EP2595930B1 - Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding and method for producing such a cooktop - Google Patents

Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding and method for producing such a cooktop Download PDF

Info

Publication number
EP2595930B1
EP2595930B1 EP11735995.0A EP11735995A EP2595930B1 EP 2595930 B1 EP2595930 B1 EP 2595930B1 EP 11735995 A EP11735995 A EP 11735995A EP 2595930 B1 EP2595930 B1 EP 2595930B1
Authority
EP
European Patent Office
Prior art keywords
glass
temperature
glass ceramic
transmission
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11735995.0A
Other languages
German (de)
French (fr)
Other versions
EP2595930A1 (en
Inventor
Friedrich Siebers
Evelin Weiss
Falk Gabel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Original Assignee
Schott AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schott AG filed Critical Schott AG
Publication of EP2595930A1 publication Critical patent/EP2595930A1/en
Application granted granted Critical
Publication of EP2595930B1 publication Critical patent/EP2595930B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0054Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing PbO, SnO2, B2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B20/00Processes specially adapted for the production of quartz or fused silica articles, not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B32/00Thermal after-treatment of glass products not provided for in groups C03B19/00, C03B25/00 - C03B31/00 or C03B37/00, e.g. crystallisation, eliminating gas inclusions or other impurities; Hot-pressing vitrified, non-porous, shaped glass products
    • C03B32/02Thermal crystallisation, e.g. for crystallising glass bodies into glass-ceramic articles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0018Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents
    • C03C10/0027Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and monovalent metal oxide as main constituents containing SiO2, Al2O3, Li2O as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C10/00Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
    • C03C10/0036Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents
    • C03C10/0045Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition containing SiO2, Al2O3 and a divalent metal oxide as main constituents containing SiO2, Al2O3 and MgO as main constituents
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/02Compositions for glass with special properties for coloured glass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/10Tops, e.g. hot plates; Rings
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/60Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles
    • H04R25/604Mounting or interconnection of hearing aid parts, e.g. inside tips, housings or to ossicles of acoustic or vibrational transducers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/10Induction heating apparatus, other than furnaces, for specific applications
    • H05B6/12Cooking devices
    • H05B6/1209Cooking devices induction cooking plates or the like and devices to be used in combination with them
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/40Arrangements for obtaining a desired directivity characteristic
    • H04R25/405Arrangements for obtaining a desired directivity characteristic by combining a plurality of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/45Prevention of acoustic reaction, i.e. acoustic oscillatory feedback
    • H04R25/456Prevention of acoustic reaction, i.e. acoustic oscillatory feedback mechanically
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/554Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired using a wireless connection, e.g. between microphone and amplifier or using Tcoils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B40/00Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers

