to detect the content of one of the components of the enzymatic reaction, for example glucose.
  • each electrode, anode and cathode, of the biopile corresponds to an enclosure containing a liquid medium into which an electrode wire is immersed.
  • the anode and cathode enclosures are delimited by membranes that can be traversed by hydrogen and oxygen but avoiding the circulation of other heavier elements.
  • the anode comprises in a solution an enzyme and a redox mediator.
  • the enzyme is capable of catalyzing the oxidation of sugar and is for example glucose oxidase if the sugar is glucose.
  • the redox mediator has a low redox potential tible to exchange electrons with the anode enzyme and is for example ubiquinone (UQ).
  • the cathode also comprises in a solution an enzyme and a redox mediator.
  • the enzyme is capable of catalyzing the reduction of oxygen and is for example polyphenol oxidase (PPO).
  • PPO polyphenol oxidase
  • the redox mediator has a high redox potential capable of exchanging electrons with the cathode enzyme and is, for example, hydroquinone (QHD).
  • biocells function well but require anode and cathode conductors to be immersed in enclosures containing appropriate liquids, which is a practical disadvantage in many cases and makes it particularly difficult or impossible to implant such biocells into living beings, in particular to feed various actuators, such as pacemakers, artificial sphincters, or even artificial hearts.
  • Solid electrode biopiles have been proposed.
  • the unpublished French patent application 10/52657 of April 8, 2010 describes such a biopile.
  • this biopile comprises an anode body A and a cathode body K.
  • the anode body consists of a solid body comprising a conductive material associated with an enzyme and a redox mediator. anode appropriate.
  • the anode body is secured to anode wire 1.
  • the cathode consists of a solid body formed of a conductor associated with an enzyme and a mediator of cathode appropriate.
  • the cathode body is secured to a cathode wire 3.
  • the anode and cathode wires for example platinum, are shown as penetrating into the anode and cathode bodies; they can simply be stuck to these bodies.
  • the anode body and the cathode body are formed by compressing powdered graphite mixed with the appropriate redox enzyme and mediator.
  • Redox chemical mediators provide an electrical connection between the enzyme and the electrode by electron jumps between the redox mediators positioned between the surface of the electrode and the prosthetic center or active center of the enzyme.
  • the redox mediators are generally soluble in aqueous medium, it is necessary to fix them on the surface of the electrode
  • a main disadvantage of the use of these mediators is the fact that they greatly reduce poten ⁇ tiel provided by the biopile.
  • these mediators must have a potential greater than that of the redox center of the enzyme catalyzing the oxidation of glucose in order to react with it, in particular with its reduced form in order to oxidize it.
  • the redox mediators dedicated to the connection of the oxygen-reducing enzyme must have a lower potential ⁇ than the active center of this enzyme in order to react with its oxidized form.
  • the potential difference between the active sites of the enzyme catalyzing the oxidation of glucose and that catalyzing the reduction of oxygen is necessarily greater than the potential difference between the redox mediators involved in these two reactions.
  • a biofuel cell glucose / oxygen should provide a potential of 1 V, or the use of media ⁇ tors redox leads to biofuel cells having significantly lower potentials.
  • the potential of the battery is also limited by kinetic limitation problems and ohmic drops. A direct electrical connection was so tempted to do (without using mediators) enzymes to elec ⁇ trodes. However, the electron transfer remains very weak and sometimes requires modification of the enzyme. In addition, the performance of these batteries remains low.
  • bioelectrodes that are simple to handle for applications in the field of biopiles and biosensors, and in particular that can be implanted in a living animal or human being.
  • an embodiment of the present invention provides a biopile or biosensor electrode to be immersed in a liquid medium containing a target and an oxidant, respectively a reducing agent, wherein the anode comprises an enzyme capable of catalyzing the oxidation of a target, and the cathode comprises an enzyme capable of catalyzing the reduction of the oxidant, and wherein each of the anode and cathode electrodes is made of a chipboard ⁇ solid carbon nanotubes mixed with Mérat the enzyme, and is integral with an electrode wire.
  • the electrode is surrounded by a semipermeable membrane allowing the oxidant and the target to pass and not allowing the enzyme to pass.
  • the membrane is of the dialysis membrane type.
  • the target is glucose
  • One embodiment of the present invention provides a method of manufacturing a biopile or biosensor, wherein the anode and the cathode are formed by compressing a solution mixture comprising carbon nanotubes and an enzyme.
  • the carbon nanotubes are of the multi-sheet type.
  • FIG. 1 very schematically represents a biopile with solid electrodes
  • FIG. 2 illustrates the current and power performance as a function of the voltage of a glucose / oxygen biofuel made of bioelectrodes manufactured according to the present invention
  • FIGS. 3A and 3B respectively illustrate the electrochemical response of a biosensor to glucose injections and the current response of this biosensor as a function of the glucose concentration.
  • the present invention relates to a new type of solid electrolyte containing electri cally connected ⁇ enzymes.
  • the invention provides for the electrical connection of a large density of enzymes by compression in the form of a compact block, for example a disk, a mixture of carbon nanotubes, enzymes, water required for solubilization enzymes and glycerol as a binder between the different constituents.
  • Carbon nanotubes are of the mono- or multi-layer type.
  • the conductivity of the nanotubes and their very small diameter allows electrical communication with the enzyme which retains its catalytic activity.
  • These bioelectrodes can be used in the fields of biopiles and biosensors.
  • the anode consists, for example, of a compression of carbon nanotubes containing an oxidase such as glucose oxidase (GOX) capable of catalyzing the oxidation of a fuel, for example sugar.
  • an oxidase such as glucose oxidase (GOX) capable of catalyzing the oxidation of a fuel, for example sugar.
  • the cathode is for example constituted by a compres ⁇ carbon nanotube sion containing an enzyme such as laccase or bilirubin oxidase capable of catalyzing the reduction ⁇ an oxidant such as oxygen.
  • the fuel is glucose
  • the anode enzyme is glucose oxidase (GOX)
  • the oxidant is oxygen
  • the cathode enzyme is laccase.
  • an anode was prepared by Mélan ⁇ giant 150 mg of carbon nanotubes, 30 mg of glucose oxidase and 30 mg of catalase (the role of the catalase is to eliminate 3 ⁇ 402 (a noxious product) formed by glucose oxidase in the presence of
  • these anode and cathode bodies are arranged in a fluid containing oxygen and a sugar, for example glucose.
  • This biopile has a zero current potential of 1 V, a maximum power of 1800 and a maximum current of 8 mA. These performances are far superior to those obtained for known biocells with direct enzyme connection (maximum power 5 and maximum potential at zero current 0.73 V). In addition, this biopile gives the possibility of having a high power at a high enough potential to operate devices: 800 ⁇ 0.8 V.
  • FIG. 2 represents power and electric current curves as a function of the potential of a biopile as described by way of example above.
  • Figure 3A illustrates the electrochemical response of a biosensor constituted as the cell described above to the presence of glucose and Figure 3B shows the measured current as a function of glucose concentration.
  • the electrode is immersed in an aqueous liquid and glucose is added.
  • An electric potential for example 0.1 V, is applied between the bioelectrode and a reference electrode both immersed in the liquid analysis medium and the electric current is measured between the bioelectrode and an auxiliary electrode also immersed in this medium.
  • the detection and quantification of glucose present in the liquid is done by measuring the glucose oxidation current catalyzed by the enzyme.
  • the performances of the biosensor maintained at the potential of 0.1 V are 17 mA / M / cm 2 and 685 AU / cm 2 for sensitivity and maximum current density, respectively.
  • this system In addition to working potential to overcome the anodic interfer ⁇ ences, this system has the highest density maximum current so far described even for conventional glucose biosensors.
  • each of the anode and cathode bodies may be surrounded by a microperforated membrane such as membranes commonly used in dialysis, which allows glucose and oxygen to pass and prohibits the passage of the enzyme. and carbon nanotubes of higher molecular weight.
  • the set of anode and cathode electrodes may be surrounded by a semipermeable membrane permitting glucose and oxygen to pass through and impervious to enzymes and carbon nanotubes, in particular to allow their implantation in an animal or human body. .
  • Any sugar-oxygen biopile can be modi ⁇ fied according to the present invention, and more generally any biopile whose anode comprises an enzyme capable of catalyzing the oxidation of a target, and whose cathode comprises an enzyme capable of catalyzing the oxidation of a target. reduction of the oxidant.

