EP2599330B1 - Systeme, verfahren sowie geräte für verbesserte erzeugung einer akustischen quellenpositionierung - Google Patents

Systeme, verfahren sowie geräte für verbesserte erzeugung einer akustischen quellenpositionierung Download PDF

Info

Publication number
EP2599330B1
EP2599330B1 EP11738931.2A EP11738931A EP2599330B1 EP 2599330 B1 EP2599330 B1 EP 2599330B1 EP 11738931 A EP11738931 A EP 11738931A EP 2599330 B1 EP2599330 B1 EP 2599330B1
Authority
EP
European Patent Office
Prior art keywords
frequency range
loudspeakers
audio signal
energy
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11738931.2A
Other languages
English (en)
French (fr)
Other versions
EP2599330A1 (de
Inventor
Erik Visser
Pei Xiang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/190,464 external-priority patent/US8965546B2/en
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of EP2599330A1 publication Critical patent/EP2599330A1/de
Application granted granted Critical
Publication of EP2599330B1 publication Critical patent/EP2599330B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R3/00Circuits for transducers, loudspeakers or microphones
    • H04R3/12Circuits for transducers, loudspeakers or microphones for distributing signals to two or more loudspeakers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/405Non-uniform arrays of transducers or a plurality of uniform arrays with different transducer spacing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04SSTEREOPHONIC SYSTEMS 
    • H04S7/00Indicating arrangements; Control arrangements, e.g. balance control
    • H04S7/30Control circuits for electronic adaptation of the sound field
    • H04S7/302Electronic adaptation of stereophonic sound system to listener position or orientation
    • H04S7/303Tracking of listener position or orientation