Definitions

  • the invention relates to a glass ceramic as a cooking surface for induction heating with improved colored display capability and heat shielding consisting of a transparent, colored glass ceramic plate with high quartz mixed crystals as the predominant crystal phase, and to a process for their production and their use.
  • Transparent, colored glass ceramic cooktops are black when viewed from above and thus prevent the technical installations under the cooktop from being seen through.
  • Such glass ceramic plates are usually in the form of flat plates or are three-dimensionally deformed.
  • Radiation-heated cooking surfaces are those in which radiant heaters are made to glow by electrical energy due to their ohmic resistance.
  • the most widespread band radiators have maximum values of the emitted radiation in the wavelength range from approximately 1600 to 3000 nm.
  • the radiant heaters can also consist of halogen radiators. These heat up faster and emit radiation at shorter wavelengths with maximum radiation values in the range from about 1000 to 1600 nm.
  • the pan base heats up excessively.
  • Another operating condition with excessive The bottom of the pan may heat up when the pan boils empty and heats up due to the lack of food.
  • the bottom of the pot can heat up to around 500 ° C. This releases increased heat radiation.
  • there is briefly increased heat radiation which stresses the technical installations under the glass ceramic plate.
  • the technical structure of induction hobs under the glass ceramic plate consists of coils that generate the inductive field. The wires of these coils are provided with plastic insulation.
  • Other sensitive installations are, for example, electro-optical sensors which are used to measure the temperature of the pan base.
  • contact elements for temperature measurement that are also encapsulated with organic materials.
  • the electrical feeds as well as light emitting diodes (LED) and color displays are encapsulated with organic materials and very sensitive.
  • thermally insulating materials such as, for example, induction cooktops between the technical fittings and the glass ceramic plate.
  • the required temperature difference resistance is lower for inductive or gas-heated glass ceramic hobs than for radiation-heated hobs. While temperature difference strengths of more than 700 ° C are required for the safe use of radiation-heated cooking surfaces, this is partly included for values below 600 ° C for inductive or gas-heated cooking surfaces and for systems with complex electronic control Values of less than 400 ° C. Since the temperature difference resistance is also largely determined by the thermal expansion, the glass ceramic for induction or gas-heated cooking surfaces can have higher values of the thermal expansion. While common specifications for cooking surfaces for radiation-heated cooking surfaces are approx.
  • this value measured between room temperature and 700 ° C for inductive and gas-heated glass ceramic cooking surfaces can be up to 0 ⁇ 2.10 -6 / K. This opens up a wider range of compositions for the display of glass ceramics. It is also advantageous that the thermal expansion is better related to other materials such. B. can adjust the inorganic colors with which cooking surfaces are decorated. This means less tension in the decorated areas and thus increased strength of the glass ceramic plates.
  • the improved colored display capability represents a further essential requirement for new cooking surfaces.
  • modern glass ceramic cooking surfaces are equipped with colored displays such as 7-segment displays or operating displays, which are installed below the glass ceramic plate.
  • Colored displays give the user information about the switched-on state of the individual cooking zones, the control setting and also whether the cooking zones are still hot after being switched off.
  • Light-emitting diodes are used as usual colored displays. These colored displays are particularly important for induction hobs. In contrast to the radiation-heated cooking surfaces, where the heated cooking zone can be recognized by its red-hot color, the induction cooking surfaces are black and visually unchanged even when in use when heated. It is therefore desirable to identify the operating status and residual heat with special colors or display functions.
  • conventional glass ceramic cooktops Due to the coloring and the associated transmission curves, conventional glass ceramic cooktops have a limited selection of possible colored LED displays.
  • the displays that can be used are red or, if necessary, orange, other displays such as, in particular, blue or white have so far been hardly possible.
  • the usual red light-emitting diodes shine at wavelengths around 630 nm and the transmission of the glass ceramic cooktop is set to about 2 to 12% for this wave.
  • the improved colored display capability enables manufacturers of cooking appliances to differentiate their products with a glass ceramic cooktop based on the design.
  • the glass ceramic cooktop itself should appear black when viewed from above and have an aesthetic appearance.
  • the light transmission of the glass ceramic cooktop is limited. Therefore, the light transmission for the human eye must not be higher than about 2.5%, because otherwise the aesthetic black view will be lost and the technical installations under the glass ceramic plate will be visible under normal lighting conditions. In order to meet the requirements for the display capability, the light transmission is at least 0.5%.
  • the transmission values apply regardless of the thickness of the glass ceramic plate because they are decisive for the function of the cooking surface. Glass ceramics with high quartz mixed crystals as the predominant crystal phase are made from crystallizable lithium aluminum silicate glasses.
  • the crystallizable starting glass is melted from a mixture of cullet and powdery raw materials at temperatures usually between 1500 and 1650 ° C.
  • Arsenic and / or antimony oxide is typically used as a refining agent in the melt.
  • These refining agents are compatible with the required glass ceramic properties and lead to good bubble qualities in the melt. Even if these materials are firmly integrated in the glass structure, they are disadvantageous from a safety and environmental point of view. For example, special precautionary measures must be taken when extracting and processing raw materials and because they evaporate from the melt.
  • the glass After melting and refining, the glass is usually subjected to hot shaping by rolling or, more recently, floating to produce plates.
  • a low melting temperature and a low processing temperature V A are desired for economical production.
  • the glass must not show any devitrification during the shaping. This means that no disruptive crystals may be formed during the shaping, which impair the strength in the original glasses and the glass ceramics made from them. Since the shaping takes place near the processing temperature V A (viscosity 10 4 dPas) of the glass, it must be ensured that the upper devitrification temperature of the melt is below the processing temperature in order to avoid the formation of disruptive crystals. In a subsequent temperature process, the starting glass is transferred into the glass-ceramic article by controlled crystallization.
  • This ceramization takes place in a two-stage temperature process, in which initially by nucleation at a temperature between 680 and 810 ° C., usually from ZrO 2 / TiO 2 mixed crystals. SnO 2 can also be involved in nucleation. When the temperature then increases, the high-quartz mixed crystals grow on these seeds. High crystal growth rates, as desired for economical, fast ceramization, are achieved at temperatures of 820 to 970 ° C. At this maximum manufacturing temperature, the structure of the glass ceramic is homogenized and the optical, physical and chemical properties are adjusted. If desired, the high quartz mixed crystals can then be converted into keatite mixed crystals. The conversion to keatite mixed crystals takes place when the temperature rises in a temperature range of approx.
  • Glass ceramics with keatite mixed crystals have higher values of thermal expansion. The conversion is also associated with crystal growth to average crystallite sizes of 100 nm and above, and associated light scattering. Glass ceramics with keatite mixed crystals as the main crystal phase are therefore no longer transparent but translucent or opaque. When used as a cooking surface, the light scatter has a negative effect on the display capability, since the displays under the glass ceramic plate are no longer clearly recognizable and an annoying halo is formed.
  • SnO 2 as a safe refining agent has recently been described for the production of environmentally friendly glass ceramic cooktops.
  • halide compounds are preferably used as additional refining agents in addition to SnO 2 .
  • the coloring is achieved by adding V 2 O 5 as the sole colorant.
  • V 2 O 5 has the special property of absorbing in the range of visible light and being transparent in the infrared. This is essential for radiation-heated cooking surfaces, but has the disadvantages described for heat shielding for induction and gas-heated cooking surfaces.
  • An essential feature of the font is an infrared transmission of greater than 65% at 1600 nm as it is essential for radiation-heated cooking surfaces.
  • Ceran Color® An earlier type of glass ceramic cooktop, known under the name Ceran Color®, manufactured by SCHOTT AG, had good color display capabilities in blue and red. Ceran Color® is colored by the addition of NiO, CoO, Fe 2 O 3 and MnO and refined by Sb 2 O 3 . This combination of color oxides results in a light transmission of typically 1.2% for cooking surfaces with a usual thickness of 4 mm. The transmission in the range from 380 nm to 500 nm is 0.1 - 2.8% depending on the wavelength. At a wavelength of 630 nm, which is common for red light-emitting diodes, the transmission is approx. 6%. The IR transmission at 1600 nm is less than 20%.
  • the improved color display capability is characterized by transmission values of greater than 0.1% in the visible light range, greater than 450 nm in the entire wavelength range, light transmission in the visible range of 0.8 to 2.5% and transmission in the infrared at 1600 nm from 45 to 85%.
  • this glass ceramic Due to the high transmission in the infrared, this glass ceramic is excellently suitable for radiation-heated cooking surfaces.
  • the high infrared transmission is disadvantageous for use as an induction or gas-heated cooking surface.
  • the EP 1465460 A2 discloses a glass ceramic cooktop which, measured in the CIE color system, has a Y value (brightness) of 2.5-15 with standard light C and a thickness of 3 mm.
  • the terms "brightness" and light transmission correspond to the same measurement.
  • the Y value is identical to the value of the light transmission, measured according to DIN 5033. With this light transmission, improved displays for blue and green light-emitting diodes are achieved.
  • the compositions disclosed are refined with As 2 O 3 and / or Sb 2 O 3 , sometimes in combination with SnO 2 .
  • the coloring is done by V 2 O 5 .
  • the comparative example shows that with a light transmission of 1.9%, the display capability for blue and green LEDs with the listed material compositions is insufficient.
  • the claimed high values of light transmission of at least 2.5% and preferably higher are disadvantageous with regard to the coverage of the electronic components below the cooking surface.
  • the aesthetic black appearance of the cooking surface is impaired when viewed from above.
  • US 2005/252503 A1 describes translucent or opaque hobs with different shades when viewed from above.
  • EP 2 226 303 A2 describes a process for melting and refining a glass melt for a starting glass of a LAS glass ceramic.
  • WO 2010/137000 A2 and WO 2011/089220 A1 describe transparent colored glass ceramics with different transmission characteristics.
  • the starting glasses should be easy to melt and refine, have a high devitrification stability and be ceramizable in short times.
  • the cooking surfaces according to the invention are intended to meet all the other requirements placed on cooking surfaces, such as, for example: chemical resistance, temperature resistance and high temperature / time resistance with regard to changes in their properties (such as thermal expansion, transmission, build-up of voltages).
  • the cooktops have transmission values of greater than 0.4% at at least one wavelength in the blue between 380 and 500 nm, a transmission of> 2% at 630 nm, a transmission of less than 45% at 1600 nm and a light transmission in the visible range of less than 2.5%.
  • the transmission of greater than 0.4% at at least one wavelength in the blue between 380 and 500 nm enables good display capability with available blue displays. Since these displays, which mostly consist of light-emitting diodes, shine at a specific wavelength with a typical width of 15 nm, it is sufficient if the transmission is matched to this wavelength by more than 0.4%. Such wavelengths for the radiation of standard blue LED displays are, for example, at 430 and 470 nm.
  • the coordination of the transmission of the glass ceramic to the wavelengths at which the blue LED used radiate also has the advantage that the light transmission in the cooking surface is not increased too much. If the transmission is increased uniformly in the wavelength range from 380 to 500 nm, the light transmission according to the invention of up to 2.5% will otherwise be left very quickly.
  • the transmission curve can be increased especially for discrete wavelength ranges. This means that an increase in the display capability takes place on a more significant scale than can be achieved with a reduction in the material thickness. With regard to an improved display capability, this is also of great relevance for future energy-efficient (less powerful) displays. It can already be seen today that the wavelength-selective increases in transmission realized in this way offer the potential, too with lower performance of the LED displays or displays to improve the display capability.
  • the cooking surface In the area of ultraviolet light of less than 350 nm, the cooking surface has the low transmission values of less than 0.01%, as is standard for glass ceramic cooking surfaces.
  • the blocking of the UV light is advantageous for protecting the organic components, such as. B. glue in the technical fittings under the cooking surface, as well as protection when cooking, if blue LED displays with ultraviolet radiation are used for the display.
  • the light transmission of less than 2.5% ensures that the disruptive view of the technical components under the glass ceramic cooktop is prevented and the aesthetic black appearance is ensured under supervision. Due to the transmission of> 2% at 630 nm, common red light-emitting diode displays are clearly visible. Due to the set infrared transmission of less than 45%, measured at 1600 nm, the requirements for improved heat shielding are met. In the case of induction or gas-heated glass ceramic cooktops, the electrical and electronic installations under the glass ceramic plate are better protected against the heat radiation from the hot pan base. This is particularly important in operating conditions with excessive heating of the pan base. This also reduces the effort required to protect the internals by means of thermally insulating materials by providing the glass ceramic plate itself with a higher heat shield. The infrared transmission is preferably reduced to values of less than 40% because the heat shielding improves further.
  • the transmission and light transmission values according to the invention are decisive for the function of the cooking surface, they apply regardless of the thickness of the glass ceramic plate, which is between 2.5 and 6 mm. Smaller thicknesses are disadvantageous in terms of strength and greater thicknesses are uneconomical because they require more material and reduce the rate of ceramization.
  • the thickness of the cooking surface is usually around 4 mm. Since the thickness and the concentration of the colorants are equally important factors in the extinction, the person skilled in the art will easily adjust the required transmission of the cooking surface to the respective thickness via the concentration of the colorants. If the cooking surface is produced using rollers, the underside is usually provided with knobs to protect it from injuries that reduce strength during production.
  • the underside of the cooktop is smoothed in the area of the colored displays with transparent organic polymer in order to avoid optical distortion caused by the knobs.
  • colored displays are undistorted and brighter.
  • the cooking surfaces according to the invention have a composition without the refining agents arsenic and antimony oxide and are therefore technically free from these components which are disadvantageous from the point of view of safety and environmental protection.
  • these components are usually present in contents of less than 0.05% by weight.
  • the glass ceramic cooking surfaces according to the invention have Coefficient of thermal expansion of up to (0 ⁇ 2) • 10 -6 / K.
  • the process according to the invention for producing a cooking surface for induction heating with improved colored display capability and heat shielding is distinguished by the fact that it forms a transparent, colored glass ceramic with high-quartz mixed crystal as the predominant crystal phase and that, except for inevitable traces, on the chemical refining arsenic and / or antimony oxide is dispensed with and the cooking surface has transmission values of greater than 0.4% at at least one wavelength in the blue between 380 and 500 nm, light transmission in the visible range of less than 2.5%, transmission of> 2% at 630 nm and a transmission in the infrared at 1600 nm of less than 45%, preferably less than 40%.
  • the transmission of the cooking surface is greater than 500%, a transmission from> 2 to less than 12% at 630 nm, a transmission in the near infrared at 950 nm of values of greater than 0.1% in the range of visible light in the entire wavelength range greater than 30% and a light transmission in the visible range of 0.5 - 2%.
  • the color display capability is further improved and the different requirements for the transmission process are further optimized. Due to the transmission of greater than 0.1% in the range of visible light in the entire wavelength range of greater than 500 nm, not only the blue but also differently colored displays such as green, yellow or orange are clearly recognizable. Displays with white light are less distorted in color by this transmission process. Limiting the transmission at 630 nm to values of less than 12% prevents the red LED displays from changing, that is to say they appear too bright. The transmission in the near infrared at 950 nm of greater than 30% ensures that the usual operating sensors that function on an optical basis can be used. A further improved coverage of the technical installations beneath the cooktop glass ceramic and a particularly aesthetic black appearance in reflected light is achieved if the light transmission is less than 2%. The display capability is further improved if the light transmission from the cooking surface is at least 0.5%.
  • the cooking surface according to the invention contains the main components of the glass ceramic composition (in% by weight on an oxide basis): Li 2 O 1.5 - 4.2 ⁇ Na 2 O + K 2 O 0.2 - 1.5 MgO 0-3 ⁇ CaO + SrO + BaO 0 - 4 ZnO 0-3 B 2 O 3 0-2 Al 2 O 3 19-23 SiO 2 60-69 TiO 2 1.5-6 ZrO 2 0.5 - 2 P 2 O 5 0-3 SnO 2 0.1 - ⁇ 0.6 ⁇ TiO 2 + ZrO 2 + SnO 2 3.8 - 6 and Fe 2 O 3 0.03-0.3 in combination with CoO 0.05-0.3, NiO 0.05-0.3, manganese compounds> 0 - 2, V 2 O 5 0-0.06 and Cr 2 O 3 0-0.03.
  • the oxides Li 2 O, Al 2 O 3 and SiO 2 within the specified limits are necessary components of the high quartz mixed crystals.
  • a minimum Li 2 O content of 1.5% by weight is required for easily controllable crystallization. Higher contents of more than 4.2% by weight often lead to unwanted devitrification in the manufacturing process.
  • the Al 2 O 3 content is preferably limited to a maximum of 23% by weight.
  • the SiO 2 content should not exceed 69% by weight because this component greatly increases the viscosity of the glass.
  • higher levels of Al 2 O 3 and SiO 2 are uneconomical.
  • the minimum SiO 2 content should be 60% by weight because this is advantageous for the required cooking surface properties, such as chemical resistance and temperature resistance.
  • MgO, ZnO and P 2 O 5 can be built into the high-quartz mixed crystals as further components.
  • the ZnO content is limited to a maximum of 3% by weight due to the problem of the formation of undesired crystal phases such as zinc spinel (gahnite) during the ceramization.
  • the MgO content is limited to a maximum of 3% by weight, because otherwise it would inadmissibly increase the expansion coefficient of the glass ceramic.
  • P 2 O 5 is beneficial for melting and shaping the starting glass.
  • the addition of the alkalis Na 2 O, K 2 O and the alkaline earths CaO, SrO, BaO and B 2 O 3 improve the meltability and the devitrification stability in the shaping of the glass.
  • the contents have to be limited because these components are not built into the crystal phases, but essentially remain in the residual glass phase of the glass ceramic. Excessively high contents impair the crystallization behavior during the conversion of the crystallizable starting glass into the glass ceramic, here in particular at the expense of faster ceramization speeds. In addition, higher levels have an unfavorable effect on the time / temperature resistance of the glass ceramic.
  • the sum of the alkalis Na 2 O + K 2 O should be at least 0.2% by weight and a maximum of 1.5% by weight.
  • the sum of the alkaline earths CaO + SrO + BaO should not exceed 4% by weight.
  • the alkalis and alkaline earths mentioned also accumulate on the surface of the glass ceramic.
  • At the Ceramization forms an approx. 200 to 1000 nm thick glassy surface layer that is almost free of crystals and that is enriched in these elements and depleted in lithium. This glassy surface layer has a favorable effect on the chemical resistance of the glass ceramic.
  • the minimum amount of the nucleating agents TiO 2 , ZrO 2 and SnO 2 is 3.8% by weight.
  • they form high-density crystal nuclei during nucleation, which serve as a base for the growth of the high-quartz mixed crystals during crystallization.
  • the high seed density leads to a high crystal density with average crystallite sizes of less than 100 nm, which avoids light scattering which is disruptive for the displays.
  • the nucleating agent contents are correlated with the nucleation rate and are therefore important for shorter ceramization times. Levels higher than the total of 6% by weight impair the devitrification stability. For improved devitrification stability, the SnO 2 content is limited to less than 0.6% by weight.
  • the ZrO 2 content is up 2% by weight, since higher contents impair the melting behavior of the batch during glass production and the devitrification stability during the shaping can be impaired by the formation of crystals containing ZrO 2 .
  • the minimum content of ZrO 2 should be 0.5% by weight in order to promote a high ceramization rate.
  • the TiO 2 content is between 1.5 and 6% by weight. The minimum amount should not be undercut, so that high nucleation rates for achieving high Ceramization speeds are ensured. The content should not exceed 6% by weight, because otherwise the devitrification stability will deteriorate.
  • a combination of at least two color oxides is required to set the transmission according to the invention with improved colored display capability and heat shielding.
  • Fe 2 O 3 contents from 0.03 to 0.3
  • the glass ceramic contains NiO and CoO in minimum contents of 0.05% by weight in order to set the infrared transmission at 1600 nm to values of less than 45%.
  • the combination of the color oxides makes it possible to make do with smaller amounts of the expensive coloring agent V 2 O 5, which is classified as a hazardous substance.
  • the content of the other color oxides is preferably at least twice as high as that of the V 2 O 5 .
  • color oxide contents according to the invention it is possible to achieve all requirements for the transmission process, such as specification-compliant light transmission, reduced infrared transmission, and display capability for standard red light-emitting diodes together with the desired improved display capability for blue and differently colored light displays.
  • coloring components such as manganese, copper, selenium, rare earth, molybdenum compounds can be used to support the coloring and to lower the transmission in the infrared. Their content is limited to a maximum of about 1% by weight because these compounds generally reduce the transmission in the blue. Manganese compounds are contained in higher contents up to about 2% by weight because of the weaker coloring effect.
  • Nd 2 O 3 By adding 50 - 400 ppm Nd 2 O 3 it is possible to mark the glass ceramic cooking surface.
  • the absorption band of the Nd in the near infrared at 806 nm is in a range of high transmission values of the glass ceramic and is thus distinctive in the transmission spectrum. As a result, the cooking surface material can be safely assigned to the manufacturer and good recycling is possible with optical body detection methods.
  • the water content of the starting glasses for the production of the cooking surfaces according to the invention depends on the choice of raw materials and the Process conditions in the melt usually between 0.015 and 0.06 mol / l. This corresponds to ⁇ -OH values of 0.16 to 0.64 mm -1 for the crystallizable starting glasses.
  • the upper limits of the contents of ZnO and MgO are preferably lowered in order to improve the devitrification stability during the shaping.
  • the SnO 2 content is preferably 0.1 to 0.5% by weight. A minimum content of 0.1% by weight is required for the refining of the glass.
  • the SnO 2 acts as a nucleating agent and if V 2 O 5 is also used as a colorant, it is required as a reox partner so that the vanadium ion can be reduced to the coloring, lower oxidation state when ceramized.
  • the SnO 2 content is a maximum of 0.5% by weight for improved devitrification stability during shaping.
  • the term "essentially consists of” means that the listed components should be at least 96%, generally 98% of the total composition.
  • a large number of elements such as F, Cl, the alkalis Rb, Cs or elements such as Hf are common impurities in the batch raw materials used on an industrial scale.
  • Other Compounds such as those of the elements Ge, rare earths, Bi, W, Nb, Ta, Y can be added in small proportions.
  • the content in a particularly preferred form should be at least 0.05% by weight.
  • Both SnO 2 and Fe 2 O 3 are high-temperature refining agents and release the oxygen required for refining in sufficient quantities at high melting temperatures from around 1650 ° C.
  • the turnover that is decisive for the refining effect increases with the temperature of the melt.
  • a temperature treatment of the melt of more than 1700 ° C and more than 1750 ° C thus delivers further improved results with regard to the bubble quality.
  • high-temperature purification with temperatures of the glass melt of greater than 1700 ° C., preferably greater than 1750 ° C. is advantageous.
  • Rapid ceramicization means a thermal treatment for crystallizing the glass ceramic with a duration of less than 2 hours, preferably less than 80 minutes.
  • the thermally relaxed crystallizable starting glass is heated within 1 to 30 minutes to the temperature range of the transformation temperature Tg of the glass of approximately 680 ° C.
  • the high heating rates required can be realized on an industrial scale in roller furnaces. Above this temperature up to about 810 ° C is the area with high nucleation rates.
  • the temperature range for nucleation is traversed over a period of 8 to 30 minutes.
  • the temperature of the glass containing nuclei is then raised to a temperature of 820 to 970 ° C. in the course of 2 to 30 minutes, which is characterized by high crystal growth rates of the high-quartz mixed crystal phase. This maximum temperature is maintained for up to 30 minutes.
  • the structure of the glass ceramic is homogenized and the optical, physical and chemical properties are adjusted.
  • the glass ceramic obtained is cooled to 800 ° C. with cooling rates of approx. 2 to 40 ° C./min and then quickly to room temperature.
  • the coloring effect of the V 2 O 5 can be enhanced or blue-coloring Ti 3+ can be produced.
  • Metals, carbon and / or oxidizable carbon or metal compounds such as Al or Si powder, sugar, charcoal, SiC, TiC, MgS, ZnS are suitable for this.
  • Gaseous reducing agents, such as forming gas, are also suitable. The reducing agents mentioned are suitable for lowering the pO 2 of the melt. Since vanadium oxide is an expensive raw material, it is economically advantageous to minimize the content.
  • one or more differently colored displays such as blue, green, yellow, orange or white
  • the colored displays consist of light-emitting electronic components, mostly of light-emitting diodes. All forms of advertisements are possible, both point and area. It can too black and white and colored displays or screens are shown with significantly improved color fidelity.
  • the user can work interactively on the cooking surface. It can e.g. B. Read recipes, view pictures or communicate with the intranet. It can be controlled via touch-sensitive screens.
  • the underside of the cooking surface can have the usual knobs or be made smooth.
  • the improved display capability is particularly noticeable on cooktops with a smooth underside, as the colored displays are undistorted and brighter.
  • the cooking surface can contain areas of reduced thickness for the displays. Since the transmission depends exponentially on the layer thickness, the brightness of the display, e.g. B. on a screen, greatly increased. However, the other areas of the cooking surface should be thicker so that they have the light transmission according to the invention.
  • the cooking surface can not only be shaped as a flat plate, but also three-dimensionally shaped, e.g. folded, angled or curved plates can be used.
  • the plates can be rectangular or in other shapes, as well as three-dimensionally deformed areas such as e.g. Bars or woks included.
  • compositions of the crystallizable starting glasses and the refining conditions are listed in Table 1.
  • the glasses 1 to 4 are glasses according to the invention and the glass 5 is a comparison glass which leads to a glass ceramic outside of the present invention. Due to typical impurities in the large-scale batch raw materials used, the compositions do not add up to 100 % By weight. Typical impurities, even if not intentionally introduced into the composition, are F, Cl, B, P, Rb, Cs, Hf, which are usually less than 0.1% by weight. They are often introduced via the raw materials for the chemically related components, such as Rb and Cs via the Na or K raw materials, or Sr via the Ba raw material and vice versa.
  • the starting glasses of Table 1 were melted from raw materials customary in the glass industry at temperatures of approximately 1620 ° C. for 4 hours. After the mixture had melted in crucibles made of sintered silica glass, the melts were poured into Pt / Rh crucibles with internal crucibles made of silica glass and homogenized by stirring at temperatures of 1550 ° C. for 30 minutes. After this homogenization, the glasses were refined at 1640 ° C. for 2 hours. Pieces of size 140 ⁇ 80 ⁇ 30 mm 3 were then cast and, in order to avoid stresses, cooled in a cooling oven, starting at a temperature of 660 ° C. to room temperature. The test samples for the measurements were prepared from the castings. Glass No. 4 with the same composition as Glass No. 3 was instead refined at 1850 ° C. for 1 hour. The positive influence of the high-temperature purification with regard to the bubble quality is visually evident in this laboratory melt.
  • Table 2 shows the properties in the ceramic state, such as the thermal expansion between 20 and 700 ° C and the transmission values for selected wavelengths. The values were determined on polished plates with the specified thicknesses typical for cooking surfaces. The optical measurements were made with standard light C, 2 degrees.
  • Glass No. 3 fulfills the desired requirements for display capability and heat shielding for cooktops of thicknesses 3.5 (example 3) and 4 mm (example 4) and is characterized by a particularly advantageous combination of color oxides.
  • the high-temperature refining of glass No. 4 with the same composition as glass No. 3 intensifies the coloring effect, in particular of the vanadium oxide, in the visible light range. This is shown by the direct comparison of Example 5 with Example 3 since both have a thickness of 3.5 mm.
  • Table 1 Compositions and refining temperatures of crystallizable starting glasses according to the invention and comparison glass 5. Glass no. 1 2nd 3rd 4th 5 Compositions in% by weight based on oxide like glass No.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Neurosurgery (AREA)
  • Otolaryngology (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Description

Die Erfindung bezieht sich auf eine Glaskeramik als Kochfläche für Induktionsbeheizung mit verbesserter farbiger Anzeigefähigkeit und Wärmeabschirmung bestehend aus einer transparenten, eingefärbten Glaskeramikplatte mit Hochquarz-Mischkristallen als vorherrschender Kristallphase sowie auf ein Verfahren zu deren Herstellung und deren Verwendung. Transparente, eingefärbte Glaskeramik-Kochflächen sind in Aufsicht schwarz und verhindern damit die Durchsicht auf die technischen Einbauten unter der Kochfläche.The invention relates to a glass ceramic as a cooking surface for induction heating with improved colored display capability and heat shielding consisting of a transparent, colored glass ceramic plate with high quartz mixed crystals as the predominant crystal phase, and to a process for their production and their use. Transparent, colored glass ceramic cooktops are black when viewed from above and thus prevent the technical installations under the cooktop from being seen through.

