EP2604346B1 - Grinding facility - Google Patents

Grinding facility Download PDF

Info

Publication number
EP2604346B1
EP2604346B1 EP11306684.9A EP11306684A EP2604346B1 EP 2604346 B1 EP2604346 B1 EP 2604346B1 EP 11306684 A EP11306684 A EP 11306684A EP 2604346 B1 EP2604346 B1 EP 2604346B1
Authority
EP
European Patent Office
Prior art keywords
separator
grinding
mill
ground
workshop
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11306684.9A
Other languages
German (de)
French (fr)
Other versions
EP2604346A1 (en
Inventor
Didier Dumont
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holcim Technology Ltd
Original Assignee
Lafarge SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to EP11306684.9A priority Critical patent/EP2604346B1/en
Application filed by Lafarge SA filed Critical Lafarge SA
Priority to JP2014546403A priority patent/JP2015501720A/en
Priority to CA2859455A priority patent/CA2859455C/en
Priority to PCT/EP2012/074029 priority patent/WO2013087421A1/en
Priority to EP12791794.6A priority patent/EP2790837B1/en
Priority to US14/365,041 priority patent/US9114401B2/en
Priority to ES12791794T priority patent/ES2744251T3/en
Priority to CN201280061343.8A priority patent/CN103998136B/en
Publication of EP2604346A1 publication Critical patent/EP2604346A1/en
Application granted granted Critical
Publication of EP2604346B1 publication Critical patent/EP2604346B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C17/00Disintegrating by tumbling mills, i.e. mills having a container charged with the material to be disintegrated with or without special disintegrating members such as pebbles or balls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C21/00Disintegrating plant with or without drying of the material
    • B02C21/007Disintegrating plant with or without drying of the material using a combination of two or more drum or tube mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/10Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone
    • B02C23/12Separating or sorting of material, associated with crushing or disintegrating with separator arranged in discharge path of crushing or disintegrating zone with return of oversize material to crushing or disintegrating zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B02CRUSHING, PULVERISING, OR DISINTEGRATING; PREPARATORY TREATMENT OF GRAIN FOR MILLING
    • B02CCRUSHING, PULVERISING, OR DISINTEGRATING IN GENERAL; MILLING GRAIN
    • B02C23/00Auxiliary methods or auxiliary devices or accessories specially adapted for crushing or disintegrating not provided for in preceding groups or not specially adapted to apparatus covered by a single preceding group
    • B02C23/08Separating or sorting of material, associated with crushing or disintegrating
    • B02C23/14Separating or sorting of material, associated with crushing or disintegrating with more than one separator

