EP2599957A1 - Cooling fin system for a cooling channel and turbine blade - Google Patents
Cooling fin system for a cooling channel and turbine blade Download PDFInfo
- Publication number
- EP2599957A1 EP2599957A1 EP11189911.8A EP11189911A EP2599957A1 EP 2599957 A1 EP2599957 A1 EP 2599957A1 EP 11189911 A EP11189911 A EP 11189911A EP 2599957 A1 EP2599957 A1 EP 2599957A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- cooling
- cooling fin
- rib
- fin system
- turbine blade
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/186—Film cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/126—Baffles or ribs
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/10—Stators
- F05D2240/12—Fluid guiding means, e.g. vanes
- F05D2240/127—Vortex generators, turbulators, or the like, for mixing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
- F05D2260/22141—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
Definitions
- the invention relates to a cooling rib system for a cooling channel of a turbine blade.
- a gas turbine has a turbine in which hot gas, which has previously been compressed in a compressor and heated to a combustion chamber, is depressurized for work recovery.
- the turbine is designed in Axialbauweise, wherein the turbine is formed by a plurality of successively arranged in the flow direction blade rings.
- the blade rings have circumferentially disposed blades and vanes, the blades being mounted on a rotor of the gas turbine and the vanes secured to the housing of the gas turbine.
- thermodynamic efficiency of the gas turbine is the higher, the higher the inlet temperature of the hot gas into the turbine.
- thermal load capacity of the turbine blades there are limits with regard to the thermal load capacity of the turbine blades.
- corresponding materials and material combinations are available for the turbine blades, which, however, according to the current state of the art, only allow an insufficient expansion of the potential for increasing the thermal efficiency of the gas turbine.
- the turbine blade It is known to make the turbine blade hollow, wherein the interior of the turbine blade serves as a cooling passage through which cooling fluid flows during operation of the gas turbine.
- the cooling fluid is air drawn from the compressor.
- convection removes heat from the turbine blade, thereby reducing the contact temperature at the surface of the turbine blade.
- the thermal load of the turbine blade is reduced, whereby the hot gas temperature can be increased accordingly, without the thermal load of the turbine blade is unacceptably high.
- the object of the invention is to provide a cooling fin system for a cooling channel of a turbine blade, wherein the turbine blade is effectively cooled with the cooling fin system.
- the cooling fin system according to the invention for a cooling channel of a turbine blade has at least one cooling rib which is arranged on the blade inner side of the cooling channel projecting therefrom, so that the cooling rib has flowing transversely through cooling fluid flowing in the cooling channel, wherein the cooling rib has a downstream rear side in such a profiled manner towards the inner side of the blade, that the flow of cooling fluid during the operation of the turbine blade passes through the rear side without a release.
- the turbine bucket has the cooling passage in which the cooling fluid for cooling the turbine bucket flows during operation thereof, whereby the turbine bucket is cooled by the cooling fluid.
- This can be relaxed with the turbine blade hot gas at such a high temperature, without the Cooling would lead to an impermissibly high thermal load on the turbine blade.
- the cooling of the turbine blade via convection by means of the cooling fluid, whereby the Konvetations Sab is increased by the provision of the cooling fin. Due to the fact that the cooling fluid flows off from the cooling rib at the rear without being detached, the flow resistance induced by the cooling rib is less than if the cooling rib had been provided with, for example, a rectangular cross section.
- the cooling fluid would detach downstream and form a separation region, which leads to high pressure losses.
- these pressure losses are so high that an intake of the hot gas into the cooling channel, for example through cooling air bores provided in the turbine blade, occurs, as a result of which the cooling of the turbine blade is interrupted.
- the turbine blade would be subject to intense heating. In general, this heating of the turbine blade is so extreme that this leads to an unduly high thermal load on the turbine blade, whereby the turbine blade is destroyed.
- cooling fin according to the invention in the cooling channel whose rear side is designed so that the cooling fluid flow can flow off during the operation of the turbine blade free of charge, whereby any pressure losses in the cooling fluid flow are low. This advantageously prevents the possible entry of the hot gas into the cooling channel during operation of the turbine blade.
- the profiling of the rear side of the cooling rib according to the invention has virtually no influence on the quality of the cooling of the cooling rib in the cooling duct compared with FIG for example, a rectangular cross-section having cooling rib.
- the inventive cooling rib system provides effective cooling of the turbine blade, wherein For example, the collection of the hot gas is advantageously prevented in the cooling channel.
- the cooling rib preferably has a front side facing away from the rear side, which protrudes perpendicularly from the blade inner side.
- the plateau is arranged parallel to the blade inner side, so that the edge formed by the front side and the plateau has a right angle.
- the trailing edge is ramped, in particular rectilinear and / or convex and concave contours formed.
- a plurality of dimples is preferably provided, which are dimensioned and distributed such that the dents act as turbulators during operation of the turbine blade for the cooling fluid flow.
- the degree of turbulence of the boundary layer of the cooling fluid flow at the rear side is increased.
- the flow of the cooling fluid at the rear side tends less to detach, whereby the rear side may tend to be formed steeper sloping towards the blade inner side.
- the extension of the cooling fin and thus their use of material is reduced.
- the turbulent boundary layer in the cooling fluid flow at the rear the heat transfer from the cooling fin to the cooling fluid is improved.
- a recirculation area would be formed downstream of which a rebound cooling effect locally increases the heat transfer from the blade inner side to the cooling fluid in the area of the restarting. This effect, which would be lost by the free flow of the cooling fluid at the rear of the inventive fin equipped, is substantially compensated by the increase of the degree of turbulence of the boundary layer flow by means of the dimples.
