EP2606435A1 - Neutral host architecture for a distributed antenna system - Google Patents

Neutral host architecture for a distributed antenna system

Info

Publication number
EP2606435A1
EP2606435A1 EP11818694.9A EP11818694A EP2606435A1 EP 2606435 A1 EP2606435 A1 EP 2606435A1 EP 11818694 A EP11818694 A EP 11818694A EP 2606435 A1 EP2606435 A1 EP 2606435A1
Authority
EP
European Patent Office
Prior art keywords
remote radio
head unit
radio head
band
reconfigurable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11818694.9A
Other languages
German (de)
French (fr)
Other versions
EP2606435A4 (en
Inventor
Paul Lemson
Shawn Patrick Stapleton
Sasa Trajko Trajkovic
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dali Systems Co Ltd
Original Assignee
Dali Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/928,931 external-priority patent/US8804870B2/en
Priority claimed from US12/928,934 external-priority patent/US8351877B2/en
Priority claimed from US12/928,943 external-priority patent/US8542768B2/en
Application filed by Dali Systems Co Ltd filed Critical Dali Systems Co Ltd
Priority to EP20160422.0A priority Critical patent/EP3681111A1/en
Priority claimed from US13/211,236 external-priority patent/US8848766B2/en
Priority claimed from US13/211,243 external-priority patent/US8682338B2/en
Priority claimed from US13/211,247 external-priority patent/US8737300B2/en
Publication of EP2606435A1 publication Critical patent/EP2606435A1/en
Publication of EP2606435A4 publication Critical patent/EP2606435A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/64Hybrid switching systems
    • H04L12/6418Hybrid transport
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2575Radio-over-fibre, e.g. radio frequency signal modulated onto an optical carrier
    • H04B10/25752Optical arrangements for wireless networks
    • H04B10/25753Distribution optical network, e.g. between a base station and a plurality of remote units
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/10Protocols in which an application is distributed across nodes in the network
    • H04L67/1001Protocols in which an application is distributed across nodes in the network for accessing one among a plurality of replicated servers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/085Access point devices with remote components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/52Allocation or scheduling criteria for wireless resources based on load