Definitions

  • the present invention relates to the field of grinding, and in particular the grinding of raw materials used for the manufacture of hydraulic binders.
  • the present invention relates to a grinding plant having particular characteristics, to a cement plant or grinding mill comprising this plant, to a use of this plant and to processes using this plant.
  • the grinding of different raw materials is known, as well as equipment and facilities for grinding different raw materials.
  • An example of a two-step clinker grinding process using two grinders and a single separator common to both grinders is described in the document DE 42 24 704 A1 .
  • the needs for grinding are changing, and it is particularly useful to grind different materials more and more finely, especially in the field of hydraulic binders.
  • the fineness of a material can be characterized by a curve called particle size curve, which represents the evolution of the volume percentage of the particles as a function of the average particle size.
  • a granulometric curve generally has a shape of the Gaussian curve type, that is to say a bell-shaped curve.
  • a grain size curve increases to a maximum volume percentage and then decreases.
  • a granulometric curve is more or less spread around the average particle size which corresponds to the maximum volume percentage.
  • a particle size curve is said to be centered when it is not spread out on either side of the average particle size which corresponds to the maximum volume percentage.
  • the spread of a grain size curve can for example be evaluated by the slope of Rosin Rammler (nRR).
  • the slope of Rosin Rammler can be determined by plotting a curve representing the logarithmic evolution of sieve rejection as a function of particle size. The curve obtained is almost a straight line. The slope of this line is the slope of Rosin Rammler.
  • a typical grain size curve has a Rosin Rammler slope of 0.8 to 1.1.
  • a Rosin Rammler slope greater than or equal to 1.2 would be more satisfactory.
  • the problem to be solved by the invention is to provide a new means for grinding at least one material, and in particular a material used for the manufacture of hydraulic binders, to obtain a ground material having a higher Rosin Rammler slope. or 1.2, preferably the highest possible, and a Blaine specific surface greater than or equal to 7000 cm 2 / g.
  • a grinding plant comprising a first grinder associated with a first separator, and a second separator associated with a second mill, the radial velocity and the tangential velocity of the first and second separators being chosen so that the final milled material has a Blaine specific surface greater than or equal to 7000 cm 2 / g and also a Rosin Rammler slope greater than or equal to 1.2.
  • a separator comprises a fixed cylindrical chamber of vertical axis, in which are arranged a cage and blades.
  • the blades are arranged around the cage in a circle. They extend over the entire height of the cage.
  • the cage comprises blades secured between a solid bottom disk and a hollow top disk. Each blade is oriented radially and extends in a substantially vertical direction over the entire height of the cage.
  • the space between the blades of the cage and the blades is called the area of selection.
  • the space between the cylindrical chamber and the blades is called the gas supply zone and particles of a material to be separated.
  • a separator is traversed by a gas which allows in particular to transport the particles of a material to be separated.
  • the cage is a cylinder, having a height and a diameter, which turns on itself along its vertical axis.
  • the blades are fixed, that is to say they do not rotate around the vertical axis of the cage.
  • the blades are rotatable on themselves to adjust the speed of the gas relative to the rotational speed of the cage.
  • the gas that transports the material to be separated arrives from the bottom of the separator into the feed zone and rises vertically. It is deflected by the blades, so as to cross the selection zone and reach the blades of the cage in a radial motion, then resume its vertical upward movement in the center of the cage.
  • the radial velocity is the velocity of displacement, through the separation zone of the separator, of the gas used to transport the particles of the material to be separated.
  • the radial velocity is expressed in meters per second.
  • the radial velocity can be calculated according to a method known to those skilled in the art, knowing the height and the diameter of the cage (and therefore its exchange surface) and the flow rate of the gas.
  • the tangential velocity is the rotational speed at the periphery of the separator cage which transmits a centrifugal force to the particles of the material to be separated.
  • the tangential velocity is expressed in meters per second.
  • the tangential velocity can be calculated according to a method known to those skilled in the art, knowing the diameter of the cage and its rotational speed in revolutions per minute.
  • the invention has the advantage of being used in the building industry, the cement industry, or in grinding stations.
  • the grinding plant according to the present invention comprises two workshops, which can be interconnected or separated by intermediate storage means. Both workshops may be on the same site or on separate sites. On the other hand, the two workshops of the grinding plant according to the present invention can operate simultaneously or deferred. They can operate at the same material flow rate or at different flow rates.
  • the plant according to the present invention is an installation capable of producing ultrafine materials at an industrial flow rate.
  • the first separator operates at a tangential velocity of 10 to 25 m / s and a radial velocity of 3.5 to 4.5 m / s.
  • the second separator operates at a tangential speed of 25 to 45 m / s and a radial velocity of 3 to 3.5 m / s.
  • the first and second mills can be any known mill, for example a ball mill or a compression mill.
  • a ball mill generally comprises a cylindrical enclosure in which the material to be ground is placed, the enclosure having a length L and a diameter D.
  • the second mill (21) is a ball mill comprising a cylindrical enclosure having a length L, a diameter D and an L / D ratio less than or equal to 2.5, L and D being expressed in the same unit.
  • the length / diameter ratio (L / D) of the enclosure of the second mill is preferably less than or equal to 2, more preferably less than or equal to 1.5.
  • the L / D ratio is greater than or equal to 0.65.
  • the balls have an average diameter of 18 to 20 mm.
  • the invention also relates to a cement plant comprising a grinding plant according to the present invention connected to an inlet of a cement kiln.
  • the invention also relates to a grinding workshop comprising a grinding plant according to the present invention connected to an input of a storage means.
  • the invention also relates to a use of a grinding plant according to the present invention to obtain a final ground material having a Rosin Rammler slope greater than or equal to 1.2.
  • the material to be ground is preferably a material useful for the manufacture of a hydraulic binder or a hydraulic composition.
  • the material to be ground is preferably a clinker, a hydraulic binder (for example a cement) or a mineral addition (for example a slag, a fly ash, a pozzolan or limestone).
  • a hydraulic binder for example a cement
  • a mineral addition for example a slag, a fly ash, a pozzolan or limestone.
  • a clinker is generally the product obtained after firing (the clinkerization) of a mixture (the raw material) comprising limestone and for example clay.
  • a hydraulic binder includes any compound that takes and cures by hydration reaction.
  • the hydraulic binder is a cement.
  • a cement generally comprises at least one clinker and calcium sulphate.
  • the clinker may in particular be a Portland clinker.
  • the mineral additions are generally, for example, fly ash (for example as defined in the standard "Cement” NF EN 197-1 of February 2001 paragraph 5.2.4 or as defined in the standard “Concrete” EN 450), pozzolanic materials (for example as defined in the "Cement” standard NF EN 197-1 of February 2001 paragraph 5.2.3), silica fumes (for example as defined in the "Cement” standard NF EN 197-1 February 2001 paragraph 5.2.7 or as defined in the "Concrete” standard prEN 13263: 1998 or NF P 18-502), slags (for example as defined in the standard "Cement” NF EN 197-1 paragraph 5.2.2 or as defined in the "Concrete” standard NF P 18-506), calcined schists (for example as defined in the "Cement” standard NF EN 197-1 of February 2001, paragraph 5.2.5), calcareous additions (for example as defined in the standard "Cement” NF EN 197-1 paragraph 5.2.6 or as defined in the standard "Concrete”
  • the fineness of the final ground material can be expressed in terms of Dv97, Dv80 or Blaine surface area.
  • the Dv97 (by volume) generally is the 97 th percentile of the distribution of particle size, that is to say that 97% of particles have a size less than or equal to the Dv97 and 3% larger than the Dv97.
  • the DV80 (by volume) generally is the 80 th percentile of the distribution of particle size, that is to say that 80% of particles have a size less than or equal to DV80 and 20% are larger at Dv80.
  • Dv97 and Dv80 can be determined by laser particle size for particles smaller than 200 ⁇ m, or by preliminary sieving for particles larger than 200 ⁇ m.
  • a laser granulometry apparatus generally comprises a prior treatment equipment of the material to be analyzed, which makes it possible to disaggregate the particles of the material.
  • the deagglomeration is made by ultrasound in a liquid way (for example in ethanol). When the particles have a tendency to agglomeration, it is recommended to vary the duration of the ultrasound to ensure dispersion or to change the nature of the dispersing liquid.
  • the Blaine surface area is determined according to EN 196-6 of August 1990, paragraph 4.
  • the Blaine surface area of the final ground material is preferably 7000 to 10000 cm 2 / g.
  • the Rosin Rammler slope of the final ground material is 1.2 to 1.6, more preferably 1.3 to 1.5.
  • the grinding plant and the method according to the present invention may for example make it possible to obtain the hydraulic binders as described in the French patent application no. 06/04398 , 07/06703 , 09/01364 and 11/50676 .
  • the different materials to be ground can be ground together or separately.
  • the grinding method according to the present invention is based on a separate grinding of the materials so as to optimize grinding for each of the materials.
  • Known grinding processes are co-grinding processes, which pose particular problems in terms of management of the respective fineness of each material to be ground.
  • a mixture of two materials having different grindability does not make it possible to obtain a ground mixture with satisfactory fineness, or even optimum fineness, for each material. Indeed, the easiest material to grind can be ground more finely than desired, while the less grindable material can be ground more coarsely than desired.
  • a separate grinding may allow grinding to the desired fineness for each material.
  • a separate grinding can make it possible to produce custom compositions with a controlled nature, quantity and size of the different materials.
  • several grinding plants according to the present invention can be used on the same site to grind each material separately.
  • the grinding of step (i) is an operation during which the materials are ground separately.
  • the invention also relates to a ball mill comprising a cylindrical chamber having a length L, a diameter D and an L / D ratio less than or equal to 2.5, L and D being expressed in the same unit.
  • the grinding plant includes a first workshop and a second workshop.
  • the first workshop comprises a first mill 11, a first separator 12 and a first filter 13.
  • the second workshop comprises a second mill 21, a second separator 22 and a second filter 23.
  • the first mill 11 is fed with material to be milled via a mill. first conveyor means 31.
  • An outlet of the first mill 11 is connected to an inlet of the first separator 12 by a second conveying means 32.
  • a first outlet of the first separator 12 is connected to an inlet of the first mill 11 by a third means of Conveying 33.
  • a second output of the first separator 12 is connected to an input of the first filter 13 by a fourth conveying means 34.
  • An output of the first filter 13 is connected to an input of the second separator 22 by a fifth conveying means 35.
  • a first output of the second separator 22 is connected to an input of the second filter 23 by a sixth conveying means 36.
  • An output of the filter 23 is connected to a means by a seventh conveying means 37.
  • a second output of the second separator 22 is connected to an inlet of the second mill 21 by an eighth conveying means 38.
  • An output of the second mill 21 is connected to the inlet of the second separator 22 by a ninth conveying means 39.
  • the conveyor means may be any known conveying means, and for example a conveyor belt, a worm or a truck.
  • the raw material is crushed in the first crusher 11 to provide a first milled material.
  • the first ground material is separated in the first separator 12 to provide a first fine fraction and a first coarse fraction.
  • the first coarse fraction is then milled in the first mill 11.
  • the first filter 13 is fed by the first fine fraction.
  • the filtering performed by the first filter 13 makes it possible to filter the transport gas from the first separator 12 to provide a first filtered fine fraction.
  • the first filtered fine fraction is separated in the second separator 22 to provide a second fine fraction and a second coarse fraction.
  • the second filter 23 is fed by the second fine fraction.
  • the filtering performed by the second filter 23 makes it possible to filter the transport gas from the second separator 22 to provide a second filtered fine fraction.
  • the second filtered fine fraction is stored in the storage means 42.
  • the second coarse fraction is milled in the second mill 21 to provide a second milled material.
  • the second milled material is separated in the second separator 22.
  • the grinding plant may further comprise a storage means 41, which may be a silo, located between the first filter 13 and the second separator 22.
  • the output of the first filter 13 is connected to an input of the means of storage 41 by a tenth conveying means 40.
  • An outlet of the storage means 41 is connected to the inlet of the second separator 22 by the fifth conveying means 35.
  • the filtered first fine fraction is stored in the storage means 41. This may especially be true when the two workshops do not work at the same time, do not operate at the same rate or are not on the same site. In the latter case, the fifth and / or the tenth conveying means 35, 40 is a truck.
  • the raw material to be ground may have a particle size of less than or equal to 50 mm.
  • the first filtered fine fraction may have a particle size of less than or equal to 63 ⁇ m, a Blaine specific surface area of about 3960 cm 2 / g and a Rosin Rammler slope of about 1.02.
  • the second filtered fine fraction may have a particle size of less than or equal to 20 ⁇ m, a Blaine specific surface area of about 8000 cm 2 / g and a Rosin Rammler slope of greater than or equal to 1.2.
  • the flow rate of the first filtered fine fraction provided by the first filter 13 may be about 100 t / h.
  • the flow rate of the second filtered fine fraction supplied by the second filter 23 may be about 50 t / h.
  • the separator 5 comprises a fixed enclosure 18 of vertical axis in which are arranged vertically a cage 9 and blades 17.
  • the vanes 17 are arranged around the cage 9 in a circle. They extend over the entire height of the cage 9.
  • the cage 9 comprises blades 43 fixed between a solid lower disk and a hollow top disc 44. Each blade 43 is oriented radially and extends in a substantially vertical direction over any the height of the cage 9. The blades 43 do not meet in the center of the cage 9.
  • a selection zone 15 corresponds to the space between the blades 43 of the cage 9 and the blades 17.
  • a feeding zone 6 in gas and particles of a material to be separated corresponds to the space between the cylindrical chamber 18 and the blades 17.
  • the feed zone 6 is connected to a gas supply means and particles of a material to separate (not shown).
  • the cage 9 rotates about its vertical axis D in the direction indicated by the arrow 19. This rotation creates a tangential speed represented by the arrow 20.
  • the blades 17 are fixed, that is to say they do not rotate about the vertical axis D of the cage 9.
  • the vanes 17 are rotatable, by rotation on themselves, in order to adjust the speed of the gas with respect to the speed of rotation of the cage 9.
  • the gas transporting the particles of the material to be separated arrives at the bottom of the separator via the unrepresented supply means and rises substantially vertically in the feed zone 6.
  • the gas that transports the particles of the material to be separated in the feed zone 6 induces the radial velocity.
  • the tangential velocity is set by the speed of rotation of the cage 9 of the separator.
  • the combination of radial and tangential velocities defines the cutting mesh and the fineness of the final milled material.
  • the small enough particles are driven by the gas and then rise substantially vertically with the gas. These particles then circulate in a conveying means (not shown), which is generally connected to a suction means and a storage means.
  • the too large particles fall into the selection zone 15 under the action of gravity and circulate in a not shown conveying means, which is generally connected to a mill.
  • Test 1 was carried out under the conditions described below.
  • the material to be ground was a CEM I 52.5 N type cement from the Lafarge cement plant in Saint Pierre La Cour.
  • the milling plant comprised a first mill comprising a first ball mill and a first separator, an outlet of the first mill being connected to an inlet of the first separator; and a second workshop comprising a second separator and a second ball mill, an output of the second separator being connected to an input of the second mill; the second separator being fed with the material from the first separator.
  • the first crusher had two compartments.
  • the first compartment of the first mill had a ball fill rate of 30% by volume and included balls having a diameter of 60 to 90 mm.
  • the second compartment of the first mill had a ball fill rate of 32% in volume and included balls having a diameter of 20 to 50 mm.
  • the second mill had a compartment having a ball fill rate of 24% by volume and comprising balls having a diameter of 18 to 20 mm.
  • the cement obtained after passing through the first mill had a Blaine surface area of 3500 cm 2 / g.
  • the cement obtained after passing through the second mill had the characteristics shown in Table 1 below.
  • Test 2 was carried out under the conditions described below.
  • the material to be ground was a CEM I 52.5 N type cement from the Lafarge cement plant in Saint Pierre La Cour.
  • the milling plant comprised a first mill comprising a first ball mill and a first separator, an outlet of the first mill being connected to an inlet of the first separator; and a second workshop comprising a second separator and a second ball mill, an output of the second separator being connected to an input of the second mill; the second separator being fed with the material from the first separator.
  • the first crusher had two compartments.
  • the first compartment of the first mill had a ball fill rate of 30% by volume and included balls having a diameter of 60 to 90 mm.
  • the second compartment of the first mill had a ball fill rate of 32% by volume and included balls having a diameter of 20 to 50 mm.
  • the second mill had a compartment having a ball fill rate of 24% by volume and comprising balls having a diameter of 18 to 20 mm.
  • the cement obtained after passing through the first mill had a Blaine surface area of 3500 cm 2 / g.
  • the cement obtained after passing through the second mill had the characteristics shown in Table 1 below.
  • Test 3 was carried out under the conditions described below.
  • the material to be crushed was a CEM I 52.5 R type cement from the Lafarge cement plant in La Couronne.
  • the grinding plant included a ball mill and separator plant, with a mill outlet connected to an inlet of the separator.
  • the crusher had two compartments.
  • the first crusher compartment had a ball fill rate of 30% by volume and included balls having a diameter of 60 to 90 mm.
  • the second mill compartment had a ball fill rate of 32% by volume and included balls having a diameter of 20 to 50 mm.
  • the cement obtained after passing through the mill had the characteristics presented in Table 1 below.
  • the first separator had a tangential velocity of 15 to 25 m / s and a radial velocity of 3.5 to 5 m / s, which corresponded to the speeds defined according to the invention.
  • Table 1 Table 1 ⁇ / b>: Comparison of different milling plants Test 1 Test 2 Test 3 Tangential velocity of the first separator 15 to 25 m / s 15 to 25 m / s - Radial velocity of the first separator 3.5 to 5 m / s 3.5 to 5 m / s - Tangential velocity of the second separator 30.4 m / s 29.3 m / s 25.0 m / s Radial velocity of the second separator 3.5 m / s 3.5 m / s 3.9 m / s Blaine specific surface of the final crushed cement 9,300 cm 2 / g 8,400 cm 2 / g 4,400 cm 2 / g NRR slope of the final crushed cement 1.50 1.39 0.
  • nRR is the slope of Rosin Rammler.
  • Test 1 and Test 2 each had two grinding steps and tangential and radial speeds for the first and second separators corresponding to those defined according to the invention (for the first separator, a tangential velocity of 15 to 25 m / s and a radial velocity of 3.5 to 5 m / s, for the second separator respectively a tangential velocity of 30.4 m / s and a radial velocity of 3.5 m / s; s for Test 1, and a tangential velocity of 29.3 m / s and a radial velocity of 3.5 m / s for Test 2).
  • Test 1 and Test 2 made it possible to obtain a ground material having a Blaine surface area greater than or equal to 7000 cm 2 / g (respectively 9300 cm 2 / g for Test 1 and 8400 cm 2 / g for Test 2) and having a slope nRR greater than or equal to 1.2 (respectively 1.50 for Test 1 and 1.39 for Test 2).
  • Test 3 had a single grinding step. It was not possible to obtain a crushed material having a Blaine surface area greater than or equal to 7000 cm 2 / g (4400 cm 2 / g) and having a slope nRR greater than or equal to 1.2 (0.97) with Test 3.
  • the ball mills had a cylindrical enclosure having a length L, a diameter D and different L / D ratios.
  • the milling plant comprised a first mill comprising a first ball mill and a first separator, an outlet of the first mill being connected to an inlet of the first separator; a second workshop comprising a second separator and a second ball mill, an output of the second separator being connected to an input of the second mill; the second separator being fed with the material from the first separator.
  • the material entering the first workshop was a mixture of clinker, limestone and gypsum with a particle size of 50 mm or less.
  • the composition of the mixture was 90% by weight of clinker, 5% by weight of gypsum and 5% by weight of limestone.
  • the material leaving the first workshop was a CEM I type cement according to the EN 197-1 standard of February 2001 having a Blaine surface area of 3960 cm 2 / g and a Rosin Rammler slope (nRR) of 1.02.
  • the material entering the first workshop was a CEM I type cement according to the EN 197-1 standard of February 2001.
  • the material coming out of the first workshop had a Blaine specific surface area of 3400 cm2 / g and a slope of Rosin Rammler (nRR) of 0.99.
  • nRR is the slope of Rosin Rammler.
  • the specific energy corresponds to the grinding energy per ton of raw material and is expressed in kWh / t.
  • the optimum value of the L / D ratio was about 1.4, and the optimum value of the mill fill rate was 23 to 24% by volume.
  • the comparative test was carried out in a ball mill having an enclosure having an L / D ratio of 2.9.
  • the ground material obtained had a Blaine surface area of 5250 cm 2 / g and a Rosin Rammler slope of only 0.87.
  • Table 3 below gives a comparison in terms of energy required for grinding.
  • the specific energy expressed in kWh / t (1) corresponds to the grinding energy per ton of raw material for the first ball mill, that is to say the grinding of the mixture. described above having a particle size of less than or equal to 50 mm.
  • the specific energy expressed in kWh / t (2) corresponds to the grinding energy per ton of raw material for the second ball mill, that is to say the grinding of the cement initially having a Blaine specific surface of 3960 cm2 / g to reach the finer points described in the second column of Table 3.
  • milling in a single step with a ball mill having an enclosure having an L / D ratio of 3 to 3.5 consumed more specific energy than two-stage milling .
  • the specific grinding energy was 104 kWh / t to produce a cement having a Blaine surface area of 7030 cm 2 / g in one step, whereas it was 92 kWh / t in two steps.