- the cooling fin is preferably swept, i. obliquely to the direction of flow, arranged. Furthermore, the cooling rib is preferably arranged in such a swept manner that a component can be generated in the cooling fluid flow from the trailing edge to the leading edge of the turbine blade.
- the temperature of the hot gas in the region of the trailing edge of the turbine blade tends to be lower than in the region of the leading edge. Due to the fact that the flow component of the cooling fluid from the trailing edge to the leading edge during operation of the turbine blade arises with the sweep of the cooling rib, the cooling rib system for the turbine blade acts more or less like a countercurrent heat exchanger.
- the cooling rib preferably has laterally in each case one lateral flank delimiting the cooling rib, wherein the first side flank facing the inflow of the cooling fluid with the front side in the plan view of the cooling fin has a point angle and / or the second side flank facing away from the inflow of the cooling fluid with the front side in plan view the cooling fin forms a right angle.
- the cooling system has at least two cooling ribs which are arranged next to one another in a row. In this case, it is preferred that the cooling ribs are arranged at a distance from each other, so that in each case a gap is formed between the cooling ribs, which passes through the cooling fluid flow during operation of the turbine blade.
- the cooling fin system preferably has a plurality of rows formed by the cooling fins, wherein the rows are arranged one behind the other.
- the cooling fins are preferably arranged in the rows such that the cooling fins are in gap with their gaps in between.
- the fact that the rows are formed by the cooling fins are provided with the gaps the relative to the flow resistance of the cooling fins is reduced, whereby the pressure loss induced by the cooling fins is additionally lowered. Further, by providing the gaps, the degree of turbulence of the cooling fluid flow is increased, thereby additionally increasing the heat transfer from the cooling fins to the cooling fluid.
- FIGS. 4 and 5 a section of a turbine blade 1 is shown, wherein the top view of a cut-open cooling channel 2, which is formed within the turbine blade 1, is shown.
- FIGS. 4 and 5 is essentially lying in the plane of a blade inside 3, which defines the cooling channel 2.
- the cooling channel 2 limits a front edge wall 5 arranged at the front edge 4 of the turbine blade 1 and a channel wall 6 arranged opposite the front edge wall 5.
- FIGS. 1 to 3 are cross sections of embodiments of the cooling fin 8 shown.
- the cooling rib 8 is flown by a cooling fluid flow 18, wherein the direction of the cooling fluid flow 18 in FIGS. 1 to 3 from left to right.
- first embodiment of the cooling fin 8 has a front side 9 which protrudes perpendicularly from the blade inner side 3. Facing away from the blade inner side 3, the front side 9 with a plateau 11 forms an edge 10 at which a right angle is enclosed by the front side 9 and the plateau 11 and the plateau 11 is arranged parallel to the blade inner side 3.
- Downstream of the plateau 11 includes a rear side 12, which is formed in a ramp shape and extends to a cooling fin end 13 of the plateau 11 to the blade inner side 3 out linear.
- the contour transitions from the plateau 11 to the rear side 12 and from the rear side 12 to the blade inner side 3 via the cooling fin end 13 are designed so that during operation of the turbine blade 1, the cooling fluid flow 18 flows around the cooling rib 8 without a release.
- the second embodiment of the cooling fin 8 is shown, which differs from the first embodiment according to FIG. 1 only differs in that the rear side 12 is formed bent, whereas the rear side 12 according to the first embodiment according to FIG. 1 is formed straight.
- the rear side 12 includes kink-free to the plateau 11 and runs downstream of the plateau 11 convexly curved toward the blade side 3.
- the third in FIG. 3 shown embodiment of the cooling fin 8 differs from the second in FIG. 2 shown embodiment in that in the plateau 11 and the rear side 12 a plurality of dents 14 are arranged.
- the dimples 14 act as turbulators, so that the boundary layer of the cooling fluid flow 18 at the plateau 11 and at the rear 12 has a high degree of turbulence.
- the second embodiment according to FIG. 2 corresponds.
- the cooling fins 8 are arranged in four successive rows, 18 gaps 17 are provided in each row between the individual cooling fins, whereby the individual cooling fins 8 are arranged in each row at a distance from each other.
- the cooling fins of each of the rows are arranged in alignment with each other, wherein the cooling fins are arranged in the individual rows such that the individual rows are in gap. That is, one of the cooling fins of the adjacent row is arranged transversely to each gap 17 of each of the rows, so that the cooling fluid flow 18 has a meandering flow path when passing through the gaps 17.
- the cooling ribs 8 are arranged in the cooling channel on the blade upper side 3 with respect to the front edge 4 of the turbine blade 1, whereby the cooling fluid flow 18 receives a flow component to the leading edge 4 during the flow around the cooling ribs 8.
- the tendency for the fluid flow 18 to flow is that the cooling fluid flow 18 flows from the channel wall 6 to the front edge wall 5.
- Each of the in FIG. 4 shown cooling ribs 8 has a first side edge 15 and a second side edge 16, wherein the side edges 15, 16 respectively delimit their associated cooling rib 8 side.
- the first side edge 15 closes with the front side 9 in the in FIG. 4 shown top view, while the second side edge 16 with the front side 9 in the in FIG. 4 shown top view includes a right angle.
- the first side flank 15 is that side flank of the cooling rib 8 which is arranged facing the inflow of the cooling fluid flow 18, wherein the second side flank 16 is that of the side flanks of the cooling fin 8 which faces the outflow of the cooling fluid flow 18.
- the cooling fin system 7 is formed by a cooling fin 8
- the third in FIG. 3 shown embodiment of the cooling fin 8 corresponds.