Definitions

  • the present invention generally relates to wireless communication systems employing Distributed Antenna Systems (DAS). More specifically, the present invention relates to a DAS which is part of a distributed wireless network base station in which all radio-related functions that provide network coverage and/or capacity for a given area are contained in a small single unit that can be deployed in a location remote from the remaining distributed wireless network base station unit or units which are not performing radio-related functions.
  • Multi- mode radios capable of operating according to GSM, HSPA, LTE, TD-SCDMA, UMTS and WiMAX standards with advanced software configurability are features in the deployment of more flexible and energy-efficient radio networks.
  • the present invention can also serve multiple operators and multi-frequency bands per operator within a single DAS to reduce the costs associated with radio network equipment and radio network deployment.
  • Mobility and an increased level of multimedia content for end users requires end-to-end network adaptations that support both new services and the increased demand for broadband and flat-rate Internet access.
  • network operators must consider the most cost-effective evolution of the networks towards 4G and other advanced network capabilities. Wireless and mobile technology standards are evolving towards higher bandwidth
  • FIG. 1 shows an architecture for a prior art Distributed Wireless Network Base Station.
  • 100 is a depiction of a Distributed Wireless Network Base Station.
  • the Base Transceiver Station (BTS) or Digital Access Unit (DAU) 101 coordinates the communication between the Remote Radio Head Units 102, 103 and the Base Station Controller (BSC).
  • BTS Base Transceiver Station
  • DAU Digital Access Unit
  • the BTS communicates with multiple Remote Radio Heads via optical fiber.
  • OBSAI Open Base Station Architecture Initiative
  • OBSAI Common Public Radio Interface
  • CPRI Base Transceiver Station
  • RRU Remote radio head unit
  • the RRU concept constitutes a fundamental part of an advanced state-of-the-art base station architecture.
  • RRU-based system implementation is driven by the need to achieve consistent reductions in both Capital Expenses (CAPEX) and Operating Expenses (OPEX), and enable a more optimized, energy-efficient, and greener base deployment.
  • An existing application employs an architecture where a 2G/3G/4G base station is connected to RRUs over multiple optical fibers.
  • Either CPRI, OBSAI or IR Interfaces may be used to carry RF data to the RRUs to cover a sectorized radio network coverage area corresponding to a radio cell site.
  • a typical implementation for a three-sector cell employs three RRU's.
  • the RRU incorporates a large number of digital interfacing and processing functions.
  • commercially available RRU's are power inefficient, costly and inflexible. Their poor DC-to-RF power
  • the present invention substantially overcomes the limitations of the prior art discussed above. Accordingly, it is an object of the present invention to provide a high performance, cost-effective DAS system, architecture and method for an RRU-based approach which enables each of multiple operators to use multi-frequency bands.
  • the present disclosure enables a RRU to be field reconfigurable, as presented in US Patent application US 61/172,642 (DW- 1016P), filed 4/24/2009, entitled Remotely Reconfigurable Power Amplifier System and Method, US Patent application US 12/108,502 (DW101 1 U), filed 4/23/2008, entitled Digital Hybrid Mode Power Amplifier System, US Patent application US 61/288,838 (DW1018P), filed 12/21/2009, entitled Multi-band Wideband Power Amplifier Digital Predistortion System, US Patent application US 61/288,840 (DW1019P), filed 12/21/2009, entitled Remote Radio Head Unit with Wideband Power Amplifier and Method, US Patent application US
  • the present invention maximizes the data rate to the Remote Radio Head Unit in a cost effective architecture.
  • Figures 2 and 3 depict a low power RRU and high power RRU.
  • the RRUs depicted in Figures 2 and 3 can be extended to a multi-band and multi-channel configuration.
  • Multi-band implies more than two frequency bands and multichannel implies more than one output to an antenna system.
  • An embodiment of the present invention utilizes a RRU Access
  • the objective of the access module is to de-multiplex and multiplex high speed data to achieve aggregate data rates sufficient for operation of a plurality of RRU Band Modules which are geographically distributed.
  • An alternative embodiment of the present invention utilizes the physical separation of the RRU Band Modules from the RRU Access Module using an optical fiber cable, Ethernet cables, RF cable and any other form of connection between the modules.
  • a Remote Radio Unit comprised of one or more RRU Band Modules may be collocated with the antenna or antennas.
  • the RRU Access Module can also supply DC power on the interconnection cabling.
  • control and measurement algorithms are implemented to permit improved network deployment, network management, and optimization.
  • Applications of the present invention are suitable to be employed with all wireless base-stations, remote radio heads, distributed base stations, distributed antenna systems, access points, repeaters, distributed repeaters, optical repeaters, digital repeaters, mobile equipment and wireless terminals, portable wireless devices, and other wireless communication systems such as microwave and satellite communications.
  • the present invention is also field upgradable through a link such as an Ethernet connection to a remote station.
  • Appendix I is a glossary of terms used herein, including acronyms.
  • Figure 1 [PRIOR ART] is a block diagram showing the basic structure of a prior art Distributed Wireless Base Station system.
  • Figure 2 is a block diagram showing a multi-channel High Power
  • Figure 3 is a block diagram multi-channel High Power Remote Radio Head Unit according to one embodiment of the present invention.
  • Figure 4 is a block diagram of a Remote Radio Head Unit high level system of the present invention.
  • FIG. 5 is a block diagram of the Remote Radio Head Unit Access Module of the present invention.
  • Figure 6 is a Remote Radio Head Unit Band Module according to one embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION
  • the present invention is a novel Distributed Antenna System that utilizes a high speed Remote Radio Head Unit Access Module interconnected with Remote Radio Head Unit Band Module.
  • Fiber 1 is a high speed fiber cable that transports data between the BTS and the Remote Radio Head Unit.
  • Fiber 2 is used to daisy chain other remote radio head units which are thereby interconnected to the BTS or DAU.
  • the software-defined digital platform 216 performs baseband signal processing, typically in an FPGA or equivalent.
  • Building block 203 is a Serializer/Deserializer. The deserializer portion extracts the serial input bit stream from the optical fiber 201 and converts it into a parallel bit stream. The serializer portion performs the inverse operation for sending data from the Remote Radio Head Unit to the BTS.
  • the deserializer portion extracts the serial input bit stream from the optical fiber 201 and converts it into a parallel bit stream.
  • the serializer portion performs the inverse operation for sending data from the Remote Radio Head Unit to the BTS.