Description

La présente invention se rapporte au domaine du broyage, et notamment du broyage de matières premières utilisées pour la fabrication de liants hydrauliques. La présente invention se rapporte à une installation de broyage ayant des caractéristiques particulières, à une cimenterie ou à un atelier de broyage comprenant cette installation, à une utilisation de cette installation et à des procédés mettent en oeuvre cette installation.The present invention relates to the field of grinding, and in particular the grinding of raw materials used for the manufacture of hydraulic binders. The present invention relates to a grinding plant having particular characteristics, to a cement plant or grinding mill comprising this plant, to a use of this plant and to processes using this plant.

Le broyage de différentes matières premières est connu, ainsi que les équipements et les installations permettant de broyer différentes matières premières. Un exemple de procédé de broyage de clinker en deux étapes utilisant deux broyeurs et un seul séparateur commun aux deux broyeurs est décrit dans le document DE 42 24 704 A1 . Cependant, les besoins concernant le broyage évoluent, et il est notamment utile de broyer différents matériaux de plus en plus finement, en particulier dans le domaine des liants hydrauliques.The grinding of different raw materials is known, as well as equipment and facilities for grinding different raw materials. An example of a two-step clinker grinding process using two grinders and a single separator common to both grinders is described in the document DE 42 24 704 A1 . However, the needs for grinding are changing, and it is particularly useful to grind different materials more and more finely, especially in the field of hydraulic binders.

La finesse d'un matériau peut être caractérisée par une courbe appelée courbe granulométrique, qui représente l'évolution du pourcentage volumique des particules en fonction de la taille moyenne des particules. Une courbe granulométrique a généralement une allure du type courbe de Gauss, c'est-à-dire une courbe en forme de cloche.The fineness of a material can be characterized by a curve called particle size curve, which represents the evolution of the volume percentage of the particles as a function of the average particle size. A granulometric curve generally has a shape of the Gaussian curve type, that is to say a bell-shaped curve.

Ainsi, une courbe granulométrique augmente jusqu'à un pourcentage volumique maximal puis diminue. Une courbe granulométrique est plus ou moins étalée autour de la taille moyenne des particules qui correspond au pourcentage volumique maximal. Une courbe granulométrique est dite centrée lorsqu'elle est peu étalée de part et d'autre de la taille moyenne des particules qui correspond au pourcentage volumique maximal.Thus, a grain size curve increases to a maximum volume percentage and then decreases. A granulometric curve is more or less spread around the average particle size which corresponds to the maximum volume percentage. A particle size curve is said to be centered when it is not spread out on either side of the average particle size which corresponds to the maximum volume percentage.

L'étalement d'une courbe granulométrique peut par exemple être évalué par la pente de Rosin Rammler (nRR). La pente de Rosin Rammler peut être déterminée en traçant une courbe représentant l'évolution, dans un repère logarithmique, du refus au tamis en fonction de la taille des particules. La courbe obtenue est quasiment une droite. La pente de cette droite est la pente de Rosin Rammler.The spread of a grain size curve can for example be evaluated by the slope of Rosin Rammler (nRR). The slope of Rosin Rammler can be determined by plotting a curve representing the logarithmic evolution of sieve rejection as a function of particle size. The curve obtained is almost a straight line. The slope of this line is the slope of Rosin Rammler.

Pour obtenir une courbe granulométrique qui est centrée, il est souhaitable d'avoir une pente de Rosin Rammler supérieure ou égale à 1,2, et de préférence la plus élevée possible.To obtain a grain size curve which is centered, it is desirable to have a Rosin Rammler slope greater than or equal to 1.2, and preferably the highest possible.

Lorsqu'il est souhaitable de broyer finement un matériau, il peut être difficile d'obtenir une courbe granulométrique qui est centrée. Par exemple, une courbe granulométrique typique a une pente de Rosin Rammler de 0,8 à 1,1. Une pente de Rosin Rammler supérieure ou égale à 1,2 serait plus satisfaisante.When it is desirable to finely grind a material, it may be difficult to obtain a grain size curve that is centered. For example, a typical grain size curve has a Rosin Rammler slope of 0.8 to 1.1. A Rosin Rammler slope greater than or equal to 1.2 would be more satisfactory.

Les procédés de broyage existants et les équipements associés ne permettent pas d'obtenir des matériaux ayant une courbe granulométrique qui est centrée pour une surface spécifique Blaine supérieure ou égale à 7000 cm2/g.The existing grinding processes and the associated equipment do not make it possible to obtain materials having a particle size curve which is centered for a Blaine specific surface greater than or equal to 7000 cm 2 / g.

Afin de répondre aux exigences des industriels et notamment des cimentiers, il est devenu nécessaire de trouver un autre moyen pour obtenir des matériaux broyés ayant une courbe granulométrique qui est centrée pour une surface spécifique Blaine supérieure ou égale à 7000 cm2/g.In order to meet the requirements of industry and especially cement manufacturers, it has become necessary to find another way to obtain crushed materials having a grain size curve which is centered for a Blaine specific surface greater than or equal to 7000 cm 2 / g.

Aussi le problème que se propose de résoudre l'invention est de fournir un nouveau moyen pour broyer au moins un matériau, et notamment un matériau utilisé pour la fabrication de liants hydrauliques, afin d'obtenir un matériau broyé ayant une pente de Rosin Rammler supérieure ou égale à 1,2, de préférence la plus élevée possible, et une surface spécifique Blaine supérieure ou égale à 7000 cm2/g.Also the problem to be solved by the invention is to provide a new means for grinding at least one material, and in particular a material used for the manufacture of hydraulic binders, to obtain a ground material having a higher Rosin Rammler slope. or 1.2, preferably the highest possible, and a Blaine specific surface greater than or equal to 7000 cm 2 / g.

De manière inattendue, les inventeurs ont mis en évidence qu'il est possible d'utiliser, pour broyer plus finement un matériau, et notamment un matériau utilisé pour la fabrication de liants hydrauliques, une installation de broyage comprenant un premier broyeur associé à un premier séparateur, et un second séparateur associé à un second broyeur, la vitesse radiale et la vitesse tangentielle du premier et du second séparateurs étant choisies de telle sorte que le matériau broyé final a une surface spécifique Blaine supérieure ou égale à 7000 cm2/g et également une pente de Rosin Rammler supérieure ou égale à 1,2.Unexpectedly, the inventors have demonstrated that it is possible to use, for finer grinding a material, and in particular a material used for the manufacture of hydraulic binders, a grinding plant comprising a first grinder associated with a first separator, and a second separator associated with a second mill, the radial velocity and the tangential velocity of the first and second separators being chosen so that the final milled material has a Blaine specific surface greater than or equal to 7000 cm 2 / g and also a Rosin Rammler slope greater than or equal to 1.2.

De manière générale, un séparateur comprend une enceinte cylindrique fixe d'axe vertical, dans laquelle sont disposées une cage et des aubes. Les aubes sont disposées autour de la cage selon un cercle. Elles s'étendent sur toute la hauteur de la cage. La cage comprend des pales fixées entre un disque inférieur plein et un disque supérieur évidé. Chaque pale est orientée radialement et s'étend selon une direction substantiellement verticale sur toute la hauteur de la cage. L'espace situé entre les pales de la cage et les aubes est appelé la zone de sélection. L'espace situé entre l'enceinte cylindrique et les aubes est appelé la zone d'alimentation en gaz et en particules d'un matériau à séparer. Un séparateur est traversé par un gaz qui permet notamment de transporter les particules d'un matériau à séparer. La cage est un cylindre, ayant une hauteur et un diamètre, qui tourne sur lui-même selon son axe vertical. Les aubes sont fixes, c'est-à-dire qu'elles ne tournent pas autour de l'axe vertical de la cage. Les aubes sont orientables, par rotation sur elles-mêmes, pour ajuster la vitesse du gaz par rapport à la vitesse de rotation de la cage. Le gaz qui transporte le matériau à séparer arrive par le bas du séparateur dans la zone d'alimentation et monte verticalement. Il est dévié par les aubes, de façon à traverser la zone de sélection et atteindre les pales de la cage selon un mouvement radial, puis reprend son mouvement ascendant vertical au centre de la cage.In general, a separator comprises a fixed cylindrical chamber of vertical axis, in which are arranged a cage and blades. The blades are arranged around the cage in a circle. They extend over the entire height of the cage. The cage comprises blades secured between a solid bottom disk and a hollow top disk. Each blade is oriented radially and extends in a substantially vertical direction over the entire height of the cage. The space between the blades of the cage and the blades is called the area of selection. The space between the cylindrical chamber and the blades is called the gas supply zone and particles of a material to be separated. A separator is traversed by a gas which allows in particular to transport the particles of a material to be separated. The cage is a cylinder, having a height and a diameter, which turns on itself along its vertical axis. The blades are fixed, that is to say they do not rotate around the vertical axis of the cage. The blades are rotatable on themselves to adjust the speed of the gas relative to the rotational speed of the cage. The gas that transports the material to be separated arrives from the bottom of the separator into the feed zone and rises vertically. It is deflected by the blades, so as to cross the selection zone and reach the blades of the cage in a radial motion, then resume its vertical upward movement in the center of the cage.

La vitesse radiale est la vitesse de déplacement, à travers la zone de sélection du séparateur, du gaz utilisé pour transporter les particules du matériau à séparer. La vitesse radiale est exprimée en mètre par seconde. La vitesse radiale peut être calculée selon une méthode connue de l'homme du métier, en connaissant la hauteur et le diamètre de la cage (et donc sa surface d'échange) et le débit du gaz.The radial velocity is the velocity of displacement, through the separation zone of the separator, of the gas used to transport the particles of the material to be separated. The radial velocity is expressed in meters per second. The radial velocity can be calculated according to a method known to those skilled in the art, knowing the height and the diameter of the cage (and therefore its exchange surface) and the flow rate of the gas.

La vitesse tangentielle est la vitesse de rotation en périphérie de la cage du séparateur qui transmet une force centrifuge aux particules du matériau à séparer. La vitesse tangentielle est exprimée en mètre par seconde. La vitesse tangentielle peut être calculée selon une méthode connue de l'homme du métier, en connaissant le diamètre de la cage et sa vitesse de rotation en tours par minute.The tangential velocity is the rotational speed at the periphery of the separator cage which transmits a centrifugal force to the particles of the material to be separated. The tangential velocity is expressed in meters per second. The tangential velocity can be calculated according to a method known to those skilled in the art, knowing the diameter of the cage and its rotational speed in revolutions per minute.

La présente invention cherche à fournir au moins l'un des avantages listés ci-après :

  • il est possible de broyer des matériaux à des finesses supérieures ou égales à 7000 cm2/g de surface spécifique Blaine ;
  • il est possible de réduire l'énergie nécessaire pour le broyage, par exemple en optimisant les dimensions du second broyeur dans un procédé de broyage fait en deux étapes ;
  • le matériau à broyer peut rester moins de temps dans les premier et second broyeurs, pour atteindre une finesse équivalente en comparaison avec les installations de broyage connues ;
  • dans le cas où le premier et/ou le second broyeurs sont des broyeurs à boulets, il est possible de diminuer encore davantage le temps de broyage en diminuant le diamètre des boulets ;
  • généralement, quand on augmente la vitesse tangentielle et quand on diminue la vitesse radiale du premier et/ou du second séparateurs, il est possible de séparer des particules de taille moyenne plus petite.
The present invention seeks to provide at least one of the advantages listed below:
  • it is possible to grind materials at finer than or equal to 7000 cm2 / g of Blaine specific surface;
  • it is possible to reduce the energy required for grinding, for example by optimizing the dimensions of the second mill in a grinding process made in two steps;
  • the material to be milled may remain less time in the first and second mills, to achieve an equivalent fineness in comparison with known grinding facilities;
  • in the case where the first and / or second grinders are ball mills, it is possible to further reduce the grinding time by decreasing the diameter of the balls;
  • generally, when increasing the tangential velocity and decreasing the radial velocity of the first and / or second separators, it is possible to separate particles of smaller average size.