Abstract

The invention relates to a biopile electrode or biosensor electrode intended to be immersed in a liquid medium containing a target and an oxidizer, respectively a reducer, in which the anode comprises an enzyme able to catalyse the oxidation of a target, and the cathode comprises an enzyme able to catalyse the reduction of the oxidizer, and in which each of the anode electrode and cathode electrode consists of a solid agglomeration of carbon nanotubes mixed with the enzyme, and is secured to an electrode wire.

Description

BIOPILE A TRANSFERT DIRECT  BIOPILE WITH DIRECT TRANSFER
Domaine de 1 ' invention Field of the invention
La présente invention concerne des bioélectrodes adaptées à des biopiles (en anglais biofuel cells) ou des biocapteurs, par exemple de type à sucre-oxygène, par exemple à glucose-oxygène.  The present invention relates to bioelectrodes adapted to biofuels (in English biofuel cells) or biosensors, for example of the sugar-oxygen type, for example glucose-oxygen.
On décrira ci-après essentiellement des biopiles. On comprendra qu'un biocapteur a la même structure qu'une biopile mais est utilisé pour détecter la teneur de l'un des composants de la réaction enzymatique, par exemple le glucose.  Hereinafter will be described essentially biopiles. It will be understood that a biosensor has the same structure as a biopile but is used to detect the content of one of the components of the enzymatic reaction, for example glucose.
Exposé de 1 ' art antérieur Presentation of the prior art
Divers types de biopiles à glucose-oxygène sont décrits dans l'art antérieur. Par exemple, dans la demande de brevet PCT/FR2009/050639 (B8606) chaque électrode, anode et cathode, de la biopile correspond à une enceinte contenant un milieu liquide dans lequel plonge un fil d'électrode. Les enceintes d'anode et de cathode sont délimitées par des membranes pouvant être traversées par l'hydrogène et l'oxygène mais évitant la circulation d'autres éléments plus lourds.  Various types of glucose-oxygen biopiles are described in the prior art. For example, in patent application PCT / FR2009 / 050639 (B8606) each electrode, anode and cathode, of the biopile corresponds to an enclosure containing a liquid medium into which an electrode wire is immersed. The anode and cathode enclosures are delimited by membranes that can be traversed by hydrogen and oxygen but avoiding the circulation of other heavier elements.
L'anode comprend dans une solution une enzyme et un médiateur redox. L'enzyme est apte à catalyser l'oxydation du sucre et est par exemple de la glucose-oxydase si le sucre est du glucose. Le médiateur redox a un potentiel redox bas suscep- tible d'échanger des électrons avec l'enzyme d'anode et est par exemple de l'ubiquinone (UQ) . The anode comprises in a solution an enzyme and a redox mediator. The enzyme is capable of catalyzing the oxidation of sugar and is for example glucose oxidase if the sugar is glucose. The redox mediator has a low redox potential tible to exchange electrons with the anode enzyme and is for example ubiquinone (UQ).
La cathode comprend également dans une solution une enzyme et un médiateur redox. L'enzyme est apte à catalyser la réduction de l'oxygène et est par exemple de la polyphénol oxydase (PPO) . Le médiateur redox a un potentiel redox haut susceptible d'échanger des électrons avec l'enzyme de cathode et est par exemple de 1 'hydroquinone (QHD) .  The cathode also comprises in a solution an enzyme and a redox mediator. The enzyme is capable of catalyzing the reduction of oxygen and is for example polyphenol oxidase (PPO). The redox mediator has a high redox potential capable of exchanging electrons with the cathode enzyme and is, for example, hydroquinone (QHD).
Il se produit alors au niveau de l'anode et de la cathode des réactions du type suivant :  At the level of the anode and the cathode, reactions of the following type occur:
PPO  OPP
Cathode : QH2 + 1/2 02 Q + H20 Cathode: QH 2 + 1/2 0 2 Q + H 2 0
GOX  GOX
Anode : glucose + UQ > gluconolactone + UQH2  Anode: glucose + UQ> gluconolactone + UQH2
Cathode : Q + 2H+ + 2e~→QH2 Cathode: Q + 2H + + 2e ~ → QH 2
Anode : UQH2→UQ + 2H+ + 2e~ Anode: UQH 2 → UQ + 2H + + 2e ~
On obtient alors un potentiel d'anode de 20 mV et un potentiel de cathode de 250 mV, ce qui conduit à une différence de poten¬ tiel à courant nul de la biopile de 230 mV. 20 mV an anode potential is then obtained and a cathode potential of 250 mV, which leads to a difference of poten tial ¬ current zero of the biofuel cell of 230 mV.
De telles biopiles fonctionnent convenablement mais nécessitent que des conducteurs d'anode et de cathode trempent dans des enceintes contenant des liquides appropriés, ce qui constitue un inconvénient pratique dans de nombreux cas et rend notamment très difficile sinon impossible d'implanter de telles biopiles dans des êtres vivants, notamment pour alimenter divers actionneurs, tels que des stimulateurs cardiaques, des sphincters artificiels, ou même des coeurs artificiels.  Such biocells function well but require anode and cathode conductors to be immersed in enclosures containing appropriate liquids, which is a practical disadvantage in many cases and makes it particularly difficult or impossible to implant such biocells into living beings, in particular to feed various actuators, such as pacemakers, artificial sphincters, or even artificial hearts.