  • the two distinct bit streams communicate with the BTS using different optical wavelengths over one fiber, although multiple fibers can be used in alternative arrangements.
  • the deframer 204 deciphers the structure of the incoming bit stream and sends the deframed data to the Crest Factor Reduction Algorithm 209.
  • the Crest Factor Reduction block 209 reduces the Peak-to- Average Ratio of the incoming signal so as to improve the Power amplifier DC- to-RF conversion efficiency.
  • the waveform is then presented to the Digital Predistorter block 208.
  • the digital predistorter compensates for the
  • Digital Upconverter 210 filters and digitally translates the deframed signal to an IF frequency.
  • the Framer 204 takes the data from the two digital downconverters 206, 207 and packs it into a Frame for transmission to the BTS over the optical fiber 201 .
  • Elements 21 1 and 212 are Analog to Digital converters that are used to translate the two analog receive signals into digital signals.
  • the receiver comprises a diversity branch which contains a downconverter 217 and a Band Pass Filter 223.
  • the main branch has a receiver path comprised of a duplexer 224 and a downconverter 218. In some embodiments, one or both
  • downconverters 217 and 218 can have an integral uplink low-noise amplifier.
  • the power amplifier has an output coupler for extracting a replica of the output signal in the feedback path.
  • the feedback signal is frequency- translated by downconverter 219 to either an IF frequency or baseband and presented to an Analog to Digital converter 213. This feedback signal is used in an adaptive loop for performing Digital Predistortion to compensate for any nonlinearities created by the power amplifier.
  • the Ethernet cable is used to locally communicate with the Remote
  • Radio Head Unit Switch 226 is used to allow easy access to either the FPGA or the CPU.
  • DC power converters 228 and 229 are used to obtain the desired DC voltages for the Remote Radio Head Unit. Either an external voltage can be connected directly into the RRU or the DC power may be supplied through the Ethernet cable.
  • FIG. 3 depicts a remote radio head unit. In at least some designs, this architecture offers benefits when the RF output power is relatively low. In the embodiment shown in Figure 3, digital predistrortion and crest factor reduction are not employed as was the case in Figure 2. Even though this topology shows a non-diversity configuration, a diversity receive branch can be added along with an additional transmitter path for development of a Multiple Input Multiple Output (MIMO) Remote Radio Head Unit.
  • MIMO Multiple Input Multiple Output
  • the function of the Remote Radio Head Unit Access Module 400 is to route the high speed data (at any desired speed, e.g., such as 10 Gbps as illustrated in Fig. 4) (the "Data Speed) to the multiple Remote Radio Head Unit Band Modules and allows for local
  • a backplane 401 is used to communicate with them via Ethernet.
  • the system can in theory support an infinite quantity of RRUs.
  • the Remote Radio Head Unit Band Modules may be set up remotely to have RF power values selected based on the specific desired applications as well as location-specific radio signal propagation factors.
  • a further alternative embodiment leverages the flexibility of the architecture shown in Figure 4 to provide a capability known as Flexible Simulcast.
  • Flexible Simulcast the amount of radio resources (such as RF carriers, CDMA codes or TDMA time slots) assigned to a particular RRU or group of RRUs by each RRU Access Module can be set via software control to meet desired capacity and throughput objectives or wireless subscriber needs.
  • the detailed topology of the Remote Radio Head Unit Access Module is shown in Figure 5. It comprises a Small form Factor Pluggable optic transceiver (SFP) 500 which operates on two distinct wavelengths, one for communicating from the BTS to the Remote Radio Head Unit Access Module and the other for communicating in the opposite direction.
  • the SFP contains a Laser Diode for converting the electronic signal to an optical signal and an Optical detector for converting the optical signal into an electronic signal.
  • a multiplexer/demultiplexer 501 converts the high speed data to multiple lower speed data paths for delivery to a FPGA 502. The multiplexer/demultiplexer 501 performs the opposite function when data is being sent back to the BTS or DAU.
  • the framer/deframer 503 routes the data to the appropriate Remote Radio Head Unit Band Modules.
  • An additional multiplexer/demultiplexer 506 allows for further expansion of lower speed Remote Radio Head Units.
  • the number of Remote Radio Head units is only limited by the capability of the FPGA.
  • Local communication with the Remote Radio Head Unit's Access Module's FPGA or the individual Remote Radio Head Unit Band Modules is via an Ethernet connection 508.
  • the alternative embodiment is one where the digital optical signals fed to the Remote Radio Head Unit Access Module may be generated by an RF-to-Digital interface which receives RF signals by means of one or more antennas directed to one or more base stations located at some distance from the Remote Radio Head Unit Access Module.
  • a further alternative embodiment is one where the digital signals fed to the Remote Radio Head Unit Access Module may be generated in a combination of ways; some may be generated by an RF-to-Digital interface and some may be generated by a BTS or DAU. Some neutral host applications gain an advantage with regard to cost-effectiveness from employing this further alternative embodiment.
  • the optical signals fed to the Remote Radio Head Unit Access Module described in the preferred and alternative embodiments are digital, the optical signals are not limited to digital, and can be analog or a combination of analog and digital.
  • a further alternative embodiment employs transport on one or multiple optical wavelengths fed to the Remote Radio Head Unit Access Module.
  • the Remote Radio Head Unit Band Module is shown in Figure 6. It comprises a Software Defined Digital (SDD) section 610 and an RF section 622.
  • An alternative embodiment employs a Remote Antenna Unit comprising a broadband antenna with RRU Band Module Combiner and multiple plug-in module slots, into which multiple RRU Band Modules intended for operation in different frequency bands are inserted.
  • this embodiment employs RRU Band Modules which each have a physically small form factor.
  • a suitably small form factor for the RRU Band Module is the PCMCIA module format.
  • a further alternative emobidment employs RRU Band Modules where each has an integral antenna, and the embodiment does not require a common antenna shared by multiple RRU Band Modules.
  • the Neutral Host Distributed Antenna System (NHDAS) of the present invention enables the use of remote radio heads for multi-operator multi-band configurations, which subsequently saves hardware resources and reduces costs.
  • the NHDAS system is also reconfigurable and remotely field- programmable since the algorithms can be adjusted like software in the digital processor at any time.
  • the NHDAS system is flexible with regard to being able to support various modulation schemes such as QPSK, QAM, OFDM, etc. in CDMA, TD-SCDMA, GSM, WCDMA, CDMA2000, LTE and wireless LAN systems. This means that the NHDAS system is capable of supporting multi- modulation schemes, multi-bands and multi-operators.