Definitions

  • This disclosure relates to audio signal processing.
  • Beamforming is a signal processing technique originally used in sensor arrays (e.g., microphone arrays) for directional signal transmission or reception. This spatial selectivity is achieved by using fixed or adaptive receive/transmit beampatterns.
  • fixed beamformers include the delay-and-sum beamformer (DSB) and the superdirective beamformer, each of which is a special case of the minimum variance distortionless response (MVDR) beamformer.
  • DSB delay-and-sum beamformer
  • MVDR minimum variance distortionless response
  • microphone beamformer theories that are used to create sound pick-up patterns may be applied to speaker arrays instead to achieve sound projection patterns.
  • beamforming theories may be applied to an array of speakers to steer a sound projection to a desired direction in space.
  • US 2010/0124150 A1 describes systems and method for acoustic beamforming using discrete or continuous speaker arrays. The system includes four speakers arranged in a linear array. The first speaker is closest to a target represented by a listener's ear. The second speaker is slightly more distant, and the third and fourth speakers 106, 108 are still more distant.
  • a single audio source provides a time-varying audio drive voltage.
  • the drive voltage is split up into multiple channels supplying the speakers and an appropriate time delay is introduced in each channel based on the location of the corresponding speaker.
  • the speaker farthest away from the target may be fed a signal with time delay, which may be zero, and the other speakers receive signals delayed by successively larger time delays.
  • a method of audio signal processing according to a general configuration includes spatially processing a first audio signal to generate a first plurality M of imaging signals. This method includes, for each of the first plurality M of imaging signals, applying a corresponding one of a first plurality M of driving signals to a corresponding one of a first plurality M of loudspeakers of an array, wherein the driving signal is based on the imaging signal.
  • This method includes harmonically extending a second audio signal that includes energy in a first frequency range to produce an extended signal that includes harmonics, in a second frequency range that is higher than the first frequency range, of said energy of the second audio signal in the first frequency range; and spatially processing an enhanced signal that is based on the extended signal to generate a second plurality N of imaging signals.
  • This method includes, for each of the second plurality N of imaging signals, applying a corresponding one of a second plurality N of driving signals to a corresponding one of a second plurality N of loudspeakers of the array, wherein the driving signal is based on the imaging signal.
  • Computer-readable storage media e.g., non-transitory media having tangible features that cause a machine reading the features to perform such a method are also disclosed.
  • An apparatus for audio signal processing includes means for spatially processing a first audio signal to generate a first plurality M of imaging signals; and means for applying, for each of the first plurality M of imaging signals, a corresponding one of a first plurality M of driving signals to a corresponding one of a first plurality M of loudspeakers of an array, wherein the driving signal is based on the imaging signal.
  • This apparatus includes means for harmonically extending a second audio signal that includes energy in a first frequency range to produce an extended signal that includes harmonics, in a second frequency range that is higher than the first frequency range, of said energy of the second audio signal in the first frequency range; and means for spatially processing an enhanced signal that is based on the extended signal to generate a second plurality N of imaging signals.
  • This apparatus includes means for applying, for each of the second plurality N of imaging signals, a corresponding one of a second plurality N of driving signals to a corresponding one of a second plurality N of loudspeakers of the array, wherein the driving signal is based on the imaging signal.
  • An apparatus for audio signal processing includes a first spatial processing module configured to spatially process a first audio signal to generate a first plurality M of imaging signals, and an audio output stage configured to apply, for each of the first plurality M of imaging signals, a corresponding one of a first plurality M of driving signals to a corresponding one of a first plurality M of loudspeakers of an array, wherein the driving signal is based on the imaging signal.
  • This apparatus includes a harmonic extension module configured to harmonically extend a second audio signal that includes energy in a first frequency range to produce an extended signal that includes harmonics, in a second frequency range that is higher than the first frequency range, of said energy of the second audio signal in the first frequency range, and a second spatial processing module configured to spatially process an enhanced signal that is based on the extended signal to generate a second plurality N of imaging signals.
  • the audio output stage is configured to apply, for each of the second plurality N of imaging signals, a corresponding one of a second plurality N of driving signals to a corresponding one of a second plurality N of loudspeakers of the array, wherein the driving signal is based on the imaging signal.
  • the term “signal” is used herein to indicate any of its ordinary meanings, including a state of a memory location (or set of memory locations) as expressed on a wire, bus, or other transmission medium.
  • the term “generating” is used herein to indicate any of its ordinary meanings, such as computing or otherwise producing.
  • the term “calculating” is used herein to indicate any of its ordinary meanings, such as computing, evaluating, estimating, and/or selecting from a plurality of values.
  • the term “obtaining” is used to indicate any of its ordinary meanings, such as calculating, deriving, receiving (e.g., from an external device), and/or retrieving (e.g., from an array of storage elements).
  • the term “selecting” is used to indicate any of its ordinary meanings, such as identifying, indicating, applying, and/or using at least one, and fewer than all, of a set of two or more. Where the term “comprising” is used in the present description and claims, it does not exclude other elements or operations.
  • the term "based on” is used to indicate any of its ordinary meanings, including the cases (i) “derived from” (e.g., “B is a precursor of A"), (ii) “based on at least” (e.g., "A is based on at least B") and, if appropriate in the particular context, (iii) "equal to” (e.g., "A is equal to B”).
  • the term “in response to” is used to indicate any of its ordinary meanings, including "in response to at least.”
  • references to a "location" of a microphone of a multi-microphone audio sensing device indicate the location of the center of an acoustically sensitive face of the microphone, unless otherwise indicated by the context.
  • the term “channel” is used at times to indicate a signal path and at other times to indicate a signal carried by such a path, according to the particular context.
  • the term “series” is used to indicate a sequence of two or more items.
  • the term “logarithm” is used to indicate the base-ten logarithm, although extensions of such an operation to other bases are within the scope of this disclosure.
  • frequency component is used to indicate one among a set of frequencies or frequency bands of a signal, such as a sample of a frequency domain representation of the signal (e.g., as produced by a fast Fourier transform) or a subband of the signal (e.g., a Bark scale or mel scale subband).
  • any disclosure of an operation of an apparatus having a particular feature is also expressly intended to disclose a method having an analogous feature (and vice versa), and any disclosure of an operation of an apparatus according to a particular configuration is also expressly intended to disclose a method according to an analogous configuration (and vice versa).
  • configuration may be used in reference to a method, apparatus, and/or system as indicated by its particular context.
  • method means
  • process means
  • procedure means “technique”
  • apparatus” and “device” are also used generically and interchangeably unless otherwise indicated by the particular context.
  • the near-field may be defined as that region of space which is less than one wavelength away from a sound receiver (e.g., a microphone array).
  • a sound receiver e.g., a microphone array
  • the distance to the boundary of the region varies inversely with frequency. At frequencies of two hundred, seven hundred, and two thousand hertz, for example, the distance to a one-wavelength boundary is about 170, forty-nine, and seventeen centimeters, respectively. It may be useful instead to consider the near-field/far-field boundary to be at a particular distance from the microphone array (e.g., fifty centimeters from a microphone of the array or from the centroid of the array, or one meter or 1.5 meters from a microphone of the array or from the centroid of the array).
  • Beamforming may be used to enhance a user experience by creating an aural image in space, which may be varied over time, or may provide a privacy mode to the user by steering the audio toward a target user.
  • FIG. 1 shows one example of an application of beamforming to a loudspeaker array R100.
  • the array is driven to create a beam of acoustic energy that is concentrated in the direction of the user and to create a valley in the beam response at other locations.
  • Such an approach may use any method capable of creating constructive interference in a desired direction (e.g., steering a beam in a particular direction) while creating destructive interference in other directions (e.g., explicitly creating a null beam in another direction).
  • FIG. 2 shows an example of beamformer theory for an MVDR beamformer, which is an example of a superdirective beamformer.
  • W T as expressed in Eq. (2)
  • ⁇ V n V m as expressed in Eq.
  • denotes a regularization parameter (e.g., a stability factor)
  • ⁇ 0 denotes the beam direction
  • f s denotes the sampling rate
  • denotes angular frequency of the signal
  • c denotes the speed of sound
  • l denotes the distance between the centers of the radiating surfaces of adjacent loudspeakers
  • l nm denotes the distance between the centers of the radiating surfaces of loudspeakers n and m
  • ⁇ VV denotes the normalized cross-power spectral density matrix of the noise
  • ⁇ 2 denotes transducer noise power.
  • phased arrays such as delay-and-sum beamformers (DSBs).
  • DSBs delay-and-sum beamformers
  • FIG. 3 illustrates an application of phased array theory, where d indicates the distance between adjacent loudspeakers (i.e., between the centers of the radiating surfaces of each loudspeaker) and ⁇ indicates the listening angle.
  • Equation (4) of FIG. 3 describes the pressure field p created by the array of N loudspeakers (in the far field), where r is the distance between the listener and the array and k is the wavenumber;
  • Eq. (5) describes the sound field with a phase term ⁇ that relates to a time difference between the loudspeakers; and
  • Eq. (6) describes a relation of a design angle ⁇ to the phase term ⁇ .
  • Beamforming designs are typically data-independent. Beam generation may also be performed using a blind source separation (BSS) algorithm, which is adaptive (e.g., data-dependent).
  • BSS blind source separation
  • FIG. 4 shows examples of beam patterns for a set of initial conditions for a BSS algorithm
  • FIG. 5 shows examples of beam patterns generated from those initial conditions using a constrained BSS approach.
  • Other acoustic imaging (sound-directing) techniques that may be used in conjunction with the enhancement and/or distributed-array approaches as described herein include binaural enhancements with inverse filter designs, such as inverse head-related transfer functions (HRTF), which may be based on stereo dipole theories.
  • HRTF head-related transfer functions
  • the ability to produce a quality bass sound from a loudspeaker is a function of the physical speaker size (e.g., cone diameter).
  • a larger loudspeaker reproduces low audio frequencies better than a small loudspeaker. Due to the limits of its physical dimensions, a small loudspeaker cannot move much air to generate low-frequency sound.
  • One approach to solving the problem of low-frequency spatial processing is to supplement an array of small loudspeakers with another array of loudspeakers having larger loudspeaker cones, so that the array with larger loudspeakers handles the low-frequency content. This solution is not practical, however, if the loudspeaker array is to be installed on a portable device such as a laptop, or in other space-limited applications that may not be able to accommodate another array of larger loudspeakers.
  • FIG. 6 shows the beam patterns of a DSB and an MVDR beamformer, designed with a 22-kHz sampling rate and steering direction at zero pi, on a twelve-loudspeaker system. As shown in these plots, other than some high-frequency aliasing, the response for low-frequency contents up to around 1000 Hz is almost uniform across all directions. As a result, low-frequency sounds have poor directionalities from such arrays.
  • the transducer array geometry involves a trade-off between low and high frequencies.
  • a larger loudspeaker spacing is preferred.
  • the spacing between loudspeakers is too large, the ability of the array to reproduce the desired effects at high frequencies will be limited by a lower aliasing threshold.
  • the wavelength of the highest frequency component to be reproduced by the array should be greater than twice the distance between adjacent loudspeakers.