On a proposé des biopiles à électrodes solides. La demande de brevet français non publiée 10/52657 du 8 avril 2010 décrit une telle biopile. Comme l'illustre la figure 1, cette biopile comprend un corps d'anode A et un corps de cathode K. Le corps d'anode est constitué d'un corps solide comprenant un matériau conducteur associé à une enzyme et à un médiateur redox d'anode appropriés. Le corps d'anode est solidaire d'un fil d'anode 1. De même, la cathode est constituée d'un corps solide formé d'un conducteur associé à une enzyme et à un médiateur de cathode appropriés. Le corps de cathode est solidaire d'un fil de cathode 3. Les fils d'anode et de cathode, par exemple en platine, sont représentés comme pénétrant dans les corps d'anode et de cathode ; ils peuvent simplement être collés à ces corps. Le corps d'anode et le corps de cathode sont par exemple formés par compression de graphite pulvérulent mélangé à l'enzyme et au médiateur redox appropriés. Solid electrode biopiles have been proposed. The unpublished French patent application 10/52657 of April 8, 2010 describes such a biopile. As illustrated in FIG. 1, this biopile comprises an anode body A and a cathode body K. The anode body consists of a solid body comprising a conductive material associated with an enzyme and a redox mediator. anode appropriate. The anode body is secured to anode wire 1. Similarly, the cathode consists of a solid body formed of a conductor associated with an enzyme and a mediator of cathode appropriate. The cathode body is secured to a cathode wire 3. The anode and cathode wires, for example platinum, are shown as penetrating into the anode and cathode bodies; they can simply be stuck to these bodies. For example, the anode body and the cathode body are formed by compressing powdered graphite mixed with the appropriate redox enzyme and mediator.
Des médiateurs chimiques redox permettent d' assurer une connexion électrique entre l'enzyme et l'électrode par sauts d'électrons entre les médiateurs redox positionnés entre la surface de l'électrode et le centre prosthétique ou centre actif de l'enzyme.  Redox chemical mediators provide an electrical connection between the enzyme and the electrode by electron jumps between the redox mediators positioned between the surface of the electrode and the prosthetic center or active center of the enzyme.
Outre une complexification de la construction des bioélectrodes (les médiateurs redox étant généralement solubles en milieu aqueux, il est nécessaire de les fixer sur la surface de l'électrode), un inconvénient principal de l'utilisation de ces médiateurs est le fait qu' ils diminuent fortement le poten¬ tiel fourni par la biopile. Par définition, ces médiateurs doivent avoir un potentiel supérieur à celui du centre redox de l'enzyme catalysant l'oxydation du glucose afin de pouvoir réagir avec lui, en particulier avec sa forme réduite afin de l'oxyder. De même, les médiateurs redox dédiés à la connexion de l'enzyme réduisant l'oxygène doivent avoir un potentiel infé¬ rieur à celui du centre actif de cette enzyme afin de pouvoir réagir avec sa forme oxydée. Il en résulte que la différence de potentiel entre les sites actifs de l'enzyme catalysant l'oxydation du glucose et celle catalysant la réduction de l'oxygène est forcément supérieure à la différence de potentiel entre les médiateurs redox impliqués dans ces deux réactions. Par exemple, théoriquement, une biopile à glucose/oxygène devrait fournir un potentiel de 1 V, or l'utilisation de média¬ teurs redox conduit à des biopiles présentant des potentiels nettement inférieurs. Il faut noter que le potentiel de la pile est également limité par des problèmes de limitations cinétiques et de chutes ohmiques. On a donc tenté de réaliser une connexion électrique directe (sans utiliser de médiateurs) des enzymes aux élec¬ trodes. Toutefois, le transfert d'électrons reste très faible et requiert parfois la modification de l'enzyme. De plus le rendement de ces piles reste faible. In addition to a complexification of the construction of the bioelectrodes (the redox mediators are generally soluble in aqueous medium, it is necessary to fix them on the surface of the electrode), a main disadvantage of the use of these mediators is the fact that they greatly reduce poten ¬ tiel provided by the biopile. By definition, these mediators must have a potential greater than that of the redox center of the enzyme catalyzing the oxidation of glucose in order to react with it, in particular with its reduced form in order to oxidize it. Similarly, the redox mediators dedicated to the connection of the oxygen-reducing enzyme must have a lower potential ¬ than the active center of this enzyme in order to react with its oxidized form. As a result, the potential difference between the active sites of the enzyme catalyzing the oxidation of glucose and that catalyzing the reduction of oxygen is necessarily greater than the potential difference between the redox mediators involved in these two reactions. E.g., theoretically, a biofuel cell glucose / oxygen should provide a potential of 1 V, or the use of media ¬ tors redox leads to biofuel cells having significantly lower potentials. It should be noted that the potential of the battery is also limited by kinetic limitation problems and ohmic drops. A direct electrical connection was so tempted to do (without using mediators) enzymes to elec ¬ trodes. However, the electron transfer remains very weak and sometimes requires modification of the enzyme. In addition, the performance of these batteries remains low.
Il existe donc un besoin pour des biopiles implan- tables à rendement élevé.  There is therefore a need for high performance implantable biopiles.
Résumé summary