Abstract

A remote radio head unit (RRU) system for achieving high data rate communications in a Distributed Antenna System is disclosed. The Distributed Antenna System is configured as a Neutral Host enabling multiple operators to exist on one DAS system. The present disclosure enables a remote radio head unit to be field reconfigurable and support multi-modulation schemes (modulation- independent), multi-carriers, multi-frequency bands and multi-channels. As a result, the remote radio head system is particularly suitable for wireless transmission systems, such as base-stations, repeaters, and indoor signal coverage systems.

Description

NEUTRAL HOST ARCHITECTURE FOR A DISTRIBUTED ANTENNA SYSTEM
SPECIFICATION
RELATED APPLICATIONS
[001] This application claims the benefit of the following U.S. Patent applications, all of which are incorporated herein by reference:
Serial Number Filing Date Title
61/374,593 8/17/2010 Neutral Host Architecture for a Distributed
Antenna System
61/382,836 9/14/2010 Remotely Reconfigurable Distributed
Antenna System and Methods
12/928,931 12/21/2010 Modulation Agnostic Digital Hybrid Mode
Power Amplifier System and Method 12/928,933 12/21/2010 Remote Radio Head Unit System with
Wideband Power Amplifier and Method
12/928,934 12/21/2010 Multi-Band Wideband Power Amplifier
Digital Predistortion
System and Method 12/928,943 12/21/2010 High Efficiency, Remotely Reconfigurable
Remote Radio Head Unit System
and Method for Wireless Communications
61/439,940 2/7/201 1 Daisy Chained Ring of Remote Units for a
Distributed Antenna System
[not assigned yet] 8/16/201 1 Neutral Host Architecture for a Distributed
Antenna System
[not assigned yet] 8/16/201 1 Remotely Reconfigurable
Distributed Antenna System and Methods [not assigned yet] 8/16/201 1 Daisy Chained Ring of Remote Units for a
Distributed Antenna System
FIELD OF THE INVENTION
[002] The present invention generally relates to wireless communication systems employing Distributed Antenna Systems (DAS). More specifically, the present invention relates to a DAS which is part of a distributed wireless network base station in which all radio-related functions that provide network coverage and/or capacity for a given area are contained in a small single unit that can be deployed in a location remote from the remaining distributed wireless network base station unit or units which are not performing radio-related functions. Multi- mode radios capable of operating according to GSM, HSPA, LTE, TD-SCDMA, UMTS and WiMAX standards with advanced software configurability are features in the deployment of more flexible and energy-efficient radio networks. The present invention can also serve multiple operators and multi-frequency bands per operator within a single DAS to reduce the costs associated with radio network equipment and radio network deployment. BACKGROUND OF THE INVENTION
[003] Wireless and mobile network operators face the continuing challenge of building networks that effectively manage high data-traffic growth rates.
Mobility and an increased level of multimedia content for end users requires end-to-end network adaptations that support both new services and the increased demand for broadband and flat-rate Internet access. In addition, network operators must consider the most cost-effective evolution of the networks towards 4G and other advanced network capabilities. Wireless and mobile technology standards are evolving towards higher bandwidth
requirements for both peak rates and cell throughput growth. The latest standards supporting these higher bandwidth requirements are HSPA+, WiMAX, TD-SCDMA and LTE. The network upgrades required to deploy networks based on these standards must deal with the limited availability of new spectrum, leverage existing spectrum, and ensure operation of all desired wireless technology standards. The processes of scarce resource optimization while ensuring a future-proof implementation must both take place at the same time during the transition phase, which usually spans many years and thus can encompass numerous future developments. Distributed open base station architecture concepts have evolved in parallel with the evolution of the various technology standards to provide a flexible, lower-cost, and more scalable modular environment for managing the radio access evolution. Such advanced base station architectures can generally be appreciated from Figure 1 [PRIOR ART], which shows an architecture for a prior art Distributed Wireless Network Base Station. In Figure 1 , 100 is a depiction of a Distributed Wireless Network Base Station. The Base Transceiver Station (BTS) or Digital Access Unit (DAU) 101 coordinates the communication between the Remote Radio Head Units 102, 103 and the Base Station Controller (BSC). The BTS communicates with multiple Remote Radio Heads via optical fiber. For example, the Open Base Station Architecture Initiative (OBSAI), the Common Public Radio Interface
(CPRI), and the IR Interface standards introduced publicly-defined interfaces separating the Base Transceiver Station (BTS) or Digital Access Unit and the remote radio head unit (RRU) parts of a base station by employing optical fiber transport. [004] The RRU concept constitutes a fundamental part of an advanced state-of-the-art base station architecture. RRU-based system implementation is driven by the need to achieve consistent reductions in both Capital Expenses (CAPEX) and Operating Expenses (OPEX), and enable a more optimized, energy-efficient, and greener base deployment. An existing application employs an architecture where a 2G/3G/4G base station is connected to RRUs over multiple optical fibers. Either CPRI, OBSAI or IR Interfaces may be used to carry RF data to the RRUs to cover a sectorized radio network coverage area corresponding to a radio cell site. A typical implementation for a three-sector cell employs three RRU's. The RRU incorporates a large number of digital interfacing and processing functions. However, commercially available RRU's are power inefficient, costly and inflexible. Their poor DC-to-RF power
conversion insures that they will need to have a large mechanical housing to help dissipate the heat generated. The demands from wireless service providers for future RRU's also includes greater flexibility in the RRU platform, which is not presently available. As standards evolve, there will be a need for multi-band RRUs that can accommodate two or more operators using a single wideband power amplifier. Co-locating multiple operators in one DAS system would reduce the infrastructure costs and centralize the Remote Monitoring Function of multiple Operators on the Network. To accommodate multiple operators and multiple bands per operator would require a very high optical data rate to the RRUs which is not achievable with prior art designs.
SUMMARY OF THE INVENTION
[005] The present invention substantially overcomes the limitations of the prior art discussed above. Accordingly, it is an object of the present invention to provide a high performance, cost-effective DAS system, architecture and method for an RRU-based approach which enables each of multiple operators to use multi-frequency bands. The present disclosure enables a RRU to be field reconfigurable, as presented in US Patent application US 61/172,642 (DW- 1016P), filed 4/24/2009, entitled Remotely Reconfigurable Power Amplifier System and Method, US Patent application US 12/108,502 (DW101 1 U), filed 4/23/2008, entitled Digital Hybrid Mode Power Amplifier System, US Patent application US 61/288,838 (DW1018P), filed 12/21/2009, entitled Multi-band Wideband Power Amplifier Digital Predistortion System, US Patent application US 61/288,840 (DW1019P), filed 12/21/2009, entitled Remote Radio Head Unit with Wideband Power Amplifier and Method, US Patent application US
61/288,844 (DW1020P), filed 12/21/2009, entitled Modulation Agnostic Digital Hybrid Mode Power Amplifier System, and US Patent application US