Enfin l'invention a pour avantage de pouvoir être utilisée dans l'industrie du bâtiment, l'industrie cimentière, ou dans les stations de broyage.Finally, the invention has the advantage of being used in the building industry, the cement industry, or in grinding stations.

L'invention se rapporte à une installation de broyage comprenant :

  • un premier atelier comprenant un premier broyeur (11) et un premier séparateur (12), une sortie du premier broyeur (11) étant reliée à une entrée du premier séparateur (12) ;
  • un second atelier comprenant un second séparateur (22) et un second broyeur (21), une sortie du second séparateur (22) étant reliée à une entrée du second broyeur (21) ;
le second séparateur (22) étant alimenté par le matériau issu du premier séparateur (12), caractérisée en ce que :
  • le premier séparateur (12) fonctionne à une vitesse tangentielle de 15 à 25 m/s et une vitesse radiale de 3,5 à 5 m/s ; et
  • le second séparateur (22) fonctionne à une vitesse tangentielle de 20 à 50 m/s et une vitesse radiale de 2,5 à 4 m/s.
The invention relates to a grinding plant comprising:
  • a first workshop comprising a first mill (11) and a first separator (12), an outlet of the first mill (11) being connected to an inlet of the first separator (12);
  • a second workshop comprising a second separator (22) and a second mill (21), an outlet of the second separator (22) being connected to an inlet of the second mill (21);
the second separator (22) being fed with the material from the first separator (12), characterized in that:
  • the first separator (12) operates at a tangential velocity of 15 to 25 m / s and a radial velocity of 3.5 to 5 m / s; and
  • the second separator (22) operates at a tangential velocity of 20 to 50 m / s and a radial velocity of 2.5 to 4 m / s.

L'installation de broyage selon la présente invention comprend deux ateliers, qui peuvent être reliés entre eux ou séparés par un moyen de stockage intermédiaire. Les deux ateliers peuvent être sur le même site ou sur des sites distincts. D'autre part, les deux ateliers de l'installation de broyage selon la présente invention peuvent fonctionner en même temps ou en différé. Ils peuvent fonctionner au même débit de matière ou à des débits différents.The grinding plant according to the present invention comprises two workshops, which can be interconnected or separated by intermediate storage means. Both workshops may be on the same site or on separate sites. On the other hand, the two workshops of the grinding plant according to the present invention can operate simultaneously or deferred. They can operate at the same material flow rate or at different flow rates.

L'installation selon la présente invention est une installation capable de produire des matériaux ultrafins à un débit industriel.The plant according to the present invention is an installation capable of producing ultrafine materials at an industrial flow rate.

De préférence, le premier séparateur fonctionne à une vitesse tangentielle de 10 à 25 m/s et une vitesse radiale de 3,5 à 4,5 m/s.Preferably, the first separator operates at a tangential velocity of 10 to 25 m / s and a radial velocity of 3.5 to 4.5 m / s.

De préférence, le second séparateur fonctionne à une vitesse tangentielle de 25 à 45 m/s et une vitesse radiale de 3 à 3,5 m/s.Preferably, the second separator operates at a tangential speed of 25 to 45 m / s and a radial velocity of 3 to 3.5 m / s.

Le premier et le second broyeurs peuvent être n'importe quel broyeur connu, par exemple un broyeur à boulets ou un broyeur par compression.The first and second mills can be any known mill, for example a ball mill or a compression mill.

Un broyeur à boulets comprend généralement une enceinte de forme cylindrique dans laquelle est placé le matériau à broyer, l'enceinte ayant une longueur L et un diamètre D.A ball mill generally comprises a cylindrical enclosure in which the material to be ground is placed, the enclosure having a length L and a diameter D.

De préférence, le second broyeur (21) est un broyeur à boulets comprenant une enceinte de forme cylindrique ayant une longueur L, un diamètre D et un rapport L/D inférieur ou égal à 2,5, L et D étant exprimés dans la même unité.Preferably, the second mill (21) is a ball mill comprising a cylindrical enclosure having a length L, a diameter D and an L / D ratio less than or equal to 2.5, L and D being expressed in the same unit.

Dans le cas où le second broyeur est un broyeur à boulets, le rapport longueur/diamètre (L/D) de l'enceinte du second broyeur est de préférence inférieur ou égal à 2, plus préférentiellement inférieur ou égal à 1,5. De préférence, le rapport L/D est supérieur ou égal à 0,65.In the case where the second mill is a ball mill, the length / diameter ratio (L / D) of the enclosure of the second mill is preferably less than or equal to 2, more preferably less than or equal to 1.5. Preferably, the L / D ratio is greater than or equal to 0.65.

De préférence, les boulets ont un diamètre moyen de 18 à 20 mm.Preferably, the balls have an average diameter of 18 to 20 mm.

L'invention se rapporte également à une cimenterie comprenant une installation de broyage selon la présente invention reliée à une entrée d'un four de cimenterie.The invention also relates to a cement plant comprising a grinding plant according to the present invention connected to an inlet of a cement kiln.

L'invention se rapporte également à un atelier de broyage comprenant une installation de broyage selon la présente invention reliée à une entrée d'un moyen de stockage.The invention also relates to a grinding workshop comprising a grinding plant according to the present invention connected to an input of a storage means.

L'invention se rapporte également à une utilisation d'une installation de broyage selon la présente invention pour obtenir un matériau broyé final ayant une pente de Rosin Rammler supérieure ou égale à 1,2.The invention also relates to a use of a grinding plant according to the present invention to obtain a final ground material having a Rosin Rammler slope greater than or equal to 1.2.

L'invention se rapporte également à un procédé de broyage d'un matériau brut dans une installation de broyage selon la présente invention, comprenant les étapes suivantes :

  1. a) broyage du matériau brut à broyer dans le premier broyeur (11) pour fournir un premier matériau broyé ;
  2. b) séparation du premier matériau broyé dans le premier séparateur (12) pour fournir une première fraction fine et une première fraction grossière ;
  3. c) recirculation de la première fraction grossière vers le premier broyeur (11) ;
  4. d) séparation de la première fraction fine dans le second séparateur (22) pour fournir une seconde fraction fine et une seconde fraction grossière ;
  5. e) stockage de la seconde fraction fine dans un moyen de stockage (42) ;
  6. f) broyage de la seconde fraction grossière dans le second broyeur (21) pour fournir un second matériau broyé ;
  7. g) séparation du second matériau broyé dans le second séparateur (22).
The invention also relates to a method of grinding a raw material in a grinding plant according to the present invention, comprising the following steps:
  1. a) grinding the raw material to be milled in the first mill (11) to provide a first milled material;
  2. b) separating the first milled material in the first separator (12) to provide a first fine fraction and a first coarse fraction;
  3. c) recirculating the first coarse fraction to the first mill (11);
  4. d) separating the first fine fraction in the second separator (22) to provide a second fine fraction and a second coarse fraction;
  5. e) storing the second fine fraction in a storage means (42);
  6. f) grinding the second coarse fraction in the second mill (21) to provide a second milled material;
  7. g) separating the second crushed material in the second separator (22).

Le matériau à broyer est de préférence un matériau utile pour la fabrication d'un liant hydraulique ou d'une composition hydraulique.The material to be ground is preferably a material useful for the manufacture of a hydraulic binder or a hydraulic composition.

Le matériau à broyer est de préférence un clinker, un liant hydraulique (par exemple un ciment) ou une addition minérale (par exemple un laitier, une cendre volante, une pouzzolane ou du calcaire).The material to be ground is preferably a clinker, a hydraulic binder (for example a cement) or a mineral addition (for example a slag, a fly ash, a pozzolan or limestone).

Un clinker est généralement le produit obtenu après cuisson (la clinkérisation) d'un mélange (le cru) comprenant du calcaire et par exemple de l'argile.A clinker is generally the product obtained after firing (the clinkerization) of a mixture (the raw material) comprising limestone and for example clay.

Un liant hydraulique comprend tout composé qui prend et durcit par réaction d'hydratation. De préférence, le liant hydraulique est un ciment. Un ciment comprend généralement au moins un clinker et du sulfate de calcium. Le clinker peut en particulier être un clinker Portland.A hydraulic binder includes any compound that takes and cures by hydration reaction. Preferably, the hydraulic binder is a cement. A cement generally comprises at least one clinker and calcium sulphate. The clinker may in particular be a Portland clinker.

Les additions minérales sont généralement, par exemple, des cendres volantes (par exemple telles que définies dans la norme « Ciment » NF EN 197-1 de février 2001 paragraphe 5.2.4 ou telles que définies dans la norme « Béton » EN 450), des matériaux pouzzolaniques (par exemple tels que définis dans la norme « Ciment » NF EN 197-1 de février 2001 paragraphe 5.2.3), des fumées de silice (par exemple telles que définies dans la norme « Ciment » NF EN 197-1 de février 2001 paragraphe 5.2.7 ou telles que définies dans la norme « Béton » prEN 13263 :1998 ou NF P 18-502), des laitiers (par exemple tels que définis dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.2 ou tels que définis dans la norme « Béton » NF P 18-506), des schistes calcinés (par exemple tels que définis dans la norme « Ciment » NF EN 197-1 de février 2001 paragraphe 5.2.5), des additions calcaires (par exemple telles que définis dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.6 ou telles que définies dans la norme « Béton » NF P 18-508) et des additions siliceuses (par exemple telles que définies dans la norme « Béton » NF P 18-509), les métakaolins ou leurs mélanges.The mineral additions are generally, for example, fly ash (for example as defined in the standard "Cement" NF EN 197-1 of February 2001 paragraph 5.2.4 or as defined in the standard "Concrete" EN 450), pozzolanic materials (for example as defined in the "Cement" standard NF EN 197-1 of February 2001 paragraph 5.2.3), silica fumes (for example as defined in the "Cement" standard NF EN 197-1 February 2001 paragraph 5.2.7 or as defined in the "Concrete" standard prEN 13263: 1998 or NF P 18-502), slags (for example as defined in the standard "Cement" NF EN 197-1 paragraph 5.2.2 or as defined in the "Concrete" standard NF P 18-506), calcined schists (for example as defined in the "Cement" standard NF EN 197-1 of February 2001, paragraph 5.2.5), calcareous additions (for example as defined in the standard "Cement" NF EN 197-1 paragraph 5.2.6 or as defined in the standard "Concrete" NF P 18-508) and siliceous additions (for example as defined in the standard "Concrete" NF P 18 -509), metakaolins or mixtures thereof.

La finesse du matériau broyé final peut être exprimée en termes de Dv97, de Dv80 ou de surface spécifique Blaine. Le Dv97 (en volume) est généralement le 97ème centile de la distribution de taille des particules, c'est-à-dire que 97 % des particules ont une taille inférieure ou égale au Dv97 et 3 % ont une taille supérieure au Dv97. De même, le Dv80 (en volume) est généralement le 80eme centile de la distribution de taille des particules, c'est-à-dire que 80 % des particules ont une taille inférieure ou égale au Dv80 et 20 % ont une taille supérieure au Dv80.The fineness of the final ground material can be expressed in terms of Dv97, Dv80 or Blaine surface area. The Dv97 (by volume) generally is the 97 th percentile of the distribution of particle size, that is to say that 97% of particles have a size less than or equal to the Dv97 and 3% larger than the Dv97. Similarly, the DV80 (by volume) generally is the 80 th percentile of the distribution of particle size, that is to say that 80% of particles have a size less than or equal to DV80 and 20% are larger at Dv80.