- the cooling fin 8 extends transversely of the channel from the channel wall 6 to the front edge wall 5, wherein the cooling fin 8 is arranged with its front side 9 and its rib end 13 swept in the cooling channel 12.
- the cooling fluid flow 18 when flowing over the cooling fin 8 has a tendency to flow from the channel wall 6 to the front edge wall 5.
- the arranged in the plateau 11 and the rear side 12 of the fin 8 dents 14 serve as turbulators and increase the degree of turbulence of the boundary layer of the cooling fluid flow 18 in the region of the plateau 11 and the rear 12. This is the one hand, the separation tendency of the boundary layer of the cooling fluid flow 18 at overcurrents of Cooling fin 8 reduced and on the other hand, the heat transfer from the cooling fin 8 to the cooling fluid flow 18 increases.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Die Erfindung betrifft ein Kühlrippensystem für einen Kühlkanal einer Turbinenschaufel.The invention relates to a cooling rib system for a cooling channel of a turbine blade.
Eine Gasturbine weist eine Turbine auf, in der Heißgas, das zuvor in einem Verdichter verdichtet und einer Brennkammer erhitzt wurde, zur Arbeitsgewinnung entspannt wird. Für hohe Massenströme des Heißgases und somit für hohe Leistungsbereiche der Gasturbine ist die Turbine in Axialbauweise ausgeführt, wobei die Turbine von mehreren in Durchströmungsrichtung hintereinanderliegenden Schaufelkränzen gebildet ist. Die Schaufelkränze weisen über den Umfang angeordnete Laufschaufeln und Leitschaufeln auf, wobei die Laufschaufeln auf einem Rotor der Gasturbine und die Leitschaufeln an dem Gehäuse der Gasturbine befestigt sind.A gas turbine has a turbine in which hot gas, which has previously been compressed in a compressor and heated to a combustion chamber, is depressurized for work recovery. For high mass flows of the hot gas and thus for high power ranges of the gas turbine, the turbine is designed in Axialbauweise, wherein the turbine is formed by a plurality of successively arranged in the flow direction blade rings. The blade rings have circumferentially disposed blades and vanes, the blades being mounted on a rotor of the gas turbine and the vanes secured to the housing of the gas turbine.
Der thermodynamische Wirkungsgrad der Gasturbine ist umso höher, je höher die Eintrittstemperatur des Heißgases in die Turbine ist. Demgegenüber sind Grenzen gesetzt hinsichtlich der thermischen Belastbarkeit der Turbinenschaufeln. Somit ist es erstrebenswert Turbinenschaufeln zu schaffen, die trotz einer möglichst hohen thermischen Belastung eine für den Betrieb der Gasturbine ausreichende mechanische Festigkeit haben. Hierzu stehen für die Turbinenschaufeln entsprechende Werkstoffe und Werkstoffkombinationen zur Verfügung, die jedoch nach heutigem Stand der Technik nur eine unzureichende Ausreizung des Potentials zur Erhöhung des thermischen Wirkungsgrads der Gasturbine ermöglichen. Zur weiteren Erhöhung der zulässigen Turbineneintrittstemperatur ist es bekannt, die Turbinenschaufeln im Betrieb der Gasturbine zu kühlen, wodurch die Turbinenschaufel selbst einer geringeren thermischen Belastung ausgesetzt ist, wie es ohne der Kühlung aufgrund der thermischen Belastung durch das Heißgas der Fall wäre. Es ist bekannt, die Turbinenschaufel hohl auszuführen, wobei der Innenraum der Turbinenschaufel als ein Kühlkanal dient, durch den Kühlfluid im Betrieb der Gasturbine strömt. Herkömmlich ist das Kühlfluid vom Verdichter abgezapfte Luft. Indem das Kühlfluid durch den Kühlkanal strömt wird durch Konvektion Wärme von der Turbinenschaufel abtransportiert, wodurch die Kontakttemperatur an der Oberfläche der Turbinenschaufel herabgesetzt wird. Dadurch ist die thermische Belastung der Turbinenschaufel reduziert, wodurch die Heißgastemperatur entsprechend erhöht werden kann, ohne dass die thermische Belastung der Turbinenschaufel unzulässig hoch wird. Zur Erhöhung der Konvektionswirkung ist es ferner bekannt, die Schaufelinnenseite mit Kühlrippen zu versehen, via die ein zusätzlicher Wärmeabtransport von der Turbinenschaufel erzielt ist.The thermodynamic efficiency of the gas turbine is the higher, the higher the inlet temperature of the hot gas into the turbine. In contrast, there are limits with regard to the thermal load capacity of the turbine blades. Thus, it is desirable to provide turbine blades, which have sufficient mechanical strength despite the highest possible thermal load for the operation of the gas turbine. For this purpose, corresponding materials and material combinations are available for the turbine blades, which, however, according to the current state of the art, only allow an insufficient expansion of the potential for increasing the thermal efficiency of the gas turbine. To further increase the allowable turbine inlet temperature, it is known to cool the turbine blades during operation of the gas turbine, whereby the turbine blade itself is exposed to a lower thermal load, as would be the case without the cooling due to the thermal load of the hot gas. It is known to make the turbine blade hollow, wherein the interior of the turbine blade serves as a cooling passage through which cooling fluid flows during operation of the gas turbine. Conventionally, the cooling fluid is air drawn from the compressor. As the cooling fluid flows through the cooling channel, convection removes heat from the turbine blade, thereby reducing the contact temperature at the surface of the turbine blade. As a result, the thermal load of the turbine blade is reduced, whereby the hot gas temperature can be increased accordingly, without the thermal load of the turbine blade is unacceptably high. To increase the convection effect, it is also known to provide the blade inside with cooling fins, via which an additional heat dissipation is achieved by the turbine blade.