61/288,847 (DW1021 P), filed 12/21/2009, entitled High Efficiency Remotely Reconfigurable Remote Radio Head Unit System and Method for Wireless
Communications incorporated herein by reference. In addition, the system and method of the present invention supports multi-modulation schemes
(modulation-independent), multi-carriers, multi-frequency bands, and multichannels. To achieve the above objects, the present invention maximizes the data rate to the Remote Radio Head Unit in a cost effective architecture.
Figures 2 and 3 depict a low power RRU and high power RRU. The RRUs depicted in Figures 2 and 3 can be extended to a multi-band and multi-channel configuration. Multi-band implies more than two frequency bands and multichannel implies more than one output to an antenna system. Various
embodiments of the invention are disclosed. [006] An embodiment of the present invention utilizes a RRU Access
Module. The objective of the access module is to de-multiplex and multiplex high speed data to achieve aggregate data rates sufficient for operation of a plurality of RRU Band Modules which are geographically distributed. An alternative embodiment of the present invention utilizes the physical separation of the RRU Band Modules from the RRU Access Module using an optical fiber cable, Ethernet cables, RF cable and any other form of connection between the modules. In an alternative embodiment, a Remote Radio Unit comprised of one or more RRU Band Modules may be collocated with the antenna or antennas. In a further alternative embodiment, the RRU Access Module can also supply DC power on the interconnection cabling. In other aspects of the invention, control and measurement algorithms are implemented to permit improved network deployment, network management, and optimization.
[007] Applications of the present invention are suitable to be employed with all wireless base-stations, remote radio heads, distributed base stations, distributed antenna systems, access points, repeaters, distributed repeaters, optical repeaters, digital repeaters, mobile equipment and wireless terminals, portable wireless devices, and other wireless communication systems such as microwave and satellite communications. The present invention is also field upgradable through a link such as an Ethernet connection to a remote
computing center.
[008] Appendix I is a glossary of terms used herein, including acronyms.
THE FIGURES
[009] Further objects and advantages of the present invention can be more fully understood from the following detailed description taken in conjunction with the accompanying drawings in which:
[0010] Figure 1 [PRIOR ART] is a block diagram showing the basic structure of a prior art Distributed Wireless Base Station system. [0011] Figure 2 is a block diagram showing a multi-channel High Power
Remote Radio Head Unit according to one embodiment of the present invention.
[0012] Figure 3 is a block diagram multi-channel High Power Remote Radio Head Unit according to one embodiment of the present invention.
[0013] Figure 4 is a block diagram of a Remote Radio Head Unit high level system of the present invention.
[0014] Figure 5 is a block diagram of the Remote Radio Head Unit Access Module of the present invention.
[0015] Figure 6 is a Remote Radio Head Unit Band Module according to one embodiment of the present invention. DETAILED DESCRIPTION OF THE INVENTION
[0016] The present invention is a novel Distributed Antenna System that utilizes a high speed Remote Radio Head Unit Access Module interconnected with Remote Radio Head Unit Band Module.
[0017] An embodiment of a Remote Radio Head Unit in accordance with the invention is shown in Figure 2. Fiber 1 , indicated at 200A, is a high speed fiber cable that transports data between the BTS and the Remote Radio Head Unit. Fiber 2, indicated at 200B, is used to daisy chain other remote radio head units which are thereby interconnected to the BTS or DAU. The software-defined digital platform 216 performs baseband signal processing, typically in an FPGA or equivalent. Building block 203 is a Serializer/Deserializer. The deserializer portion extracts the serial input bit stream from the optical fiber 201 and converts it into a parallel bit stream. The serializer portion performs the inverse operation for sending data from the Remote Radio Head Unit to the BTS. In an
embodiment, the two distinct bit streams communicate with the BTS using different optical wavelengths over one fiber, although multiple fibers can be used in alternative arrangements. The deframer 204 deciphers the structure of the incoming bit stream and sends the deframed data to the Crest Factor Reduction Algorithm 209. The Crest Factor Reduction block 209 reduces the Peak-to- Average Ratio of the incoming signal so as to improve the Power amplifier DC- to-RF conversion efficiency. The waveform is then presented to the Digital Predistorter block 208. The digital predistorter compensates for the
nonlinearities of the Power Amplifier 221 in an adaptive feedback loop. Digital Upconverter 210 filters and digitally translates the deframed signal to an IF frequency. The Framer 204 takes the data from the two digital downconverters 206, 207 and packs it into a Frame for transmission to the BTS over the optical fiber 201 . Elements 21 1 and 212 are Analog to Digital converters that are used to translate the two analog receive signals into digital signals. The receiver comprises a diversity branch which contains a downconverter 217 and a Band Pass Filter 223. The main branch has a receiver path comprised of a duplexer 224 and a downconverter 218. In some embodiments, one or both
downconverters 217 and 218 can have an integral uplink low-noise amplifier.
[0018] The power amplifier has an output coupler for extracting a replica of the output signal in the feedback path. The feedback signal is frequency- translated by downconverter 219 to either an IF frequency or baseband and presented to an Analog to Digital converter 213. This feedback signal is used in an adaptive loop for performing Digital Predistortion to compensate for any nonlinearities created by the power amplifier. [0019] The Ethernet cable is used to locally communicate with the Remote
Radio Head Unit. Switch 226 is used to allow easy access to either the FPGA or the CPU. DC power converters 228 and 229 are used to obtain the desired DC voltages for the Remote Radio Head Unit. Either an external voltage can be connected directly into the RRU or the DC power may be supplied through the Ethernet cable.
[0020] Although the description of the instant embodiment is directed to an application where a second optical fiber connection provides a capability for daisy chaining to other Remote Radio Head Units, an alternative embodiment provides multiple optical fiber connections to support a modified "hybrid star" configuration for appropriate applications which dictate this particular optical transport network configuration. [0021] Figure 3 depicts a remote radio head unit. In at least some designs, this architecture offers benefits when the RF output power is relatively low. In the embodiment shown in Figure 3, digital predistrortion and crest factor reduction are not employed as was the case in Figure 2. Even though this topology shows a non-diversity configuration, a diversity receive branch can be added along with an additional transmitter path for development of a Multiple Input Multiple Output (MIMO) Remote Radio Head Unit.
[0022] The Remote Radio Head Unit high level system is shown in Figure 4.
It comprises a Remote Radio Head Unit Access Module 400 which
communicates directly with the BTS or DAU. The function of the Remote Radio Head Unit Access Module 400 is to route the high speed data (at any desired speed, e.g., such as 10 Gbps as illustrated in Fig. 4) (the "Data Speed) to the multiple Remote Radio Head Unit Band Modules and allows for local