De manière générale, le Dv97 et le Dv80 peuvent être déterminés par granulométrie laser pour les particules de taille inférieure à 200 µm, ou par tamisage préalable pour les particules de taille supérieure à 200 µm. Un appareil de granulométrie laser comprend généralement un équipement de traitement préalable du matériau à analyser, qui permet de désagglomérer les particules du matériau. En général, la désagglomération est faite par des ultra-sons en voie liquide (par exemple dans l'éthanol). Lorsque les particules ont une tendance à l'agglomération, il est recommandé de faire varier la durée des ultra-sons pour assurer la dispersion ou de changer la nature du liquide dispersant.In general, Dv97 and Dv80 can be determined by laser particle size for particles smaller than 200 μm, or by preliminary sieving for particles larger than 200 μm. A laser granulometry apparatus generally comprises a prior treatment equipment of the material to be analyzed, which makes it possible to disaggregate the particles of the material. In general, the deagglomeration is made by ultrasound in a liquid way (for example in ethanol). When the particles have a tendency to agglomeration, it is recommended to vary the duration of the ultrasound to ensure dispersion or to change the nature of the dispersing liquid.

La surface spécifique Blaine est déterminée selon la norme EN 196-6 d'août 1990, paragraphe 4.The Blaine surface area is determined according to EN 196-6 of August 1990, paragraph 4.

La surface spécifique Blaine du matériau broyé final est de préférence de 7000 à 10000 cm2/g.The Blaine surface area of the final ground material is preferably 7000 to 10000 cm 2 / g.

La finesse du matériau broyé peut être :

  • pour un ciment de type CEM I selon la norme EN 197-1 de février 2001, le Dv97 peut être de 15 à 20 µm et la surface spécifique Blaine peut être de 7000 à 10000 cm2/g ;
  • pour une addition minérale calcaire, le Dv80 peut être d'environ 6 µm ;
  • pour un laitier, le Dv80 peut être de 5 à 7 µm et la surface spécifique Blaine peut être de 7000 à 10000 cm2/g ;
  • pour une cendre volante, le Dv97 peut être d'environ 7 µm.
The fineness of the crushed material can be:
  • for a CEM I type cement according to the EN 197-1 standard of February 2001, the Dv97 may be from 15 to 20 μm and the Blaine specific surface may be from 7000 to 10000 cm 2 / g;
  • for calcareous mineral addition, the Dv80 may be about 6 μm;
  • for a slag, the Dv80 may be from 5 to 7 μm and the Blaine specific surface may be from 7000 to 10000 cm 2 / g;
  • for fly ash, the Dv97 may be about 7 μm.

De préférence la pente de Rosin Rammler du matériau broyé final est de 1,2 à 1,6, plus préférentiellement de 1,3 à 1,5.Preferably, the Rosin Rammler slope of the final ground material is 1.2 to 1.6, more preferably 1.3 to 1.5.

L'installation de broyage et le procédé selon la présente invention peuvent par exemple permettre d'obtenir les liants hydrauliques tels que décrits dans les demandes de brevet français n° 06/04398 , 07/06703 , 09/01364 et 11/50676 .The grinding plant and the method according to the present invention may for example make it possible to obtain the hydraulic binders as described in the French patent application no. 06/04398 , 07/06703 , 09/01364 and 11/50676 .

Quand plusieurs matériaux sont à broyer, les différents matériaux à broyer peuvent être broyés ensemble ou séparément.When several materials are to be ground, the different materials to be ground can be ground together or separately.

Quand plusieurs matériaux sont à broyer, de préférence, le procédé de broyage selon la présente invention est basé sur un broyage séparé des matériaux de manière à optimiser le broyage pour chacun des matériaux. Les procédés de broyage connus sont des procédés de co-broyage, qui posent notamment des problèmes en termes de gestion de la finesse respective de chaque matériau à broyer. Un mélange de deux matériaux ayant des broyabilités différentes ne permet pas d'obtenir un mélange broyé avec des finesses satisfaisantes, voire des finesses optimales, pour chaque matériau. En effet, le matériau le plus facile à broyer peut être broyé plus finement que souhaité, alors que le matériau le moins facile à broyer peut être broyé plus grossièrement que souhaité. Au contraire, un broyage séparé peut permettre un broyage à la finesse souhaitée pour chaque matériau.When several materials are to be milled, preferably, the grinding method according to the present invention is based on a separate grinding of the materials so as to optimize grinding for each of the materials. Known grinding processes are co-grinding processes, which pose particular problems in terms of management of the respective fineness of each material to be ground. A mixture of two materials having different grindability does not make it possible to obtain a ground mixture with satisfactory fineness, or even optimum fineness, for each material. Indeed, the easiest material to grind can be ground more finely than desired, while the less grindable material can be ground more coarsely than desired. On the contrary, a separate grinding may allow grinding to the desired fineness for each material.

D'autre part, un broyage séparé peut permettre de réaliser des compositions à façon, avec une nature, une quantité et une taille contrôlée des différents matériaux.On the other hand, a separate grinding can make it possible to produce custom compositions with a controlled nature, quantity and size of the different materials.

De préférence, plusieurs installations de broyage selon la présente invention peuvent être utilisées sur un même site pour broyer chaque matériau séparément.Preferably, several grinding plants according to the present invention can be used on the same site to grind each material separately.

L'invention se rapporte également à un procédé de fabrication d'un liant hydraulique comprenant les étapes suivantes :

  1. (i). Broyage d'au moins deux matériaux dans une installation de broyage selon la revendication 1 ou la revendication 2 ;
  2. (ii). Mélange des matériaux obtenus à l'étape (i) avec d'éventuels autres matériaux broyés ou non broyés.
The invention also relates to a method for manufacturing a hydraulic binder comprising the following steps:
  1. (I). Grinding at least two materials in a grinding plant according to claim 1 or claim 2;
  2. (Ii). Mixing of the materials obtained in step (i) with any other crushed or unmilled materials.

De préférence, le broyage de l'étape (i) est une opération pendant laquelle les matériaux sont broyés séparément.Preferably, the grinding of step (i) is an operation during which the materials are ground separately.

L'invention se rapporte également à un broyeur à boulets comprenant une enceinte de forme cylindrique ayant une longueur L, un diamètre D et un rapport L/D inférieur ou égal à 2,5, L et D étant exprimés dans la même unité.The invention also relates to a ball mill comprising a cylindrical chamber having a length L, a diameter D and an L / D ratio less than or equal to 2.5, L and D being expressed in the same unit.

Les exemples de réalisation présentés ci-avant sont décrits plus en détails dans la description ci-après, en relation avec les figures suivantes :

  • la Figure 1 représente un exemple de réalisation d'une installation de broyage selon la présente invention ;
  • la Figure 2 représente un autre exemple de réalisation d'une installation de broyage selon la présente invention ; et
  • la Figure 3 représente une vue de dessus en coupe d'un exemple de réalisation d'un séparateur utilisé selon la présente invention.
The examples of embodiment presented above are described in more detail in the description below, with reference to the following figures:
  • the Figure 1 represents an exemplary embodiment of a grinding plant according to the present invention;
  • the Figure 2 represents another embodiment of a grinding plant according to the present invention; and
  • the Figure 3 is a sectional top view of an exemplary embodiment of a separator used according to the present invention.

Selon la Figure 1 , l'installation de broyage comprend un premier atelier et un second atelier. Le premier atelier comprend un premier broyeur 11, un premier séparateur 12 et un premier filtre 13. Le second atelier comprend un second broyeur 21, un second séparateur 22 et un second filtre 23. Le premier broyeur 11 est alimenté en matière à broyer via un premier moyen de convoyage 31. Une sortie du premier broyeur 11 est reliée à une entrée du premier séparateur 12 par un deuxième moyen de convoyage 32. Une première sortie du premier séparateur 12 est reliée à une entrée du premier broyeur 11 par un troisième moyen de convoyage 33. Une deuxième sortie du premier séparateur 12 est reliée à une entrée du premier filtre 13 par un quatrième moyen de convoyage 34. Une sortie du premier filtre 13 est reliée à une entrée du second séparateur 22 par un cinquième moyen de convoyage 35. Une première sortie du second séparateur 22 est reliée à une entrée du second filtre 23 par un sixième moyen de convoyage 36. Une sortie du filtre 23 est reliée à un moyen de stockage 42 par un septième moyen de convoyage 37. Une deuxième sortie du second séparateur 22 est reliée à une entrée du second broyeur 21 par un huitième moyen de convoyage 38. Une sortie du second broyeur 21 est reliée à l'entrée du second séparateur 22 par un neuvième moyen de convoyage 39.According to Figure 1 , the grinding plant includes a first workshop and a second workshop. The first workshop comprises a first mill 11, a first separator 12 and a first filter 13. The second workshop comprises a second mill 21, a second separator 22 and a second filter 23. The first mill 11 is fed with material to be milled via a mill. first conveyor means 31. An outlet of the first mill 11 is connected to an inlet of the first separator 12 by a second conveying means 32. A first outlet of the first separator 12 is connected to an inlet of the first mill 11 by a third means of Conveying 33. A second output of the first separator 12 is connected to an input of the first filter 13 by a fourth conveying means 34. An output of the first filter 13 is connected to an input of the second separator 22 by a fifth conveying means 35. A first output of the second separator 22 is connected to an input of the second filter 23 by a sixth conveying means 36. An output of the filter 23 is connected to a means by a seventh conveying means 37. A second output of the second separator 22 is connected to an inlet of the second mill 21 by an eighth conveying means 38. An output of the second mill 21 is connected to the inlet of the second separator 22 by a ninth conveying means 39.

Les moyens de convoyage peuvent être tout moyen de convoyage connu, et par exemple un tapis transporteur, une vis sans fin ou un camion.The conveyor means may be any known conveying means, and for example a conveyor belt, a worm or a truck.

En ce qui concerne le fonctionnement de l'exemple de réalisation d'une installation de broyage selon la Figure 1 , le matériau brut est broyé dans le premier broyeur 11 pour fournir un premier matériau broyé. Le premier matériau broyé est séparé dans le premier séparateur 12 pour fournir une première fraction fine et une première fraction grossière. La première fraction grossière est ensuite broyée dans le premier broyeur 11. Le premier filtre 13 est alimenté par la première fraction fine. Le filtrage réalisé par le premier filtre 13 permet de filtrer le gaz de transport du premier séparateur 12 pour fournir une première fraction fine filtrée. La première fraction fine filtrée est séparée dans le second séparateur 22 pour fournir une seconde fraction fine et une seconde fraction grossière. Le second filtre 23 est alimenté par la seconde fraction fine. Le filtrage réalisé par le second filtre 23 permet de filtrer le gaz de transport du second séparateur 22 pour fournir une seconde fraction fine filtrée. La seconde fraction fine filtrée est stockée dans le moyen de stockage 42. La seconde fraction grossière est broyée dans le second broyeur 21 pour fournir un second matériau broyé. Le second matériau broyé est séparé dans le second séparateur 22.As regards the operation of the exemplary embodiment of a grinding plant according to the Figure 1 , The raw material is crushed in the first crusher 11 to provide a first milled material. The first ground material is separated in the first separator 12 to provide a first fine fraction and a first coarse fraction. The first coarse fraction is then milled in the first mill 11. The first filter 13 is fed by the first fine fraction. The filtering performed by the first filter 13 makes it possible to filter the transport gas from the first separator 12 to provide a first filtered fine fraction. The first filtered fine fraction is separated in the second separator 22 to provide a second fine fraction and a second coarse fraction. The second filter 23 is fed by the second fine fraction. The filtering performed by the second filter 23 makes it possible to filter the transport gas from the second separator 22 to provide a second filtered fine fraction. The second filtered fine fraction is stored in the storage means 42. The second coarse fraction is milled in the second mill 21 to provide a second milled material. The second milled material is separated in the second separator 22.