  • the form factor may constrain the placement of loudspeaker arrays. For example, it may be desirable for a laptop, netbook, or tablet computer or a high-definition video display to have a built-in loudspeaker array. Due to the size constraints, the loudspeakers may be small and unable to reproduce a desired bass region. Alternatively, the loudspeakers may be large enough to reproduce the bass region but spaced too closely to support beamforming or other acoustic imaging. Thus it may be desirable to provide the processing to produce a bass signal in a closely spaced loudspeaker array in which beamforming is employed.
  • FIG. 7A shows an example of a cone-type loudspeaker
  • FIG. 7B shows an example of a rectangular loudspeaker (e.g., RA11x15x3.5, NXP Semiconductors, Eindhoven, NL).
  • FIG. 7C shows an example of an array of twelve loudspeakers as shown in FIG. 6A
  • FIG. 7D shows an example of an array of twelve loudspeakers as shown in FIG. 6B .
  • the inter-loudspeaker distance is 2.6 cm
  • the length of the array (31.2 cm) is approximately equal to the width of a typical laptop computer.
  • FIG. 8 shows plots of magnitude response (top), white noise gain (middle) and directivity index (bottom) for a delay-and-sum beamformer design (left column) and for an MVDR beamformer design (right column). It may be seen from these figures that poor directivity may be expected for frequencies below about 1 kHz.
  • one way to achieve a sensation of bass components from small loudspeakers is to generate higher harmonics from the bass components and play back the harmonics instead of the actual bass components.
  • Descriptions of algorithms for substituting higher harmonics to achieve a psychoacoustic sensation of bass without an actual low-frequency signal presence may be found, for example, in U.S. Pat. No. 5,930,373 (Shashoua et al., issued Jul. 27, 1999 ) and U.S. Publ. Pat. Appls. Nos.
  • FIG. 9A shows a block diagram of an example EM10 of an enhancement module that is configured to perform a PBE operation on an audio signal AS10 to produce an enhanced signal SE10.
  • Audio signal AS10 is a monophonic signal and may be a channel of a multichannel signal (e.g., a stereo signal). In such case, one or more other instances of enhancement module EM10 may be applied to produce corresponding enhanced signals from other channels of the multichannel signal. Alternatively or additionally, audio signal AS10 may be obtained by mixing two or more channels of a multichannel signal to monophonic form.
  • Module EM10 includes a lowpass filter LP10 that is configured to lowpass filter audio signal AS10 to obtain a lowpass signal SL10 that contains the original bass components of audio signal AS10. It may be desirable to configure lowpass filter LP10 to attenuate its stopband relative to its passband by at least six (or ten, or twelve) decibels. Module EM10 also includes a harmonic extension module HX10 that is configured to harmonically extend lowpass signal SL10 to generate an extended signal SX10, which also includes harmonics of the bass components at higher frequencies.
  • Harmonic extension module HX10 may be implemented as a non-linear device, such as a rectifier (e.g., a full-wave rectifier or absolute-value function), an integrator (e.g., a full-wave integrator), and a feedback multiplier. Other methods of generating harmonics that may be performed by alternative implementations of harmonic extension module HX10 include frequency tracking in the low frequencies. It may be desirable for harmonic extension module HX10 to have amplitude linearity, such that the ratio between the amplitudes of its input and output signals is substantially constant (e.g., within twenty-five percent) at least over an expected range of amplitudes of lowpass signal SL10.
  • Module EM10 also includes a bandpass filter BP10 that is configured to bandpass filter extended signal SX10 to produce bandpass signal SB10.
  • bandpass filter BP10 is configured to attenuate the original bass components.
  • bandpass filter BP10 is configured to attenuate generated harmonics that are above a selected cutoff frequency, as these harmonics may cause distortion in the resulting signal. It may be desirable to configure bandpass filter BP10 to attenuate its stopbands relative to its passband by at least six (or ten, or twelve) decibels.
  • Module EM10 also includes a highpass filter HP10 that is configured to attenuate the original bass components of audio signal AS10 to produce a highpass signal SH10.
  • Filter HP10 may be configured to use the same low-frequency cutoff as bandpass filter BP10 or to use a different (e.g., a lower) cutoff frequency. It may be desirable to configure highpass filter HP10 to attenuate its stopband relative to its passband by at least six (or ten, or twelve) decibels.
  • Mixer MX10 is configured to mix bandpass signal SB10 with highpass signal SH10.
  • Mixer MX10 may be configured to amplify bandpass signal SB10 before mixing it with highpass signal SH10.
  • FIG. 9B shows a block diagram of an implementation EM20 of enhancement module EM10 that includes a delay element DE10 in the passthrough path that is configured to delay highpass signal SH10 to compensate for such delay.
  • mixer MX10 is arranged to mix the resulting delayed signal SD10 with bandpass signal SB10.
  • FIGS. 10A and 10B show alternate implementations EM30 and EM40 of modules EM10 and EM20, respectively, in which highpass filter HP10 is applied downstream of mixer MX10 to produce enhanced signal SE10.
  • FIG. 11 shows an example of a frequency spectrum of a music signal before and after PBE processing (e.g., by an implementation of enhancement module EM10).
  • the background (black) region and the line visible at about 200 to 500 Hz indicates the original signal (e.g., SA10), and the foreground (white) region indicates the enhanced signal (e.g., SE10).
  • the PBE operation attenuates around 10 dB of the actual bass. Because of the enhanced higher harmonics from about 200 Hz to 600 Hz, however, when the enhanced music signal is reproduced using a small speaker, it is perceived to have more bass than the original signal.
  • PBE may be desirable to apply PBE not only to reduce the effect of low-frequency reproducibility limits, but also to reduce the effect of directivity loss at low frequencies.
  • the use of a loudspeaker array to produce directional beams from an enhanced signal results in an output that has a much lower perceived frequency range than an output from the audio signal without such enhancement.
  • a more relaxed beamformer design to steer the enhanced signal, which may support a reduction of artifacts and/or computational complexity and allow more efficient steering of bass components with arrays of small loudspeakers.
  • such a system can protect small loudspeakers from damage by low-frequency signals (e.g., rumble).
  • FIG. 12A shows a block diagram of a system S100 according to a general configuration.
  • System S100 includes an apparatus A100 and an array of loudspeakers R100.
  • Apparatus A100 includes an instance of enhancement module EM10 configured to process audio signal SA10 to produce enhanced signal SE10 as described herein.
  • Apparatus A100 also includes a spatial processing module PM10 configured to perform a spatial processing operation (e.g., beamforming, beam generation, or another acoustic imaging operation) on enhanced signal SE10 to produce a plurality P of imaging signals SI10-1 to SI10-p.
  • a spatial processing operation e.g., beamforming, beam generation, or another acoustic imaging operation
  • Apparatus A100 also includes an audio output stage AO10 configured to process each of the P imaging signals to produce a corresponding one of a plurality P of driving signals SO10-1 to SO10-p and to apply each driving signal to a corresponding loudspeaker of array R100. It may be desirable to implement array R100, for example, as an array of small loudspeakers or an array of large loudspeakers in which the individual loudspeakers are spaced closely together.
  • Low-frequency signal processing may present similar challenges with other spatial processing techniques, and implementations of system S100 may be used in such cases to improve the perceptual low-frequency response and reduce a burden of low-frequency design on the original system.
  • spatial processing module PM10 may be implemented to perform a spatial processing technique other than beamforming. Examples of such techniques include wavefield synthesis (WFS), which is typically used to resynthesize the realistic wavefront of a sound field.
  • WFS wavefield synthesis
  • Such an approach may use a large number of speakers (e.g., twelve, fifteen, twenty, or more) and is generally implemented to achieve a uniform listening experience for a group of people rather than for a personal space use case.
  • FIG. 12B shows a flowchart of a method M100 according to a general configuration that includes tasks T300, T400, and T500.
  • Task T300 harmonically extends an audio signal that includes energy in a first frequency range to produce an extended signal that includes harmonics, in a second frequency range that is higher than the first frequency range, of said energy of the audio signal in the first frequency range (e.g., as described herein with reference to implementations of enhancement module EM10).
  • Task T400 spatially processes an enhanced signal that is based on the extended signal to generate a plurality P of imaging signals (e.g., as discussed herein with reference to implementations of spatial processing module PM10).
  • task T400 may be configured to perform a beamforming, wavefield synthesis, or other acoustic imaging operation on the enhanced audio signal.
  • task T500 applies a corresponding one of a plurality P of driving signals to a corresponding one of a plurality P of loudspeakers of an array, wherein the driving signal is based on the imaging signal.
  • the array is mounted on a portable computing device (e.g., a laptop, netbook, or tablet computer).
  • FIG. 13A shows a block diagram of an implementation PM20 of spatial processing module PM10 that includes a plurality of spatial processing filters PF10-1 to PF10-p, each arranged to process enhanced signal SE10 to produce a corresponding one of a plurality P of imaging signals SI10-1 to SI10-p.
  • each filter PF10-1 to PF10-p is a beamforming filter (e.g., an FIR or IIR filter), whose coefficients may be calculated using an LCMV, MVDR, BSS, or other directional processing approach as described herein.
  • array R100 it may be desirable for array R100 to have at least four loudspeakers, and in some applications, an array of six loudspeakers may be sufficient.
  • arrays that may be used with the directional processing, PBE, and/or tapering approaches described herein include the YSP line of speaker bars (Yamaha Corp., JP), the ES7001 speaker bar (Marantz America, Inc., Mahwah, NJ), the CSMP88 speaker bar (Coby Electronics Corp., Lake Success, NY), and the Panaray MA12 speaker bar (Bose Corp., Framingham, MA).
  • YSP line of speaker bars Yamaha Corp., JP
  • the ES7001 speaker bar Marantz America, Inc., Mahwah, NJ
  • the CSMP88 speaker bar Coby Electronics Corp., Lake Success, NY
  • Panaray MA12 speaker bar Bose Corp., Framingham, MA
  • highpass-filter enhanced signal SE10 (or a precursor of this signal) to remove low-frequency energy of input audio signal SA10.
  • low-frequency beam pattern reproduction depends on array dimension
  • beams tend to widen in the low-frequency range, resulting in a non-directional low-frequency sound image.
  • One approach to correcting the low-frequency directional sound image is to use various aggressiveness settings of the enhancement operation, such that low- and high-frequency cutoffs in this operation are selected as a function of the frequency range in which the array can produce a directional sound image. For example, it may be desirable to select a low-frequency cutoff as a function of inter-transducer spacing to remove non-directable energy and/or to select a high-frequency cutoff as a function of inter-transducer spacing to attenuate high-frequency aliasing.
  • FIG. 13B shows a block diagram of such an implementation A110 of apparatus A100 that includes a highpass filter HP20 configured to highpass filter enhanced signal SE10 upstream of spatial processing module PM10.
  • FIG. 13C shows an example of the magnitude response of highpass filter HP20, in which the cutoff frequency fc is selected according to the inter-loudspeaker spacing. It may be desirable to configure highpass filter HP20 to attenuate its stopband relative to its passband by at least six (or ten, or twelve) decibels.
  • the high-frequency range is subject to spatial aliasing, and it may be desirable to use a low-pass filter on the PBE output, with its cutoff defined as a function of inter-transducer spacing to attenuate high-frequency aliasing. It may be desirable to configure such a lowpass filter to attenuate its stopband relative to its passband by at least six (or ten, or twelve) decibels.
  • FIG. 14 shows a block diagram of a similar configuration.
  • a monophonic source signal to be steered to direction ⁇ e.g., audio signal SA10
  • a PBE operation as described herein, such that the low- and high-frequency cutoffs in the PBE module are set as a function of the transducer placement (e.g., the inter-loudspeaker spacing, to avoid low frequencies that the array may not effectively steer and high frequencies that may cause spatial aliasing).
  • the enhanced signal SE10 is processed by a plurality of processing paths to produce a corresponding plurality of driving signals, such that each path includes a corresponding beamformer filter, high-pass filter, and low-pass filter whose designs are functions of the transducer placement (e.g., inter-loudspeaker spacing). It may be desirable to configure each such filter to attenuate its stopband relative to its passband by at least six (or ten, or twelve) decibels. For an array having dimensions as discussed above with reference to FIGS. 9 and 10 , it may be expected that the beam width will be too wide for frequencies below 1 kHz, and that spatial aliasing may occur at frequencies above 6 kHz. In the example of FIG.