communications with them via Ethernet. A backplane 401 is used to
interconnect the Remote Radio Head Unit Access Module 400 with the various Remote Radio Head Unit Band Modules 402,403,404,405 at any speed lower than the Data Speed (e.g., less than or equal to 3Gbps as illustrated in Fig. 4). The output ports of the Remote Radio Head Unit Band Modules are combined and sent to an antenna for transmission. An alternative embodiment is described as follows. Although the description of instant embodiment is directed to applications for up to four Remote Radio Head Unit Band Modules, an alternative embodiment involves feeding a much larger quantity of Remote Radio Head Unit Band Modules with signals of various bandwidths at various frequency bands covering multiple octaves of frequency range, to support a wide range of applications including location-based services, mobile internet, public safety communications, private enterprise telecommunications and broadband, and other wireless applications. The system can in theory support an infinite quantity of RRUs. Also, the Remote Radio Head Unit Band Modules may be set up remotely to have RF power values selected based on the specific desired applications as well as location-specific radio signal propagation factors. A further alternative embodiment leverages the flexibility of the architecture shown in Figure 4 to provide a capability known as Flexible Simulcast. With Flexible Simulcast, the amount of radio resources (such as RF carriers, CDMA codes or TDMA time slots) assigned to a particular RRU or group of RRUs by each RRU Access Module can be set via software control to meet desired capacity and throughput objectives or wireless subscriber needs.
[0023] The detailed topology of the Remote Radio Head Unit Access Module is shown in Figure 5. It comprises a Small form Factor Pluggable optic transceiver (SFP) 500 which operates on two distinct wavelengths, one for communicating from the BTS to the Remote Radio Head Unit Access Module and the other for communicating in the opposite direction. The SFP contains a Laser Diode for converting the electronic signal to an optical signal and an Optical detector for converting the optical signal into an electronic signal. A multiplexer/demultiplexer 501 converts the high speed data to multiple lower speed data paths for delivery to a FPGA 502. The multiplexer/demultiplexer 501 performs the opposite function when data is being sent back to the BTS or DAU. The framer/deframer 503 routes the data to the appropriate Remote Radio Head Unit Band Modules. An additional multiplexer/demultiplexer 506 allows for further expansion of lower speed Remote Radio Head Units. The number of Remote Radio Head units is only limited by the capability of the FPGA. Local communication with the Remote Radio Head Unit's Access Module's FPGA or the individual Remote Radio Head Unit Band Modules is via an Ethernet connection 508. Although the description of this embodiment is mainly directed to an application where a BTS or DAU (or multiple BTS or DAU) feeds the Remote Radio Head Unit Access Module, an alternative embodiment is described as follows. The alternative embodiment is one where the digital optical signals fed to the Remote Radio Head Unit Access Module may be generated by an RF-to-Digital interface which receives RF signals by means of one or more antennas directed to one or more base stations located at some distance from the Remote Radio Head Unit Access Module. A further alternative embodiment is one where the digital signals fed to the Remote Radio Head Unit Access Module may be generated in a combination of ways; some may be generated by an RF-to-Digital interface and some may be generated by a BTS or DAU. Some neutral host applications gain an advantage with regard to cost-effectiveness from employing this further alternative embodiment. Although the optical signals fed to the Remote Radio Head Unit Access Module described in the preferred and alternative embodiments are digital, the optical signals are not limited to digital, and can be analog or a combination of analog and digital. A further alternative embodiment employs transport on one or multiple optical wavelengths fed to the Remote Radio Head Unit Access Module. [0024] The Remote Radio Head Unit Band Module is shown in Figure 6. It comprises a Software Defined Digital (SDD) section 610 and an RF section 622. An alternative embodiment employs a Remote Antenna Unit comprising a broadband antenna with RRU Band Module Combiner and multiple plug-in module slots, into which multiple RRU Band Modules intended for operation in different frequency bands are inserted. To provide an overall compact unit with low visual impact, this embodiment employs RRU Band Modules which each have a physically small form factor. One example of a suitably small form factor for the RRU Band Module is the PCMCIA module format. A further alternative emobidment employs RRU Band Modules where each has an integral antenna, and the embodiment does not require a common antenna shared by multiple RRU Band Modules.
[0025] In summary, the Neutral Host Distributed Antenna System (NHDAS) of the present invention enables the use of remote radio heads for multi-operator multi-band configurations, which subsequently saves hardware resources and reduces costs. The NHDAS system is also reconfigurable and remotely field- programmable since the algorithms can be adjusted like software in the digital processor at any time.
[0026] Moreover, the NHDAS system is flexible with regard to being able to support various modulation schemes such as QPSK, QAM, OFDM, etc. in CDMA, TD-SCDMA, GSM, WCDMA, CDMA2000, LTE and wireless LAN systems. This means that the NHDAS system is capable of supporting multi- modulation schemes, multi-bands and multi-operators.
[0027] Although the present invention has been described with reference to the preferred embodiments, it will be understood that the invention is not limited to the details described thereof. Various substitutions and modifications have been suggested in the foregoing description, and others will occur to those of ordinary skill in the art. Therefore, all such substitutions and modifications are intended to be embraced within the scope of the invention as defined in the appended claims. APPENDIX I
Glossary of Terms ACLR Adjacent Channel Leakage Ratio
ACPR Adjacent Channel Power Ratio
ADC Analog to Digital Converter
AQDM Analog Quadrature Demodulator
AQM Analog Quadrature Modulator
AQDMC Analog Quadrature Demodulator Corrector
AQMC Analog Quadrature Modulator Corrector
BPF Bandpass Filter
CDMA Code Division Multiple Access
CFR Crest Factor Reduction
DAC Digital to Analog Converter
DET Detector
DHMPA Digital Hybrid Mode Power Amplifier
DDC Digital Down Converter
DNC Down Converter
DPA Doherty Power Amplifier
DQDM Digital Quadrature Demodulator
DQM Digital Quadrature Modulator
DSP Digital Signal Processing
DUC Digital Up Converter
EER Envelope Elimination and Restoration
EF Envelope Following
ET Envelope Tracking EVM Error Vector Magnitude
FFLPA Feedforward Linear Power Amplifier
FIR Finite Impulse Response
FPGA Field-Programmable Gate Array
GSM Global System for Mobile communications l-Q ln-phase / Quadrature
IF Intermediate Frequency
LINC Linear Amplification using Nonlinear Components
LO Local Oscillator
LPF Low Pass Filter
MCPA Multi-Carrier Power Amplifier
MDS Multi-Directional Search
OFDM Orthogonal Frequency Division Multiplexing
PA Power Amplifier
PAPR Peak-to-Average Power Ratio
PD Digital Baseband Predistortion
PLL Phase Locked Loop
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RF Radio Frequency
RRH Remote Radio Head
RRU Remote Radio Head Unit
SAW Surface Acoustic Wave Filter
UMTS Universal Mobile Telecommunications System
UPC Up Converter
WCDMA Wideband Code Division Multiple Access
WLAN Wireless Local Area Network