Ainsi, selon un mode de réalisation de la présente invention, on cherche à réaliser des bioélectrodes simples à manipuler pour des applications dans le domaine des biopiles et des biocapteurs, et en particulier implantables dans un être vivant, animal ou humain.  Thus, according to one embodiment of the present invention, attempts are made to produce bioelectrodes that are simple to handle for applications in the field of biopiles and biosensors, and in particular that can be implanted in a living animal or human being.
Plus particulièrement, un mode de réalisation de la présente invention prévoit une électrode de biopile ou de biocapteur destinée à être immergée dans un milieu liquide contenant une cible et un oxydant, respectivement un réducteur, dans laquelle l'anode comprend une enzyme apte à catalyser l'oxydation d'une cible, et la cathode comprend une enzyme apte à catalyser la réduction de l'oxydant, et dans laquelle chacune des électrodes d'anode et de cathode est constituée d'un agglo¬ mérat solide de nanotubes de carbone mélangés à l'enzyme, et est solidaire d'un fil d'électrode. More particularly, an embodiment of the present invention provides a biopile or biosensor electrode to be immersed in a liquid medium containing a target and an oxidant, respectively a reducing agent, wherein the anode comprises an enzyme capable of catalyzing the oxidation of a target, and the cathode comprises an enzyme capable of catalyzing the reduction of the oxidant, and wherein each of the anode and cathode electrodes is made of a chipboard ¬ solid carbon nanotubes mixed with Mérat the enzyme, and is integral with an electrode wire.
Selon un mode de réalisation de la présente invention, l'électrode est entourée d'une membrane semi-perméable laissant passer l'oxydant et la cible et ne laissant pas passer l'enzyme.  According to one embodiment of the present invention, the electrode is surrounded by a semipermeable membrane allowing the oxidant and the target to pass and not allowing the enzyme to pass.
Selon un mode de réalisation de la présente invention, la membrane est du type membrane de dialyse.  According to one embodiment of the present invention, the membrane is of the dialysis membrane type.
Selon un mode de réalisation de la présente invention, la cible est du glucose.  According to one embodiment of the present invention, the target is glucose.
Un mode de réalisation de la présente invention prévoit un procédé de fabrication d'une biopile ou d'un biocapteur, dans lequel 1 ' anode et la cathode sont formées par compression d'un mélange en solution comprenant des nanotubes de carbone et une enzyme. Selon un mode de réalisation de la présente invention, les nanotubes de carbone sont de type multi-feuillets . One embodiment of the present invention provides a method of manufacturing a biopile or biosensor, wherein the anode and the cathode are formed by compressing a solution mixture comprising carbon nanotubes and an enzyme. According to one embodiment of the present invention, the carbon nanotubes are of the multi-sheet type.
Brève description des dessins Brief description of the drawings
Ces objets, caractéristiques et avantages, ainsi que d'autres seront exposés en détail dans la description suivante de modes de réalisation particuliers faite à titre non-limitatif en relation avec les figures jointes parmi lesquelles :  These and other objects, features, and advantages will be set forth in detail in the following description of particular embodiments in a non-limitative manner with reference to the accompanying figures in which:
la figure 1 représente très schématiquement une biopile à électrodes solides ;  FIG. 1 very schematically represents a biopile with solid electrodes;
la figure 2 illustre les performances en courant et en puissance en fonction de la tension d'une biopile à glucose/oxygène constituée de bioélectrodes fabriquées selon la présente invention ; et  FIG. 2 illustrates the current and power performance as a function of the voltage of a glucose / oxygen biofuel made of bioelectrodes manufactured according to the present invention; and
les figures 3A et 3B illustrent respectivement la réponse électrochimique d'un biocapteur à des injections de glucose et la réponse en courant de ce biocapteur en fonction de la concentration de glucose.  FIGS. 3A and 3B respectively illustrate the electrochemical response of a biosensor to glucose injections and the current response of this biosensor as a function of the glucose concentration.
Description détaillée detailed description
De façon générale, la présente invention concerne un nouveau type d'électrode solide contenant des enzymes électri¬ quement connectées. L'invention prévoit la connexion électrique d'une grande densité d'enzymes par compression sous forme d'un bloc compact, par exemple un disque, d'un mélange de nanotubes de carbone, d'enzymes, d'eau nécessaire à la solubilisation des enzymes et de glycérol comme liant entre les différents constituants . Les nanotubes de carbone sont de type mono- ou multi-feuillets . In general, the present invention relates to a new type of solid electrolyte containing electri cally connected ¬ enzymes. The invention provides for the electrical connection of a large density of enzymes by compression in the form of a compact block, for example a disk, a mixture of carbon nanotubes, enzymes, water required for solubilization enzymes and glycerol as a binder between the different constituents. Carbon nanotubes are of the mono- or multi-layer type.