Selon la Figure 2 , qui représente une variante du procédé représenté dans la Figure 1 , l'installation de broyage peut comprendre, en outre, un moyen de stockage 41, qui peut être un silo, situé entre le premier filtre 13 et le second séparateur 22. La sortie du premier filtre 13 est reliée à une entrée du moyen de stockage 41 par un dixième moyen de convoyage 40. Une sortie du moyen de stockage 41 est reliée à l'entrée du second séparateur 22 par le cinquième moyen de convoyage 35.According to Figure 2 , which represents a variant of the process shown in Figure 1 , the grinding plant may further comprise a storage means 41, which may be a silo, located between the first filter 13 and the second separator 22. The output of the first filter 13 is connected to an input of the means of storage 41 by a tenth conveying means 40. An outlet of the storage means 41 is connected to the inlet of the second separator 22 by the fifth conveying means 35.

En ce qui concerne le fonctionnement de l'exemple de réalisation d'une installation de broyage selon la Figure 2 , après passage par le premier filtre 13, la première fraction fine filtrée est stockée dans le moyen de stockage 41. Cela peut notamment être le cas quand les deux ateliers ne fonctionnent pas en même temps, ne fonctionnent pas au même débit ou ne sont pas sur le même site. Dans ce dernier cas, le cinquième et/ou le dixième moyen de convoyage 35, 40 est un camion.As regards the operation of the exemplary embodiment of a grinding plant according to the Figure 2 After passing through the first filter 13, the filtered first fine fraction is stored in the storage means 41. This may especially be true when the two workshops do not work at the same time, do not operate at the same rate or are not on the same site. In the latter case, the fifth and / or the tenth conveying means 35, 40 is a truck.

A titre d'exemple, le matériau brut à broyer peut avoir une taille de particules inférieure ou égale à 50 mm. La première fraction fine filtrée peut avoir une taille de particules inférieure ou égale à 63 µm, une surface spécifique Blaine d'environ 3960 cm2/g et une pente de Rosin Rammler d'environ 1,02. La seconde fraction fine filtrée peut avoir une taille de particules inférieure ou égale à 20 µm, une surface spécifique Blaine d'environ 8000 cm2/g et une pente de Rosin Rammler de supérieure ou égale à 1,2.By way of example, the raw material to be ground may have a particle size of less than or equal to 50 mm. The first filtered fine fraction may have a particle size of less than or equal to 63 μm, a Blaine specific surface area of about 3960 cm 2 / g and a Rosin Rammler slope of about 1.02. The second filtered fine fraction may have a particle size of less than or equal to 20 μm, a Blaine specific surface area of about 8000 cm 2 / g and a Rosin Rammler slope of greater than or equal to 1.2.

A titre d'exemple, le débit de la première fraction fine filtrée fournie par le premier filtre 13 peut être d'environ 100 t/h. Le débit de la seconde fraction fine filtrée fournie par le second filtre 23 peut être d'environ 50 t/h.For example, the flow rate of the first filtered fine fraction provided by the first filter 13 may be about 100 t / h. The flow rate of the second filtered fine fraction supplied by the second filter 23 may be about 50 t / h.

Selon la Figure 3 , le séparateur 5 comprend une enceinte fixe 18 d'axe vertical dans laquelle sont disposées verticalement une cage 9 et des aubes 17. Les aubes 17 sont disposées autour de la cage 9 selon un cercle. Elles s'étendent sur toute la hauteur de la cage 9. La cage 9 comprend des pales 43 fixées entre un disque inférieur plein et un disque supérieur évidé 44. Chaque pale 43 est orientée radialement et s'étend selon une direction substantiellement verticale sur toute la hauteur de la cage 9. Les pales 43 ne se rejoignent pas au centre de la cage 9. Une zone de sélection 15 correspond à l'espace entre les pales 43 de la cage 9 et les aubes 17. Une zone d'alimentation 6 en gaz et particules d'un matériau à séparer correspond à l'espace entre l'enceinte cylindrique 18 et les aubes 17. La zone d'alimentation 6 est reliée à un moyen d'approvisionnement en gaz et en particules d'un matériau à séparer (non représenté).According to Figure 3 , the separator 5 comprises a fixed enclosure 18 of vertical axis in which are arranged vertically a cage 9 and blades 17. The vanes 17 are arranged around the cage 9 in a circle. They extend over the entire height of the cage 9. The cage 9 comprises blades 43 fixed between a solid lower disk and a hollow top disc 44. Each blade 43 is oriented radially and extends in a substantially vertical direction over any the height of the cage 9. The blades 43 do not meet in the center of the cage 9. A selection zone 15 corresponds to the space between the blades 43 of the cage 9 and the blades 17. A feeding zone 6 in gas and particles of a material to be separated corresponds to the space between the cylindrical chamber 18 and the blades 17. The feed zone 6 is connected to a gas supply means and particles of a material to separate (not shown).

En ce qui concerne le fonctionnement du séparateur représenté sur la Figure 3 , la cage 9 tourne autour de son axe vertical D dans le sens indiqué par la flèche 19. Cette rotation crée une vitesse tangentielle représentée par la flèche 20. Les aubes 17 sont fixes, c'est-à-dire qu'elles ne tournent pas autour de l'axe vertical D de la cage 9. Les aubes 17 sont orientables, par rotation sur elles-mêmes, pour ajuster la vitesse du gaz par rapport à la vitesse de rotation de la cage 9. Le gaz qui transporte les particules du matériau à séparer arrive par le bas du séparateur via le moyen d'approvisionnement non représenté et monte substantiellement verticalement dans la zone d'alimentation 6. Il est dévié par les aubes 17, de façon à traverser la zone de sélection 15 et atteindre les pales 43 de la cage 9 selon un mouvement substantiellement radial, c'est-à-dire en direction de l'axe vertical D. Dans la cage 9, le gaz s'échappe selon un mouvement ascendant par une ouverture substantiellement au centre de la cage 9 qui est généralement reliée à un moyen d'aspiration (non représenté). Les particules entraînées par le gaz atteignent la cage 9 avec une vitesse radiale représentée par la flèche 30.Regarding the operation of the separator shown on the Figure 3 , the cage 9 rotates about its vertical axis D in the direction indicated by the arrow 19. This rotation creates a tangential speed represented by the arrow 20. The blades 17 are fixed, that is to say they do not rotate about the vertical axis D of the cage 9. The vanes 17 are rotatable, by rotation on themselves, in order to adjust the speed of the gas with respect to the speed of rotation of the cage 9. The gas transporting the particles of the material to be separated arrives at the bottom of the separator via the unrepresented supply means and rises substantially vertically in the feed zone 6. It is deflected by the blades 17, so as to cross the selection zone 15 and reach the blades 43 of the cage 9 in a substantially radial movement, that is to say in the direction of the vertical axis D. In the cage 9, the gas escapes in an upward movement through an opening substantially in the center of the cage 9 which is generally connected to a suction means (not shown). The particles entrained by the gas reach the cage 9 with a radial velocity represented by the arrow 30.

Le gaz qui transporte les particules du matériau à séparer dans la zone d'alimentation 6 induit la vitesse radiale. La vitesse tangentielle est fixée par la vitesse de rotation de la cage 9 du séparateur. La combinaison des vitesses radiale et tangentielle définit la maille de coupure et la finesse du matériau broyé final. Les particules suffisamment petites sont entraînées par le gaz puis remontent substantiellement verticalement avec le gaz. Ces particules circulent alors dans un moyen de convoyage (non représenté), qui est généralement relié à un moyen d'aspiration et à un moyen de stockage. Les particules trop grosses tombent dans la zone de sélection 15 sous l'action de la gravité et circulent dans un moyen de convoyage non représenté, qui est généralement relié à un broyeur.The gas that transports the particles of the material to be separated in the feed zone 6 induces the radial velocity. The tangential velocity is set by the speed of rotation of the cage 9 of the separator. The combination of radial and tangential velocities defines the cutting mesh and the fineness of the final milled material. The small enough particles are driven by the gas and then rise substantially vertically with the gas. These particles then circulate in a conveying means (not shown), which is generally connected to a suction means and a storage means. The too large particles fall into the selection zone 15 under the action of gravity and circulate in a not shown conveying means, which is generally connected to a mill.

EXEMPLESEXAMPLES Exemple 1 : Comparaison de différents ateliers de broyageExample 1 Comparison of Different Grinding Workshops

Différents ateliers de broyage ont été comparés. Chacun des broyeurs présentés ci-après était associé à un séparateur.Different milling workshops were compared. Each of the grinders presented below was associated with a separator.

Le Test 1 a été réalisé dans les conditions décrites ci-après. Le matériau à broyer était un ciment de type CEM I 52,5 N provenant de la cimenterie Lafarge de Saint Pierre La Cour. L'installation de broyage comprenait un premier atelier comprenant un premier broyeur à boulets et un premier séparateur, une sortie du premier broyeur étant reliée à une entrée du premier séparateur ; et un second atelier comprenant un second séparateur et un second broyeur à boulets, une sortie du second séparateur étant reliée à une entrée du second broyeur ; le second séparateur étant alimenté par le matériau issu du premier séparateur. Le premier broyeur avait deux compartiments. Le premier compartiment du premier broyeur avait un taux de remplissage en boulets de 30 % en volume et comprenait des boulets ayant un diamètre de 60 à 90 mm. Le second compartiment du premier broyeur avait un taux de remplissage en boulets de 32 % en volume et comprenait des boulets ayant un diamètre de 20 à 50 mm. Le second broyeur avait un compartiment ayant un taux de remplissage en boulets de 24 % en volume et comprenant des boulets ayant un diamètre de 18 à 20 mm. Le ciment obtenu après passage dans le premier broyeur avait une surface spécifique Blaine de 3500 cm2/g. Le ciment obtenu après passage dans le second broyeur avait les caractéristiques présentées dans la Tableau 1 ci-après.Test 1 was carried out under the conditions described below. The material to be ground was a CEM I 52.5 N type cement from the Lafarge cement plant in Saint Pierre La Cour. The milling plant comprised a first mill comprising a first ball mill and a first separator, an outlet of the first mill being connected to an inlet of the first separator; and a second workshop comprising a second separator and a second ball mill, an output of the second separator being connected to an input of the second mill; the second separator being fed with the material from the first separator. The first crusher had two compartments. The first compartment of the first mill had a ball fill rate of 30% by volume and included balls having a diameter of 60 to 90 mm. The second compartment of the first mill had a ball fill rate of 32% in volume and included balls having a diameter of 20 to 50 mm. The second mill had a compartment having a ball fill rate of 24% by volume and comprising balls having a diameter of 18 to 20 mm. The cement obtained after passing through the first mill had a Blaine surface area of 3500 cm 2 / g. The cement obtained after passing through the second mill had the characteristics shown in Table 1 below.

Le Test 2 a été réalisé dans les conditions décrites ci-après. Le matériau à broyer était un ciment de type CEM I 52,5 N provenant de la cimenterie Lafarge de Saint Pierre La Cour. L'installation de broyage comprenait un premier atelier comprenant un premier broyeur à boulets et un premier séparateur, une sortie du premier broyeur étant reliée à une entrée du premier séparateur ; et un second atelier comprenant un second séparateur et un second broyeur à boulets, une sortie du second séparateur étant reliée à une entrée du second broyeur ; le second séparateur étant alimenté par le matériau issu du premier séparateur. Le premier broyeur avait deux compartiments. Le premier compartiment du premier broyeur avait un taux de remplissage en boulets de 30 % en volume et comprenait des boulets ayant un diamètre de 60 à 90 mm. Le second compartiment du premier broyeur avait un taux de remplissage en boulets de 32 % en volume et comprenait des boulets ayant un diamètre de 20 à 50 mm. Le second broyeur avait un compartiment ayant un taux de remplissage en boulets de 24 % en volume et comprenant des boulets ayant un diamètre de 18 à 20 mm. Le ciment obtenu après passage dans le premier broyeur avait une surface spécifique Blaine de 3500 cm2/g. Le ciment obtenu après passage dans le second broyeur avait les caractéristiques présentées dans la Tableau 1 ci-après.Test 2 was carried out under the conditions described below. The material to be ground was a CEM I 52.5 N type cement from the Lafarge cement plant in Saint Pierre La Cour. The milling plant comprised a first mill comprising a first ball mill and a first separator, an outlet of the first mill being connected to an inlet of the first separator; and a second workshop comprising a second separator and a second ball mill, an output of the second separator being connected to an input of the second mill; the second separator being fed with the material from the first separator. The first crusher had two compartments. The first compartment of the first mill had a ball fill rate of 30% by volume and included balls having a diameter of 60 to 90 mm. The second compartment of the first mill had a ball fill rate of 32% by volume and included balls having a diameter of 20 to 50 mm. The second mill had a compartment having a ball fill rate of 24% by volume and comprising balls having a diameter of 18 to 20 mm. The cement obtained after passing through the first mill had a Blaine surface area of 3500 cm 2 / g. The cement obtained after passing through the second mill had the characteristics shown in Table 1 below.