Claims

We claim:
1. A remotely reconfigurable remote radio head unit for transporting radio signals comprising
at least one remotely reconfigurable access module adapted to receive uplink radio frequency signals, to output downlink radio frequency signals, and further adapted to receive reconfiguration parameters from a remote location,
one or more band modules, each band module having separately reconfigurable parameters in response to signals received from the access module, and
an interface adapted to provide electrical and mechanical connection for mounting the one or more band modules for providing bidirectional communication between the at least one access module and the one or more band modules.
2. The remotely reconfigurable remote radio head unit of claim 1 wherein the separately reconfigurable parameters comprise at least one of a group comprising operator, frequency, and carrier.
3. The remotely reconfigurable remote radio head unit of claim 2 wherein each band module further comprises a field programmable gate array for storing the reconfigurable parameters for that band module.
4. The remotely reconfigurable remote radio head unit of claim 1 wherein each band module further comprises a framer, deframer, serializer, and
deserializer.
5. The remotely reconfigurable remote radio head unit of claim 1 wherein each band module further comprises one or more power amplifiers.
6. The remotely reconfigurable remote radio head unit of claim 1 wherein the band module further comprises one or more digital predistorters.
EP11818694.9A 2010-08-17 2011-08-16 Neutral host architecture for a distributed antenna system Withdrawn EP2606435A4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20160422.0A EP3681111A1 (en) 2010-08-17 2011-08-16 Remotely reconfigurable remote radio head unit

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US37459310P 2010-08-17 2010-08-17
US38283610P 2010-09-14 2010-09-14
US12/928,931 US8804870B2 (en) 2009-12-21 2010-12-21 Modulation agnostic digital hybrid mode power amplifier system and method
US12/928,933 US8730786B2 (en) 2009-12-21 2010-12-21 Remote radio head unit system with wideband power amplifier and method
US12/928,934 US8351877B2 (en) 2010-12-21 2010-12-21 Multi-band wideband power amplifier digital predistorition system and method
US12/928,943 US8542768B2 (en) 2009-12-21 2010-12-21 High efficiency, remotely reconfigurable remote radio head unit system and method for wireless communications
US201161439940P 2011-02-07 2011-02-07
PCT/US2011/047995 WO2012024343A1 (en) 2010-08-17 2011-08-16 Neutral host architecture for a distributed antenna system
US13/211,236 US8848766B2 (en) 2010-08-17 2011-08-16 Neutral host architecture for a distributed antenna system
US13/211,243 US8682338B2 (en) 2010-09-14 2011-08-16 Remotely reconfigurable distributed antenna system and methods
US13/211,247 US8737300B2 (en) 2006-12-26 2011-08-16 Daisy-chained ring of remote units for a distributed antenna system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP20160422.0A Division EP3681111A1 (en) 2010-08-17 2011-08-16 Remotely reconfigurable remote radio head unit

Publications (2)

Publication Number Publication Date
EP2606435A1 true EP2606435A1 (en) 2013-06-26
EP2606435A4 EP2606435A4 (en) 2017-05-10

Family

ID=45605420

Family Applications (3)

Application Number Title Priority Date Filing Date
EP11818697.2A Active EP2606576B1 (en) 2010-08-17 2011-08-16 Daisy-chained ring of remote units for a distributed antenna system
EP11818694.9A Withdrawn EP2606435A4 (en) 2010-08-17 2011-08-16 Neutral host architecture for a distributed antenna system
EP20160422.0A Withdrawn EP3681111A1 (en) 2010-08-17 2011-08-16 Remotely reconfigurable remote radio head unit

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP11818697.2A Active EP2606576B1 (en) 2010-08-17 2011-08-16 Daisy-chained ring of remote units for a distributed antenna system

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP20160422.0A Withdrawn EP3681111A1 (en) 2010-08-17 2011-08-16 Remotely reconfigurable remote radio head unit

Country Status (2)