L'utilisation de nanotubes de carbone très fins et très conducteurs permet d'immobiliser les enzymes et de les connecter, du fait que les nanotubes de carbone pénètrent les grosses molécules d'enzymes qui sont constituées d'une enveloppe protéinique protégeant leur centre redox actif.  The use of very thin and highly conductive carbon nanotubes makes it possible to immobilize the enzymes and to connect them, because the carbon nanotubes penetrate the large enzyme molecules which consist of a protein envelope protecting their active redox center. .
La conductivité des nanotubes et leur très faible diamètre (de l'ordre du nanomètre) permet une communication électrique avec l'enzyme qui conserve son activité catalytique. On peut exploiter les propriétés catalytiques de l'enzyme soit pour la détection bioélectrochimique, soit pour la conversion d'énergie et plus particulièrement la production d'énergie élec¬ trique. Ces bioélectrodes peuvent être utilisées dans les domaines des biopiles et des biocapteurs. The conductivity of the nanotubes and their very small diameter (of the order of a nanometer) allows electrical communication with the enzyme which retains its catalytic activity. We can exploit the catalytic properties of the enzyme or for the bioelectrochemical detection or for power conversion and more particularly the production of electric energy ¬ stick. These bioelectrodes can be used in the fields of biopiles and biosensors.
L'anode est par exemple constituée d'une compression de nanotubes de carbone contenant une oxydase comme la glucose oxydase (GOX) apte à catalyser l'oxydation d'un carburant par exemple le sucre .  The anode consists, for example, of a compression of carbon nanotubes containing an oxidase such as glucose oxidase (GOX) capable of catalyzing the oxidation of a fuel, for example sugar.
La cathode est par exemple constituée d'une compres¬ sion de nanotubes de carbone contenant une enzyme comme la laccase ou la bilirubine oxydase capable de catalyser la réduc¬ tion d'un comburant comme l'oxygène. The cathode is for example constituted by a compres ¬ carbon nanotube sion containing an enzyme such as laccase or bilirubin oxidase capable of catalyzing the reduction ¬ an oxidant such as oxygen.
Il se produit alors au niveau de l'anode et de la cathode des réactions du type suivant :  At the level of the anode and the cathode, reactions of the following type occur:
Cathode : 1/2 02 Laccase > 2e + H20 Cathode: 1/2 0 2 Laccase > 2e + H 2 0
GOX  GOX
Anode : - 2e - 2H+ gluconolactoneAnode: - 2nd - 2H + gluconolactone
Ces réactions sont données dans le cas particulier où le carburant est du glucose, l'enzyme d'anode est de la glucose- oxydase (GOX), et le comburant est l'oxygène. L'enzyme de cathode est de la laccase. These reactions are given in the particular case where the fuel is glucose, the anode enzyme is glucose oxidase (GOX), and the oxidant is oxygen. The cathode enzyme is laccase.
A titre d'exemple, une anode a été préparée en mélan¬ geant 150 mg de nanotubes de carbone, 30 mg de glucose oxydase et 30 mg de catalase (le rôle de la catalase est d'éliminer ¾02 (un produit nocif) formé par la glucose oxydase en présence deFor example, an anode was prepared by Mélan ¬ giant 150 mg of carbon nanotubes, 30 mg of glucose oxidase and 30 mg of catalase (the role of the catalase is to eliminate ¾02 (a noxious product) formed by glucose oxidase in the presence of
O2 : Η2θ2 → ½02 + H20) , 0,6 ml d'eau et du glycérol (50 μΐ) dans un mortier de céramique. Une cathode a été préparée de façon similaire : 150 mg de nanotubes de carbone, 30 mg de laccase, 0,6 ml d'eau et 25 μΐ de glycérol ont été mélangés dans un mortier de céramique. Les pâtes résultantes constituées de nanotubes de carbone et d'enzymes ont été comprimées à une pression de 1500 kg/cm^ pour former des disques. La surface et l'épaisseur des disques étaient respectivement de 1,33 cm^ et de 0,1 cm. Un fil de platine a été fixé par une colle conductrice aux nanotubes de carbone compactés d'un côté de chaque disque et recouvert d'un film de silicium pour renforcer la solidité mécanique du biomatériau et le contact électrique. O2: Η 2 θ2 → ½02 + H 2 0), 0.6 ml of water and glycerol (50 μΐ) in a ceramic mortar. A cathode was prepared in a similar manner: 150 mg of carbon nanotubes, 30 mg of laccase, 0.6 ml of water and 25 μl of glycerol were mixed in a ceramic mortar. The resulting pastes consisting of carbon nanotubes and enzymes were pressed at a pressure of 1500 kg / cm 2 to form discs. The area and thickness of the disks were 1.33 cm 2 and 0.1 cm, respectively. A platinum wire was fixed by a conductive glue to the carbon nanotubes compacted on one side of each disk and covered with a silicon film to enhance the mechanical strength of the biomaterial and the electrical contact.
Pour fonctionner en pile, ces corps d'anode et de cathode sont disposés dans un fluide contenant de 1 ' oxygène et un sucre, par exemple du glucose.  To operate in a stack, these anode and cathode bodies are arranged in a fluid containing oxygen and a sugar, for example glucose.
Cette biopile a un potentiel à courant nul de 1 V, une puissance maximum de 1800 et un courant maximum de 8 mA. Ces performances sont très supérieures à celles obtenues pour des biopiles connues à connexion directe d'enzymes (puissance maximum 5 et potentiel maximum à courant nul 0,73 V). De plus, cette biopile donne la possibilité d'avoir une puissance importante à un potentiel assez élevé pour actionner des dispositifs : 800 μίί à 0,8 V. This biopile has a zero current potential of 1 V, a maximum power of 1800 and a maximum current of 8 mA. These performances are far superior to those obtained for known biocells with direct enzyme connection (maximum power 5 and maximum potential at zero current 0.73 V). In addition, this biopile gives the possibility of having a high power at a high enough potential to operate devices: 800 μίί 0.8 V.