Aufgabe der Erfindung ist es, ein Kühlrippensystem für einen Kühlkanal einer Turbinenschaufel zu schaffen, wobei mit dem Kühlrippensystem die Turbinenschaufel effektiv kühlbar ist.The object of the invention is to provide a cooling fin system for a cooling channel of a turbine blade, wherein the turbine blade is effectively cooled with the cooling fin system.
Die Aufgabe wird gelöst mit den Merkmalen des Patentanspruchs 1. Vorteilhafte Ausgestaltungen dazu sind in den weiteren Patentansprüchen angegeben.The object is solved with the features of claim 1. Advantageous embodiments thereof are given in the further claims.
Das erfindungsgemäße Kühlrippensystem für einen Kühlkanal einer Turbinenschaufel weist mindestens eine Kühlrippe auf, die an der Schaufelinnenseite des Kühlkanals von dieser abstehend angeordnet ist, so dass die Kühlrippe von in dem Kühlkanal strömendem Kühlfluid quer angeströmt ist, wobei die Kühlrippe eine stromab liegende Hinterseite aufweist, die derart profiliert zur Schaufelinnenseite hin verläuft, dass die Kühlfluidströmung im Betrieb der Turbinenschaufel ablösefrei die Hinterseite passiert.The cooling fin system according to the invention for a cooling channel of a turbine blade has at least one cooling rib which is arranged on the blade inner side of the cooling channel projecting therefrom, so that the cooling rib has flowing transversely through cooling fluid flowing in the cooling channel, wherein the cooling rib has a downstream rear side in such a profiled manner towards the inner side of the blade, that the flow of cooling fluid during the operation of the turbine blade passes through the rear side without a release.
Die Turbinenschaufel weist den Kühlkanal auf, in dem das Kühlfluid zum Kühlen der Turbinenschaufel beim Betrieb derselben strömt, wodurch die Turbinenschaufel von dem Kühlfluid gekühlt ist. Dadurch kann mit der Turbinenschaufel Heißgas bei einer so hohen Temperatur entspannt werden, die ohne die Kühlung zu einer unzulässig hohen thermischen Belastung der Turbinenschaufel führen würde. Die Kühlung der Turbinenschaufel erfolgt über Konvektion mittels des Kühlfluids, wodurch die Konvektionswirkung durch das Vorsehen der Kühlrippe erhöht ist. Dadurch, dass das Kühlfluid von der Kühlrippe an der Hinterseite ablösefrei abströmt, ist der durch die Kühlrippe induzierte Strömungswiderstand geringer, als wäre die Kühlrippe mit beispielsweise einem rechteckigen Querschnitt versehen. Bei der Kühlrippe mit dem rechteckigen Querschnitt würde nämlich das Kühlfluid stromab ablösen und ein Ablösegebiet ausbilden, was zu hohen Druckverlusten führt. Beim Betrieb der Turbinenschaufel besteht die Gefahr, dass diese Druckverluste derart hoch sind, dass ein Einzug von dem Heißgas in den Kühlkanal, beispielsweise durch in der Turbinenschaufel vorgesehene Kühlluftbohrungen, eintritt, wodurch die Kühlung der Turbinenschaufel unterbrochen ist. Als Folge hiervon wäre die Turbinenschaufel einer starken Erwärmung ausgesetzt. In der Regel ist diese Erwärmung der Turbinenschaufel derart extrem, dass dies zu einer unzulässig hohen thermischen Belastung der Turbinenschaufel führt, wodurch die Turbinenschaufel zerstört wird. Durch das Vorsehen der erfindungsgemäßen Kühlrippe in dem Kühlkanal ist deren Hinterseite so gestaltet, dass die Kühlfluidströmung im Betrieb der Turbinenschaufel ablösefrei abströmen kann, wodurch etwaige Druckverluste in der Kühlfluidströmung gering sind. Dadurch ist vorteilhaft der etwaige Einzug von dem Heißgas in den Kühlkanal beim Betrieb der Turbinenschaufel unterbunden.The turbine bucket has the cooling passage in which the cooling fluid for cooling the turbine bucket flows during operation thereof, whereby the turbine bucket is cooled by the cooling fluid. This can be relaxed with the turbine blade hot gas at such a high temperature, without the Cooling would lead to an impermissibly high thermal load on the turbine blade. The cooling of the turbine blade via convection by means of the cooling fluid, whereby the Konvektionswirkung is increased by the provision of the cooling fin. Due to the fact that the cooling fluid flows off from the cooling rib at the rear without being detached, the flow resistance induced by the cooling rib is less than if the cooling rib had been provided with, for example, a rectangular cross section. In fact, in the case of the cooling rib with the rectangular cross section, the cooling fluid would detach downstream and form a separation region, which leads to high pressure losses. During operation of the turbine blade, there is the risk that these pressure losses are so high that an intake of the hot gas into the cooling channel, for example through cooling air bores provided in the turbine blade, occurs, as a result of which the cooling of the turbine blade is interrupted. As a result, the turbine blade would be subject to intense heating. In general, this heating of the turbine blade is so extreme that this leads to an unduly high thermal load on the turbine blade, whereby the turbine blade is destroyed. By providing the cooling fin according to the invention in the cooling channel whose rear side is designed so that the cooling fluid flow can flow off during the operation of the turbine blade free of charge, whereby any pressure losses in the cooling fluid flow are low. This advantageously prevents the possible entry of the hot gas into the cooling channel during operation of the turbine blade.