Kochfelder mit einer Glaskeramikplatte als Kochfläche sind gängiger Stand der Technik. Solche Glaskeramikplatten liegen üblicherweise als ebene Platten vor oder sind dreidimensional verformt.Hobs with a glass ceramic plate as the cooking surface are the current state of the art. Such glass ceramic plates are usually in the form of flat plates or are three-dimensionally deformed.

Je nach der Art der Beheizung unterscheidet man verschiedene Typen von Glaskeramik-Kochflächen. Strahlungsbeheizte Kochflächen sind solche bei denen durch Elektroenergie Strahlungsheizkörper aufgrund ihres Ohm'schen Widerstands zum Glühen gebracht werden. Die am weitesten verbreiteten Bandheizkörper haben maximale Werte der abgegebenen Strahlung im Wellenlängenbereich von etwa 1600 bis 3000 nm. Alternativ können die Strahlungsheizkörper auch aus Halogenstrahlern bestehen. Diese erhitzen sich schneller und strahlen bei kürzeren Wellenlängen mit maximalen Werten der Strahlung im Bereich von etwa 1000 bis 1600 nm.Depending on the type of heating, there are different types of glass ceramic cooktops. Radiation-heated cooking surfaces are those in which radiant heaters are made to glow by electrical energy due to their ohmic resistance. The most widespread band radiators have maximum values of the emitted radiation in the wavelength range from approximately 1600 to 3000 nm. Alternatively, the radiant heaters can also consist of halogen radiators. These heat up faster and emit radiation at shorter wavelengths with maximum radiation values in the range from about 1000 to 1600 nm.

Um schnelle Ankochzeiten zu erreichen, soll der größte Teil der Wärmestrahlung direkt auf den Topfboden durch die Glaskeramikplatte durchgelassen werden und dort absorbiert werden. Deshalb sind höhere Transmissionswerte im Infraroten bei 1600 nm von größer 45 % gewünscht. Übliche Glaskeramik-Kochflächen die im Markt etabliert sind liegen bei ca. 75 %.
Bei Induktionskochflächen wird die Energie über elektromagnetische Wellen die in Spulen erzeugt werden direkt in den metallischen Topfboden eingekoppelt und dort über Wirbelströme absorbiert. Durch diese direkte Beheizung lassen sich kurze Ankochzeiten erreichen. Die Glaskeramikplatte wird nun über den erhitzten Topfboden erwärmt und leitet diese Wärme nach innen auf die Einbauten unter der Glaskeramikplatte weiter.
Bei gasbeheizten Glaskeramik-Kochflächen enthalten die Glaskeramikplatten üblicherweise Bohrungen in die die Gasbrenner integriert werden. Je nach Art der Flamme und der Nähe der Flamme zu dem Rand der Bohrungen ergeben sich unterschiedliche thermische Belastungen. Bei sehr starken und tiefer liegenden Gasbrennern sind diese so hoch, dass der Einsatz einer temperaturstabilen Glaskeramik statt eines Glases erforderlich wird. Auch bei gasbeheizten Kochflächen können sich die technischen Einbauten unter handelsüblichen Glaskeramikplatten stark erwärmen aufgrund der Wärmestrahlung die von der Gasflamme abgegeben wird.
Speziell für induktions- und gasbeheizte Glaskeramik-Kochflächen ist die hohe Infrarot-Transmission handelsüblicher Glaskeramikplatten daher eher von Nachteil.
Die verbesserte Wärmeabschirmung ist für besondere Betriebszustände beim Einsatz von Kochflächen von Bedeutung. Bei Induktionskochflächen mit Boosterfunktion wird am Anfang des Kochvorgangs vorübergehend höhere Leistung bereitgestellt um die Kochzeiten zu verkürzen. Wenn es dabei zu hohen Temperaturen kommt weil dies nicht rechtzeitig von der Steuerungselektronik erkannt und die Leistung abgeregelt wird, kommt es zu einer übermäßigen Erhitzung des Topfbodens. Ein weiterer Betriebszustand mit übermäßiger Erhitzung des Topfbodens kann auftreten, wenn der Topf leer kocht und sich dabei durch das fehlende Kochgut aufheizt. In solchen seltenen Betriebszuständen, die aber von der Glaskeramik-Kochfläche toleriert werden müssen, kann es zum Erhitzen des Topfbodens auf bis zu etwa 500°C kommen. Dabei wird eine erhöhte Wärmestrahlung frei. Bei solchen Betriebszuständen kommt es kurzzeitig zu einer erhöhten Wärmestrahlung die die technischen Einbauten unter der Glaskeramikplatte beansprucht.
Der technische Aufbau von Induktionskochflächen unter der Glaskeramikplatte besteht aus Spulen die das induktive Feld erzeugen. Die Drähte dieser Spulen sind mit einer Kunststoffisolierung versehen. Weitere empfindliche Einbauten sind beispielsweise elektrooptische Sensoren die der Temperaturmessung des Topfbodens dienen. Weiterhin gibt es für die Temperaturmessung Kontaktelemente die ebenfalls mit organischen Materialien gekapselt sind. Auch die elektrischen Zuführungen sowie Leuchtdioden (LED) und Farbanzeigen sind mit organischen Materialien gekapselt und sehr empfindlich. Oftmals werden daher bei Induktionskochflächen zwischen den technischen Einbauten und der Glaskeramikplatte thermisch isolierende Materialien wie z. B. glimmerhaltige Platten und Folien zur Wärmeabschirmung angeordnet. Der Einbau und die spezielle Ausführung dieser Abschirmungen sind mit höherem Aufwand verbunden da unter anderem Bereiche für Displayfenster oder optische Sensoren ausgespart werden müssen, andererseits eine zuverlässige Wärmeabschirmung aller kritischen Bereiche gewährleistet sein muss. Insgesamt ist es also wünschenswert die Glaskeramikplatte selbst mit einer höheren Wärmeabschirmung zu versehen.
In order to achieve quick heating-up times, most of the heat radiation should be let through to the bottom of the pot through the glass ceramic plate and absorbed there. Therefore higher transmission values in the infrared at 1600 nm of more than 45% are desired. Common glass ceramic cooktops that are established in the market are around 75%.
With induction cooktops, the energy is coupled directly into the metal pan base via electromagnetic waves generated in coils and absorbed there via eddy currents. This direct heating enables short heating times to be achieved. The glass ceramic plate is now heated via the heated pan base and transfers this heat inwards to the internals under the glass ceramic plate.
With gas-heated glass ceramic cooktops, the glass ceramic plates usually contain holes into which the gas burners are integrated. Depending on the type of flame and the proximity of the flame to the edge of the holes, there are different thermal loads. In the case of very strong and low-lying gas burners, these are so high that it is necessary to use a temperature-stable glass ceramic instead of a glass. Even with gas-heated cooking surfaces, the built-in components under commercially available glass ceramic plates can heat up considerably due to the heat radiation emitted by the gas flame.
Especially for induction and gas-heated glass ceramic cooktops, the high infrared transmission of commercially available glass ceramic plates is therefore rather a disadvantage.
The improved heat shielding is important for special operating conditions when using cooking surfaces. With induction cooktops with a booster function, higher power is temporarily provided at the beginning of the cooking process in order to shorten cooking times. If it comes to high temperatures because this is not recognized in time by the control electronics and the power is reduced, the pan base heats up excessively. Another operating condition with excessive The bottom of the pan may heat up when the pan boils empty and heats up due to the lack of food. In such rare operating conditions, but which must be tolerated by the glass ceramic cooktop, the bottom of the pot can heat up to around 500 ° C. This releases increased heat radiation. In such operating conditions, there is briefly increased heat radiation, which stresses the technical installations under the glass ceramic plate.
The technical structure of induction hobs under the glass ceramic plate consists of coils that generate the inductive field. The wires of these coils are provided with plastic insulation. Other sensitive installations are, for example, electro-optical sensors which are used to measure the temperature of the pan base. There are also contact elements for temperature measurement that are also encapsulated with organic materials. The electrical feeds as well as light emitting diodes (LED) and color displays are encapsulated with organic materials and very sensitive. Often, thermally insulating materials such as, for example, induction cooktops between the technical fittings and the glass ceramic plate. B. mica-containing plates and foils arranged for heat shielding. The installation and the special design of these shields are associated with higher costs because, among other things, areas for display windows or optical sensors have to be left out, while on the other hand reliable heat shielding of all critical areas must be guaranteed. Overall, it is therefore desirable to provide the glass ceramic plate itself with a higher heat shield.

Für induktive oder gasbeheizte Glaskeramik-Kochflächen ist die geforderte Temperaturunterschiedsfestigkeit niedriger als für strahlungsbeheizte Kochflächen. Während für den sicheren Einsatz von strahlungsbeheizten Kochflächen Temperaturunterschiedsfestigkeiten von größer 700 °C gefordert sind, liegt diese für induktive oder gasbeheizte Kochflächen bei Werten unter 600 °C und bei Systemen mit aufwändiger elektronischer Regelung zum Teil bei Werten von kleiner 400 °C. Da die Temperaturunterschiedsfestigkeit im Wesentlichen auch durch die thermische Ausdehnung mitbestimmt wird, kann die Glaskeramik für induktiv- oder gasbeheizte Kochflächen höhere Werte der thermischen Ausdehnung besitzen. Während für strahlungsbeheizte Kochflächen gängige Spezifikationen für Kochflächen ca. 0 ± 0,15.10-6/K sind, kann dieser Wert gemessen zwischen Raumtemperatur und 700 °C für induktive und gasbeheizte Glaskeramik-Kochflächen bis zu 0 ± 2.10-6/K betragen. Damit werden breitere Zusammensetzungenbereiche für die Darstellung von Glaskeramiken zugänglich. Weiterhin ist es vorteilhaft, dass sich damit die thermische Ausdehnung besser an andere Werkstoffe wie z. B. die anorganischen Farben mit denen Kochflächen dekoriert werden anpassen lässt. Dies bedeutet geringere Spannung in den dekorierten Bereichen und damit erhöhte Festigkeiten der Glaskeramikplatten.The required temperature difference resistance is lower for inductive or gas-heated glass ceramic hobs than for radiation-heated hobs. While temperature difference strengths of more than 700 ° C are required for the safe use of radiation-heated cooking surfaces, this is partly included for values below 600 ° C for inductive or gas-heated cooking surfaces and for systems with complex electronic control Values of less than 400 ° C. Since the temperature difference resistance is also largely determined by the thermal expansion, the glass ceramic for induction or gas-heated cooking surfaces can have higher values of the thermal expansion. While common specifications for cooking surfaces for radiation-heated cooking surfaces are approx. 0 ± 0.15.10 -6 / K, this value measured between room temperature and 700 ° C for inductive and gas-heated glass ceramic cooking surfaces can be up to 0 ± 2.10 -6 / K. This opens up a wider range of compositions for the display of glass ceramics. It is also advantageous that the thermal expansion is better related to other materials such. B. can adjust the inorganic colors with which cooking surfaces are decorated. This means less tension in the decorated areas and thus increased strength of the glass ceramic plates.

Die verbesserte farbige Anzeigefähigkeit stellt eine weitere wesentliche Anforderung an neue Kochflächen dar. Zur Verbesserung des Bedienungskomforts und für den sicheren Betrieb sind moderne Glaskeramik-Kochflächen mit farbigen Anzeigen wie 7-Segmentanzeigen oder Betriebsanzeigen ausgestattet, die unterhalb der Glaskeramikplatte eingebaut werden.
Farbige Anzeigen geben dem Benutzer Informationen über den eingeschalteten Zustand der einzelnen Kochzonen, der Reglerstellung und auch ob die Kochzonen nach Ausschalten noch heiß sind. Als übliche farbige Anzeigen werden Leuchtdioden eingesetzt. Diese farbigen Anzeigen sind insbesondere für Induktionskochflächen von großer Bedeutung. Im Unterschied zu den strahlungsbeheizten Kochflächen bei denen die erhitzte Kochzone durch ihre rot glühende Farbe erkennbar ist sind bei Induktionskochflächen die Kochzonen auch im Betrieb bei Erhitzung schwarz und visuell unverändert. Daher ist es wünschenswert, den Betriebszustand und die Restwärme durch besondere Farben oder Displayfunktionen kenntlich zu machen.
The improved colored display capability represents a further essential requirement for new cooking surfaces. To improve the ease of use and for safe operation, modern glass ceramic cooking surfaces are equipped with colored displays such as 7-segment displays or operating displays, which are installed below the glass ceramic plate.
Colored displays give the user information about the switched-on state of the individual cooking zones, the control setting and also whether the cooking zones are still hot after being switched off. Light-emitting diodes are used as usual colored displays. These colored displays are particularly important for induction hobs. In contrast to the radiation-heated cooking surfaces, where the heated cooking zone can be recognized by its red-hot color, the induction cooking surfaces are black and visually unchanged even when in use when heated. It is therefore desirable to identify the operating status and residual heat with special colors or display functions.

Aufgrund der Einfärbung und der damit einhergehenden Transmissionskurven besitzen übliche Glaskeramik-Kochflächen eine begrenzte Auswahl möglicher farbiger LED-Anzeigen. Standardmäßig sind die einsetzbaren Anzeigen rot oder gegebenenfalls orange, andere Anzeigen wie insbesondere blaue oder weiße sind bisher kaum zu realisieren. Die üblichen roten Leuchtdioden strahlen bei Wellenlängen um 630 nm und die Transmission der Glaskeramik-Kochflächen ist bei dieser Welle auf etwa 2 bis 12 % eingestellt.
Speziell für den Einsatz von verfügbaren blauen LED wäre es wünschenswert im Bereich 380 bis 500 nm bei mindestens einer Wellenlänge eine Transmission von größer als 0,4 % zu erreichen.
Die verbesserte farbige Anzeigefähigkeit ermöglicht es den Herstellern von Kochgeräten ihre Produkte mit einer Glaskeramik-Kochfläche über das Design zu differenzieren. Durch die Art und Gestaltung der farbigen Anzeigen unter der Glaskeramikplatte kann ein hersteller- oder markentypisches Design erfolgen. Das Design über Licht mit den neuen Optionen, das dann aufgrund der Transmissionscharakteristik der Glaskeramik möglich ist, kann im Markt unverwechselbare Akzente für die Marke setzen.
Due to the coloring and the associated transmission curves, conventional glass ceramic cooktops have a limited selection of possible colored LED displays. By default, the displays that can be used are red or, if necessary, orange, other displays such as, in particular, blue or white have so far been hardly possible. The usual red light-emitting diodes shine at wavelengths around 630 nm and the transmission of the glass ceramic cooktop is set to about 2 to 12% for this wave.
Especially for the use of available blue LEDs, it would be desirable to achieve a transmission of greater than 0.4% in the range from 380 to 500 nm with at least one wavelength.
The improved colored display capability enables manufacturers of cooking appliances to differentiate their products with a glass ceramic cooktop based on the design. Due to the type and design of the colored displays under the glass ceramic plate, a manufacturer or brand-typical design can take place. The design over light with the new options, which is then possible due to the transmission characteristics of the glass ceramic, can set unmistakable accents for the brand on the market.