La figure 2 représente des courbes de puissance et de courant électrique en fonction du potentiel d'une biopile telle que décrite à titre d'exemple ci-dessus.  FIG. 2 represents power and electric current curves as a function of the potential of a biopile as described by way of example above.
La figure 3A illustre la réponse électrochimique d'un biocapteur constitué comme la pile décrite ci-dessus à la présence du glucose et la figure 3B représente le courant mesuré en fonction de la concentration du glucose.  Figure 3A illustrates the electrochemical response of a biosensor constituted as the cell described above to the presence of glucose and Figure 3B shows the measured current as a function of glucose concentration.
Pour utiliser ce biocapteur, l'électrode est plongée dans un liquide aqueux et du glucose est ajouté. Un potentiel électrique par exemple 0,1 V est appliqué entre la bioélectrode et une électrode de référence toutes deux plongées dans le milieu liquide d'analyse et le courant électrique est mesuré entre la bioélectrode et une électrode auxiliaire également immergée dans ce milieu. La détection et la quantification du glucose présent dans le liquide se fait par mesure du courant d'oxydation du glucose catalysée par l'enzyme.  To use this biosensor, the electrode is immersed in an aqueous liquid and glucose is added. An electric potential, for example 0.1 V, is applied between the bioelectrode and a reference electrode both immersed in the liquid analysis medium and the electric current is measured between the bioelectrode and an auxiliary electrode also immersed in this medium. The detection and quantification of glucose present in the liquid is done by measuring the glucose oxidation current catalyzed by the enzyme.
Les performances du biocapteur maintenu au potentiel de 0,1 V sont de 17 mA/M/cm^ et de 685 uA/cm^ pour respectivement la sensibilité et la densité de courant maximum. Outre un potentiel de travail permettant de s'affranchir des interfé¬ rences anodiques, ce système présente la plus forte densité de courant maximum jusqu'alors décrite même pour des biocapteurs à glucose conventionnels. The performances of the biosensor maintained at the potential of 0.1 V are 17 mA / M / cm 2 and 685 AU / cm 2 for sensitivity and maximum current density, respectively. In addition to working potential to overcome the anodic interfer ¬ ences, this system has the highest density maximum current so far described even for conventional glucose biosensors.
Toutefois, il s'est avéré que des biopiles utilisant de tels corps d'anode et de cathode présentaient une faible durée de vie. Les inventeurs ont attribué ce problème à ce que de l'enzyme fuit au cours du temps en dehors du corps d'anode et du corps de cathode. Pour résoudre ce problème, chacun des corps d'anode et de cathode peut être entouré d'une membrane micro- perforée telle que des membranes couramment utilisées en dialyse, qui laisse passer le glucose et l'oxygène et interdit le passage de l'enzyme et de nanotubes de carbone de plus fort poids moléculaire. L'ensemble des électrodes d'anode et de cathode peut être entouré d'une membrane semi-perméable laissant passer le glucose et l'oxygène et étanche aux enzymes et aux nanotubes de carbone, notamment pour permettre leur implantation dans un corps animal ou humain.  However, it has been found that biopiles using such anode and cathode bodies have a short life. The inventors have attributed this problem to the fact that enzyme leaks over time outside the anode body and the cathode body. To solve this problem, each of the anode and cathode bodies may be surrounded by a microperforated membrane such as membranes commonly used in dialysis, which allows glucose and oxygen to pass and prohibits the passage of the enzyme. and carbon nanotubes of higher molecular weight. The set of anode and cathode electrodes may be surrounded by a semipermeable membrane permitting glucose and oxygen to pass through and impervious to enzymes and carbon nanotubes, in particular to allow their implantation in an animal or human body. .
On a donné ci-dessus l'exemple d'une biopile à glucose-oxygène. Toute biopile à sucre-oxygène pourra être modi¬ fiée selon la présente invention, et plus généralement toute biopile dont l'anode comprend une enzyme apte à catalyser l'oxydation d'une cible, et dont la cathode comprend une enzyme apte à catalyser la réduction de l'oxydant. An example of a glucose-oxygen biopile has been given above. Any sugar-oxygen biopile can be modi ¬ fied according to the present invention, and more generally any biopile whose anode comprises an enzyme capable of catalyzing the oxidation of a target, and whose cathode comprises an enzyme capable of catalyzing the oxidation of a target. reduction of the oxidant.
Divers exemples de réalisation avec diverses variantes ont été décrits ci-dessus. On notera que l'homme de l'art pourra combiner divers éléments de ces divers exemples de réalisation et variantes sans faire preuve d'activité inventive.  Various embodiments with various variants have been described above. It will be appreciated that those skilled in the art may combine various elements of these various exemplary embodiments and variants without demonstrating inventive step.