  • the high-pass filter design is also selected according to the beam direction, such that little or no highpass filtering is performed in the desired direction, and the highpass filtering operation is more aggressive (e.g., has a lower cutoff and/or more stopband attenuation) in other directions.
  • the highpass and lowpass filters shown in FIG. 14 may be implemented, for example, within audio output stage AO10.
  • a loudspeaker array When a loudspeaker array is used to steer a beam in a particular direction, it is likely that the sound signal will still be audible in other directions as well (e.g., in the directions of sidelobes of the main beam). It may be desirable to mask the sound in other directions (e.g., to mask the remaining sidelobe energy) using masking noise, as shown in FIG. 15 .
  • FIG. 16 shows a block diagram of such an implementation A200 of apparatus A100 that includes a noise generator NG10 and a second instance PM20 of spatial processing module PM10.
  • Noise generator NG10 produces a noise signal SN10. It may be desirable for the spectral distribution of noise signal SN10 to be similar to that of the sound signal to be masked (i.e., audio signal SA10).
  • babble noise e.g., a combination of several human voices
  • noise signals that may be generated by noise generator NG10 include white noise, pink noise, and street noise.
  • Spatial processing module PM20 performs a spatial processing operation (e.g., beamforming, beam generation, or another acoustic imaging operation) on noise signal SN10 to produce a plurality Q of imaging signals SI20-1 to SI20-q.
  • the value of Q may be equal to P.
  • Q may be less than P, such that fewer loudspeakers are used to create the masking noise image, or greater than P, such that fewer loudspeakers are used to create the sound image being masked.
  • Spatial processing module PM20 may be configured such that apparatus A200 drives array R100 to beam the masking noise to specific directions, or the noise may simply be spatially distributed. It may be desirable to configure apparatus A200 to produce a masking noise image that is stronger than each desired sound source outside the main lobe of the beam of each desired source.
  • a multi-source implementation of apparatus A200 as described herein is configured to drive array R100 to project two human voices in different (e.g., opposite) directions, and babble noise is used to make the residual voices fade into the background babble noise outside of those directions. In such case, it is very difficult to perceive what the voices are saying in directions other than the desired directions, because of the masking noise.
  • the spatial image produced by a loudspeaker array at a user's location is typically most effective when the axis of the array is broadside to (i.e., parallel to) the axis of the user's ears.
  • Head movements by a listener may result in suboptimal sound image generation for a given array.
  • the desired spatial imaging effect may no longer be available.
  • FIG. 17 shows a block diagram of an implementation S200 of system S100 that includes an implementation A250 of apparatus A100 and a second loudspeaker array R200 having a plurality Q of loudspeakers, where Q may be the same as or different than P.
  • Apparatus A250 includes an instance PM10a of spatial processing module PM10 that is configured to perform a spatial processing operation on enhanced signal SE10 to produce imaging signals SI10-1 to SI10-p, and an instance PM10b of spatial processing module PM10 that is configured to perform a spatial processing operation on enhanced signal SE10 to produce imaging signals SI20-1 to SI20-q.
  • Apparatus A250 also includes corresponding instances AO10a, AO10b of audio output stage AO10 as described herein.
  • Apparatus A250 also includes a tracking module TM10 that is configured to track a location and/or orientation of the user's head and to enable a corresponding instance AO10a or AO10b of audio output stage AO10 to drive a corresponding one of arrays R100 and R200 (e.g., via a corresponding set of driving signals SO10-1 to SO10-p or SO20-1 to SO20-q)
  • FIG. 18 shows a top view of an example of an application of system S200.
  • Tracking module TM10 may be implemented according to any suitable tracking technology.
  • tracking module TM10 is configured to analyze video images from a camera CM10 (e.g., as shown in FIG. 18 ) to track facial features of a user and possibly to distinguish and separately track two or more users.
  • tracking module TM10 may be configured to track the location and/or orientation of a user's head by using two or more microphones to estimate a direction of arrival (DOA) of the user's voice.
  • DOA direction of arrival
  • tracking module TM10 may be configured to use ultrasonic orientation tracking as described in U.S. Pat. No. 7,272,073 B2 (Pellegrini, issued Sep. 18, 2007 ) and/or ultrasonic location tracking as described in U.S. Prov'l Pat. Appl. No. 61/448,950 (filed Mar. 3, 2011 ).
  • applications for system S200 include audio and/or videoconferencing and audio and/or video telephony.
  • system S200 it may be desirable to implement system S200 such that arrays R100 and R200 are orthogonal or substantially orthogonal (e.g., having axes that form an angle of at least sixty or seventy degrees and not more than 110 or 120 degrees).
  • tracking module TM10 detects that the user's head turns to face a particular array
  • module TM10 enables audio output stage AO10a or AO10b to drive that array according to the corresponding imaging signals.
  • FIG. 18 it may be desirable to implement system S200 to support selection among two, three, or four or more different arrays.
  • system S200 may be desirable to implement system S200 to support selection among different arrays at different locations along the same axis (e.g., arrays R100 and R300), and/or selection among arrays facing in opposite directions (e.g., arrays R200 and R400), according to a location and/or orientation as indicated by tracking module TM10.
  • sampling is used to create a subarray having a larger spacing between adjacent loudspeakers, which can be used to steer low frequencies more effectively.
  • use of a subarray in some frequency bands may be complemented by use of a different subarray in other frequency bands. It may be desirable to increase the number of enabled loudspeakers as the frequency of the signal content increases (alternatively, to reduce the number of enabled loudspeakers as the frequency of the signal content decreases).
  • FIG. 19 shows a diagram of a configuration of non-linearly spaced loudspeakers in an array.
  • a subarray R100a of loudspeakers that are spaced closer together are used to reproduce higher frequency content in the signal, and according to the invention a subarray R100b of loudspeakers that are further apart are used for output of the low-frequency beams.
  • FIG. 20 shows a diagram of a mixing function of an implementation AO30 of audio output stage AO20 for such an example in which array R100 is sampled to create two effective subarrays: a first array (all of the loudspeakers) for reproduction of high frequencies, and a second array (every other loudspeaker) having a larger inter-loudspeaker spacing for reproduction of low frequencies.
  • a first array all of the loudspeakers
  • second array having a larger inter-loudspeaker spacing for reproduction of low frequencies.
  • other functions of the audio output stage such as amplification, filtering, and/or impedance matching, are not shown.
  • FIG. 21 shows a diagram of a mixing function of an implementation AO40 of audio output stage AO20 for an example in which array R100 is sampled to create three effective subarrays: a first array (all of the loudspeakers) for reproduction of high frequencies, a second array (every second loudspeaker) having a larger inter-loudspeaker spacing for reproduction of middle frequencies, and a third array (every third loudspeaker) having an even larger inter-loudspeaker spacing for reproduction of low frequencies.
  • a first array all of the loudspeakers
  • a second array having a larger inter-loudspeaker spacing for reproduction of middle frequencies
  • a third array every third loudspeaker having an even larger inter-loudspeaker spacing for reproduction of low frequencies.
  • Such creation of subarrays having mutually nonuniform spacing may be used to obtain similar beam widths for different frequency ranges even for a uniform array.
  • sampling is used to obtain a loudspeaker array having nonuniform spacing, which may be used to obtain a better compromise between sidelobes and mainlobes in low- and high-frequency bands.
  • subarrays as described herein may be driven individually or in combination to create any of the various imaging effects described herein (e.g., masking noise, multiple sources in different respective directions, direction of a beam and a corresponding null beam at respective ones of the user's ears, etc.).
  • the loudspeakers of the different subarrays, and/or loudspeakers of different arrays may be configured to communicate through conductive wires, fiber-optic cable (e.g., aTOSLINK cable, such as via an S/PDIF connection), or wirelessly (e.g., through a Wi-Fi (e.g., IEEE 802.11) connection).
  • conductive wires e.g., aTOSLINK cable, such as via an S/PDIF connection
  • wirelessly e.g., through a Wi-Fi (e.g., IEEE 802.11) connection.
  • Other wireless transmission channels that may be used include non-radio channels such as infrared and ultrasonic.
  • Such communication may include relaying beam designs, coordinating beampatterns that vary in time between arrays, playing back audio signals, etc.
  • different arrays as shown in FIG. 18 are driven by respective laptop computers that communicate over a wired and/or wireless connection to adaptively direct one or more common audio sources in desired respective directions.
  • FIG. 22 shows a block diagram of an implementation A300 of apparatus A100.
  • Apparatus A300 includes an instance PM10a of spatial processing module PM10 that is configured to perform a spatial processing operation on an audio signal SA10a to produce imaging signals SI10-1 to SI10-m, and an instance PM10b of spatial processing module PM10 that is configured to perform a spatial processing operation on enhanced signal SE10 to produce imaging signals SI20-1 to SI20-n.
  • Apparatus A300 also includes an instance of audio output stage AO20 that is configured to apply a plurality P of driving signals SO10-1 to SO10-p to corresponding plurality P of loudspeakers of array R100.
  • the set of driving signals SO10-1 to SO10-p includes M driving signals, each based on a corresponding one of imaging signals SI10-1 to SI10-m, that are applied to a corresponding subarray of M loudspeakers of array R100.
  • the set of driving signals SO10-1 to SO10-p also includes N driving signals, each based on a corresponding one of imaging signals SI20-1 to SI20-n, that are applied to a corresponding subarray of N loudspeakers of array R100.
  • the subarrays of M and N loudspeakers may be separate from each other (e.g., as shown in FIG. 19 with reference to arrays R100a and R100b). In such case, P is greater than both M and N. Alternatively, the subarrays of M and N loudspeakers may be different but overlapping. In one such example, M is equal to P, and the subarray of M loudspeakers includes the subarray of N loudspeakers (and possibly all of the loudspeakers in the array). In this particular case, the plurality of M driving signals also includes the plurality of N driving signals. The configuration shown in FIG. 20 is one example of such a case.
  • the audio signals SA10a and SA10b may be from different sources.
  • spatial processing modules PM10a and PM10b may be configured to direct the two signals in similar directions or independently of each other.
  • FIG. 37 shows a block diagram of an implementation A350 of apparatus A300 in which both imaging paths are based on the same audio signal SA10. In this case, it may be desirable for modules PM10a and PM10b to direct the respective images in the same direction, such that an overall image of audio signal SA10 is improved.
  • audio output stage AO20 may be desirable to configure audio output stage AO20 to apply the driving signals that correspond to imaging signals SI20-1 to SI20-n (i.e., to the enhancement path) to a subarray having a larger inter-loudspeaker spacing, and to apply the driving signals that correspond to imaging signals SI10-1 to SI10-m to a subarray having a smaller inter-loudspeaker spacing.
  • Such a configuration allows enhanced signal SE10 to support an improved perception of spatially imaged low-frequency content.
  • FIG. 23A shows an example of three different bandpass designs for the processing paths for a three-subarray scheme as described above with reference to FIG. 21 .
  • the band is selected according to the inter-loudspeaker spacing for the particular subarray.
  • the low-frequency cutoff may be selected according to the lowest frequency that the subarray can effectively steer
  • the high-frequency cutoff may be selected according to the frequency at which spatial aliasing is expected to begin (e.g., such that the wavelength of the highest frequency passed is more than two times greater than the inter-loudspeaker spacing). It is expected that the lowest frequency that each loudspeaker can effectively reproduce will be much lower than the lowest frequency that the subarray with the highest inter-loudspeaker spacing (i.e., subarray c) can effectively steer, but in the event that this is not the case, the low-frequency cutoff may be selected according to the lowest reproducible frequency.
  • FIG. 23B shows an example of three different lowpass designs for a three-subarray scheme as described above with reference to FIG. 21 .