Dadurch, dass die Wärmeübergangscharakteristik der Kühlrippe im Wesentlichen durch die Geometrie der Vorderseite, die der Zuströmung zugewandt ist, definiert ist, hat die erfindungsgemäße Profilierung der Hinterseite der Kühlrippe so gut wie keinen Einfluss auf die Qualität der Kühlung der Kühlrippe in dem Kühlkanal verglichen mit der beispielsweise einen rechteckigen Querschnitt aufweisenden Kühlrippe. Dadurch ist vorteilhaft erreicht, dass das erfindungsgemäße Kühlrippensystem eine effektive Kühlung der Turbinenschaufel bereitstellt, wobei beispielsweise der Einzug von dem Heißgas in den Kühlkanal vorteilhaft unterbunden ist.Due to the fact that the heat transfer characteristic of the cooling rib is essentially defined by the geometry of the front side facing the inflow, the profiling of the rear side of the cooling rib according to the invention has virtually no influence on the quality of the cooling of the cooling rib in the cooling duct compared with FIG for example, a rectangular cross-section having cooling rib. This advantageously achieves that the inventive cooling rib system provides effective cooling of the turbine blade, wherein For example, the collection of the hot gas is advantageously prevented in the cooling channel.
Bevorzugtermaßen weist die Kühlrippe eine der Hinterseite abgewandte Frontseite auf, die senkrecht von der Schaufelinnenseite vorsteht. Hierbei ist es bevorzugt, dass die Kühlrippe ein Plateau aufweist, das zwischen der Frontseite und der Hinterseite angeordnet ist sowie die Frontseite und die Hinterseite überbrückt. Das Plateau ist parallel zur Schaufelinnenseite angeordnet, so dass die von der Frontseite und dem Plateau gebildete Kante einen rechten Winkel aufweist. Bevorzugtermaßen ist die Hinterkante rampenförmig, insbesondere geradlinig verlaufend und/oder konvex sowie konkav konturiert, ausgebildet. In der Oberfläche der Hinterseite ist bevorzugt eine Mehrzahl an Dellen vorgesehen, die derart dimensioniert und verteilt angeordnet sind, dass die Dellen im Betrieb der Turbinenschaufel für die Kühlfluidströmung als Turbulatoren wirken. Durch das Vorsehen der Dellen wird erreicht, dass der Turbulenzgrad der Grenzschicht der Kühlfluidströmung an der Hinterseite erhöht wird. Dadurch neigt die Strömung des Kühlfluids an der Hinterseite weniger zum Ablösen, wodurch die Hinterseite tendenziell steiler abfallend zur Schaufelinnenseite hin ausgebildet sein kann. Dadurch ist die Erstreckung der Kühlrippe und somit ihr Materialeinsatz reduziert. Ferner wird durch das Ausbilden der turbulenten Grenzschicht in der Kühlfluidströmung an der Hinterseite der Wärmeübergang von der Kühlrippe zu dem Kühlfluid verbessert. Bei der herkömmlichen Kühlrippe mit dem rechteckigen Querschnitt würde sich stromab ein Rezirkulationsgebiet ausbilden, bei dem im Gebiet der Wiederanlegung ein Prallkühleffekt lokal den Wärmeübergang von der Schaufelinnenseite zu dem Kühlfluid erhöht. Dieser Effekt, der durch das ablösefreie Abströmen des Kühlfluids an der Hinterseite der erfindungsgemäß ausgestatteten Kühlrippe verloren gehen würde, wird durch die Erhöhung des Turbulenzgrads der Grenzschichtströmung mittels der Dellen im Wesentlichen ausgeglichen.The cooling rib preferably has a front side facing away from the rear side, which protrudes perpendicularly from the blade inner side. In this case, it is preferable for the cooling rib to have a plateau which is arranged between the front side and the rear side and bridges over the front side and the rear side. The plateau is arranged parallel to the blade inner side, so that the edge formed by the front side and the plateau has a right angle. Preferred dimensions, the trailing edge is ramped, in particular rectilinear and / or convex and concave contours formed. In the surface of the rear side, a plurality of dimples is preferably provided, which are dimensioned and distributed such that the dents act as turbulators during operation of the turbine blade for the cooling fluid flow. By providing the dents, it is achieved that the degree of turbulence of the boundary layer of the cooling fluid flow at the rear side is increased. As a result, the flow of the cooling fluid at the rear side tends less to detach, whereby the rear side may tend to be formed steeper sloping towards the blade inner side. As a result, the extension of the cooling fin and thus their use of material is reduced. Further, by forming the turbulent boundary layer in the cooling fluid flow at the rear, the heat transfer from the cooling fin to the cooling fluid is improved. In the conventional cooling fin having the rectangular cross section, a recirculation area would be formed downstream of which a rebound cooling effect locally increases the heat transfer from the blade inner side to the cooling fluid in the area of the restarting. This effect, which would be lost by the free flow of the cooling fluid at the rear of the inventive fin equipped, is substantially compensated by the increase of the degree of turbulence of the boundary layer flow by means of the dimples.