Country Link
EP (3) EP2606576B1 (en)
WO (2) WO2012024349A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8811917B2 (en) 2002-05-01 2014-08-19 Dali Systems Co. Ltd. Digital hybrid mode power amplifier system
US8380143B2 (en) 2002-05-01 2013-02-19 Dali Systems Co. Ltd Power amplifier time-delay invariant predistortion methods and apparatus
CN104202279A (en) 2006-12-26 2014-12-10 大力系统有限公司 Method and system for baseband predistortion linearization in multi-channel wideband communication systems
US8346091B2 (en) 2009-04-29 2013-01-01 Andrew Llc Distributed antenna system for wireless network systems
CN103180844B (en) 2010-08-17 2017-10-03 大力系统有限公司 Neutral host architecture for distributing antenna system
US8682338B2 (en) 2010-09-14 2014-03-25 Dali Systems Co., Ltd. Remotely reconfigurable distributed antenna system and methods
EP2640072A1 (en) * 2012-03-13 2013-09-18 Alcatel Lucent International System and method for transmitting a video signal
US10506454B2 (en) * 2012-07-31 2019-12-10 Dali Systems Co., Ltd. Optimization of traffic load in a distributed antenna system
DE202013012858U1 (en) 2012-08-09 2021-05-07 Axel Wireless Ltd. Capacity-centered digital distributed antenna system
CN102917370B (en) * 2012-10-19 2015-02-18 京信通信系统(中国)有限公司 Method, device and system for determining corresponding near-end unit of far-end unit and far-end unit
US8908607B2 (en) 2012-10-31 2014-12-09 Andrew Llc Digital baseband transport in telecommunications distribution systems
US9955361B2 (en) 2013-02-26 2018-04-24 Dali Systems Co., Ltd. Method and system for WI-FI data transmission
KR102116539B1 (en) 2013-09-06 2020-05-29 주식회사 케이엠더블유 Remote radio head
JP6315938B2 (en) * 2013-10-15 2018-04-25 三菱電機株式会社 Optical transmission equipment
US9847816B2 (en) 2013-12-19 2017-12-19 Dali Systems Co. Ltd. Digital transport of data over distributed antenna network
US10284296B2 (en) 2014-02-13 2019-05-07 Dali Systems Co. Ltd. System and method for performance optimization in and through a distributed antenna system
WO2016049002A1 (en) 2014-09-23 2016-03-31 Axell Wireless Ltd. Automatic mapping and handling pim and other uplink interferences in digital distributed antenna systems
AU2015371287A1 (en) 2014-12-23 2017-06-08 Axell Wireless Ltd. Harmonizing noise aggregation and noise management in distributed antenna system
KR101793887B1 (en) 2015-08-03 2017-11-06 (주)에이디알에프코리아 Distributed Antenna System Interface Tray
CN105656589B (en) * 2015-12-30 2018-05-22 三维通信股份有限公司 The adaptive approach of 6.5G/10G optical fiber rate in a kind of DAS system
KR101791636B1 (en) 2016-03-28 2017-10-30 주식회사 쏠리드 Base station signal matching device, base station interface unit and distributed antenna system comprising the same
CN109845394B (en) 2016-05-12 2022-04-12 大力系统有限公司 Redundancy in public safety distributed antenna systems
KR102054180B1 (en) 2016-11-29 2020-01-22 한국전자통신연구원 Host device and remote radio head device for distributed antenna system supporting large data traffic
KR102478166B1 (en) 2016-11-29 2022-12-16 한국전자통신연구원 Host device and radio device for distributed antenna system supporting large data traffic
KR101877004B1 (en) * 2017-09-29 2018-07-10 주식회사 쏠리드 Openflow based distributed antenna system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5880863A (en) * 1996-02-13 1999-03-09 Gte Laboratories Incorporated Reconfigurable ring system for the transport of RF signals over optical fibers
US7016332B2 (en) * 2000-12-05 2006-03-21 Science Applications International Corporation Method and system for a remote downlink transmitter for increasing the capacity of a multiple access interference limited spread-spectrum wireless network
US7127175B2 (en) * 2001-06-08 2006-10-24 Nextg Networks Method and apparatus for multiplexing in a wireless communication infrastructure
US6882833B2 (en) * 2002-02-22 2005-04-19 Blue7 Communications Transferring data in a wireless communication system
AU2002354295A1 (en) * 2002-12-24 2004-07-22 Pirelli And C. S.P.A. Radio base station receiver having digital filtering and reduced sampling frequency
JP4093937B2 (en) * 2003-08-21 2008-06-04 富士通株式会社 Optical transmission system
SE0302596D0 (en) * 2003-09-30 2003-09-30 Ericsson Telefon Ab L M Improvements in or relating to base stations
EP1750376B1 (en) * 2004-06-14 2015-10-21 Panasonic Intellectual Property Management Co., Ltd. Radio communication device
CN100426897C (en) * 2005-01-12 2008-10-15 华为技术有限公司 Separated base station system and its networking method and baseband unit
US20070274279A1 (en) * 2005-12-19 2007-11-29 Wood Steven A Distributed antenna system employing digital forward deployment of wireless transmit/receive locations
US7813451B2 (en) * 2006-01-11 2010-10-12 Mobileaccess Networks Ltd. Apparatus and method for frequency shifting of a wireless signal and systems using frequency shifting
US7599711B2 (en) * 2006-04-12 2009-10-06 Adc Telecommunications, Inc. Systems and methods for analog transport of RF voice/data communications
JP4981494B2 (en) * 2006-05-30 2012-07-18 株式会社日立国際電気 Wireless communication system and overhang station apparatus
US20080045254A1 (en) * 2006-08-15 2008-02-21 Motorola, Inc. Method and Apparatus for Maximizing Resource Utilization of Base Stations in a Communication Network
KR101503548B1 (en) * 2007-04-23 2015-03-24 달리 시스템즈 씨오. 엘티디. digital hybrid mode power amplifier system
US8369809B2 (en) * 2007-07-27 2013-02-05 Netlogic Microsystems, Inc. Crest factor reduction
EP2387841B1 (en) * 2009-01-13 2019-08-28 CommScope Technologies LLC Systems and methods for improved digital rf transport in distributed antenna systems
US10850208B2 (en) 2018-03-29 2020-12-01 T. Dashon Howard Systems and methods for transcendental lighting applications

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2012024343A1 *

Also Published As

Publication number Publication date
EP3681111A1 (en) 2020-07-15
EP2606435A4 (en) 2017-05-10
WO2012024349A1 (en) 2012-02-23
WO2012024343A1 (en) 2012-02-23
EP2606576B1 (en) 2024-01-17
EP2606576A4 (en) 2017-09-20
EP2606576A1 (en) 2013-06-26

Similar Documents

Publication Publication Date Title
US20220295454A1 (en) Neutral host architecture for a distributed antenna system
KR101662879B1 (en) Neutral host architecture for a distributed antenna system
EP2606435A1 (en) Neutral host architecture for a distributed antenna system
US11277172B2 (en) Digital transport of data over distributed antenna network
EP2749123B1 (en) Software configurable distributed antenna system and method for reducing uplink noise
US9106453B2 (en) Remote radio head unit system with wideband power amplifier and method
US20200145060A1 (en) Network switch for a distributed antenna network

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130225

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
RA4 Supplementary search report drawn up and despatched (corrected)

Effective date: 20170411

RIC1 Information provided on ipc code assigned before grant

Ipc: H04L 12/64 20060101ALI20170405BHEP

Ipc: H04W 88/10 20090101ALI20170405BHEP

Ipc: H04W 88/08 20090101AFI20170405BHEP

Ipc: H04L 29/08 20060101ALI20170405BHEP

17Q First examination report despatched

Effective date: 20180213

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20200303