  • the cutoff is selected according to the inter-loudspeaker spacing for the particular subarray.
  • the low-frequency cutoff may be selected according to the lowest frequency that the subarray can effectively steer (alternatively, the lowest reproducible frequency).
  • An overly aggressive PBE operation may give rise to undesirable artifacts in the output signal, such that it may be desirable to avoid unnecessary use of PBE.
  • PBE operation For a case in a different instance of the PBE operation is used for each of one or more of the subarrays, it may be desirable to use a bandpass filter in place of the lowpass filter at the inputs to the harmonic extension operations of the higher-frequency subarrays.
  • FIG. 23C shows an example in which the low-frequency cutoff for this lowpass filter for each of the higher-frequency subarrays is selected according to the highpass cutoff of the subarray for the next lowest frequency band.
  • only the lowest-frequency subarray receives a PBE-enhanced signal (e.g., as discussed herein with reference to apparatus A300 and A350).
  • a PBE-enhanced signal e.g., as discussed herein with reference to apparatus A300 and A350.
  • FIG. 24A shows a uniform linear array (e.g., as shown in FIG. 24A ).
  • a combination of acoustic imaging with PBE may also be used with a linear array having a nonuniform spacing between adjacent loudspeakers.
  • FIG. 24B shows one example of such an array having symmetrical octave spacing between the loudspeakers
  • FIG. 24C shows another example of such an array having asymmetrical octave spacing.
  • such principles are not limited to use with linear arrays and may also be used with arrays whose elements are arranged along a simple curve, whether with uniform spacing (e.g., as shown in FIG. 24D ) or with nonuniform (e.g., octave) spacing.
  • uniform spacing e.g., as shown in FIG. 24D
  • nonuniform e.g., octave
  • the same principles stated herein also apply separably to each array in applications having multiple arrays along the same or different (e.g., orthogonal) straight or curved axes, as shown for example in FIG. 18 .
  • the principles described herein may be extended to multiple monophonic sources driving the same array or arrays via respective instances of beamforming, enhancement, and/or tapering operations to produce multiple sets of driving signals that are summed to drive each loudspeaker.
  • a separate instance of a path including a PBE operation, beamformer, and highpass filter is implemented for each source signal, according to the directional and/or enhancement criteria for the particular source, to produce a respective driving signal for each loudspeaker that is then summed with the driving signals that correspond to the other sources for that loudspeaker.
  • FIG. 38 shows a block diagram of an implementation A500 of apparatus A100 that supports separate enhancement and imaging of different audio signals SA10a and SA10b.
  • FIG. 25 shows an example in which three source signals are directed in different corresponding directions in such manner.
  • Applications include directing different source signals to users at different locations (possibly in combination with tracking changes in the user's location and adapting the beams to continue to provide the same corresponding signal to each user) and stereo imaging (e.g., by directing, for each channel, a beam to the corresponding one of the user's ear and a null beam to the other ear).
  • FIG. 19 shows one example in which a beam is directed at the user's left ear and a corresponding null beam is directed at the user's right ear.
  • FIG. 26 shows a similar example
  • FIG. 27 shows an example in which another source (e.g., the other stereo channel) is directed at the user's right ear (with a corresponding null beam directed at the user's left ear).
  • another source e.g., the other stereo channel
  • Another crosstalk cancellation technique that may be used to deliver a stereo image is to measure, for each loudspeaker of the array, the corresponding head-related transfer function (HRTF) from the loudspeaker to each of the user's ears; to invert that mixing scenario by computing the inverse transfer function matrix; and to configure spatial processing module PM10 to produce the corresponding imaging signals through the inverted matrix.
  • HRTF head-related transfer function
  • the various directional processing techniques described above use a far-field model, for a larger array it may be desirable to use a near-field model instead (e.g., such that the sound image is audible only in the near-field).
  • the transducers to the left of the array are used to direct a beam across the array to the right, and the transducers to the right of the array are used to direct a beam across the array to the left, such that the beams intersect at a focal point that includes the location of the near-field user.
  • Such an approach may be used in conjunction with masking noise such that the source is not audible in far-field locations (e.g., behind the user and more than one or two meters from the array).
  • amplitude control can be implemented by using a spatial shaping function, such as a tapering window that defines different gain factors for different loudspeakers (e.g., as shown in the examples of FIG. 28 ), to create an amplitude-tapered loudspeaker array.
  • a spatial shaping function such as a tapering window that defines different gain factors for different loudspeakers (e.g., as shown in the examples of FIG. 28 ), to create an amplitude-tapered loudspeaker array.
  • the different types of windows that may be used for amplitude tapering include Hamming, Hanning, triangular, Chebyshev, and Taylor.
  • tapering windows include only using transducers to the left, center, or middle of the desired user.
  • Amplitude tapering may also have the effect of enhancing the lateralization of the beam (e.g., translating the beam in a desired direction) and increasing separation between different beams. Such tapering may be performed as part of the beamformer design and/or independently from the beamformer design.
  • a finite number of loudspeakers introduces a truncation effect, which typically generates sidelobes. It may be desirable to perform shaping in the spatial domain (e.g., windowing) to reduce sidelobes. For example, amplitude tapering may be used to control sidelobes, thereby making a main beam more directional.
  • FIG. 29 shows an example of using the left transducers to project in directions left of the array center. It may be desirable to taper the amplitudes of the driving signals for the remaining transducers to zero, or to set the amplitudes of all of those driving signals to zero.
  • the examples in FIGS. 29-31 also show subband sampling as described herein.
  • FIG. 30 shows an example of using the right transducers to project in directions right of the array center. It may be desirable to taper the amplitudes of the driving signals for the remaining transducers to zero, or to set the amplitudes of all of those driving signals to zero.
  • FIG. 31 shows an example of using the middle transducers to project in directions to the middle of the array. It may be desirable to taper the amplitudes of the driving signals for the left and right transducers to zero, or to set the amplitudes of all of those driving signals to zero.
  • FIGS. 32A-32C demonstrate the influence of tapering on the radiation patterns of a phased-array loudspeaker beamformer for a frequency of 5 kHz, a sampling rate of 48 kHz, and a beam angle of 45 degrees.
  • the white line above the array in each of these figures indicates the relative gains of the loudspeakers across space due to the tapering.
  • FIG. 32A shows the pattern for no tapering.
  • FIG. 32B shows the pattern for tapering with a Chebyshev window, and significant reduction of the pattern on the left side can be seen.
  • FIG. 32C shows the pattern for tapering with another special window for beaming to the right side, and the effect of translating the beam to the right can be seen.
  • FIG. 33 shows examples of theoretical beam patterns for a phased array at beam directions of 0 degrees (left column), 45 degrees (center column) and 90 degrees (right column) at six frequencies in the range of from 400 Hz (top row) to 12 kHz (bottom row).
  • the solid lines indicate a linear array of twelve loudspeakers tapered with a Hamming window, and the dashed lines indicate the same array with no tapering.
  • FIG. 34 shows an example of a demonstration design with desired beams for each of three different audio sources.
  • special tapering curves may be used as shown.
  • a graphical user interface may be used for design and testing of amplitude tapering.
  • a graphical user interface (e.g., a slider-type interface as shown) may also be used to support selection and/or adjustment of amplitude tapering by the end user.
  • FIG. 35 shows a flowchart of a method M200 according to a general configuration that includes tasks T100, T200, T300, T400, and T500.
  • Task T100 spatially processes a first audio signal to generate a first plurality M of imaging signals (e.g., as discussed herein with reference to implementations of spatial processing module PM10).
  • task T200 applies a corresponding one of a first plurality M of driving signals to a corresponding one of a first plurality M of loudspeakers of an array, wherein the driving signal is based on the imaging signal (e.g., as discussed herein with reference to implementations of audio output stage AO20).
  • Task T300 harmonically extends a second audio signal that includes energy in a first frequency range to produce an extended signal that includes harmonics, in a second frequency range that is higher than the first frequency range, of said energy of the second audio signal in the first frequency range (e.g., as described herein with reference to implementations of enhancement module EM10).
  • Task T400 spatially processes an enhanced signal that is based on the extended signal to generate a second plurality N of imaging signals (e.g., as discussed herein with reference to implementations of spatial processing module PM10).
  • task T500 applies a corresponding one of a second plurality N of driving signals to a corresponding one of a second plurality N of loudspeakers of an array, wherein the driving signal is based on the imaging signal (e.g., as discussed herein with reference to implementations of audio output stage AO20).
  • FIG. 36 shows a block diagram of an apparatus MF200 according to a general configuration.
  • Apparatus MF200 includes means F100 for spatially processing a first audio signal to generate a first plurality M of imaging signals (e.g., as discussed herein with reference to implementations of spatial processing module PM10).
  • Apparatus MF200 also includes means F200 for applying, for each of the first plurality M of imaging signals, a corresponding one of a first plurality M of driving signals to a corresponding one of a first plurality M of loudspeakers of an array, wherein the driving signal is based on the imaging signal (e.g., as discussed herein with reference to implementations of audio output stage AO20).
  • Apparatus MF200 also includes means F300 for harmonically extending a second audio signal that includes energy in a first frequency range to produce an extended signal that includes harmonics, in a second frequency range that is higher than the first frequency range, of said energy of the second audio signal in the first frequency range (e.g., as described herein with reference to implementations of enhancement module EM10).
  • Apparatus MF200 also includes means F400 for spatially processing an enhanced signal that is based on the extended signal to generate a second plurality N of imaging signals (e.g., as discussed herein with reference to implementations of spatial processing module PM10).
  • Apparatus MF200 also includes means F500 for applying, for each of the second plurality N of imaging signals, a corresponding one of a second plurality N of driving signals to a corresponding one of a second plurality N of loudspeakers of an array, wherein the driving signal is based on the imaging signal (e.g., as discussed herein with reference to implementations of audio output stage AO20).
  • the methods and apparatus disclosed herein may be applied generally in any transceiving and/or audio sensing application, especially mobile or otherwise portable instances of such applications.
  • the range of configurations disclosed herein includes communications devices that reside in a wireless telephony communication system configured to employ a code-division multiple-access (CDMA) over-the-air interface.
  • CDMA code-division multiple-access
  • a method and apparatus having features as described herein may reside in any of the various communication systems employing a wide range of technologies known to those of skill in the art, such as systems employing Voice over IP (VoIP) over wired and/or wireless (e.g., CDMA, TDMA, FDMA, and/or TD-SCDMA) transmission channels.
  • VoIP Voice over IP
  • communications devices disclosed herein may be adapted for use in networks that are packet-switched (for example, wired and/or wireless networks arranged to carry audio transmissions according to protocols such as VoIP) and/or circuit-switched. It is also expressly contemplated and hereby disclosed that communications devices disclosed herein may be adapted for use in narrowband coding systems (e.g., systems that encode an audio frequency range of about four or five kilohertz) and/or for use in wideband coding systems (e.g., systems that encode audio frequencies greater than five kilohertz), including whole-band wideband coding systems and split-band wideband coding systems.
  • narrowband coding systems e.g., systems that encode an audio frequency range of about four or five kilohertz
  • wideband coding systems e.g., systems that encode audio frequencies greater than five kilohertz