Claims

REVENDICATIONS
1. Électrode de biopile ou de biocapteur destinée à être immergée dans un milieu liquide contenant une cible et un oxydant, respectivement un réducteur, dans laquelle l'anode comprend une enzyme apte à catalyser l'oxydation d'une cible, et la cathode comprend une enzyme apte à catalyser la réduction de l'oxydant, et dans laquelle chacune des électrodes d'anode et de cathode est constituée d'un bloc solide de nanotubes de carbone mélangés à l'enzyme, et est solidaire d'un fil conducteur. A biopile or biosensor electrode intended to be immersed in a liquid medium containing a target and an oxidant, respectively a reducing agent, in which the anode comprises an enzyme capable of catalyzing the oxidation of a target, and the cathode comprises an enzyme capable of catalyzing the reduction of the oxidant, and wherein each of the anode and cathode electrodes consists of a solid block of carbon nanotubes mixed with the enzyme, and is integral with a conductive wire.
2. Électrode selon la revendication 1, entourée d'une membrane semi-perméable laissant passer l'oxydant et la cible et ne laissant pas passer l'enzyme.  2. Electrode according to claim 1, surrounded by a semipermeable membrane passing the oxidant and the target and not passing the enzyme.
3. Électrode selon la revendication 2, dans laquelle ladite membrane est du type membrane de dialyse.  The electrode of claim 2, wherein said membrane is of the dialysis membrane type.
4. Électrode selon la revendication 1 ou 2, dans laquelle la cible est du glucose.  The electrode of claim 1 or 2, wherein the target is glucose.
5. Procédé de fabrication d'une biopile ou d'un biocapteur, dans lequel l'anode et la cathode sont formées par compression d'un mélange en solution comprenant des nanotubes de carbone et une enzyme à l'exclusion de tout médiateur redox.  A method of manufacturing a biopile or biosensor, wherein the anode and the cathode are formed by compressing a solution mixture comprising carbon nanotubes and an enzyme to the exclusion of any redox mediator.
6. Procédé selon la revendication 5, dans lequel les nanotubes de carbone sont de type multi-feuillets .  6. Process according to claim 5, in which the carbon nanotubes are of the multi-sheet type.
EP11758521.6A 2010-08-19 2011-08-18 Direct-transfer biopile Withdrawn EP2606527A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1056672A FR2963989B1 (en) 2010-08-19 2010-08-19 BIOPILE WITH DIRECT TRANSFER
PCT/FR2011/051931 WO2012022921A1 (en) 2010-08-19 2011-08-18 Direct-transfer biopile

Publications (1)

Publication Number Publication Date
EP2606527A1 true EP2606527A1 (en) 2013-06-26

Family

ID=43759409

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11758521.6A Withdrawn EP2606527A1 (en) 2010-08-19 2011-08-18 Direct-transfer biopile

Country Status (6)

Country Link
US (1) US20130284596A1 (en)
EP (1) EP2606527A1 (en)
JP (1) JP5833123B2 (en)
CA (1) CA2808869A1 (en)
FR (1) FR2963989B1 (en)
WO (1) WO2012022921A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193624A1 (en) 2014-06-19 2015-12-23 Universite Joseph Fourier Biocompatible implantable reactor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3019384B1 (en) * 2014-03-25 2018-01-12 Universite Grenoble Alpes BIOCOMPATIBLE IMPLANTABLE REACTOR
FR3041819B1 (en) 2015-09-25 2017-10-20 Univ Joseph Fourier ELECTROCHEMICAL REACTOR BLOCK
WO2017212304A1 (en) 2016-06-07 2017-12-14 Universite Grenoble Alpes Bioelectrode coated with a gel of modified polysaccharide
JP6753225B2 (en) * 2016-09-01 2020-09-09 東洋インキScホールディングス株式会社 Electrode paste composition for self-powered sensor, electrode for self-powered sensor and self-powered sensor
FR3099645B1 (en) * 2019-08-01 2021-09-10 Univ Grenoble Alpes ENZYMATIC BIOCATHODE, ITS MANUFACTURING PROCESS AS WELL AS FUEL BIOPILE AND BIOCAPTEUR CONTAINING THIS ENZYMATIC BIOCATHODE