Die Glaskeramik-Kochfläche selbst soll in Aufsicht schwarz erscheinen und über ein ästhetisches Erscheinungsbild verfügen. Um die störende Durchsicht auf die technischen Bauelemente unter der Glaskeramik-Kochfläche zu verhindern und um die Blendwirkung durch strahlende Heizkörper, insbesondere helle Halogen-Heizkörper zu vermeiden, sind die Glaskeramik-Kochflächen in ihrer Lichttransmission begrenzt. Daher darf die Lichttransmission für das menschliche Auge nicht höher als etwa 2,5 % betragen, weil sonst die ästhetische schwarze Ansicht verloren geht und die technischen Einbauten unter der Glaskeramikplatte bei üblichen Lichtverhältnissen sichtbar werden. Um den Anforderungen an die Anzeigefähigkeit zu genügen beträgt die Lichttransmission mindestens 0,5 %.
Die Transmissionswerte gelten unabhängig von der jeweiligen Dicke der Glaskeramikplatte da sie für die Funktion der Kochfläche entscheidend sind. Glaskeramiken mit Hochquarz-Mischkristallen als vorherrschender Kristallphase werden aus kristallisierbaren Lithiumaluminiumsilikat-Gläsern hergestellt.
The glass ceramic cooktop itself should appear black when viewed from above and have an aesthetic appearance. In order to prevent the disruptive view of the technical components under the glass ceramic cooktop and to avoid the glare caused by radiating radiators, in particular bright halogen radiators, the light transmission of the glass ceramic cooktop is limited. Therefore, the light transmission for the human eye must not be higher than about 2.5%, because otherwise the aesthetic black view will be lost and the technical installations under the glass ceramic plate will be visible under normal lighting conditions. In order to meet the requirements for the display capability, the light transmission is at least 0.5%.
The transmission values apply regardless of the thickness of the glass ceramic plate because they are decisive for the function of the cooking surface. Glass ceramics with high quartz mixed crystals as the predominant crystal phase are made from crystallizable lithium aluminum silicate glasses.

Die großtechnische Herstellung dieser Glaskeramiken erfolgt in mehreren Stufen. Zunächst wird das kristallisierbare Ausgangsglas aus einem Gemisch aus Scherben und pulverförmigen Gemengerohstoffen bei Temperaturen üblicherweise zwischen 1500 und 1650°C erschmolzen. Bei der Schmelze wird typischerweise Arsen- und/oder Antimonoxid als Läutermittel eingesetzt. Diese Läutermittel sind verträglich mit den geforderten Glaskeramikeigenschaften und führen zu guten Blasenqualitäten der Schmelze. Auch wenn diese Stoffe fest im Glasgerüst eingebunden sind, so sind sie doch unter Sicherheits- und Umweltschutzaspekten nachteilig. So müssen bei der Rohstoffgewinnung, - aufbereitung und wegen des Verdampfens aus der Schmelze besondere Vorsichtsmaßnahmen ergriffen werden.The large-scale manufacture of these glass ceramics takes place in several stages. First, the crystallizable starting glass is melted from a mixture of cullet and powdery raw materials at temperatures usually between 1500 and 1650 ° C. Arsenic and / or antimony oxide is typically used as a refining agent in the melt. These refining agents are compatible with the required glass ceramic properties and lead to good bubble qualities in the melt. Even if these materials are firmly integrated in the glass structure, they are disadvantageous from a safety and environmental point of view. For example, special precautionary measures must be taken when extracting and processing raw materials and because they evaporate from the melt.

Nach dem Einschmelzen und Läutern erfährt das Glas üblicherweise eine Heißformgebung durch Walzen oder neuerdings auch Floaten um Platten herzustellen. Für eine wirtschaftliche Herstellung ist eine niedrige Schmelztemperatur und eine niedrige Verarbeitungstemperatur VA gewünscht. Weiterhin darf das Glas bei der Formgebung keine Entglasung zeigen. Das heißt, bei der Formgebung dürfen sich keine störenden Kristalle bilden, die in den Ausgangsgläsern und den daraus hergestellten Glaskeramiken die Festigkeit beeinträchtigen. Da die Formgebung in der Nähe der Verarbeitungstemperatur VA (Viskosität 104 dPas) des Glases stattfindet, muss gewährleistet sein, dass die obere Entglasungstemperatur der Schmelze unter der Verarbeitungstemperatur liegt, um die Bildung störender Kristalle zu vermeiden. In einem anschließenden Temperaturprozess wird das Ausgangsglas durch gesteuerte Kristallisation in den glaskeramischen Artikel überführt. Diese Keramisierung erfolgt in einem zweistufigen Temperaturprozess, bei dem zunächst durch Keimbildung bei einer Temperatur zwischen 680 und 810°C Keime, üblicherweise aus ZrO2/TiO2-Mischkristallen, erzeugt werden. Auch SnO2 kann an der Keimbildung beteiligt sein. Bei anschließender Temperaturerhöhung wachsen die Hochquarz-Mischkristalle auf diesen Keimen auf. Hohe Kristallwachstumsgeschwindigkeiten wie sie für eine wirtschaftliche schnelle Keramisierung gewünscht sind, werden bei Temperaturen von 820 bis 970°C erreicht. Bei dieser maximalen Herstelltemperatur wird das Gefüge der Glaskeramik homogenisiert und die optischen, physikalischen und chemischen Eigenschaften eingestellt. Falls erwünscht, können die Hochquarz-Mischkristalle anschließend noch in Keatit-Mischkristalle umgewandelt werden. Die Umwandlung in Keatit-Mischkristalle erfolgt bei Temperaturerhöhung in einem Temperaturbereich von ca. 970 bis 1250°C. Glaskeramiken mit Keatit-Mischkristallen verfügen über höhere Werte der thermischen Ausdehnung.
Mit der Umwandlung ist auch ein Kristallwachstum auf mittlere Kristallitgrößen von 100 nm und darüber sowie eine damit einhergehende Lichtstreuung verbunden. Glaskeramiken mit Keatit-Mischkristallen als Hauptkristallphase sind daher nicht mehr transparent sondern transluzent oder opak. Bei Anwendung als Kochfläche wirkt sich die Lichtstreuung negativ auf die Anzeigefähigkeit aus, da die Anzeigen unter der Glaskeramikplatte nicht mehr klar erkennbar sind und sich ein störender Lichthof bildet.
After melting and refining, the glass is usually subjected to hot shaping by rolling or, more recently, floating to produce plates. A low melting temperature and a low processing temperature V A are desired for economical production. Furthermore, the glass must not show any devitrification during the shaping. This means that no disruptive crystals may be formed during the shaping, which impair the strength in the original glasses and the glass ceramics made from them. Since the shaping takes place near the processing temperature V A (viscosity 10 4 dPas) of the glass, it must be ensured that the upper devitrification temperature of the melt is below the processing temperature in order to avoid the formation of disruptive crystals. In a subsequent temperature process, the starting glass is transferred into the glass-ceramic article by controlled crystallization. This ceramization takes place in a two-stage temperature process, in which initially by nucleation at a temperature between 680 and 810 ° C., usually from ZrO 2 / TiO 2 mixed crystals. SnO 2 can also be involved in nucleation. When the temperature then increases, the high-quartz mixed crystals grow on these seeds. High crystal growth rates, as desired for economical, fast ceramization, are achieved at temperatures of 820 to 970 ° C. At this maximum manufacturing temperature, the structure of the glass ceramic is homogenized and the optical, physical and chemical properties are adjusted. If desired, the high quartz mixed crystals can then be converted into keatite mixed crystals. The conversion to keatite mixed crystals takes place when the temperature rises in a temperature range of approx. 970 to 1250 ° C. Glass ceramics with keatite mixed crystals have higher values of thermal expansion.
The conversion is also associated with crystal growth to average crystallite sizes of 100 nm and above, and associated light scattering. Glass ceramics with keatite mixed crystals as the main crystal phase are therefore no longer transparent but translucent or opaque. When used as a cooking surface, the light scatter has a negative effect on the display capability, since the displays under the glass ceramic plate are no longer clearly recognizable and an annoying halo is formed.

Für die Herstellung umweltfreundlicher Glaskeramik-Kochflächen wird neuerdings insbesondere der Einsatz von SnO2 als unbedenkliches Läutermittel beschrieben. Um gute Blasenqualitäten zu erreichen, werden bei konventionellen Schmelztemperaturen (maximal ca. 1680°C) neben SnO2 bevorzugt HalogenidVerbindungen als zusätzliche Läutermittel eingesetzt. So wird in den japanischen Anmeldungen JP 11 100 229 A und JP 11 100 230 A der Einsatz von 0,1-2 Gew. % SnO2 und 0 -1 Gew. % Cl beschrieben. Nach diesen Schriften wird die Einfärbung durch Zusatz von V2O5 als alleiniges Färbemittel erreicht.The use of SnO 2 as a safe refining agent has recently been described for the production of environmentally friendly glass ceramic cooktops. In order to achieve good bubble qualities, at conventional melting temperatures (maximum approx. 1680 ° C), halide compounds are preferably used as additional refining agents in addition to SnO 2 . So is in the Japanese applications JP 11 100 229 A and JP 11 100 230 A the use of 0.1-2% by weight of SnO 2 and 0-1% by weight of Cl is described. According to these documents, the coloring is achieved by adding V 2 O 5 as the sole colorant.

Damit werden hohe Transmissionswerte im Infraroten erreicht, weil das V2O5 die besondere Eigenschaft besitzt im Bereich des sichtbaren Lichtes zu absorbieren und im Infraroten durchlässig zu sein. Dies ist für strahlungsbeheizte Kochflächen wesentlich, besitzt aber die beschriebenen Nachteile bei der Wärmeabschirmung für induktions- und gasbeheizte Kochflächen.This achieves high transmission values in the infrared because the V 2 O 5 has the special property of absorbing in the range of visible light and being transparent in the infrared. This is essential for radiation-heated cooking surfaces, but has the disadvantages described for heat shielding for induction and gas-heated cooking surfaces.

Der Einsatz von SnO2 in Verbindung mit Hochtemperaturläuterung oberhalb 1700°C zur Erreichung guter Blasenqualitäten wird in der DE 199 39 787 C2 beschrieben. Diese Schrift liefert aber keinen Hinweis auf das Erreichen einer guten Wärmeabschirmung. Wesentliches Merkmal der Schrift ist eine Infrarottransmission von größer als 65 % bei 1600 nm wie sie für strahlungsbeheizte Kochflächen wesentlich ist.The use of SnO 2 in connection with high-temperature refining above 1700 ° C to achieve good bubble qualities is in the DE 199 39 787 C2 described. However, this document does not provide any indication of the achievement of good heat shielding. An essential feature of the font is an infrared transmission of greater than 65% at 1600 nm as it is essential for radiation-heated cooking surfaces.

Ein früherer Typ von Glaskeramik-Kochflächen, bekannt unter dem Namen Ceran Color®, hergestellt von der SCHOTT AG, besaß gute farbliche Anzeigefähigkeit im Blauen und Roten. Ceran Color® ist durch Zusätze von NiO, CoO, Fe2O3 und MnO gefärbt und durch Sb2O3 geläutert. Durch diese Kombination von Farboxiden wird eine Lichttransmission von typischerweise 1,2 % für Kochflächen mit üblicher Dicke von 4 mm eingestellt. Die Transmission im Bereich von 380 nm bis 500 nm beträgt je nach Wellenlänge 0,1 - 2,8 %. Bei einer für rote Leuchtdioden üblichen Wellenlänge von 630 nm beträgt die Transmission ca. 6 %. Die IR-Transmission bei 1600 nm beträgt weniger als 20 %. Die Transmissionskurve von Ceran Color® ist in dem Buch " Low Thermal Expansion Glass Ceramics", Editor Hans Bach, Springer-Verlag Berlin Heidelberg 1995, auf Seite 66 abgebildet (ISBN 3-540-58598-2 ). Die Zusammensetzung ist in dem Buch " Glass-Ceamic Technology", Wolfram Höland und George Beall, The American Ceramic Society 2002 in Tabelle 2 - 7 aufgeführt. Im Sinne einer umweltfreundlichen Kochfläche ist der Einsatz des Läutermittels Sb2O3 nachteilig. Durch die geringe Transmission im Bereich des grünen Lichtes von < 0,1 % bei 580 nm ist neben grünen auch die neutrale Anzeige mit weißen LED nicht gegeben.An earlier type of glass ceramic cooktop, known under the name Ceran Color®, manufactured by SCHOTT AG, had good color display capabilities in blue and red. Ceran Color® is colored by the addition of NiO, CoO, Fe 2 O 3 and MnO and refined by Sb 2 O 3 . This combination of color oxides results in a light transmission of typically 1.2% for cooking surfaces with a usual thickness of 4 mm. The transmission in the range from 380 nm to 500 nm is 0.1 - 2.8% depending on the wavelength. At a wavelength of 630 nm, which is common for red light-emitting diodes, the transmission is approx. 6%. The IR transmission at 1600 nm is less than 20%. The transmission curve of Ceran Color® is in the book " Low Thermal Expansion Glass Ceramics ", editor Hans Bach, Springer-Verlag Berlin Heidelberg 1995, shown on page 66 (ISBN 3-540-58598-2 ). The composition is in the book " Glass-Ceamic Technology ", Wolfram Höland and George Beall, The American Ceramic Society 2002 listed in Tables 2-7. In terms of an environmentally friendly cooking surface, the use of the refining agent Sb 2 O 3 is disadvantageous. Due to the low transmission in the range of green light of <0.1% at 580 nm, the neutral display with white LED is not available in addition to green.