  • Important design requirements for implementation of a configuration as disclosed herein may include minimizing processing delay and/or computational complexity (typically measured in millions of instructions per second or MIPS), especially for computation-intensive applications, such as playback of compressed audio or audiovisual information (e.g., a file or stream encoded according to a compression format, such as one of the examples identified herein) or applications for wideband communications (e.g., voice communications at sampling rates higher than eight kilohertz, such as 12, 16, 44.1, 48, or 192 kHz).
  • MIPS processing delay and/or computational complexity
  • Goals of a multi-microphone processing system as described herein may include achieving ten to twelve dB in overall noise reduction, preserving voice level and color during movement of a desired speaker, obtaining a perception that the noise has been moved into the background instead of an aggressive noise removal, dereverberation of speech, and/or enabling the option of post-processing (e.g., masking and/or noise reduction) for more aggressive noise reduction.
  • post-processing e.g., masking and/or noise reduction
  • an implementation of an apparatus as disclosed herein may be embodied in any hardware structure, or any combination of hardware with software and/or firmware, that is deemed suitable for the intended application.
  • such elements may be fabricated as electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset.
  • One example of such a device is a fixed or programmable array of logic elements, such as transistors or logic gates, and any of these elements may be implemented as one or more such arrays. Any two or more, or even all, of these elements may be implemented within the same array or arrays.
  • Such an array or arrays may be implemented within one or more chips (for example, within a chipset including two or more chips).
  • One or more elements of the various implementations of the apparatus disclosed herein may also be implemented in part as one or more sets of instructions arranged to execute on one or more fixed or programmable arrays of logic elements, such as microprocessors, embedded processors, IP cores, digital signal processors, FPGAs (field-programmable gate arrays), ASSPs (application-specific standard products), and ASICs (application-specific integrated circuits).
  • logic elements such as microprocessors, embedded processors, IP cores, digital signal processors, FPGAs (field-programmable gate arrays), ASSPs (application-specific standard products), and ASICs (application-specific integrated circuits).
  • any of the various elements of an implementation of an apparatus as disclosed herein may also be embodied as one or more computers (e.g., machines including one or more arrays programmed to execute one or more sets or sequences of instructions, also called "processors"), and any two or more, or even all, of these elements may be implemented within the same such computer or computers.
  • computers e.g., machines including one or more arrays programmed to execute one or more sets or sequences of instructions, also called "processors”
  • a processor or other means for processing as disclosed herein may be fabricated as one or more electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset.
  • a fixed or programmable array of logic elements such as transistors or logic gates, and any of these elements may be implemented as one or more such arrays.
  • Such an array or arrays may be implemented within one or more chips (for example, within a chipset including two or more chips). Examples of such arrays include fixed or programmable arrays of logic elements, such as microprocessors, embedded processors, IP cores, DSPs, FPGAs, ASSPs, and ASICs.
  • a processor or other means for processing as disclosed herein may also be embodied as one or more computers (e.g., machines including one or more arrays programmed to execute one or more sets or sequences of instructions) or other processors. It is possible for a processor as described herein to be used to perform tasks or execute other sets of instructions that are not directly related to a procedure of an implementation of method M100, such as a task relating to another operation of a device or system in which the processor is embedded (e.g., an audio sensing device). It is also possible for part of a method as disclosed herein to be performed by a processor of the audio sensing device and for another part of the method to be performed under the control of one or more other processors.
  • modules, logical blocks, circuits, and tests and other operations described in connection with the configurations disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. Such modules, logical blocks, circuits, and operations may be implemented or performed with a general purpose processor, a digital signal processor (DSP), an ASIC or ASSP, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to produce the configuration as disclosed herein.
  • DSP digital signal processor
  • such a configuration may be implemented at least in part as a hard-wired circuit, as a circuit configuration fabricated into an application-specific integrated circuit, or as a firmware program loaded into non-volatile storage or a software program loaded from or into a data storage medium as machine-readable code, such code being instructions executable by an array of logic elements such as a general purpose processor or other digital signal processing unit.
  • a general purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration.
  • a software module may reside in a non-transitory storage medium such as RAM (random-access memory), ROM (read-only memory), nonvolatile RAM (NVRAM) such as flash RAM, erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), registers, hard disk, a removable disk, or a CD-ROM; or in any other form of storage medium known in the art.
  • An illustrative storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may be integral to the processor.
  • the processor and the storage medium may reside in an ASIC.
  • the ASIC may reside in a user terminal.
  • the processor and the storage medium may reside as discrete components in a user terminal.
  • module or “sub-module” can refer to any method, apparatus, device, unit or computer-readable data storage medium that includes computer instructions (e.g., logical expressions) in software, hardware or firmware form. It is to be understood that multiple modules or systems can be combined into one module or system and one module or system can be separated into multiple modules or systems to perform the same functions.
  • the elements of a process are essentially the code segments to perform the related tasks, such as with routines, programs, objects, components, data structures, and the like.
  • the term "software” should be understood to include source code, assembly language code, machine code, binary code, firmware, macrocode, microcode, any one or more sets or sequences of instructions executable by an array of logic elements, and any combination of such examples.
  • the program or code segments can be stored in a processor-readable storage medium or transmitted by a computer data signal embodied in a carrier wave over a transmission medium or communication link.
  • implementations of methods, schemes, and techniques disclosed herein may also be tangibly embodied (for example, in tangible, computer-readable features of one or more computer-readable storage media as listed herein) as one or more sets of instructions executable by a machine including an array of logic elements (e.g., a processor, microprocessor, microcontroller, or other finite state machine).
  • a machine including an array of logic elements (e.g., a processor, microprocessor, microcontroller, or other finite state machine).
  • the term "computer-readable medium” may include any medium that can store or transfer information, including volatile, nonvolatile, removable, and non-removable storage media.
  • Examples of a computer-readable medium include an electronic circuit, a semiconductor memory device, a ROM, a flash memory, an erasable ROM (EROM), a floppy diskette or other magnetic storage, a CD-ROM/DVD or other optical storage, a hard disk or any other medium which can be used to store the desired information, a fiber optic medium, a radio frequency (RF) link, or any other medium which can be used to carry the desired information and can be accessed.
  • the computer data signal may include any signal that can propagate over a transmission medium such as electronic network channels, optical fibers, air, electromagnetic, RF links, etc.
  • the code segments may be downloaded via computer networks such as the Internet or an intranet. In any case, the scope of the present disclosure should not be construed as limited by such embodiments.
  • Each of the tasks of the methods described herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two.
  • an array of logic elements e.g., logic gates
  • an array of logic elements is configured to perform one, more than one, or even all of the various tasks of the method.
  • One or more (possibly all) of the tasks may also be implemented as code (e.g., one or more sets of instructions), embodied in a computer program product (e.g., one or more data storage media, such as disks, flash or other nonvolatile memory cards, semiconductor memory chips, etc.), that is readable and/or executable by a machine (e.g., a computer) including an array of logic elements (e.g., a processor, microprocessor, microcontroller, or other finite state machine).
  • the tasks of an implementation of a method as disclosed herein may also be performed by more than one such array or machine.
  • the tasks may be performed within a device for wireless communications such as a cellular telephone or other device having such communications capability.
  • Such a device may be configured to communicate with circuit-switched and/or packet-switched networks (e.g., using one or more protocols such as VoIP).
  • a device may include RF circuitry configured to receive and/or transmit encoded frames.
  • a portable communications device e.g., a handset, headset, smartphone, or portable digital assistant (PDA)
  • PDA portable digital assistant
  • a typical real-time (e.g., online) application is a telephone conversation conducted using such a mobile device.
  • computer-readable media includes both computer-readable storage media and communication (e.g., transmission) media.
  • computer-readable storage media can comprise an array of storage elements, such as semiconductor memory (which may include without limitation dynamic or static RAM, ROM, EEPROM, and/or flash RAM), or ferroelectric, magnetoresistive, ovonic, polymeric, or phase-change memory; CD-ROM or other optical disk storage; and/or magnetic disk storage or other magnetic storage devices.
  • Such storage media may store information in the form of instructions or data structures that can be accessed by a computer.
  • Communication media can comprise any medium that can be used to carry desired program code in the form of instructions or data structures and that can be accessed by a computer, including any medium that facilitates transfer of a computer program from one place to another.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), or wireless technology such as infrared, radio, and/or microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technology such as infrared, radio, and/or microwave are included in the definition of medium.
  • Disk and disc includes compact disc (CD), laser disc, optical disc, digital versatile disc (DVD), floppy disk and Blu-ray DiscTM (Blu-Ray Disc Association, Universal City, CA), where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above should also be included within the scope of computer-readable media.
  • An acoustic signal processing apparatus as described herein may be incorporated into an electronic device that accepts speech input in order to control certain operations, or may otherwise benefit from separation of desired noises from background noises, such as communications devices.
  • Many applications may benefit from enhancing or separating clear desired sound from background sounds originating from multiple directions.
  • Such applications may include human-machine interfaces in electronic or computing devices which incorporate capabilities such as voice recognition and detection, speech enhancement and separation, voice-activated control, and the like. It may be desirable to implement such an acoustic signal processing apparatus to be suitable in devices that only provide limited processing capabilities.
  • the elements of the various implementations of the modules, elements, and devices described herein may be fabricated as electronic and/or optical devices residing, for example, on the same chip or among two or more chips in a chipset.
  • One example of such a device is a fixed or programmable array of logic elements, such as transistors or gates.
  • One or more elements of the various implementations of the apparatus described herein may also be implemented in whole or in part as one or more sets of instructions arranged to execute on one or more fixed or programmable arrays of logic elements such as microprocessors, embedded processors, IP cores, digital signal processors, FPGAs, ASSPs, and ASICs.
  • one or more elements of an implementation of an apparatus as described herein can be used to perform tasks or execute other sets of instructions that are not directly related to an operation of the apparatus, such as a task relating to another operation of a device or system in which the apparatus is embedded. It is also possible for one or more elements of an implementation of such an apparatus to have structure in common (e.g., a processor used to execute portions of code corresponding to different elements at different times, a set of instructions executed to perform tasks corresponding to different elements at different times, or an arrangement of electronic and/or optical devices performing operations for different elements at different times).