Die Kühlrippe ist bevorzugt gepfeilt, d.h. schräg zur Anströmrichtung, angeordnet. Ferner ist die Kühlrippe bevorzugt derart gepfeilt angeordnet, dass in der Kühlfluidströmung eine Komponente von der Hinterkante zur Vorderkante der Turbinenschaufel erzeugbar ist. Tendenziell ist die Temperatur des Heißgases im Bereich der Hinterkante der Turbinenschaufel geringer als im Bereich der Vorderkante. Dadurch, dass mit der Pfeilung der Kühlrippe die Strömungskomponente des Kühlfluids von der Hinterkante zur Vorderkante im Betrieb der Turbinenschaufel entsteht, wirkt das Kühlrippensystem für die Turbinenschaufel quasi wie ein Gegenstromwärmetauscher.The cooling fin is preferably swept, i. obliquely to the direction of flow, arranged. Furthermore, the cooling rib is preferably arranged in such a swept manner that a component can be generated in the cooling fluid flow from the trailing edge to the leading edge of the turbine blade. The temperature of the hot gas in the region of the trailing edge of the turbine blade tends to be lower than in the region of the leading edge. Due to the fact that the flow component of the cooling fluid from the trailing edge to the leading edge during operation of the turbine blade arises with the sweep of the cooling rib, the cooling rib system for the turbine blade acts more or less like a countercurrent heat exchanger.
Die Kühlrippe weist bevorzugt seitlich jeweils eine die Kühlrippe seitlich begrenzende Seitenflanke auf, wobei die der Zuströmung des Kühlfluids zugewandte erste Seitenflanke mit der Frontseite in der Draufsicht der Kühlrippe einen Spitzenwinkel und/oder die der Zuströmung des Kühlfluids abgewandte zweite Seitenflanke mit der Frontseite in der Draufsicht der Kühlrippe einen rechten Winkel einschließt. Ferner ist es bevorzugt, dass das Kühlsystem mindestens zwei Kühlrippen aufweist, die in einer Reihe nebeneinander angeordnet sind. Hierbei ist bevorzugt, dass die Kühlrippen im Abstand zueinander angeordnet sind, so dass zwischen den Kühlrippen jeweils eine Lücke ausgebildet ist, die die Kühlfluidströmung im Betrieb der Turbinenschaufel passiert. Das Kühlrippensystem weist bevorzugtermaßen mehrere Reihen auf, die von den Kühlrippen gebildet sind, wobei die Reihen hintereinander angeordnet sind. Die Kühlrippen sind bevorzugt in den Reihen derart angeordnet, dass die Kühlrippen mit ihren dazwischenliegenden Lücken auf Lücke stehen. Dadurch, dass die Reihen gebildet von den Kühlrippen mit den Lücken versehen sind, ist die für den Strömungswiderstand relative Fläche der Kühlrippen reduziert, wodurch der von den Kühlrippen induzierte Druckverlust zusätzlich abgesenkt ist. Ferner wird durch das Vorsehen der Lücken der Turbulenzgrad der Kühlfluidströmung erhöht, wodurch zusätzlich der Wärmeübergang von den Kühlrippen zu dem Kühlfluid erhöht ist.The cooling rib preferably has laterally in each case one lateral flank delimiting the cooling rib, wherein the first side flank facing the inflow of the cooling fluid with the front side in the plan view of the cooling fin has a point angle and / or the second side flank facing away from the inflow of the cooling fluid with the front side in plan view the cooling fin forms a right angle. Furthermore, it is preferred that the cooling system has at least two cooling ribs which are arranged next to one another in a row. In this case, it is preferred that the cooling ribs are arranged at a distance from each other, so that in each case a gap is formed between the cooling ribs, which passes through the cooling fluid flow during operation of the turbine blade. The cooling fin system preferably has a plurality of rows formed by the cooling fins, wherein the rows are arranged one behind the other. The cooling fins are preferably arranged in the rows such that the cooling fins are in gap with their gaps in between. The fact that the rows are formed by the cooling fins are provided with the gaps, the relative to the flow resistance of the cooling fins is reduced, whereby the pressure loss induced by the cooling fins is additionally lowered. Further, by providing the gaps, the degree of turbulence of the cooling fluid flow is increased, thereby additionally increasing the heat transfer from the cooling fins to the cooling fluid.
Im Folgenden wird die Erfindung anhand der beigefügten schematischen Zeichnungen näher erläutert. Es zeigen:
- Figur 1
- einen Querschnitt einer ersten Ausführungsform der erfindungsgemäßen Kühlrippe;
Figur 2- einen Querschnitt einer zweiten Ausführungsform der erfindungsgemäßen Kühlrippe;
Figur 3- einen Querschnitt einer dritten Ausführungsform der erfindungsgemäßen Kühlrippe;
Figur 4- eine Draufsicht auf einen Querschnitt eines Kühlkanals mit dem erfindungsgemäßen Kühlrippensystems, das von einer Anordnung von der zweiten Ausführungsform der Kühlrippe gemäß
gebildet ist, undFigur 2 Figur 5- eine Draufsicht eines Querschnitts des Kühlkanals mit dem Kühlrippensystem, das von der Ausführungsform der Kühlrippe gemäß
gebildet ist.Figur 3
- FIG. 1
- a cross section of a first embodiment of the cooling fin according to the invention;
- FIG. 2
- a cross section of a second embodiment of the cooling fin according to the invention;
- FIG. 3
- a cross section of a third embodiment of the cooling fin according to the invention;
- FIG. 4
- a plan view of a cross section of a cooling passage with the cooling fin system according to the invention, that of an arrangement of the second embodiment of the cooling fin according to
FIG. 2 is formed, and - FIG. 5
- a plan view of a cross section of the cooling passage with the cooling fin system, of the embodiment of the cooling fin according to
FIG. 3 is formed.
In
In
In
Die in
Jede der in
Die in
Obwohl die Erfindung im Detail durch die bevorzugten Ausführungsbeispiele näher illustriert und beschrieben wurde, so ist die Erfindung nicht durch die offenbarten Beispiele eingeschränkt und andere Variationen können vom Fachmann hieraus abgeleitet werden, ohne den Schutzumfang der Erfindung zu verlassen.While the invention has been further illustrated and described in detail by the preferred embodiments, the invention is not limited by the disclosed examples, and other variations can be derived therefrom by those skilled in the art without departing from the scope of the invention.