In der DE 102008050263 A1 wird eine transparente eingefärbte Kochfläche mit verbesserter farbiger Anzeigefähigkeit offenbart. Auf der Basis dieser Schrift wurde kürzlich ein neuer Typ von Glaskeramik-Kochflächen unter der Marke CERAN Hightrans Eco, hergestellt von der SCHOTT AG, in den Markt eingeführt. Die Kochfläche besteht aus einer Glaskeramik mit Hochquarz-Mischkristallen als vorherrschender Kristallphase und enthält bis auf unvermeidliche Spuren keines der chemischen Läutermittel Arsenoxid und/oder Antimonoxid. Die verbesserte farbige Anzeigefähigkeit ist gekennzeichnet durch Transmissionswerte von größer als 0,1 % im Bereich des sichtbaren Lichtes, im gesamten Wellenlängenbereich größer als 450 nm, eine Lichttransmission im Sichtbaren von 0,8 bis 2,5 % und eine Transmission im Infraroten bei 1600 nm von 45 bis 85 %. Durch die hohe Transmission im Infraroten ist diese Glaskeramik für strahlungsbeheizte Kochflächen hervorragend geeignet. Für die Anwendung als induktions- oder gasbeheizte Kochfläche ist die hohe Infrarot-Transmission jedoch von Nachteil. Für die Entwicklung von Glaskeramikplatten die speziell auf die Anwendung als induktions- oder gasbeheizte Kochfläche eingesetzt werden sollen ist es daher wünschenswert die Infrarot-Transmission auf Werte unter 45 % und bevorzugt unter 40% abzusenken um die Wärmeabschirmung zu verbessern.In the DE 102008050263 A1 discloses a transparent, colored cooking surface with improved colored display capability. On the basis of this document, a new type of glass ceramic cooktop was recently launched on the market under the brand name CERAN Hightrans Eco, manufactured by SCHOTT AG. The cooktop consists of a glass ceramic with high-quartz mixed crystals as the predominant crystal phase and does not contain any of the chemical refining agents arsenic oxide and / or antimony oxide except for inevitable traces. The improved color display capability is characterized by transmission values of greater than 0.1% in the visible light range, greater than 450 nm in the entire wavelength range, light transmission in the visible range of 0.8 to 2.5% and transmission in the infrared at 1600 nm from 45 to 85%. Due to the high transmission in the infrared, this glass ceramic is excellently suitable for radiation-heated cooking surfaces. However, the high infrared transmission is disadvantageous for use as an induction or gas-heated cooking surface. For the development of glass ceramic plates that are to be used specifically for use as induction or gas-heated cooking surfaces, it is therefore desirable to lower the infrared transmission to values below 45% and preferably below 40% in order to improve the heat shield.

Die EP 1465460 A2 offenbart eine Glaskeramik-Kochfläche, die im CIE-Farbsystem gemessen, mit Normlicht C einen Y-Wert (brightness) von 2,5 - 15 besitzt, bei einer Dicke von 3 mm. Die Bezeichnungen "brightness" und Lichttransmission entsprechen dergleichen Messgröße. Der Y-Wert ist identisch mit dem Wert der Lichttransmission, gemessen nach DIN 5033. Mit dieser Lichttransmission werden verbesserte Anzeigen für blaue und grüne Leuchtdioden erreicht. Die offenbarten Zusammensetzungen sind mit As2O3 und/oder Sb2O3, teilweise in Kombination mit SnO2 geläutert. Die Einfärbung wird durch V2O5 vorgenommen. In dem Vergleichsbeispiel wird aufgezeigt, dass bei einer Lichttransmission von 1,9 % die Anzeigefähigkeit für blaue und grüne Leuchtdioden mit den aufgeführten Materialzusammensetzungen unzureichend ist. Die beanspruchten hohen Werte der Lichttransmission von mindestens 2,5 % und bevorzugt höher sind jedoch nachteilig, hinsichtlich der Abdeckung der elektronischen Bauteile unterhalb der Kochfläche. Außerdem wird das ästhetische schwarze Erscheinungsbild der Kochfläche in Aufsicht beeinträchtigt.The EP 1465460 A2 discloses a glass ceramic cooktop which, measured in the CIE color system, has a Y value (brightness) of 2.5-15 with standard light C and a thickness of 3 mm. The terms "brightness" and light transmission correspond to the same measurement. The Y value is identical to the value of the light transmission, measured according to DIN 5033. With this light transmission, improved displays for blue and green light-emitting diodes are achieved. The compositions disclosed are refined with As 2 O 3 and / or Sb 2 O 3 , sometimes in combination with SnO 2 . The coloring is done by V 2 O 5 . The comparative example shows that with a light transmission of 1.9%, the display capability for blue and green LEDs with the listed material compositions is insufficient. However, the claimed high values of light transmission of at least 2.5% and preferably higher are disadvantageous with regard to the coverage of the electronic components below the cooking surface. In addition, the aesthetic black appearance of the cooking surface is impaired when viewed from above.

US 2005/252503 A1 beschreibt transluzente oder opake Kochflächen mit in Aufsicht unterschiedlichen Farbtönen. US 2005/252503 A1 describes translucent or opaque hobs with different shades when viewed from above.

EP 2 226 303 A2 beschreibt ein Verfahren zum Schmelzen und Läutern einer Glasschmelze für ein Ausgangsglas einer LAS-Glaskeramik. EP 2 226 303 A2 describes a process for melting and refining a glass melt for a starting glass of a LAS glass ceramic.

WO 2010/137000 A2 und WO 2011/089220 A1 beschreiben transparente eingefärbte Glaskeramiken mit unterschiedlichen Transmissionscharakteristiken. WO 2010/137000 A2 and WO 2011/089220 A1 describe transparent colored glass ceramics with different transmission characteristics.

Es ist Aufgabe der Erfindung, Kochflächen für Induktionsbeheizung mit verbesserter farbiger Anzeigefähigkeit und Wärmeabschirmung, sowie ein Verfahren zu ihrer Herstellung bereitzustellen, wobei die Kochflächen aus einer Glaskeramik mit Hochquarz-Mischkristallen als vorherrschender Kristallphase bestehen, bis auf unvermeidliche Spuren keines der chemischen Läutermittel Arsenoxid und/oder Antimonoxid enthalten und sich für eine wirtschaftliche und umweltfreundliche Herstellung eignen. Für die wirtschaftliche Herstellung sollen die Ausgangsgläser gut schmelzbar und läuterbar sein, über eine hohe Entglasungsstabilität verfügen und in kurzen Zeiten keramisierbar sein. Die erfindungsgemäßen Kochflächen sollen allen weiteren Anforderungen genügen, die an Kochflächen gestellt werden wie z.B.: chemische Beständigkeit, Temperaturbelastbarkeit und hohe Temperatur/Zeitbelastbarkeit hinsichtlich Änderungen ihrer Eigenschaften (wie z.B. thermische Ausdehnung, Transmission, Aufbau von Spannungen).It is an object of the invention to provide cooking surfaces for induction heating with improved colored display capability and heat shielding, and a method for their production, the cooking surfaces consisting of a glass ceramic with high quartz mixed crystals as the predominant crystal phase, except for inevitable traces of none of the chemical refining agents arsenic oxide and / or contain antimony oxide and are suitable for economical and environmentally friendly production. For economical production, the starting glasses should be easy to melt and refine, have a high devitrification stability and be ceramizable in short times. The cooking surfaces according to the invention are intended to meet all the other requirements placed on cooking surfaces, such as, for example: chemical resistance, temperature resistance and high temperature / time resistance with regard to changes in their properties (such as thermal expansion, transmission, build-up of voltages).

Diese Aufgaben werden durch eine Kochfläche gemäß Anspruch 1 und durch ein Verfahren gemäß Anspruch 3 gelöst.These objects are achieved by a cooking surface according to claim 1 and by a method according to claim 3.

Die Kochflächen verfügen über Transmissionswerte von größer als 0,4 % bei mindestens einer Wellenlänge im Blauen zwischen 380 und 500 nm, eine Transmission von > 2 % bei 630 nm, eine Transmission von kleiner als 45 % bei 1600 nm und eine Lichttransmission im Sichtbaren von kleiner als 2,5 %.The cooktops have transmission values of greater than 0.4% at at least one wavelength in the blue between 380 and 500 nm, a transmission of> 2% at 630 nm, a transmission of less than 45% at 1600 nm and a light transmission in the visible range of less than 2.5%.

Die Transmission von größer als 0,4 % bei mindestens einer Wellenlänge im Blauen zwischen 380 und 500 nm ermöglicht eine gute Anzeigefähigkeit mit verfügbaren blauen Anzeigen. Da diese meist aus Leuchtdioden bestehenden Anzeigen bei einer bestimmten Wellenlängen mit einer typischen Breite von 15 nm strahlen, reicht es aus, wenn die Transmission von größer als 0,4 % auf diese Wellenlänge abgestimmt wird. Solche Wellenlängen für die Strahlung standardmäßiger blauer LED-Anzeigen sind beispielsweise bei 430 und 470 nm. Die Abstimmung der Transmission der Glaskeramik auf die Wellenlängen bei der die eingesetzten blauen LED strahlen hat auch den Vorteil ,dass die Lichttransmissoin der Kochfläche nicht zu sehr erhöht wird. Bei einer gleichmäßigen Anhebung der Transmission im Wellenlängenbereich von 380 bis 500 nm wird man sonst sehr schnell die erfindungsgemäße Lichttransmission von bis zu 2,5 % verlassen. Durch die Kombination mehrerer Farboxide lässt sich der Transmissionsverlauf speziell für diskrete Wellenlängenbereiche erhöhen. Das bedeutet, dass eine Erhöhung der Anzeigefähigkeit in einer signifikanteren Größenordnung stattfindet, als sie mit einer Reduzierung der Materialdicke erreicht werden kann. Dies ist im Hinblick auf eine verbesserte Anzeigefähigkeit auch für zukünftige energieeffizientere (leistungsschwächere) Displays von hoher Relevanz. Bereits heute ist zu erkennen, dass die derart realisierten wellenlängenselektiven Erhöhungen der Transmission das Potential bieten, auch bei geringerer Leistung der LED-Anzeigen bzw. Displays die Anzeigefähigkeit zu verbessern.
Im Bereich des ultravioletten Lichtes von kleiner als 350 nm besitzt die Kochfläche die niedrigen Transmissionswerte von weniger als 0,01 % wie sie für Glaskeramik-Kochflächen Standard sind. Die Blockierung des UV-Lichtes ist vorteilhaft zum Schutz der organischen Komponenten, wie z. B. Kleber in den technischen Einbauten unter der Kochfläche, sowie als Schutz beim Kochen, falls blaue LED-Anzeigen mit Ultraviolett-Strahlungsanteil zur Anzeige eingesetzt werden.
The transmission of greater than 0.4% at at least one wavelength in the blue between 380 and 500 nm enables good display capability with available blue displays. Since these displays, which mostly consist of light-emitting diodes, shine at a specific wavelength with a typical width of 15 nm, it is sufficient if the transmission is matched to this wavelength by more than 0.4%. Such wavelengths for the radiation of standard blue LED displays are, for example, at 430 and 470 nm. The coordination of the transmission of the glass ceramic to the wavelengths at which the blue LED used radiate also has the advantage that the light transmission in the cooking surface is not increased too much. If the transmission is increased uniformly in the wavelength range from 380 to 500 nm, the light transmission according to the invention of up to 2.5% will otherwise be left very quickly. By combining several color oxides, the transmission curve can be increased especially for discrete wavelength ranges. This means that an increase in the display capability takes place on a more significant scale than can be achieved with a reduction in the material thickness. With regard to an improved display capability, this is also of great relevance for future energy-efficient (less powerful) displays. It can already be seen today that the wavelength-selective increases in transmission realized in this way offer the potential, too with lower performance of the LED displays or displays to improve the display capability.
In the area of ultraviolet light of less than 350 nm, the cooking surface has the low transmission values of less than 0.01%, as is standard for glass ceramic cooking surfaces. The blocking of the UV light is advantageous for protecting the organic components, such as. B. glue in the technical fittings under the cooking surface, as well as protection when cooking, if blue LED displays with ultraviolet radiation are used for the display.

Durch die erfindungsgemäße Lichttransmission von kleiner als 2,5 % ist sichergestellt, dass die störende Durchsicht auf die technischen Bauelemente unter der Glaskeramik-Kochfläche verhindert wird und das ästhetische schwarze Erscheinungsbild in Aufsicht gewährleistet ist. Durch die Transmission von > 2 % bei 630 nm sind übliche rote Leuchtdioden-Anzeigen gut erkennbar.
Durch die eingestellte Infrarot-Transmission von kleiner als 45 %, gemessen bei 1600 nm, werden die Forderungen an verbesserte Wärmeabschirmung erreicht. Bei induktions- oder gasbeheizte Glaskeramik- Kochflächen werden damit die elektrischen und elektronische Einbauten unter der Glaskeramikplatte besser gegen die Wärmeabstrahlung des heißen Topfbodens geschützt. Dies ist besonders bei Betriebszuständen mit übermäßiger Erhitzung des Topfbodens von Bedeutung. Damit wird auch der Aufwand für den Schutz der Einbauten durch thermisch isolierende Materialien vermindert, indem die Glaskeramikplatte selbst mit einer höheren Wärmeabschirmung versehen wird.
Bevorzugt wird die Infrarot-Transmission auf Werte von kleiner als 40% abgesenkt weil sich die Wärmeabschirmung weiter verbessert.
The light transmission of less than 2.5% according to the invention ensures that the disruptive view of the technical components under the glass ceramic cooktop is prevented and the aesthetic black appearance is ensured under supervision. Due to the transmission of> 2% at 630 nm, common red light-emitting diode displays are clearly visible.
Due to the set infrared transmission of less than 45%, measured at 1600 nm, the requirements for improved heat shielding are met. In the case of induction or gas-heated glass ceramic cooktops, the electrical and electronic installations under the glass ceramic plate are better protected against the heat radiation from the hot pan base. This is particularly important in operating conditions with excessive heating of the pan base. This also reduces the effort required to protect the internals by means of thermally insulating materials by providing the glass ceramic plate itself with a higher heat shield.
The infrared transmission is preferably reduced to values of less than 40% because the heat shielding improves further.

Da die erfindungsgemäßen Werte der Transmission und Lichttransmission für die Funktion der Kochfläche maßgeblich sind, gelten sie unabhängig von der Dicke der Glaskeramikplatte, die zwischen 2,5 und 6 mm beträgt. Kleinere Dicken sind nachteilig hinsichtlich der Festigkeit und größere Dicken sind unwirtschaftlich, weil sie mehr Material erfordern und die Keramisierungsgeschwindigkeit herabsetzen. Meist liegt die Dicke der Kochfläche bei etwa 4 mm. Da die Dicke und die Konzentration der Färbemittel gleichberechtigt als Faktoren in die Extinktion eingehen, wird der Fachmann problemlos die geforderte Transmission der Kochfläche über die Konzentration der Färbemittel auf die jeweilige Dicke einstellen. Wenn die Kochfläche über Formgebung mit Walzen hergestellt wird, ist die Unterseite meist mit Noppen versehen, um sie vor festigkeitserniedrigenden Verletzungen bei der Herstellung zu schützen. Oft wird die Kochflächen-Unterseite im Bereich der farbige Anzeigen mit transparentem organischen Polymer geglättet, um eine optische Verzerrung durch die Noppen zu vermeiden. Bei Kochflächen mit glatter Unterseite ohne Noppen sind farbige Anzeigen unverzerrt und heller wahrnehmbar.Since the transmission and light transmission values according to the invention are decisive for the function of the cooking surface, they apply regardless of the thickness of the glass ceramic plate, which is between 2.5 and 6 mm. Smaller thicknesses are disadvantageous in terms of strength and greater thicknesses are uneconomical because they require more material and reduce the rate of ceramization. The thickness of the cooking surface is usually around 4 mm. Since the thickness and the concentration of the colorants are equally important factors in the extinction, the person skilled in the art will easily adjust the required transmission of the cooking surface to the respective thickness via the concentration of the colorants. If the cooking surface is produced using rollers, the underside is usually provided with knobs to protect it from injuries that reduce strength during production. Often, the underside of the cooktop is smoothed in the area of the colored displays with transparent organic polymer in order to avoid optical distortion caused by the knobs. In the case of cooktops with a smooth underside without knobs, colored displays are undistorted and brighter.