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Stereophonic System (AREA)

Claims (19)

  1. Verfahren zur Audiosignalverarbeitung, wobei das genannte Verfahren Folgendes beinhaltet:
    räumliches Verarbeiten eines ersten Audiosignals zum Erzeugen einer ersten Mehrzahl M von Bildgebungssignalen;
    Anlegen, für jedes aus der ersten Mehrzahl M von Bildgebungssignalen, eines entsprechenden aus einer ersten Mehrzahl M von Ansteuerungssignalen an einen entsprechenden aus einer ersten Mehrzahl M von Lautsprechern einer Gruppe, wobei jedes Ansteuerungssignal auf dem entsprechenden Bildgebungssignal basiert; harmonisches Erweitern eines zweiten Audiosignals in einem ersten Frequenzbereich zum Erzeugen eines erweiterten Signals, das Oberwellen, jeweils mit einer Frequenz in einem zweiten Frequenzbereich, der höher ist als der erste Frequenzbereich, des zweiten Audiosignals im ersten Frequenzbereich beinhaltet;
    räumliches Verarbeiten eines verbesserten Signals, das auf dem erweiterten Signal basiert, um eine zweite Mehrzahl N von Bildgebungssignalen zu erzeugen; und
    Anlegen, für jedes aus der zweiten Mehrzahl N von Bildgebungssignalen, eines entsprechenden aus einer zweiten Mehrzahl N von Ansteuerungssignalen an einen entsprechenden aus einer zweiten Mehrzahl N von Lautsprechern der Gruppe, wobei jedes Ansteuerungssignal auf dem entsprechenden Bildgebungssignal basiert; und
    Abtasten einer Untergruppe (R100b) von Lautsprechern einer Lautsprechergruppe, wobei wenigstens zwei benachbarte Lautsprecher der abgetasteten Untergruppe (R100b) einen Abstand haben, der größer ist als der Abstand zwischen benachbarten Lautsprechern einer weiteren Untergruppe (R100a) von Lautsprechern der Lautsprechergruppe, und wobei die abgetastete Untergruppe zum Wiedergeben von Frequenzinhalt in einem mit dem ersten Frequenzbereich assoziierten Signal benutzt wird.
  2. Verfahren zur Audiosignalverarbeitung nach Anspruch 1, wobei das genannte Anlegen der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern das Erzeugen eines Strahls von akustischer Energie beinhaltet, die in einer ersten Richtung konzentrierter ist als in einer zweiten Richtung, die sich von der ersten Richtung unterscheidet, und wobei das genannte Verfahren, während des genannten Anlegens der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern, das Ansteuern der zweiten Mehrzahl N von Lautsprechern beinhaltet, um einen Strahl von akustischer Rauschenergie zu erzeugen, der in der zweiten Richtung konzentrierter ist als in der ersten Richtung,
    wobei die erste und zweite Richtung relativ zur zweiten Mehrzahl N von Lautsprechern sind.
  3. Verfahren zur Audiosignalverarbeitung nach Anspruch 1, wobei das genannte Anlegen der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern das Erzeugen eines ersten Strahls von akustischer Energie beinhaltet, der in einer ersten Richtung konzentrierter ist als in einer zweiten Richtung, die sich von der ersten Richtung unterscheidet, und wobei das genannte Verfahren, während des genannten Anlegens der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern, das Anlegen einer dritten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Ansteuerungssignalen beinhaltet, um einen zweiten Strahl von akustischer Energie zu erzeugen, der in der ersten Richtung konzentrierter ist als in der zweiten Richtung,
    wobei die erste und zweite Richtung relativ zur zweiten Mehrzahl N von Lautsprechern sind, und
    wobei jedes aus der dritten Mehrzahl N von Ansteuerungssignalen auf einem zusätzlichen Audiosignal basiert, das sich vom zweiten Audiosignal unterscheidet.
  4. Verfahren zur Audiosignalverarbeitung nach Anspruch 3, wobei das zweite Audiosignal und das zusätzliche Audiosignal unterschiedliche Kanäle eines stereophonen Audiosignals sind.
  5. Verfahren zur Audiosignalverarbeitung nach Anspruch 1, wobei das Verfahren das Bestimmen beinhaltet, dass eine Orientierung eines Kopfs eines Benutzers zu einem ersten Zeitpunkt innerhalb eines ersten Bereichs liegt, und
    wobei das genannte Anlegen der ersten Mehrzahl M von Ansteuerungssignalen an die erste Mehrzahl M von Lautsprechern und das genannte Anlegen der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern auf der genannten Bestimmung zu dem ersten Zeitpunkt basiert, und wobei das genannte Verfahren Folgendes beinhaltet:
    Bestimmen, dass eine Orientierung des Kopfs des Benutzers zu einem zweiten Zeitpunkt nach dem ersten Zeitpunkt innerhalb eines zweiten Bereichs ist, der sich von dem ersten Bereich unterscheidet;
    Anlegen, als Reaktion auf die genannte Bestimmung zu dem zweiten Zeitpunkt, der ersten Mehrzahl M von Ansteuerungssignalen an eine erste Mehrzahl M von Lautsprechern einer zweiten Gruppe, und Anlegen der zweiten Mehrzahl N von Ansteuerungssignalen an eine zweite Mehrzahl N von Lautsprechern der zweiten Gruppe,
    wobei wenigstens einer aus der ersten Mehrzahl M von Lautsprechern der zweiten Gruppe nicht unter der ersten Mehrzahl M von Lautsprechern der ersten Gruppe ist, und
    wobei wenigstens einer aus der zweiten Mehrzahl N von Lautsprechern der zweiten Gruppe nicht unter der zweiten Mehrzahl N von Lautsprechern der ersten Gruppe ist.
  6. Verfahren zur Audiosignalverarbeitung nach Anspruch 5, wobei die erste Mehrzahl M von Lautsprechern der ersten Gruppe entlang einer ersten Achse angeordnet ist und wobei die erste Mehrzahl M von Lautsprechern der zweiten Gruppe entlang einer zweiten Achse angeordnet ist, und
    wobei ein Winkel zwischen der ersten und zweiten Achse wenigstens sechzig Grad und maximal hundertzwanzig Grad beträgt.
  7. Verfahren zur Audiosignalverarbeitung nach Anspruch 1, wobei das genannte Verfahren das Anwenden einer räumlichen Formungsfunktion auf die erste Mehrzahl M von Bildgebungssignalen beinhaltet, und
    wobei die genannte räumliche Formungsfunktion eine Position von jedem aus wenigstens einem Teilsatz der ersten Mehrzahl M von Lautsprechern in der Gruppe auf einen entsprechenden Gewinnfaktor abbildet, und wobei das genannte Anwenden der räumlichen Formungsfunktion das Variieren einer Amplitude von jedem aus dem Teilsatz der ersten Mehrzahl M von Bildgebungssignalen gemäß dem entsprechenden Gewinnfaktor beinhaltet, oder wobei ein Verhältnis zwischen Energie im ersten Frequenzbereich und Energie im zweiten Frequenzbereich wenigstens sechs Dezibel niedriger ist für jedes aus der zweiten Mehrzahl N von Ansteuerungssignalen als für das erweiterte Signal, oder wobei das zweite Audiosignal Energie in einem ersten Hochfrequenzbereich, der höher ist als der zweite Frequenzbereich, und Energie in einem zweiten Hochfrequenzbereich hat, der höher ist als der erste Hochfrequenzbereich, und
    wobei ein Verhältnis zwischen Energie im ersten Hochfrequenzbereich und Energie im zweiten Hochfrequenzbereich wenigstens sechs Dezibel höher ist für jedes aus der zweiten Mehrzahl N von Ansteuerungssignalen als für das erweiterte Signal, oder wobei das genannte Verfahren das harmonische Erweitern eines dritten Audiosignals beinhaltet, das Energie im zweiten Frequenzbereich enthält, um ein zweites erweitertes Signal zu produzieren, das Oberwellen, in einem dritten Frequenzbereich, der höher ist als der zweite Frequenzbereich, der genannten Energie des dritten Audiosignals im zweiten Frequenzbereich beinhaltet, und
    wobei das erste Audiosignal auf dem zweiten erweiterten Signal basiert.
  8. Verfahren zur Audiosignalverarbeitung nach Anspruch 7, wobei ein Verhältnis zwischen Energie im ersten Frequenzbereich und Energie im zweiten Frequenzbereich wenigstens sechs Dezibel niedriger ist für jedes aus der zweiten Mehrzahl N von Ansteuerungssignalen als für das erweiterte Signal, und
    wobei ein Verhältnis zwischen Energie im zweiten Frequenzbereich und Energie im dritten Frequenzbereich wenigstens sechs Dezibel niedriger ist für jedes aus der ersten Mehrzahl M von Ansteuerungssignalen als für das zweite erweiterte Signal, und wobei vorzugsweise ein Verhältnis zwischen Energie im ersten Frequenzbereich und Energie im dritten Frequenzbereich wenigstens sechs Dezibel niedriger ist für jedes aus der ersten Mehrzahl M von Ansteuerungssignalen als für das zweite erweiterte Signal.
  9. Verfahren zur Audiosignalverarbeitung nach Anspruch 7, wobei das zweite Audiosignal Energie in einem ersten Hochfrequenzbereich, der höher ist als der dritte Frequenzbereich, und Energie in einem zweiten Hochfrequenzbereich hat, der höher ist als der erste Hochfrequenzbereich, und
    wobei ein Verhältnis zwischen Energie im ersten Hochfrequenzbereich und Energie im zweiten Hochfrequenzbereich wenigstens sechs Dezibel höher ist für jedes aus der zweiten Mehrzahl N von Ansteuerungssignalen als für das erweiterte Signal, und
    wobei das dritte Audiosignal Energie im zweiten Hochfrequenzbereich und Energie in einem dritten Hochfrequenzbereich hat, der höher ist als der zweite Hochfrequenzbereich, und
    wobei ein Verhältnis zwischen Energie im zweiten Hochfrequenzbereich und Energie im dritten Hochfrequenzbereich wenigstens sechs Dezibel höher ist für jedes aus der ersten Mehrzahl M von Ansteuerungssignalen als für das zweite erweiterte Signal, und wobei vorzugsweise sowohl das zweite Audiosignal als auch das dritte Audiosignal auf einem gemeinsamen Audiosignal basieren.
  10. Verfahren zur Audiosignalverarbeitung nach einem der Ansprüche 1-9, wobei die erste Mehrzahl M von Ansteuerungssignalen die zweite Mehrzahl N von Ansteuerungssignalen beinhaltet.
  11. Verfahren zur Audiosignalverarbeitung nach einem der Ansprüche 1-9, wobei eine Distanz zwischen benachbarten aus der ersten Mehrzahl M von Lautsprechern geringer ist als eine Distanz zwischen benachbarten aus der zweiten Mehrzahl N von Lautsprechern.
  12. Verfahren zur Audiosignalverarbeitung nach einem der Ansprüche 1-9, wobei sowohl das erste Audiosignal als auch das zweite Audiosignal auf einem gemeinsamen Audiosignal basieren.
  13. Vorrichtung zur Audiosignalverarbeitung, wobei die genannte Vorrichtung Folgendes umfasst:
    Mittel zum räumlichen Verarbeiten eines ersten Audiosignals zum Erzeugen einer ersten Mehrzahl M von Bildgebungssignalen;
    Mittel zum Anlegen, für jedes aus der ersten Mehrzahl M von Bildgebungssignalen, eines entsprechenden aus einer ersten Mehrzahl M von Ansteuerungssignalen an einen entsprechenden aus einer ersten Mehrzahl M von Lautsprechern einer Gruppe, wobei jedes Ansteuerungssignal auf dem entsprechenden Bildgebungssignal basiert; Mittel zum harmonischen Erweitern eines zweiten Audiosignals in einem ersten Frequenzbereich zum Erzeugen eines erweiterten Signals, das Oberwellen, jeweils mit einer Frequenz in einem zweiten Frequenzbereich, der höher ist als der erste Frequenzbereich, des zweiten Audiosignals im ersten Frequenzbereich beinhaltet;
    Mittel zum räumlichen Verarbeiten eines verbesserten Signals, das auf dem erweiterten Signal basiert, um eine zweite Mehrzahl N von Bildgebungssignalen zu erzeugen; und
    Mittel zum Anlegen, für jedes aus der zweiten Mehrzahl N von Bildgebungssignalen, eines entsprechenden aus einer zweiten Mehrzahl N von Ansteuerungssignalen an einen entsprechenden aus einer zweiten Mehrzahl N von Lautsprechern der Gruppe, wobei jedes Ansteuerungssignal auf dem entsprechenden Bildgebungssignal basiert; und
    Mittel zum Abtasten einer Untergruppe (R100b) von Lautsprechern aus einer Lautsprechergruppe, wobei wenigstens zwei benachbarte Lautsprecher der abgetasteten Untergruppe (R100b) einen Abstand haben, der größer ist als der Abstand zwischen benachbarten Lautsprechern einer weiteren Untergruppe (R100a) von Lautsprechern aus der Lautsprechergruppe, und wobei die abgetastete Untergruppe zum Wiedergeben von Frequenzinhalt in einem mit dem ersten Frequenzbereich assoziierten Signal benutzt wird.
  14. Vorrichtung zur Audiosignalverarbeitung nach Anspruch 13, wobei das genannte Mittel zum Anlegen der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern zum Erzeugen eines Strahls von akustischer Energie konfiguriert ist, die in einer ersten Richtung konzentrierter ist als in einer zweiten Richtung, die sich von der ersten Richtung unterscheidet, und
    wobei die genannte Vorrichtung Mittel zum Ansteuern der zweiten Mehrzahl N von Lautsprechern, während des genannten Anlegens der genannten zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern, zum Erzeugen eines Strahls von akustischer Rauschenergie umfasst, die in der zweiten Richtung konzentrierter ist als in der ersten Richtung,
    wobei die erste und zweite Richtung relativ zur zweiten Mehrzahl N von Lautsprechern sind oder wobei das genannte Mittel zum Anlegen der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern zum Erzeugen eines ersten Strahls von akustischer Energie konfiguriert ist, der in einer ersten Richtung konzentrierter ist als in einer zweiten Richtung, die sich von der ersten Richtung unterscheidet, und
    wobei die genannte Vorrichtung Mittel zum Anlegen einer dritten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern, während des genannten Anlegens der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern, zum Erzeugen eines zweiten Strahls von akustischer Energie umfasst, der in der zweiten Richtung konzentrierter ist als in der ersten Richtung,
    wobei die erste und zweite Richtung relativ zur zweiten Mehrzahl N von Lautsprechern sind, und
    wobei jedes aus der dritten Mehrzahl N von Ansteuerungssignalen auf einem zusätzlichen Audiosignal basiert, das sich von dem zweiten Audiosignal unterscheidet, und wobei ferner vorzugsweise das zweite Audiosignal und das zusätzliche Audiosignal unterschiedliche Kanäle eines stereophonen Audiosignals sind.
  15. Vorrichtung zur Audiosignalverarbeitung nach Anspruch 13, wobei die genannte Vorrichtung Mittel zum Bestimmen umfasst, dass eine Orientierung eines Kopfs eines Benutzers zu einem ersten Zeitpunkt innerhalb eines ersten Bereichs ist, und
    wobei das genannte Mittel zum Bestimmen zum ersten Zeitpunkt ausgelegt ist zum Befähigen des genannten Mittels zum Anlegen der ersten Mehrzahl M von Ansteuerungssignalen an die erste Mehrzahl M von Lautsprechern und des genannten Mitteln zum Anlegen der zweiten Mehrzahl N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern, und
    wobei die genannte Vorrichtung Folgendes umfasst:
    Mittel zum Bestimmen, dass eine Orientierung des Kopfs des Benutzers zu einem zweiten Zeitpunkt nach dem ersten Zeitpunkt innerhalb eines zweiten Bereichs ist, der sich vom ersten Bereich unterscheidet; Mittel zum Anlegen der ersten Mehrzahl M von Ansteuerungssignalen an eine erste Mehrzahl M von Lautsprechern einer zweiten Gruppe; und
    Mittel zum Anlegen der zweiten Mehrzahl N von Ansteuerungssignalen an eine zweite Mehrzahl N von Lautsprechern der zweiten Gruppe,
    wobei das genannte Mittel zum Bestimmen zum zweiten Zeitpunkt ausgelegt ist zum Befähigen des genannten Mittels zum Anlegen der ersten Mehrzahl M von Ansteuerungssignalen an die erste Mehrzahl M von Lautsprechern der zweiten Gruppe und das genannte Mittel zum Anlegen der zweiten Mittel N von Ansteuerungssignalen an die zweite Mehrzahl N von Lautsprechern der zweiten Gruppe, wobei wenigstens einer aus der ersten Mehrzahl M von Lautsprechern der zweiten Gruppe nicht unter der ersten Mehrzahl M von Lautsprechern der ersten Gruppe ist, und
    wobei wenigstens einer aus der zweiten Mehrzahl N von Lautsprechern der zweiten Gruppe nicht unter der zweiten Mehrzahl N von Lautsprechern der ersten Gruppe ist und wobei vorzugsweise die erste Mehrzahl M von Lautsprechern der ersten Gruppe entlang einer ersten Achse angeordnet ist, und
    wobei die erste Mehrzahl M von Lautsprechern der zweiten Gruppe entlang einer zweiten Achse angeordnet ist, und
    wobei ein Winkel zwischen der ersten und zweiten Achse wenigstens sechzig Grad und maximal hundertzwanzig Grad beträgt.
  16. Vorrichtung zur Audiosignalverarbeitung nach Anspruch 13, wobei die genannte Vorrichtung Mittel zum Anwenden einer räumlichen Formungsfunktion auf die erste Mehrzahl M von Bildgebungssignalen umfasst, und
    wobei die genannte räumliche Formungsfunktion eine Position von jedem aus wenigstens einem Teilsatz der ersten Mehrzahl M von Lautsprechern in der Gruppe auf einen entsprechenden Gewinnfaktor abbildet, und wobei das genannte Mittel zum Anwenden der räumlichen Formungsfunktion Mittel zum Variieren einer Amplitude von jedem aus dem Teilsatz der ersten Mehrzahl M von Bildgebungssignalen gemäß dem entsprechenden Gewinnfaktor umfasst, oder wobei ein Verhältnis zwischen Energie im ersten Frequenzbereich und Energie im zweiten Frequenzbereich wenigstens sechs Dezibel niedriger ist für jedes aus der zweiten Mehrzahl N von Ansteuerungssignalen als für das erweiterte Signal, oder wobei das zweite Audiosignal Energie in einem ersten Hochfrequenzbereich, der höher ist als der zweite Frequenzbereich, und Energie in einem zweiten Hochfrequenzbereich hat, der höher ist als der erste Hochfrequenzbereich, und
    wobei ein Verhältnis zwischen Energie im ersten Hochfrequenzbereich und Energie im zweiten Hochfrequenzbereich wenigstens sechs Dezibel höher ist für jedes aus der zweiten Mehrzahl N von Ansteuerungssignalen als für das erweiterte Signal, oder wobei die genannte Vorrichtung Mittel zum harmonischen Erweitern eines dritten Audiosignals umfasst, das Energie im zweiten Frequenzbereich hat, um ein zweites erweitertes Signal zu erzeugen, das Oberwellen, in einem dritten Frequenzbereich, der höher ist als der zweite Frequenzbereich, der genannten Energie des dritten Audiosignals im zweiten Frequenzbereich beinhaltet, und
    wobei das erste Audiosignal auf dem zweiten erweiterten Signal basiert.
  17. Vorrichtung zur Audiosignalverarbeitung nach Anspruch 16, wobei ein Verhältnis zwischen Energie im ersten Frequenzbereich und Energie im zweiten Frequenzbereich wenigstens sechs Dezibel niedriger ist für jedes aus der zweiten Mehrzahl N von Ansteuerungssignalen als für das erweiterte Signal, und
    wobei ein Verhältnis zwischen Energie im zweiten Frequenzbereich und Energie im dritten Frequenzbereich wenigstens sechs Dezibel niedriger ist für jedes aus der ersten Mehrzahl M von Ansteuerungssignalen als für das zweite erweiterte Signal, oder wobei ein Verhältnis zwischen Energie im ersten Frequenzbereich und Energie im dritten Frequenzbereich wenigstens sechs Dezibel niedriger ist für jedes aus der ersten Mehrzahl M von Ansteuerungssignalen als für das zweite erweiterte Signal, oder wobei das zweite Audiosignal Energie in einem ersten Hochfrequenzbereich, der höher ist als der dritte Frequenzbereich, und Energie in einem zweiten Hochfrequenzbereich hat, der höher ist als der erste Hochfrequenzbereich, und
    wobei ein Verhältnis zwischen Energie im ersten Hochfrequenzbereich und Energie im zweiten Hochfrequenzbereich wenigstens sechs Dezibel höher ist für jedes aus der zweiten Mehrzahl N von Ansteuerungssignalen als für das erweiterte Signal, und
    wobei das dritte Audiosignal Energie im zweiten Hochfrequenzbereich und Energie in einem dritten Hochfrequenzbereich beinhaltet, der höher ist als der zweite Hochfrequenzbereich, und
    wobei ein Verhältnis zwischen Energie im zweiten Hochfrequenzbereich und Energie im dritten Hochfrequenzbereich wenigstens sechs Dezibel höher ist für jedes aus der ersten Mehrzahl M von Ansteuerungssignalen als für das zweite erweiterte Signal, oder wobei sowohl das zweite Audiosignal als auch das dritte Audiosignal auf einem gemeinsamen Audiosignal basieren.
  18. Vorrichtung zur Audiosignalverarbeitung nach einem der Ansprüche 13-17, wobei die erste Mehrzahl M von Ansteuerungssignalen die zweite Mehrzahl N von Ansteuerungssignalen beinhaltet, und wobei vorzugsweise eine Distanz zwischen benachbarten aus der ersten Mehrzahl M von Lautsprechern geringer ist als eine Distanz zwischen benachbarten aus der zweiten Mehrzahl N von Lautsprechern, und wobei vorzugsweise sowohl das erste Audiosignal als auch das zweite Audiosignal auf einem gemeinsamen Audiosignal basieren.
  19. Computerlesbares Speichermedium mit fassbaren Merkmalen, die, wenn sie von einer Maschine gelesen werden, bewirken, dass die Maschine ein Verfahren nach einem der Ansprüche 1-12 ausführt.
EP11738931.2A 2010-07-26 2011-07-26 Systeme, verfahren sowie geräte für verbesserte erzeugung einer akustischen quellenpositionierung Not-in-force EP2599330B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201061367840P 2010-07-26 2010-07-26
US201161483209P 2011-05-06 2011-05-06
US13/190,464 US8965546B2 (en) 2010-07-26 2011-07-25 Systems, methods, and apparatus for enhanced acoustic imaging
PCT/US2011/045418 WO2012015843A1 (en) 2010-07-26 2011-07-26 Systems, methods, and apparatus for enhanced creation of an acoustic image space