Claims (13)
mit mindestens einer Kühlrippe (8), die an der Schaufelinnenseite (6) des Kühlkanals (2) von dieser abstehend angeordnet ist, so dass die Kühlrippe (8) von in dem Kühlkanal (2) strömendem Kühlfluid (18) querangeströmt ist, wobei die Kühlrippe (8) eine stromab liegende Hinterseite (12) aufweist, die derart profiliert zur Schaufelinnenseite (3) hin verläuft, dass die Kühlfluidströmung (18) im Betrieb der Turbinenschaufel (1) ablösefrei die Hinterseite (12) passiert.Cooling rib system for a cooling channel (2) of a turbine blade (1),
with at least one cooling rib (8) arranged on the blade inner side (6) of the cooling channel (2), so that the cooling rib (8) flows transversely through cooling fluid (18) flowing in the cooling channel (2), wherein the Cooling fin (8) has a downstream rear side (12) which is profiled to the blade inner side (3) out that the cooling fluid flow (18) in the operation of the turbine blade (1) free of charge, the rear side (12) passes.
wobei die Kühlrippe (8) eine der Hinterseite (12) abgewandte Frontseite (9) aufweist, die senkrecht von der Schaufelinnenseite (3) vorsteht.Cooling fin system according to claim 1,
wherein the cooling rib (8) has a rear side (12) facing away from the front side (9) which projects perpendicularly from the blade inner side (3).
wobei die Kühlrippe (8) ein Plateau (11) aufweist, das zwischen der Frontseite (9) und der Hinterseite (12) angeordnet ist sowie die Frontseite (9) und die Hinterseite (12) überbrückt.Cooling fin system according to claim 2,
wherein the cooling fin (8) has a plateau (11) which is arranged between the front side (9) and the rear side (12) and bridges over the front side (9) and the rear side (12).
wobei das Plateau (11) parallel zur Schaufelinnenseite (3) angeordnet ist, so dass die von der Frontseite (9) und dem Plateau (11) gebildete Kante (10) einen rechten Winkel aufweist.Cooling fin system according to claim 3,
wherein the plateau (11) is arranged parallel to the blade inner side (3), so that the edge (10) formed by the front side (9) and the plateau (11) has a right angle.
wobei die Kühlrippe (8) derart gepfeilt angeordnet ist, dass in der Kühlfluidströmung (18) eine Komponente von der Hinterkante zur Vorderkante (4) der Turbinenschaufel (1) erzeugbar ist.Cooling fin system according to claim 7,
wherein the cooling rib (8) is arranged in such a way that a component can be generated in the cooling fluid flow (18) from the trailing edge to the leading edge (4) of the turbine blade (1).
wobei die Kühlrippe (8) seitlich jeweils eine die Kühlrippe (8) seitlich begrenzende Seitenflankeflanke (15, 16) aufweist,
wobei die der Zuströmung (18) des Kühlfluids zugewandte erste Seitenflanke (15) mit der Frontseite (9) in der Draufsicht der Kühlrippe (8) einen spitzen Winkel und/oder die der Zuströmung (18) des Kühlfluids abgewandte zweite Seitenflanke (16) mit der Frontseite (9) in der Draufsicht der Kühlrippe (8) einen rechten Winkel einschließt.Cooling fin system according to claim 7 or 8,
wherein the cooling rib (8) has laterally in each case one side edge flank (15, 16) delimiting the cooling rib (8) laterally,
wherein the inflow (18) of the cooling fluid facing first side edge (15) with the front (9) in the plan view of the cooling fin (8) with an acute angle and / or the inflow (18) of the cooling fluid facing away from the second side edge (16) the front side (9) in the plan view of the cooling fin (8) forms a right angle.
wobei die Kühlrippen (8) im Abstand zueinander angeordnet sind, so dass zwischen den Kühlrippen (8) jeweils eine Lücke (17) ausgebildet ist, die die Kühlfluidströmung (18) im Betrieb der Turbinenschaufel (1) passiert.Cooling fin system according to claim 10,
wherein the cooling ribs (8) are arranged at a distance from each other, so that in each case a gap (17) is formed between the cooling ribs (8), which passes through the cooling fluid flow (18) during operation of the turbine blade (1).
wobei das Kühlrippensystem (7) mehrere der Reihen gebildet von den Kühlrippen (8) aufweist,
wobei die Reihen hintereinander angeordnet sind.Cooling fin system according to claim 11,
wherein the cooling fin system (7) has a plurality of the rows formed by the cooling ribs (8),
wherein the rows are arranged one behind the other.