Die erfindungsgemäßen Kochflächen besitzen eine Zusammensetzung ohne die Läutermittel Arsen- und Antimonoxid und sind damit technisch frei von diesen unter Sicherheits- und Umweltschutzaspekten nachteiligen Komponenten. Als Verunreinigung der Rohstoffe liegen diese Komponenten üblicherweise in Gehalten von weniger als 0,05 Gew.% vor.The cooking surfaces according to the invention have a composition without the refining agents arsenic and antimony oxide and are therefore technically free from these components which are disadvantageous from the point of view of safety and environmental protection. As components of the raw materials, these components are usually present in contents of less than 0.05% by weight.

Um die Forderungen an die Temperaturunterschiedsfestigkeit für induktiv oder gasbeheizte Kochflächen von bis zu 600 °C sicherzustellen verfügen die erfindungsgemäßen Glaskeramik-Kochflächen über
Wärmeausdehnungskoeffizienten von bis zu (0 ± 2) • 10-6/K.
In order to ensure the demands on the temperature difference resistance for induction or gas-heated cooking surfaces of up to 600 ° C., the glass ceramic cooking surfaces according to the invention have
Coefficient of thermal expansion of up to (0 ± 2) • 10 -6 / K.

Das erfindungsgemäße Verfahren zur Herstellung einer Kochfläche für Induktionsbeheizung mit verbesserter farbiger Anzeigefähigkeit und Wärmeabschirmung zeichnet sich dadurch aus, dass es eine transparente, eingefärbte Glaskeramik mit Hochquarz-Mischkristall als vorherrschender Kristallphase ausbildet und dass bis auf unvermeidliche Spuren, auf die chemischen Läutermittel Arsen- und/oder Antimonoxid verzichtet wird und die Kochfläche auf Transmissionswerte von größer als 0,4 % bei mindestens einer Wellenlänge im Blauen zwischen 380 und 500 nm, eine Lichttransmission im Sichtbaren von kleiner als 2,5 %, eine Transmission von > 2 % bei 630 nm und eine Transmission im Infraroten bei 1600 nm von kleiner 45 %, bevorzugt kleiner als 40% eingestellt wird.The process according to the invention for producing a cooking surface for induction heating with improved colored display capability and heat shielding is distinguished by the fact that it forms a transparent, colored glass ceramic with high-quartz mixed crystal as the predominant crystal phase and that, except for inevitable traces, on the chemical refining arsenic and / or antimony oxide is dispensed with and the cooking surface has transmission values of greater than 0.4% at at least one wavelength in the blue between 380 and 500 nm, light transmission in the visible range of less than 2.5%, transmission of> 2% at 630 nm and a transmission in the infrared at 1600 nm of less than 45%, preferably less than 40%.

Die Transmission der Kochfläche ist auf Werte von größer als 0,1 % im Bereich des sichtbaren Lichtes im gesamten Wellenlängenbereich größer als 500 nm, eine Transmission von > 2 bis kleiner als 12 % bei 630 nm, eine Transmission im nahen Infrarot bei 950 nm von größer als 30 % und eine Lichttransmission im Sichtbaren von 0,5 - 2 % eingestellt.The transmission of the cooking surface is greater than 500%, a transmission from> 2 to less than 12% at 630 nm, a transmission in the near infrared at 950 nm of values of greater than 0.1% in the range of visible light in the entire wavelength range greater than 30% and a light transmission in the visible range of 0.5 - 2%.

Bei diesen Werten ist die farbliche Anzeigefähigkeit weiter verbessert und die unterschiedlichen Forderungen an den Transmissionsverlauf werden weiter optimiert. Durch die Transmission von größer als 0,1 % im Bereich des sichtbaren Lichtes im gesamten Wellenlängenbereich von größer als 500 nm sind neben den blauen auch andersfarbige Anzeigen wie grüne, gelbe oder orange gut erkennbar. Anzeigen mit weißem Licht werden durch diesen Transmissionsverlauf farblich weniger verfälscht. Durch die Begrenzung der Transmission bei 630 nm auf Werte von kleiner als 12 % wird vermieden, dass die roten LED-Anzeigen verändert, das heißt zu hell erscheinen. Die Transmission im nahen Infrarot bei 950 nm von größer als 30 % stellt sicher, dass die üblichen auf optischer Basis funktionierenden Bedienungssensoren einsetzbar sind. Eine weiter verbesserte Abdeckung der technischen Einbauten unterhalb der Kochflächen-Glaskeramik und eine besonders ästhetisches schwarzes Aussehen in Auflicht wird erreicht, wenn die Lichttransmission weniger als 2 % beträgt. Weiter verbessert sich die Anzeigefähigkeit, wenn die Lichttransmission der Kochfläche mindestens 0,5 % beträgt.With these values, the color display capability is further improved and the different requirements for the transmission process are further optimized. Due to the transmission of greater than 0.1% in the range of visible light in the entire wavelength range of greater than 500 nm, not only the blue but also differently colored displays such as green, yellow or orange are clearly recognizable. Displays with white light are less distorted in color by this transmission process. Limiting the transmission at 630 nm to values of less than 12% prevents the red LED displays from changing, that is to say they appear too bright. The transmission in the near infrared at 950 nm of greater than 30% ensures that the usual operating sensors that function on an optical basis can be used. A further improved coverage of the technical installations beneath the cooktop glass ceramic and a particularly aesthetic black appearance in reflected light is achieved if the light transmission is less than 2%. The display capability is further improved if the light transmission from the cooking surface is at least 0.5%.

Die erfindungsgemäße Kochfläche enthält als Hauptbestandteile der Glaskeramikzusammensetzung die Komponenten (in Gew. % auf Oxidbasis): Li2O 1,5 - 4,2 ∑ Na2O+K2O 0,2 - 1,5 MgO 0 - 3 ∑ CaO+SrO+BaO 0 - 4 ZnO 0 - 3 B2O3 0 - 2 Al2O3 19 - 23 SiO2 60 - 69 TiO2 1,5-6 ZrO2 0,5 - 2 P2O5 0 - 3 SnO2 0,1 - < 0,6 ∑ TiO2+ZrO2+SnO2 3,8 - 6 und Fe2O3 0,03-0,3 in Kombination mit CoO 0,05-0,3, NiO 0,05-0,3, Manganverbindungen > 0 - 2, V2O5 0-0,06 und Cr2O3 0-0,03.The cooking surface according to the invention contains the main components of the glass ceramic composition (in% by weight on an oxide basis): Li 2 O 1.5 - 4.2 ∑ Na 2 O + K 2 O 0.2 - 1.5 MgO 0-3 ∑ CaO + SrO + BaO 0 - 4 ZnO 0-3 B 2 O 3 0-2 Al 2 O 3 19-23 SiO 2 60-69 TiO 2 1.5-6 ZrO 2 0.5 - 2 P 2 O 5 0-3 SnO 2 0.1 - <0.6 ∑ TiO 2 + ZrO 2 + SnO 2 3.8 - 6 and Fe 2 O 3 0.03-0.3 in combination with CoO 0.05-0.3, NiO 0.05-0.3, manganese compounds> 0 - 2, V 2 O 5 0-0.06 and Cr 2 O 3 0-0.03.

Die Oxide Li2O, Al2O3 und SiO2 in den angegebenen Grenzen sind notwendige Bestandteile der Hochquarz-Mischkristalle. Ein Mindestgehalt an Li2O von 1,5 Gew. % ist für eine gut kontrollierbare Kristallisation erforderlich. Höhere Gehalte von über 4,2 Gew. % führen im Herstellprozess häufig zu einer ungewollten Entglasung.The oxides Li 2 O, Al 2 O 3 and SiO 2 within the specified limits are necessary components of the high quartz mixed crystals. A minimum Li 2 O content of 1.5% by weight is required for easily controllable crystallization. Higher contents of more than 4.2% by weight often lead to unwanted devitrification in the manufacturing process.

Um höhere Viskositäten des Ausgangsglases und die unerwünschte Entglasung von Mullit bei der Formgebung zu vermeiden ist der Al2O3-Gehalt auf bevorzugt maximal 23 Gew. % begrenzt. Der SiO2-Gehalt soll maximal 69 Gew. % betragen, weil diese Komponente die Viskosität des Glases stark erhöht. Für gutes Einschmelzen der Gläser und für niedrige Formgebungstemperaturen sind höhere Gehalte von Al2O3 und SiO2 unwirtschaftlich. Der Mindestgehalt an SiO2 soll 60 Gew. % betragen, weil dies für die geforderten Kochflächeneigenschaften, wie z.B. chemische Beständigkeit und Temperaturbelastbarkeit vorteilhaft ist.In order to avoid higher viscosities of the starting glass and the undesired devitrification of mullite during shaping, the Al 2 O 3 content is preferably limited to a maximum of 23% by weight. The SiO 2 content should not exceed 69% by weight because this component greatly increases the viscosity of the glass. For good melting of the glasses and for low shaping temperatures, higher levels of Al 2 O 3 and SiO 2 are uneconomical. The minimum SiO 2 content should be 60% by weight because this is advantageous for the required cooking surface properties, such as chemical resistance and temperature resistance.

Als weitere Komponenten können MgO, ZnO und P2O5 in die Hochquarz-Mischkristalle eingebaut werden. Der ZnO-Gehalt ist wegen der Problematik der Bildung unerwünschter Kristallphasen wie Zink-Spinell (Gahnit) bei der Keramisierung auf Werte von höchstens 3 Gew. % begrenzt. Der MgO-Gehalt ist auf maximal 3 Gew. % begrenzt, weil er sonst den Ausdehnungskoeffizienten der Glaskeramik unzulässig erhöht. Die Zugabe von P2O5 ist günstig für das Einschmelzen und die Formgebung des Ausgangsglases.MgO, ZnO and P 2 O 5 can be built into the high-quartz mixed crystals as further components. The ZnO content is limited to a maximum of 3% by weight due to the problem of the formation of undesired crystal phases such as zinc spinel (gahnite) during the ceramization. The MgO content is limited to a maximum of 3% by weight, because otherwise it would inadmissibly increase the expansion coefficient of the glass ceramic. The addition of P 2 O 5 is beneficial for melting and shaping the starting glass.

Die Zugabe der Alkalien Na2O, K2O und der Erdalkalien CaO, SrO, BaO sowie von B2O3 verbessern die Schmelzbarkeit und die Entglasungsstabilität bei der Formgebung des Glases. Die Gehalte müssen jedoch begrenzt werden, weil diese Komponenten nicht in die Kristallphasen eingebaut werden, sondern im wesentlichen in der Restglasphase der Glaskeramik verbleiben. Zu hohe Gehalte beeinträchtigen das Kristallisationsverhalten bei der Umwandlung des kristallisierbaren Ausgangsglases in die Glaskeramik, hier insbesondere zu Lasten schneller Keramisierungsgeschwindigkeiten. Außerdem wirken sich höhere Gehalte ungünstig auf die Zeit-/Temperaturbelastbarkeit der Glaskeramik aus. Die Summe der Alkalien Na2O + K2O soll mindestens 0,2 Gew. % und maximal 1,5 Gew. % betragen.
Die Summe der Erdalkalien CaO + SrO + BaO soll maximal 4 Gew. % betragen. Die genannten Alkalien und Erdalkalien reichern sich außer in der Restglasphase zwischen den Kristallen auch an der Oberfläche der Glaskeramik an. Beim Keramisieren bildet sich eine ca. 200 bis 1000 nm dicke glasige Oberflächenschicht, die nahezu frei ist von Kristallen und die an diesen Elementen angereichert und an Lithium abgereichert ist. Diese glasige Oberflächenschicht wirkt sich günstig auf die chemische Beständigkeit der Glaskeramik aus.
The addition of the alkalis Na 2 O, K 2 O and the alkaline earths CaO, SrO, BaO and B 2 O 3 improve the meltability and the devitrification stability in the shaping of the glass. However, the contents have to be limited because these components are not built into the crystal phases, but essentially remain in the residual glass phase of the glass ceramic. Excessively high contents impair the crystallization behavior during the conversion of the crystallizable starting glass into the glass ceramic, here in particular at the expense of faster ceramization speeds. In addition, higher levels have an unfavorable effect on the time / temperature resistance of the glass ceramic. The sum of the alkalis Na 2 O + K 2 O should be at least 0.2% by weight and a maximum of 1.5% by weight.
The sum of the alkaline earths CaO + SrO + BaO should not exceed 4% by weight. In addition to the residual glass phase between the crystals, the alkalis and alkaline earths mentioned also accumulate on the surface of the glass ceramic. At the Ceramization forms an approx. 200 to 1000 nm thick glassy surface layer that is almost free of crystals and that is enriched in these elements and depleted in lithium. This glassy surface layer has a favorable effect on the chemical resistance of the glass ceramic.

Die Mindestmenge der Keimbildner TiO2, ZrO2 und SnO2 beträgt 3,8 Gew. %. Bei der Keramisierung bilden sie während der Keimbildung Kristallkeime in hoher Dichte, die für das Aufwachsen der Hochquarz-Mischkristalle bei der Kristallisation als Unterlage dienen. Die hohe Keimdichte führt zu einer hohen Kristalldichte mit mittleren Kristallitgrößen von weniger als 100 nm, was eine für die Anzeigen störende Lichtstreuung vermeidet. Die Keimbildnergehalte sind mit der Keimbildungsrate korreliert und damit für kürzere Keramisierungszeiten von Bedeutung. Höhere Gehalte als in der Summe 6 Gew. % verschlechtern die Entglasungsstabilität. Für verbesserte Entglasungsstabilität ist der SnO2 Gehalt auf weniger als 0,6 Gew. % begrenzt. Höhere Gehalte führen zur Kristallisation von Sn-haltigen Kristallphasen an den Kontaktmaterialien (z.B. Pt/Rh) bei der Formgebung und sind unbedingt zu vermeiden. Der ZrO2-Gehalt ist auf
2 Gew. % begrenzt, da höhere Gehalte das Einschmelzverhalten des Gemenges bei der Glasherstellung verschlechtern und die Entglasungsstabilität bei der Formgebung durch Bildung von ZrO2- haltigen Kristallen beeinträchtigt werden kann. Der Mindestgehalt an ZrO2 soll 0,5 Gew. % betragen, um eine hohe Keramisierungsgeschwindigkeit zu begünstigen. Der TiO2-Gehalt liegt zwischen 1,5 und 6 Gew. %. Die Mindestmenge soll nicht unterschritten werden, damit hohe Keimbildungsraten für das Erzielen hoher
Keramisierungsgeschwindigkeiten sichergestellt sind. Der Gehalt soll 6 Gew. % nicht übersteigen, weil sonst die Entglasungsstabilität verschlechtert wird.
The minimum amount of the nucleating agents TiO 2 , ZrO 2 and SnO 2 is 3.8% by weight. During ceramization, they form high-density crystal nuclei during nucleation, which serve as a base for the growth of the high-quartz mixed crystals during crystallization. The high seed density leads to a high crystal density with average crystallite sizes of less than 100 nm, which avoids light scattering which is disruptive for the displays. The nucleating agent contents are correlated with the nucleation rate and are therefore important for shorter ceramization times. Levels higher than the total of 6% by weight impair the devitrification stability. For improved devitrification stability, the SnO 2 content is limited to less than 0.6% by weight. Higher contents lead to the crystallization of Sn-containing crystal phases on the contact materials (eg Pt / Rh) during the shaping and must be avoided at all costs. The ZrO 2 content is up
2% by weight, since higher contents impair the melting behavior of the batch during glass production and the devitrification stability during the shaping can be impaired by the formation of crystals containing ZrO 2 . The minimum content of ZrO 2 should be 0.5% by weight in order to promote a high ceramization rate. The TiO 2 content is between 1.5 and 6% by weight. The minimum amount should not be undercut, so that high nucleation rates for achieving high
Ceramization speeds are ensured. The content should not exceed 6% by weight, because otherwise the devitrification stability will deteriorate.