Le Test 3 a été réalisé dans les conditions décrites ci-après. Le matériau à broyer était un ciment de type CEM I 52,5 R provenant de la cimenterie Lafarge de La Couronne. L'installation de broyage comprenait un atelier comprenant un broyeur à boulets et un séparateur, une sortie du broyeur étant reliée à une entrée du séparateur. Le broyeur avait deux compartiments. Le premier compartiment du broyeur avait un taux de remplissage en boulets de 30 % en volume et comprenait des boulets ayant un diamètre de 60 à 90 mm. Le second compartiment du broyeur avait un taux de remplissage en boulets de 32 % en volume et comprenait des boulets ayant un diamètre de 20 à 50 mm. Le ciment obtenu après passage dans le broyeur avait les caractéristiques présentées dans la Tableau 1 ci-après.Test 3 was carried out under the conditions described below. The material to be crushed was a CEM I 52.5 R type cement from the Lafarge cement plant in La Couronne. The grinding plant included a ball mill and separator plant, with a mill outlet connected to an inlet of the separator. The crusher had two compartments. The first crusher compartment had a ball fill rate of 30% by volume and included balls having a diameter of 60 to 90 mm. The second mill compartment had a ball fill rate of 32% by volume and included balls having a diameter of 20 to 50 mm. The cement obtained after passing through the mill had the characteristics presented in Table 1 below.

Le Tableau 1 ci-après présente les résultats obtenus. Le premier séparateur avait une vitesse tangentielle de 15 à 25 m/s et une vitesse radiale de 3,5 à 5 m/s, ce qui correspondait aux vitesses définies selon l'invention. Tableau 1 : Comparaison de différents ateliers de broyage Test 1 Test 2 Test 3 Vitesse tangentielle du premier séparateur 15 à 25 m/s 15 à 25 m/s - Vitesse radiale du premier séparateur 3,5 à 5 m/s 3,5 à 5 m/s - Vitesse tangentielle du second séparateur 30,4 m/s 29,3 m/s 25,0 m/s Vitesse radiale du second séparateur 3,5 m/s 3,5 m/s 3,9 m/s Surface spécifique Blaine du ciment broyé final 9 300 cm2/g 8 400 cm2/g 4 400 cm2/g Pente nRR du ciment broyé final 1,50 1,39 0,97 Table 1 below presents the results obtained. The first separator had a tangential velocity of 15 to 25 m / s and a radial velocity of 3.5 to 5 m / s, which corresponded to the speeds defined according to the invention. <b> Table 1 </ b>: Comparison of different milling plants Test 1 Test 2 Test 3 Tangential velocity of the first separator 15 to 25 m / s 15 to 25 m / s - Radial velocity of the first separator 3.5 to 5 m / s 3.5 to 5 m / s - Tangential velocity of the second separator 30.4 m / s 29.3 m / s 25.0 m / s Radial velocity of the second separator 3.5 m / s 3.5 m / s 3.9 m / s Blaine specific surface of the final crushed cement 9,300 cm 2 / g 8,400 cm 2 / g 4,400 cm 2 / g NRR slope of the final crushed cement 1.50 1.39 0.97

La pente nRR est la pente de Rosin Rammler.The slope nRR is the slope of Rosin Rammler.

D'après le Tableau 1 ci-avant, le Test 1 et le Test 2 avaient chacun deux étapes de broyage et des vitesses tangentielles et radiales pour le premier et le second séparateurs correspondant à celles définies selon l'invention (pour le premier séparateur, une vitesse tangentielle de 15 à 25 m/s et une vitesse radiale de 3,5 à 5 m/s ; pour le second séparateur, respectivement une vitesse tangentielle de 30,4 m/s et une vitesse radiale de 3,5 m/s pour le Test 1, et une vitesse tangentielle de 29,3 m/s et une vitesse radiale de 3,5 m/s pour le Test 2). Le Test 1 et le Test 2 ont permis d'obtenir un matériau broyé ayant une surface spécifique Blaine supérieure ou égale à 7000 cm2/g (respectivement 9300 cm2/g pour le Test 1 et 8400 cm2/g pour le Test 2) et ayant une pente nRR supérieure ou égale à 1,2 (respectivement 1,50 pour le Test 1 et 1,39 pour le Test 2).From Table 1 above, Test 1 and Test 2 each had two grinding steps and tangential and radial speeds for the first and second separators corresponding to those defined according to the invention (for the first separator, a tangential velocity of 15 to 25 m / s and a radial velocity of 3.5 to 5 m / s, for the second separator respectively a tangential velocity of 30.4 m / s and a radial velocity of 3.5 m / s; s for Test 1, and a tangential velocity of 29.3 m / s and a radial velocity of 3.5 m / s for Test 2). Test 1 and Test 2 made it possible to obtain a ground material having a Blaine surface area greater than or equal to 7000 cm 2 / g (respectively 9300 cm 2 / g for Test 1 and 8400 cm 2 / g for Test 2) and having a slope nRR greater than or equal to 1.2 (respectively 1.50 for Test 1 and 1.39 for Test 2).

Le Test 3 avait une seule étape de broyage. Il n'a pas été possible d'obtenir un matériau broyé ayant une surface spécifique Blaine supérieure ou égale à 7000 cm2/g (4400 cm2/g) et ayant une pente nRR supérieure ou égale à 1,2 (0,97) avec le Test 3.Test 3 had a single grinding step. It was not possible to obtain a crushed material having a Blaine surface area greater than or equal to 7000 cm 2 / g (4400 cm 2 / g) and having a slope nRR greater than or equal to 1.2 (0.97) with Test 3.

Exemple 2 : Comparaison de broyeurs à bouletsExample 2 Comparison of Ball Mills

Plusieurs broyeurs à boulets ont été comparés. Les broyeurs à boulets avaient une enceinte cylindrique ayant une longueur L, un diamètre D et des rapports L/D différents.Several ball mills were compared. The ball mills had a cylindrical enclosure having a length L, a diameter D and different L / D ratios.

L'installation de broyage comprenait un premier atelier comprenant un premier broyeur à boulets et un premier séparateur, une sortie du premier broyeur étant reliée à une entrée du premier séparateur ; un second atelier comprenant un second séparateur et un second broyeur à boulets, une sortie du second séparateur étant reliée à une entrée du second broyeur ; le second séparateur étant alimenté par le matériau issu du premier séparateur.The milling plant comprised a first mill comprising a first ball mill and a first separator, an outlet of the first mill being connected to an inlet of the first separator; a second workshop comprising a second separator and a second ball mill, an output of the second separator being connected to an input of the second mill; the second separator being fed with the material from the first separator.

Seuls certains paramètres de fonctionnement du deuxième atelier sont présentés dans le Tableau 2 ci-après. Pour les tests 1-1 à 4-1, le matériau entrant dans le premier atelier était un mélange de clinker, de calcaire et de gypse ayant une taille de particules inférieure ou égale à 50 mm. La composition du mélange était 90 % en masse de clinker, 5 % en masse de gypse et 5 % en masse de calcaire. Le matériau sortant du premier atelier était un ciment de type CEM I selon la norme EN 197-1 de février 2001 ayant une surface spécifique Blaine de 3960 cm2/g et une pente de Rosin Rammler (nRR) de 1,02.Only certain operating parameters of the second workshop are presented in Table 2 below. For tests 1-1 to 4-1, the material entering the first workshop was a mixture of clinker, limestone and gypsum with a particle size of 50 mm or less. The composition of the mixture was 90% by weight of clinker, 5% by weight of gypsum and 5% by weight of limestone. The material leaving the first workshop was a CEM I type cement according to the EN 197-1 standard of February 2001 having a Blaine surface area of 3960 cm 2 / g and a Rosin Rammler slope (nRR) of 1.02.

Pour le test comparatif, le matériau entrant dans le premier atelier était un ciment de type CEM I selon la norme EN 197-1 de février 2001. Le matériau sortant du premier atelier avait une surface spécifique Blaine de 3400 cm2/g et une pente de Rosin Rammler (nRR) de 0,99. Tableau 2 : Conditions et résultats obtenus pour le broyage dans le second atelier Second atelier Taux de remplissage en boulets (%) Taille des boulets (mm) L/D Surface spécifique Blaine (cm2/g) Energie spécifique du second broyeur kWh/t (2) Pente nRR Test 1-1 29 18-20 0,70 7540 53 1,47 Test 1-2 1,40 7030 51 1,44 Test 2-1 24 18-20 0,70 7250 51 1,40 Test 2-2 1,40 7370 49 1,31 Test 3-1 17 18-20 0,70 8800 79 1,48 Test 3-2 1,40 8280 71 1,59 Test 4-1 25 12,7 0,70 7250 47 1,36 Test Comparatif 28 >25 2,9 5250 × 0,87 For the comparative test, the material entering the first workshop was a CEM I type cement according to the EN 197-1 standard of February 2001. The material coming out of the first workshop had a Blaine specific surface area of 3400 cm2 / g and a slope of Rosin Rammler (nRR) of 0.99. <b> Table 2 </ b>: Conditions and results obtained for grinding in the second workshop Second workshop Ball fill rate (%) Ball size (mm) L / D Blaine specific surface (cm 2 / g) Specific energy of the second mill kWh / t (2) Slope nRR Test 1-1 29 18-20 0.70 7540 53 1.47 Test 1-2 1.40 7030 51 1.44 Test 2-1 24 18-20 0.70 7250 51 1.40 Test 2-2 1.40 7370 49 1.31 Test 3-1 17 18-20 0.70 8800 79 1.48 Test 3-2 1.40 8280 71 1.59 Test 4-1 25 12.7 0.70 7250 47 1.36 Comparative Test 28 > 25 2.9 5250 × 0.87

La pente nRR est la pente de Rosin Rammler.The slope nRR is the slope of Rosin Rammler.

L'énergie spécifique correspond à l'énergie de broyage par tonne de matière première et est exprimée en kWh/t.The specific energy corresponds to the grinding energy per ton of raw material and is expressed in kWh / t.

D'après le Tableau 2 ci-avant, les différents tests qui ont été réalisés dans un broyeur à boulets ayant une enceinte ayant un rapport L/D inférieur ou égal à 2 (tests 1-1 à 4-1) ont permis d'obtenir un matériau broyé ayant une surface spécifique Blaine supérieure ou égale à 7000 cm2/g et une pente de Rosin Rammler supérieure ou égale à 1,2.According to Table 2 above, the various tests that were carried out in a ball mill having an enclosure having an L / D ratio of less than or equal to 2 (tests 1-1 to 4-1) made it possible to to obtain a crushed material having a Blaine specific surface greater than or equal to 7000 cm 2 / g and a Rosin Rammler slope greater than or equal to 1.2.

Dans les conditions de l'exemple, la valeur optimale du rapport L/D était à environ 1,4, et la valeur optimale du taux de remplissage du broyeur était de 23 à 24 % en volume.Under the conditions of the example, the optimum value of the L / D ratio was about 1.4, and the optimum value of the mill fill rate was 23 to 24% by volume.

Cependant, une solution satisfaisante a été testée avec un broyeur à boulets comprenant des boulets ayant un diamètre moyen de 12,7 mm, un taux de remplissage en boulets de 24 % et un rapport L/D de 0,7.However, a satisfactory solution was tested with a ball mill comprising balls having an average diameter of 12.7 mm, a ball fill rate of 24% and an L / D ratio of 0.7.