wobei die Kühlrippen (8) in den Reihen derart angeordnet sind, dass die Kühlrippen (8) mit ihren dazwischen liegenden Lücken (17) auf Lücke stehen.Cooling fin system according to claim 12,
wherein the cooling fins (8) are arranged in the rows such that the cooling fins (8) with their intermediate gaps (17) are in gap.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11189911.8A EP2599957A1 (en) | 2011-11-21 | 2011-11-21 | Cooling fin system for a cooling channel and turbine blade |
PCT/EP2012/073158 WO2013076110A1 (en) | 2011-11-21 | 2012-11-21 | Cooling rib system for a cooling passage of a turbine blade |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP11189911.8A EP2599957A1 (en) | 2011-11-21 | 2011-11-21 | Cooling fin system for a cooling channel and turbine blade |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2599957A1 true EP2599957A1 (en) | 2013-06-05 |
Family
ID=47427282
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11189911.8A Withdrawn EP2599957A1 (en) | 2011-11-21 | 2011-11-21 | Cooling fin system for a cooling channel and turbine blade |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP2599957A1 (en) |
WO (1) | WO2013076110A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11313232B2 (en) | 2017-03-10 | 2022-04-26 | Mitsubishi Heavy Industries, Ltd. | Turbine blade, turbine, and method for cooling turbine blade |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5472316A (en) * | 1994-09-19 | 1995-12-05 | General Electric Company | Enhanced cooling apparatus for gas turbine engine airfoils |
EP0939196A2 (en) * | 1998-02-26 | 1999-09-01 | Kabushiki Kaisha Toshiba | Gas turbine blade |
JP2000282804A (en) * | 1999-03-30 | 2000-10-10 | Toshiba Corp | Gas turbine blade |
US20020025248A1 (en) * | 1999-08-16 | 2002-02-28 | Ching-Pang Lee | Method for enhancing heat transfer inside a turbulated cooling passage |
US20060099073A1 (en) * | 2004-11-05 | 2006-05-11 | Toufik Djeridane | Aspherical dimples for heat transfer surfaces and method |
US20060239820A1 (en) * | 2005-04-04 | 2006-10-26 | Nobuaki Kizuka | Member having internal cooling passage |
EP1818504A2 (en) * | 2006-02-09 | 2007-08-15 | Hitachi, Ltd. | Material having internal cooling passage and method for cooling material having internal cooling passage |
GB2473949A (en) * | 2009-09-24 | 2011-03-30 | Gen Electric | Heat transfer apparatus with turbulators |
-
2011
- 2011-11-21 EP EP11189911.8A patent/EP2599957A1/en not_active Withdrawn
-
2012
- 2012-11-21 WO PCT/EP2012/073158 patent/WO2013076110A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5472316A (en) * | 1994-09-19 | 1995-12-05 | General Electric Company | Enhanced cooling apparatus for gas turbine engine airfoils |
EP0939196A2 (en) * | 1998-02-26 | 1999-09-01 | Kabushiki Kaisha Toshiba | Gas turbine blade |
JP2000282804A (en) * | 1999-03-30 | 2000-10-10 | Toshiba Corp | Gas turbine blade |
US20020025248A1 (en) * | 1999-08-16 | 2002-02-28 | Ching-Pang Lee | Method for enhancing heat transfer inside a turbulated cooling passage |
US20060099073A1 (en) * | 2004-11-05 | 2006-05-11 | Toufik Djeridane | Aspherical dimples for heat transfer surfaces and method |
US20060239820A1 (en) * | 2005-04-04 | 2006-10-26 | Nobuaki Kizuka | Member having internal cooling passage |
EP1818504A2 (en) * | 2006-02-09 | 2007-08-15 | Hitachi, Ltd. | Material having internal cooling passage and method for cooling material having internal cooling passage |
GB2473949A (en) * | 2009-09-24 | 2011-03-30 | Gen Electric | Heat transfer apparatus with turbulators |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11313232B2 (en) | 2017-03-10 | 2022-04-26 | Mitsubishi Heavy Industries, Ltd. | Turbine blade, turbine, and method for cooling turbine blade |
DE112018001275B4 (en) | 2017-03-10 | 2022-12-08 | Mitsubishi Heavy Industries, Ltd. | TURBINE BLADE, TURBINE AND METHOD OF COOLING A TURBINE BLADE |
Also Published As
Publication number | Publication date |
---|---|
WO2013076110A1 (en) | 2013-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69714960T2 (en) | Vortex element construction for cooling channels of a gas turbine rotor blade | |
DE69216501T2 (en) | Turbine blade with internal cooling channel | |
EP2770260B1 (en) | Gas turbine combustion chamber with impingement effusion cooled shingle | |
DE69837068T2 (en) | Internal intercooler for gas turbine compressors | |
EP1911946B1 (en) | Device for charge air cooling for a combustion motor, system with a device for charge air cooling | |
EP1907670B1 (en) | Cooled turbine blade for a gas turbine and use of such a turbine blade | |
EP2255072B1 (en) | Guide vane for a gas turbine and gas turbine comprising such a guide vane | |
EP1177367B1 (en) | Seal for sealing a gap, in particular in a turbine, and a turbine | |
DE102005019652A1 (en) | Turbulator on the underside of a turbine blade tip deflection bend and associated method | |
DE102010016620A1 (en) | Turbine nozzle with Seitenwandkühlplenum | |
DE102014004322A1 (en) | Heat recovery system and plate heat exchanger | |
EP3658751B1 (en) | Blade for a turbine blade | |
DE102014119691A1 (en) | Internal cooling channels in turbine blades | |
DE102017200335A1 (en) | Heat exchanger with improved clogging resistance | |
DE102014119693A1 (en) | Structural design of and cooling circuits in turbine blades | |
DE102014119418A1 (en) | Structural arrangements and cooling circuits in turbine blades | |
DE102015203871A1 (en) | Rotor of a turbine of a gas turbine with improved cooling air flow | |
EP1921269A1 (en) | Turbine blade | |
WO2012007506A1 (en) | Seal arrangement for sealing a gap, and sealing element for this purpose | |
DE102013220313A1 (en) | Stacked plate heat exchanger | |
EP2481899A1 (en) | Heat exchanger | |
EP2599957A1 (en) | Cooling fin system for a cooling channel and turbine blade | |
EP2757340B1 (en) | Cooler | |
EP3256783B1 (en) | Hot gas-conducting casing | |
CH706900A2 (en) | Blade arrangement for a turbomachine. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131206 |