Für das Einstellen der erfindungsgemäßen Transmission mit verbesserter farbiger Anzeigefähigkeit und Wärmeabschirmung ist eine Kombination von mindestens zwei Farboxiden erforderlich. Fe2O3-Gehalte von 0,03 bis 0,3A combination of at least two color oxides is required to set the transmission according to the invention with improved colored display capability and heat shielding. Fe 2 O 3 contents from 0.03 to 0.3

Gew. % sind kombiniert mit Farboxiden aus der Gruppe V2O5, CoO, Cr2O3, und NiO. Neben dem Farboxid Fe2O3 enthält die Glaskeramik NiO und CoO in Mindestgehalten von 0,05 Gew. % um die Infrarot-Transmission bei 1600 nm auf Werte von kleiner 45 % einzustellen.
Die Kombination der Farboxide gestattet es, mit geringeren Mengen des kostspieligen und als Gefahrstoff eingestuften Färbemittels V2O5 auszukommen. Bevorzugt ist der Gehalt der anderen Farboxide mindestens doppelt so hoch wie der des V2O5.
Mit den erfindungsgemäßen Farboxid-Gehalten ist es möglich, alle Anforderungen an den Transmissionsverlauf, wie spezifikationsgerechte Lichttransmission, abgesenkte Infrarot-Transmission, sowie Anzeigefähigkeit für standardmäßige rote Leuchtdioden zusammen mit der gewünschten verbesserten Anzeigefähigkeit für blaue und andersfarbige Leuchtanzeigen zu erreichen.
% By weight are combined with color oxides from the group V 2 O 5 , CoO, Cr 2 O 3 , and NiO. In addition to the color oxide Fe 2 O 3 , the glass ceramic contains NiO and CoO in minimum contents of 0.05% by weight in order to set the infrared transmission at 1600 nm to values of less than 45%.
The combination of the color oxides makes it possible to make do with smaller amounts of the expensive coloring agent V 2 O 5, which is classified as a hazardous substance. The content of the other color oxides is preferably at least twice as high as that of the V 2 O 5 .
With the color oxide contents according to the invention, it is possible to achieve all requirements for the transmission process, such as specification-compliant light transmission, reduced infrared transmission, and display capability for standard red light-emitting diodes together with the desired improved display capability for blue and differently colored light displays.

Weitere färbende Komponenten wie z.B. Mangan-, Kupfer-, Selen-, Selten Erd-, Molybdänverbindungen können eingesetzt werden, um die Färbung zu unterstützten und die Transmission im Infraroten abzusenken. Ihr Gehalt ist auf Mengen von maximal etwa 1 Gew. % begrenzt, weil diese Verbindungen in der Regel die Transmission im Blauen verringern. Manganverbindungen sind wegen der schwächeren Färbewirkung in höheren Gehalten bis zu etwa 2 Gew. % enthalten.
Durch Zusatz von 50 - 400 ppm Nd2O3 ist es möglich, die Glaskeramik-Kochfläche zu markieren. Die Absorptionsbande des Nd im nahen Infrarot bei 806 nm liegt in einem Bereich hoher Transmissionswerte der Glaskeramik und ist so markant im Transmissionsspektrum. Dadurch kann das Kochflächenmaterial sicher dem Hersteller zugeordnet werden und mit optischen Scherbenerkennungsverfahren ist ein gutes Recycling möglich.
Other coloring components such as manganese, copper, selenium, rare earth, molybdenum compounds can be used to support the coloring and to lower the transmission in the infrared. Their content is limited to a maximum of about 1% by weight because these compounds generally reduce the transmission in the blue. Manganese compounds are contained in higher contents up to about 2% by weight because of the weaker coloring effect.
By adding 50 - 400 ppm Nd 2 O 3 it is possible to mark the glass ceramic cooking surface. The absorption band of the Nd in the near infrared at 806 nm is in a range of high transmission values of the glass ceramic and is thus distinctive in the transmission spectrum. As a result, the cooking surface material can be safely assigned to the manufacturer and good recycling is possible with optical body detection methods.

Der Wassergehalt der Ausgangsgläser zur Herstellung der erfindungsgemäßen Kochflächen liegt abhängig von der Wahl der Gemengerohstoffe und der Prozessbedingungen bei der Schmelze üblicherweise zwischen 0,015 und 0,06 mol/l. Dies entspricht β-OH-Werten von 0,16 bis 0,64 mm-1 für die kristallisierbaren Ausgangsgläser.The water content of the starting glasses for the production of the cooking surfaces according to the invention depends on the choice of raw materials and the Process conditions in the melt usually between 0.015 and 0.06 mol / l. This corresponds to β-OH values of 0.16 to 0.64 mm -1 for the crystallizable starting glasses.

Für eine wirtschaftliche Herstellung ist gute Schmelzbarkeit und eine schnelle Keramisierbarkeit des Ausgangsglases gewünscht. Dabei ist es notwendig, die Keimbildungs- und Keramisierungsgeschwindigkeit durch eine entsprechend gewählte Zusammensetzung zu erhöhen. Hierbei hat es sich als vorteilhaft erwiesen, die Gehalte der Keimbildner TiO2 + ZrO2 + SnO2 zu erhöhen, um die Keimbildungsgeschwindigkeit anzuheben, während der Gehalt an P2O5 zu niedrigeren Werten gewählt werden muss.
Um die Schmelzbarkeit zu verbessern, hat es sich als günstig erwiesen, die Gehalte an SiO2, ZrO2 und Al2O3 zu verringern und den Anteil der Komponenten, die die Restglasphase der Glaskeramik bilden, wie die Alkalien Na2O und K2O sowie die Erdalkalien CaO, SrO, BaO zu erhöhen. Die Obergrenzen der Gehalte von ZnO und MgO werden in bevorzugter Weise erniedrigt um die Entglasungsstabilität bei der Formgebung zu verbessern.
Bevorzugt beträgt der SnO2 -Gehalt 0,1 bis 0,5 Gew. %. Ein Mindestgehalt von 0,1 Gew. % ist für die Läuterung des Glases erforderlich. Weiter wirkt das SnO2 als Keimbildner und falls auch V2O5 als Färbemittel eingesetzt wird ist es als Reoxpartner erforderlich, damit das Vanadin-Ion beim Keramisieren in die färbende niedrigere Oxidationsstufe reduziert werden kann. Der SnO2 -Gehalt beträgt maximal 0,5 Gew. % für die verbesserte Entglasungsstabilität bei der Formgebung.
Good meltability and rapid ceramizability of the starting glass are desired for economical production. It is necessary to increase the nucleation and ceramization rate by an appropriately selected composition. It has proven to be advantageous here to increase the contents of the nucleating agents TiO 2 + ZrO 2 + SnO 2 in order to increase the nucleation rate, while the P 2 O 5 content must be selected at lower values.
In order to improve the meltability, it has proven advantageous to reduce the contents of SiO 2 , ZrO 2 and Al 2 O 3 and the proportion of the components which form the residual glass phase of the glass ceramic, such as the alkalis Na 2 O and K 2 O as well as increasing the alkaline earths CaO, SrO, BaO. The upper limits of the contents of ZnO and MgO are preferably lowered in order to improve the devitrification stability during the shaping.
The SnO 2 content is preferably 0.1 to 0.5% by weight. A minimum content of 0.1% by weight is required for the refining of the glass. Furthermore, the SnO 2 acts as a nucleating agent and if V 2 O 5 is also used as a colorant, it is required as a reox partner so that the vanadium ion can be reduced to the coloring, lower oxidation state when ceramized. The SnO 2 content is a maximum of 0.5% by weight for improved devitrification stability during shaping.

Der Begriff "im wesentlichen besteht aus" bedeutet, dass die aufgeführten Komponenten wenigstens 96 %, in der Regel 98 % der Gesamtzusammensetzung betragen sollen. Eine Vielzahl von Elementen wie z.B. F, Cl, die Alkalien Rb, Cs oder Elemente wie Hf sind bei den großtechnisch verwendeten Gemengerohstoffen übliche Verunreinigungen. Andere Verbindungen wie z.B. solche der Elemente Ge, seltene Erden, Bi, W, Nb, Ta, Y können in geringen Anteilen zugesetzt werden.The term "essentially consists of" means that the listed components should be at least 96%, generally 98% of the total composition. A large number of elements such as F, Cl, the alkalis Rb, Cs or elements such as Hf are common impurities in the batch raw materials used on an industrial scale. Other Compounds such as those of the elements Ge, rare earths, Bi, W, Nb, Ta, Y can be added in small proportions.

Um die Blasenqualität zu verbessern, können neben dem eingesetzten SnO2 zusätzlich weitere Läuterzusätze wie z.B. CeO2, MnO2, Sulfat-, Sulfid-, Halogenidverbindungen eingesetzt werden. Deren Gehalte sind üblicherweise auf Mengen bis 2 Gew. % begrenzt. Bei der Herstellung von Kochflächen sind als gute Blasenqualitäten solche mit Blasenzahlen von unter 5, bevorzugt unter 3 Blasen/kg Glas (bezogen auf Blasengrößen größer als 0,1 mm) gewünscht.In order to improve the bubble quality, in addition to the SnO 2 used , other refining additives such as CeO 2 , MnO 2 , sulfate, sulfide, and halide compounds can also be used. Their contents are usually limited to amounts up to 2% by weight. Good bubble qualities in the production of cooking surfaces are those with bubble numbers of less than 5, preferably less than 3 bubbles / kg of glass (based on bubble sizes greater than 0.1 mm).

Als weiteres wichtiges Ergebnis der Zugabe von Fe2O3 wurde gefunden, dass dies die Läuterung wesentlich unterstützt. In Kombination mit dem SnO2 als Hauptläutermittel gibt auch das Fe2O3 Sauerstoff ab und wird dabei zum Fe2+ reduziert. Damit sich die Zugabe von Fe2O3 als zusätzliches Läutermittel in Kombination mit SnO2 besonders vorteilhaft auswirkt, sollte der Gehalt in besonders bevorzugter Form mindestens 0,05 Gew. % betragen.As another important result of the addition of Fe 2 O 3 , it was found that this significantly supports the refining. In combination with the SnO 2 as the main refining agent, the Fe 2 O 3 also releases oxygen and is thereby reduced to the Fe 2+ . In order that the addition of Fe 2 O 3 as an additional refining agent in combination with SnO 2 has a particularly advantageous effect, the content in a particularly preferred form should be at least 0.05% by weight.

Sowohl SnO2 als auch Fe2O3 sind Hochtemperaturläutermittel und geben den für die Läuterung notwendigen Sauerstoff bei hohen Schmelztemperaturen ab etwa 1650 °C in ausreichenden Mengen ab. Der für die Läuterwirkung maßgebliche Umsatz steigt mit der Temperatur der Schmelze an. Eine Temperaturbehandlung der Schmelze von größer als 1700°C und weiter größer als 1750 °C liefert also hinsichtlich der Blasenqualität weiter verbesserte Ergebnisse. Für verbesserte Blasenzahlen von weniger als 3 Blasen/kg Glas bei wirtschaftlich günstigen höheren Wannendurchsätzen ist eine Hochtemperaturläuterung mit Temperaturen der Glasschmelze von größer als 1700 °C, bevorzugt größer als 1750 °C vorteilhaft.Both SnO 2 and Fe 2 O 3 are high-temperature refining agents and release the oxygen required for refining in sufficient quantities at high melting temperatures from around 1650 ° C. The turnover that is decisive for the refining effect increases with the temperature of the melt. A temperature treatment of the melt of more than 1700 ° C and more than 1750 ° C thus delivers further improved results with regard to the bubble quality. For improved bubble numbers of less than 3 bubbles / kg of glass with economically favorable higher throughputs, high-temperature purification with temperatures of the glass melt of greater than 1700 ° C., preferably greater than 1750 ° C., is advantageous.

Unter einer schnellen Keramisierbarkeit wird eine thermische Behandlung zur Kristallisation der Glaskeramik mit einer Dauer von weniger als 2 Stunden, bevorzugt weniger als 80 Minuten verstanden.Rapid ceramicization means a thermal treatment for crystallizing the glass ceramic with a duration of less than 2 hours, preferably less than 80 minutes.

Bei dem erfindungsgemäßen Verfahren zur Keramisierung wird das thermisch entspannte kristallisierbare Ausgangsglas innerhalb von 1 - 30 min auf den Temperaturbereich der Transformationstemperatur Tg des Glases von etwa 680°C erhitzt. Die erforderlichen hohen Heizraten können großtechnisch in Rollenöfen realisiert werden. Oberhalb dieser Temperatur bis etwa 810°C ist der Bereich mit hohen Keimbildungsraten. Der Temperaturbereich der Keimbildung wird über einen Zeitraum von 8 bis 30 Minuten durchfahren. Danach wird die Temperatur des Kristallisationskeime enthaltenden Glases innerhalb von 2 bis 30 Minuten auf eine Temperatur von 820 bis 970°C, die sich durch hohe Kristallwachstumsgeschwindigkeiten der Hochquarz-Mischkristallphase auszeichnet, erhöht. Diese maximale Temperatur wird bis zu 30 Minuten gehalten. Dabei wird das Gefüge der Glaskeramik homogenisiert und die optischen, physikalischen und chemischen Eigenschaften eingestellt. Die erhaltene Glaskeramik wird bis 800 °C mit Abkühlraten von ca. 2 bis 40 °C/min und danach rasch auf Raumtemperatur abgekühlt.In the process for ceramization according to the invention, the thermally relaxed crystallizable starting glass is heated within 1 to 30 minutes to the temperature range of the transformation temperature Tg of the glass of approximately 680 ° C. The high heating rates required can be realized on an industrial scale in roller furnaces. Above this temperature up to about 810 ° C is the area with high nucleation rates. The temperature range for nucleation is traversed over a period of 8 to 30 minutes. The temperature of the glass containing nuclei is then raised to a temperature of 820 to 970 ° C. in the course of 2 to 30 minutes, which is characterized by high crystal growth rates of the high-quartz mixed crystal phase. This maximum temperature is maintained for up to 30 minutes. The structure of the glass ceramic is homogenized and the optical, physical and chemical properties are adjusted. The glass ceramic obtained is cooled to 800 ° C. with cooling rates of approx. 2 to 40 ° C./min and then quickly to room temperature.