Publications (2)

Publication Number Publication Date
EP2599330A1 EP2599330A1 (de) 2013-06-05
EP2599330B1 true EP2599330B1 (de) 2016-08-31

Family

ID=48173926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11738931.2A Not-in-force EP2599330B1 (de) 2010-07-26 2011-07-26 Systeme, verfahren sowie geräte für verbesserte erzeugung einer akustischen quellenpositionierung

Country Status (1)

Country Link
EP (1) EP2599330B1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9980076B1 (en) 2017-02-21 2018-05-22 At&T Intellectual Property I, L.P. Audio adjustment and profile system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9980076B1 (en) 2017-02-21 2018-05-22 At&T Intellectual Property I, L.P. Audio adjustment and profile system

Also Published As

Publication number Publication date
EP2599330A1 (de) 2013-06-05

Similar Documents

Publication Publication Date Title
US8965546B2 (en) Systems, methods, and apparatus for enhanced acoustic imaging
US9552840B2 (en) Three-dimensional sound capturing and reproducing with multi-microphones
US9361898B2 (en) Three-dimensional sound compression and over-the-air-transmission during a call
US20140006017A1 (en) Systems, methods, apparatus, and computer-readable media for generating obfuscated speech signal
US8855341B2 (en) Systems, methods, apparatus, and computer-readable media for head tracking based on recorded sound signals
US9031256B2 (en) Systems, methods, apparatus, and computer-readable media for orientation-sensitive recording control
US20130259254A1 (en) Systems, methods, and apparatus for producing a directional sound field
US9066191B2 (en) Apparatus and method for generating filter characteristics
US11354088B2 (en) Media-compensated pass-through and mode-switching
CN108475511A (zh) 用于创建参考信道的自适应波束形成
US8615392B1 (en) Systems and methods for producing an acoustic field having a target spatial pattern
EP2599330B1 (de) Systeme, verfahren sowie geräte für verbesserte erzeugung einer akustischen quellenpositionierung
EP3677049B1 (de) Verfahren und system zur steuerung der akustischen strahlung
US20230359430A1 (en) Media-compensated pass-through and mode-switching

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130131

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131209

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160406

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011029837

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 825890

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161015

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160831

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 825890

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161201

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161130

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170102

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011029837

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20170919

Year of fee payment: 12

26N No opposition filed

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110726

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200630

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200615

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011029837

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210726

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210726

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201