Le test comparatif a été réalisé dans un broyeur à boulets ayant une enceinte ayant un rapport L/D de 2,9. Le matériau broyé obtenu avait une surface spécifique Blaine de 5250 cm2/g et une pente de Rosin Rammler de seulement 0,87.The comparative test was carried out in a ball mill having an enclosure having an L / D ratio of 2.9. The ground material obtained had a Blaine surface area of 5250 cm 2 / g and a Rosin Rammler slope of only 0.87.

Le Tableau 3 ci-après présente une comparaison en termes d'énergie nécessaire pour le broyage. Tableau 3 : Comparaison des énergies nécessaires pour le broyage Surface spécifique Blaine (cm2/g) Energie spécifique du premier broyeur kWh/t (1) Energie spécifique du second broyeur kWh/t (2) Energie spécifique totale de broyage kWh/t total Energie spécifique pour un broyage en une seule étape kWh/t total Test 1-2 7030 41 51 92 104 Test 3-2 8280 41 71 112 148 Table 3 below gives a comparison in terms of energy required for grinding. <b> Table 3: </ b> Comparison of energies needed for grinding Blaine specific surface (cm 2 / g) Specific energy of the first mill kWh / t (1) Specific energy of the second mill kWh / t (2) Total specific energy of grinding kWh / t total Specific energy for grinding in one step kWh / t total Test 1-2 7030 41 51 92 104 Test 3-2 8280 41 71 112 148

Dans le Tableau 3 ci-avant, l'énergie spécifique exprimée en kWh/t (1) correspond à l'énergie de broyage par tonne de matière première pour le premier broyeur à boulets, c'est-à-dire le broyage du mélange décrit ci-avant ayant une taille de particules inférieure ou égale à 50 mm. L'énergie spécifique exprimée en kWh/t (2) correspond à l'énergie de broyage par tonne de matière première pour le second broyeur à boulets, c'est-à-dire le broyage du ciment ayant initialement une surface spécifique Blaine de 3960 cm2/g pour atteindre les finesses décrites dans la deuxième colonne du Tableau 3. In Table 3 above, the specific energy expressed in kWh / t (1) corresponds to the grinding energy per ton of raw material for the first ball mill, that is to say the grinding of the mixture. described above having a particle size of less than or equal to 50 mm. The specific energy expressed in kWh / t (2) corresponds to the grinding energy per ton of raw material for the second ball mill, that is to say the grinding of the cement initially having a Blaine specific surface of 3960 cm2 / g to reach the finer points described in the second column of Table 3.

En conclusion, le broyage en une seule étape avec un broyeur à boulets ayant une enceinte ayant un rapport L/D de 3 à 3,5 (voir sixième colonne du Tableau 3) a consommé plus d'énergie spécifique que le broyage en deux étapes. Par exemple l'énergie spécifique de broyage était de 104 kWh/t pour produire un ciment ayant une surface spécifique Blaine de 7030 cm2/g en une étape, alors qu'elle était de 92 kWh/t en deux étapes.In conclusion, milling in a single step with a ball mill having an enclosure having an L / D ratio of 3 to 3.5 (see sixth column of Table 3 ) consumed more specific energy than two-stage milling . For example, the specific grinding energy was 104 kWh / t to produce a cement having a Blaine surface area of 7030 cm 2 / g in one step, whereas it was 92 kWh / t in two steps.

Claims (10)

  1. Grinding installation comprising:
    - a first workshop comprising a first compression mill (11) and a first separator (12), an outlet of the first compression mill (11) being connected to an inlet of the first separator (12);
    - a second workshop comprising a second separator (22) and a second compression mill (21), an outlet of the second separator (22) being connected to an inlet of the second compression mill (21),
    the second separator (22) being supplied with the material coming from the first separator (12);
    the first separator (12) being adapted to operate at a tangential speed of 15 to 25 m/s and a radial speed of 3.5 to 5 m/s; and
    the second separator (22) being adapted to operate at a tangential speed of 20 to 50 m/s and a radial speed of 2.5 to 4 m/s.
  2. Grinding installation according to claim 1, characterised in that the second compression mill (21) is a ball mill comprising a cylindrically-shaped chamber having a length L, a diameter D and a ratio L/D less than or equal to 2.5, L and D being expressed in the same unit.
  3. Cement plant comprising a grinding installation according to claim 1 or claim 2 connected to an inlet of a cement kiln.
  4. Grinding workshop comprising a grinding installation according to claim 1 or claim 2 connected to an inlet of a means of storage.
  5. Use of a grinding installation according to claim 1 or claim 2 in order to obtain a final ground material having a Rosin Rammler gradient greater than or equal to 1.2.
  6. Method for grinding a raw material in a grinding installation comprising:
    - a first workshop comprising a first compression mill (11) and a first separator (12), an outlet of the first compression mill (11) being connected to an inlet of the first separator (12);
    - a second workshop comprising a second séparator (22) and a second compression mill (21), an outlet of the second separator (22) being connected to an inlet of the second compression mill (21);
    the second separator (22) being supplied with the material coming from the first separator (12);
    the first separator (12) operating at a tangential speed of 15 to 25 m/s and a radial speed of 3.5 to 5 m/s; and
    the second separator (22) operating at a tangential speed of 20 to 50 m/s and a radial speed of 2.5 to 4 m/s.
  7. Method for grinding according to claim 6, characterised in that the second compression mill (21) is a ball mill comprising a cylindrically-shaped chamber having a length L, a diameter D and a ratio L/D less than or equal to 2.5, L and D being expressed in the same unit.
  8. Method for grinding according to claim 6 or claim 7, comprising the following steps:
    a) grinding of the raw material to be ground in the first compression mill (11) in order to form a first ground material;
    b) separating of the first ground material in the first separator (12) in order to provide a first fine fraction and a first rough fraction;
    c) recirculating of the first rough fraction to the first compression mill (11);
    d) separation of the first fine fraction in the second separator (22) in order to supply a second fine fraction and a second rough fraction;
    e) storing of the second fine fraction in a means of storage (42);
    f) grinding of the second rough fraction in the second compression mill (21) in order to supply a second ground material;
    g) separating of the second ground material in the second separator (22).
  9. Method for manufacturing a hydraulic binder comprising the following steps:
    (i). Grinding of at least two materials according to the method of any of claims 6 to 8;
    (ii). Mixing of the materials obtained in the step (i) with possible other ground or unground materials.
  10. Method as claimed in the preceding claim, wherein the grinding of step (i) is an operation during which the materials are ground separately.
EP11306684.9A 2011-12-16 2011-12-16 Grinding facility Not-in-force EP2604346B1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP11306684.9A EP2604346B1 (en) 2011-12-16 2011-12-16 Grinding facility
CA2859455A CA2859455C (en) 2011-12-16 2012-11-30 Grinding process and unit, and corresponding production process of a hydraulic binder
PCT/EP2012/074029 WO2013087421A1 (en) 2011-12-16 2012-11-30 Grinding process and unit, and corresponding production process of a hydraulic binder
EP12791794.6A EP2790837B1 (en) 2011-12-16 2012-11-30 Grinding process and unit, and corresponding production process of a hydraulic binder
JP2014546403A JP2015501720A (en) 2011-12-16 2012-11-30 Crushing method, crushing equipment and related hydraulic binder manufacturing method
US14/365,041 US9114401B2 (en) 2011-12-16 2012-11-30 Grinding process and unit, and corresponding production process of a hydraulic binder
ES12791794T ES2744251T3 (en) 2011-12-16 2012-11-30 Procedure and milling unit, and corresponding production procedure of a hydraulic binder
CN201280061343.8A CN103998136B (en) 2011-12-16 2012-11-30 The preparation method of Ginding process and unit and corresponding hydraulic binder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11306684.9A EP2604346B1 (en) 2011-12-16 2011-12-16 Grinding facility

Publications (2)

Publication Number Publication Date
EP2604346A1 EP2604346A1 (en) 2013-06-19
EP2604346B1 true EP2604346B1 (en) 2018-06-20

Family

ID=45478187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11306684.9A Not-in-force EP2604346B1 (en) 2011-12-16 2011-12-16 Grinding facility

Country Status (1)

Country Link
EP (1) EP2604346B1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL34608C (en) 1929-11-30
FR604398A (en) 1925-10-10 1926-05-03 Outil Mathiaux Et Cie Soc D Chuck sleeve for crankshafts
FR901364A (en) 1943-09-08 1945-07-25 adhesion element for anti-skating chains
FR1127023A (en) * 1954-05-25 1956-12-06
DE1144620B (en) 1955-02-07 1963-02-28 Helmut Bross Dipl Ing Mechanism for ballpoint pen
DE1062532B (en) * 1957-03-22 1959-07-30 Babcock & Wilcox Dampfkessel Tube mill for grinding drying
GB830582A (en) * 1957-04-18 1960-03-16 Rudolf Hischmann Process and apparatus for comminuting and separating purposes
GB937419A (en) * 1960-08-29 1963-09-18 Smidth & Co As F L Improvements relating to the wet grinding of mineral materials
DE2032736C3 (en) * 1970-07-02 1975-07-24 Polysius Ag, 4723 Neubeckum Process for grinding coarse-grained minerals
DE3506486A1 (en) * 1985-02-23 1986-08-28 Klöckner-Humboldt-Deutz AG, 5000 Köln DEVICE FOR CRUSHING AND GRINDING SPROEDEN GROUND MATERIALS, FOR EXAMPLE Cement clinker, ore, coal or the like
DE4224704C2 (en) * 1992-07-25 2002-01-31 Kloeckner Humboldt Wedag Process and plant for crushing regrind

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP2604346A1 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
JP5634198B2 (en) Crushed sand and crushed stone production system
EP2790837B1 (en) Grinding process and unit, and corresponding production process of a hydraulic binder
JP2013522455A (en) Method for refining stainless steel slag and steel slag for metal recovery
WO2021093256A1 (en) Raw material vertical mill external circulation system and process
JP6447529B2 (en) Granule manufacturing equipment and granulated product manufacturing method
CN102950055A (en) Wet grinding manufacturing method and device of calcium carbonate size
JP5264846B2 (en) Crushed stone and crushed sand production plant and method
EP2604345B1 (en) Grinding equipment
JP2004141713A (en) Crushing system for manufacturing aggregate
EP2604346B1 (en) Grinding facility
EP2566625B1 (en) Process and device for grinding mineral material comprising at least calcium and metal impurities
CN1599646A (en) Grinding or polishing method of pneumatic grading and separating and special equipment
KR100507705B1 (en) equipment for producing sand
CN105772197A (en) Production process of ultrafine roller mill device
JP6399265B1 (en) Conveyor system
JP2010155745A (en) Method and system for producing crushed sand for concrete
RU2472593C1 (en) Device for dry concentration of mineral stock
JPH0515805A (en) Grinding device
FR2670135A1 (en) PROCESS FOR MILLING BROKEN MATERIALS COMPRISING FOR THE IMPLEMENTATION OF THE METHOD A SELECTIVE DISAGGLOMERATION AND INSTALLATION.
JP3036669B2 (en) Crushing equipment
JP6331700B2 (en) Vertical crusher
JP2001224973A (en) Vertical type pulverizing machine for manufacturing crushed sand
EP3814016B1 (en) Method of separating different constituents of a concrete for deconstruction
JP2792577B2 (en) Vertical crusher
JPH10216638A (en) Classifier for two-stage crushing

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131219

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180112

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011049384

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1010193

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011049384

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENTANWAELTE, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 602011049384

Country of ref document: DE

Representative=s name: BEETZ & PARTNER MBB PATENT- UND RECHTSANWAELTE, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602011049384

Country of ref document: DE

Owner name: HOLCIM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: LAFARGE, PARIS, FR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180920

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: HOLCIM TECHNOLOGY LTD.

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180921

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1010193

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181020

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011049384

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20190321

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181231

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191226

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20191231

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111216

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180620

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180620

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011049384

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210701