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1052657A (en) 1952-03-20 1954-01-26 Epiard Freres Device for attaching a strap and in particular a bracelet to a wristwatch
US6294281B1 (en) * 1998-06-17 2001-09-25 Therasense, Inc. Biological fuel cell and method
US10022078B2 (en) * 2004-07-13 2018-07-17 Dexcom, Inc. Analyte sensor
US20050118494A1 (en) * 2003-12-01 2005-06-02 Choi Sung H. Implantable biofuel cell system based on nanostructures
KR20080080105A (en) * 2005-11-02 2008-09-02 세인트 루이스 유니버시티 Direct electron transfer using enzymes in bioanodes, biocathodes, and biofuel cells
US8785058B2 (en) * 2006-04-07 2014-07-22 New Jersey Institute Of Technology Integrated biofuel cell with aligned nanotube electrodes and method of use thereof
ES2717599T3 (en) * 2007-06-29 2019-06-24 Univ Grenoble 1 Biomimetic artificial membrane device
JP2009158458A (en) * 2007-12-06 2009-07-16 Sony Corp Fuel cell, method of manufacturing fuel cell, electronic apparatus, enzyme immobilization electrode, biosensor, bioreactor, energy conversion element, and enzyme reaction utilization device
FR2930076B1 (en) * 2008-04-09 2011-06-03 Univ Joseph Fourier BIOPILE WITH IMPROVED PERFORMANCE
US20110183203A1 (en) * 2010-01-27 2011-07-28 Molecular Nanosystems, Inc. Polymer supported electrodes

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"H2 et Pile - Conception de Biopiles à base de Nanotubes de carbone monofeuillets (SWCNTs) et d'Hydroxydes doubles lamellaires (HDL)", 8 January 2010 (2010-01-08), XP054977130, Retrieved from the Internet <URL:https://imedia.emn.fr/videos/watch.php?id=59> [retrieved on 20170206] *
COSNIER S.: "Conception de biopiles à base de nanotubes de carbone monofeuillet (SWCNTs) et d' hydroxydes doubles lamellaires (HDL)", 29 March 2011 (2011-03-29), XP009190701, Retrieved from the Internet <URL:https://www.yumpu.com/fr/document/view/28522238/pie-pr08-15-2-swcnt-hdl-biopiles-cnrs/1> [retrieved on 20160630] *
See also references of WO2012022921A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015193624A1 (en) 2014-06-19 2015-12-23 Universite Joseph Fourier Biocompatible implantable reactor

Also Published As

Publication number Publication date
US20130284596A1 (en) 2013-10-31
CA2808869A1 (en) 2012-02-23
JP5833123B2 (en) 2015-12-16
FR2963989A1 (en) 2012-02-24
JP2013541132A (en) 2013-11-07
FR2963989B1 (en) 2016-03-11
WO2012022921A1 (en) 2012-02-23

Similar Documents

Publication Publication Date Title
Barton et al. Electroreduction of O2 to water on the “wired” laccase cathode
Murata et al. Direct electrochemistry of bilirubin oxidase on three-dimensional gold nanoparticle electrodes and its application in a biofuel cell
Sales et al. An intravenous implantable glucose/dioxygen biofuel cell with modified flexible carbon fiber electrodes
EP2375481B1 (en) Biofuel cell with glucose
Tsujimura et al. Photosynthetic bioelectrochemical cell utilizing cyanobacteria and water-generating oxidase
Barrière et al. A laccase–glucose oxidase biofuel cell prototype operating in a physiological buffer
Xu et al. Optimizing the power of enzyme-based membrane-less hydrogen fuel cells for hydrogen-rich H 2–air mixtures
WO2012022921A1 (en) Direct-transfer biopile
Ramanavicius et al. Biofuel cell based on glucose oxidase from Penicillium funiculosum 46.1 and horseradish peroxidase
EP2965335B1 (en) Biocompatible electrochemical supercapacitor
US20080118782A1 (en) Miniature biological fuel cell that is operational under physiological conditions, and associated devices and methods
Zebda et al. Glucose biofuel cell construction based on enzyme, graphite particle and redox mediator compression
Liu et al. A biofuel cell with enhanced power output by grape juice
Shleev et al. Stable ‘Floating'Air Diffusion Biocathode Based on Direct Electron Transfer Reactions Between Carbon Particles and High Redox Potential Laccase
Giroud et al. An enzymatic biofuel cell based on electrically wired polyphenol oxidase and glucose oxidase operating under physiological conditions
So et al. Significance of the length of carbon nanotubes on the bioelectrocatalytic activity of bilirubin oxidase for dioxygen reduction
Karajić et al. Enzymatic glucose-oxygen biofuel cells for highly efficient interfacial corrosion protection
Little et al. A novel enzymatic bioelectrode system combining a redox hydrogel with a carbon NanoWeb
Shitanda et al. High-performance, two-step/Bi-enzyme lactate biofuel cell with lactate oxidase and pyruvate oxidase
Komaba et al. Polyion complex nanocomposite electrode incorporating enzyme and carbon nanotube for biofuel cells
WO2018185417A1 (en) Biofuel cell
Kulkarni et al. An enzymatic glucose biofuel cell based on Au nano-electrode array
WO2021019418A1 (en) Enzymatic biocathode, method for producing it, and fuel biocell and biosensor comprising this enzymatic biocathode
Komaba et al. Optimization of enzyme anode and cathode with polyion complex for the application to biofuel cells
Giroud et al. A Monosaccharide‐Based Coin‐Cell Biobattery

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151116

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170621