Durch Zusatz von Reduktionsmitteln in pulvriger und/oder flüssiger Form zum Ausgangsgemenge kann die Färbewirkung des V2O5 verstärkt werden oder blau färbendes Ti3+ erzeugt werden. Dafür eignen sich Metalle, Kohlenstoff und/oder aufoxidierbare Kohlenstoff- bzw. Metallverbindungen wie z.B. Al- oder Si-Pulver, Zucker, Holzkohle, SiC, TiC, MgS, ZnS. Auch gasförmige Reduktionsmittel, wie z.B. Formiergas sind geeignet. Die genannten Reduktionsmittel sind geeignet den pO2 der Schmelze zu senken. Da Vanadiumoxid ein kostspieliger Rohstoff ist, ist es wirtschaftlich vorteilhaft, den Gehalt zu minimieren.By adding reducing agents in powder and / or liquid form to the starting mixture, the coloring effect of the V 2 O 5 can be enhanced or blue-coloring Ti 3+ can be produced. Metals, carbon and / or oxidizable carbon or metal compounds such as Al or Si powder, sugar, charcoal, SiC, TiC, MgS, ZnS are suitable for this. Gaseous reducing agents, such as forming gas, are also suitable. The reducing agents mentioned are suitable for lowering the pO 2 of the melt. Since vanadium oxide is an expensive raw material, it is economically advantageous to minimize the content.

Vorzugsweise sind unter der erfindungsgemäßen Kochfläche mit verbesserter farbiger Anzeigefähigkeit anstelle oder in Ergänzung zu den üblichen roten Anzeigen eine oder mehrere andersfarbige Anzeigen, wie blaue, grüne, gelbe, orange oder weiße angeordnet. Die farbigen Anzeigen bestehen aus Licht emittierenden elektronische Bauteilen, meist aus Leuchtdioden. Es sind alle Formen von Anzeigen, punktuelle wie flächige möglich. Es können auch schwarz-weiße und farbige Displays oder Bildschirme mit deutlich verbesserter Farbtreue dargestellt werden. Neben der Anzeige von Betriebszuständen wird es damit für den Nutzer möglich interaktiv an der Kochfläche tätig zu werden. Es können z. B. Rezepte gelesen, Bilder angesehen werden oder es kann mit dem Intranet kommuniziert werden. Die Steuerung kann über berührungsempfindliche Bildschirme erfolgen. Die Unterseite der Kochfläche kann die üblichen Noppen besitzen oder glatt ausgeführt sein. Die verbesserte Anzeigefähigkeit kommt bei Kochflächen mit glatter Unterseite besonders zur Geltung, da die farbigen Anzeigen unverzerrt und heller wahrnehmbar sind. Die Kochfläche kann Bereiche mit geringerer Dicke für die Anzeigen enthalten. Da die Transmission exponentiell von der Schichtdicke abhängt, wird die Helligkeit der Anzeige, z. B. bei einem Bildschirm, stark erhöht. Die anderen Bereiche der Kochfläche sollen jedoch dicker ausgebildet sein, damit sie über die erfindungsgemäße Lichttransmission verfügen.Preferably, one or more differently colored displays, such as blue, green, yellow, orange or white, are arranged under the cooking surface according to the invention with improved colored display capability instead of or in addition to the usual red displays. The colored displays consist of light-emitting electronic components, mostly of light-emitting diodes. All forms of advertisements are possible, both point and area. It can too black and white and colored displays or screens are shown with significantly improved color fidelity. In addition to displaying operating states, it is also possible for the user to work interactively on the cooking surface. It can e.g. B. Read recipes, view pictures or communicate with the intranet. It can be controlled via touch-sensitive screens. The underside of the cooking surface can have the usual knobs or be made smooth. The improved display capability is particularly noticeable on cooktops with a smooth underside, as the colored displays are undistorted and brighter. The cooking surface can contain areas of reduced thickness for the displays. Since the transmission depends exponentially on the layer thickness, the brightness of the display, e.g. B. on a screen, greatly increased. However, the other areas of the cooking surface should be thicker so that they have the light transmission according to the invention.

Die Kochfläche kann dabei nicht nur als ebene Platte ausgeformt sein, sondern auch dreidimensional verformte wie z.B. abgekantete, gewinkelte oder gewölbte Platten können verwendet werden. Die Platten können rechtwinklig oder in anderen Formen vorliegen, sowie neben ebenen Bereichen dreidimensional verformte Bereiche wie z.B. Stege oder Woks enthalten.The cooking surface can not only be shaped as a flat plate, but also three-dimensionally shaped, e.g. folded, angled or curved plates can be used. The plates can be rectangular or in other shapes, as well as three-dimensionally deformed areas such as e.g. Bars or woks included.

Die vorliegende Erfindung wird mit Hilfe der folgenden Beispiele weiter verdeutlicht.The following examples further illustrate the present invention.

Für einige Ausführungsbeispiele sind in Tabelle 1 Zusammensetzungen der kristallisierbaren Ausgangsgläser und die Läuterbedingungen aufgeführt. Dabei handelt es sich bei den Gläsern 1 bis 4 um erfindungsgemäße Gläser und bei dem Glas 5 um ein Vergleichsglas das zu einer Glaskeramik außerhalb der vorliegenden Erfindung führt.
Aufgrund von typischen Verunreinigungen in den verwendeten großtechnischen Gemengerohstoffen addieren sich die Zusammensetzungen nicht genau zu 100 Gew. %. Typische Verunreinigungen, auch wenn nicht absichtlich in die Zusammensetzung eingeführt sind F, Cl, B, P, Rb, Cs, Hf, die üblicherweise weniger als 0,1 Gew. % betragen. Sie werden oft über die Rohstoffe für die chemisch verwandten Komponenten eingeschleppt, so z.B. Rb und Cs über die Na-, bzw. K- Rohstoffe, oder Sr über den Ba-Rohstoff und umgekehrt.
For some exemplary embodiments, compositions of the crystallizable starting glasses and the refining conditions are listed in Table 1. The glasses 1 to 4 are glasses according to the invention and the glass 5 is a comparison glass which leads to a glass ceramic outside of the present invention.
Due to typical impurities in the large-scale batch raw materials used, the compositions do not add up to 100 % By weight. Typical impurities, even if not intentionally introduced into the composition, are F, Cl, B, P, Rb, Cs, Hf, which are usually less than 0.1% by weight. They are often introduced via the raw materials for the chemically related components, such as Rb and Cs via the Na or K raw materials, or Sr via the Ba raw material and vice versa.

Die Ausgangsgläser von Tabelle 1 wurden aus in der Glasindustrie üblichen Rohstoffen bei Temperaturen von ca. 1620°C, 4 Stunden eingeschmolzen. Nach dem Einschmelzen des Gemenges in Tiegeln aus gesintertem Kieselglas wurden die Schmelzen in Pt/Rh-Tiegel mit Innentiegel aus Kieselglas umgegossen und bei Temperaturen von 1550°C, 30 Minuten durch Rühren homogenisiert. Nach dieser Homogenisierung wurden die Gläser für 2 Stunden bei 1640 °C geläutert. Anschließend wurden Stücke der Größe 140 x 80 x 30 mm3 gegossen und zur Vermeidung von Spannungen in einem Kühlofen, beginnend bei einer Temperatur von 660 °C auf Raumtemperatur abgekühlt. Aus den Gussstücken wurden die Prüfmuster für die Messungen präpariert.
Das Glas Nr. 4 mit gleicher Zusammensetzung wie Glas Nr. 3 wurde stattdessen bei 1850 °C, 1h geläutert. Der positive Einfluss der Hochtemperaturläuterung hinsichtlich der Blasenqualität zeigt sich visuell bei dieser Laborschmelze.
The starting glasses of Table 1 were melted from raw materials customary in the glass industry at temperatures of approximately 1620 ° C. for 4 hours. After the mixture had melted in crucibles made of sintered silica glass, the melts were poured into Pt / Rh crucibles with internal crucibles made of silica glass and homogenized by stirring at temperatures of 1550 ° C. for 30 minutes. After this homogenization, the glasses were refined at 1640 ° C. for 2 hours. Pieces of size 140 × 80 × 30 mm 3 were then cast and, in order to avoid stresses, cooled in a cooling oven, starting at a temperature of 660 ° C. to room temperature. The test samples for the measurements were prepared from the castings.
Glass No. 4 with the same composition as Glass No. 3 was instead refined at 1850 ° C. for 1 hour. The positive influence of the high-temperature purification with regard to the bubble quality is visually evident in this laboratory melt.

Die Keramisierungen der Ausgangsgläser erfolgte mit dem folgenden Temperatur/Zeit-Programm:

  1. a) schnelles Aufheizen von Raumtemperatur auf 680°C innerhalb von etwa 10 min,
  2. b) Temperaturerhöhung von 680 °C auf 730 °C mit einer Heizrate von 10 °C/min, weiteres Aufheizen mit 5,2 °C/min auf 810 °C,
  3. c) Temperaturerhöhung von 810°C auf Maximaltemperatur Tmax von 920°C mit einer Heizrate von 6 °C/min, Haltezeit tmax von 6 min bei Maximaltemperatur,
  4. d) Abkühlen von Maximaltemperatur auf 800°C mit 5,5 °C/min, dann schnelle Abkühlung auf Raumtemperatur.
The ceramization of the starting glasses was carried out with the following temperature / time program:
  1. a) rapid heating from room temperature to 680 ° C within about 10 min,
  2. b) temperature increase from 680 ° C to 730 ° C with a heating rate of 10 ° C / min, further heating at 5.2 ° C / min to 810 ° C,
  3. c) temperature increase from 810 ° C to maximum temperature T max of 920 ° C with a heating rate of 6 ° C / min, holding time t max of 6 min at maximum temperature,
  4. d) cooling from maximum temperature to 800 ° C at 5.5 ° C / min, then rapid cooling to room temperature.

In Tabelle 2 sind die Eigenschaften im keramisierten Zustand, wie die thermische Ausdehnung zwischen 20 und 700 °C und die Transmissionswerte für ausgewählte Wellenlängen dargestellt. Die Werte wurden an polierten Platten mit den angegebenen für Kochflächen typischen Dicken bestimmt. Die optischen Messungen erfolgten mit Normlicht C, 2 Grad.Table 2 shows the properties in the ceramic state, such as the thermal expansion between 20 and 700 ° C and the transmission values for selected wavelengths. The values were determined on polished plates with the specified thicknesses typical for cooking surfaces. The optical measurements were made with standard light C, 2 degrees.

Die Fig. 1a und 1b zeigen Transmissionsspektren der erfindungsgemäßen Glaskeramik nach Beispiel Nr. 4 aus Tabelle 2 in verschiedenen Achsenauflösungen.

  • Fig. 1a zeigt "Ordinate spektraler Transmissionsgrad = 1.0 (Transmission = 100%),
  • Fig. 1b zeigt "Ordinate spektraler Transmissionsgrad = 0.1 (Transmission = 10%)".
The 1a and 1b show transmission spectra of the glass ceramic according to the invention according to Example No. 4 from Table 2 in different axis resolutions.
  • Fig. 1a shows "ordinate spectral transmittance = 1.0 (transmission = 100%),
  • Fig. 1b shows "ordinate spectral transmittance = 0.1 (transmission = 10%)".

Das Glas Nr. 3 erfüllt die gewünschten Anforderungen an die Anzeigefähigkeit und Wärmeabschirmung für Kochflächen der Dicken 3,5 (Beispiel 3) und 4 mm (Beispiel 4) und zeichnet sich durch eine besonders vorteilhafte Kombination von Farboxiden aus. Durch die Hochtemperaturläuterung des Glases Nr. 4 mit gleicher Zusammensetzung wie Glas Nr. 3 wird die Färbewirkung insbesondere des Vanadiumoxids im Bereich des sichtbaren Lichtes verstärkt. Das zeigt sich durch den direkten Vergleich von Beispiel 5 mit Beispiel 3 da beide die Dicke 3,5 mm besitzen. Die Kurven der Transmissionspektren der erfindungsgemäßen Glaskeramiken Beispiel Nr. 3 und 5 aus Tabelle 2 "Ordinate spektraler Transmissionsgrad = 0.1 (Transmission = 10%)" sind in Fig. 2 dargestellt.Glass No. 3 fulfills the desired requirements for display capability and heat shielding for cooktops of thicknesses 3.5 (example 3) and 4 mm (example 4) and is characterized by a particularly advantageous combination of color oxides. The high-temperature refining of glass No. 4 with the same composition as glass No. 3 intensifies the coloring effect, in particular of the vanadium oxide, in the visible light range. This is shown by the direct comparison of Example 5 with Example 3 since both have a thickness of 3.5 mm. The curves of the transmission spectra of the glass ceramics according to the invention Example Nos. 3 and 5 from Table 2 "ordinate spectral transmittance = 0.1 (transmission = 10%)" are in Fig. 2 shown.

Bei der Vergleichsglaskeramik Beispiel 6 sind die Anforderungen an gute Anzeigefähigkeit und verbesserte Wärmeabschirmung bei den für Kochflächen üblichen Dicken nicht zu erreichen.In the comparative glass ceramic example 6, the requirements for good display capability and improved heat shielding cannot be achieved with the thicknesses customary for cooking surfaces.

Die Beispiele verfügen aufgrund ihres Gehaltes an Hochquarz-Mischkristall als vorherrschender Kristallphase über die gewünschten niedrigen Werte der thermischen Ausdehnung, gemessen im Temperaturbereich zwischen 20 und 700 °C. Die für die Erfindung charakteristischen Werte für die Transmission bei den verschiedenen Wellenlängen, sowie für die Lichttransmission, gleichbedeutend mit "brightness" Y, sind in der Tabelle aufgeführt. Tabelle 1: Zusammensetzungen und Läutertemperaturen erfindungsgemäßer kristallisierbarer Ausgangsgläser und Vergleichsglas 5. Glas Nr. 1 2 3 4 5 Zusammensetzungen in Gew.% auf Oxidbasis wie Glas Nr. 3 Li2O 3,82 3,87 3,86 2,98 Na2O 0,59 0,59 0,57 0,46 K2O 0,26 0,26 0,26 0,20 MgO 0,31 0,31 0,32 1,47 CaO 0,41 0,42 0,40 0,31 SrO - - - 0,52 BaO 2,31 2,32 2,29 1,86 ZnO 1,44 1,49 1,44 1,55 Al2O3 20,4 20,6 20,6 20,0 SiO2 64,8 65,1 65,0 65,3 TiO2 3,09 2,54 3,11 4,44 ZrO2 1,34 1,35 1,37 0,28 SnO2 0,25 0,25 0,25 0,22 P2O5 - - 0,10 - MnO2 0,20 0,20 0,024 - CoO 0,21 0,21 0,089 0,047 Fe2O3 0,18 0,18 0,077 0,095 NiO 0,27 0,27 0,13 0,15 V2O5 0,015 - 0,018 0,012 Läutertemperatur, Läuterzeit °C h 1640 2 1640 2 1640 2 1850 1 1640 2 Tabelle 2: Eigenschaften erfindungsgemäßer Glaskeramiken, Beispiele 1 bis 5 und Vergleichsglaskeramik, Beispiel 6 Beispiel Nr 1 2 3 4 5 6 Glas Nr. 1 2 3 3 4 5 Thermische Ausdehnung α20/700 10-6/K 0,43 0,31 0,15 0,15 0,15 1,18 Transmission Normlicht C, 2° Dicke mm 2,5 3,0 3,5 4,0 3,5 2,5 400 nm % 0,3 0,2 0,9 0,4 0,3 <0,01 450 nm % 1,3 3,8 1,8 1,0 0,8 0,2 470 nm % 0,9 2,1 1,1 0,6 0,5 0,4 500 nm % 0,3 0,2 0,3 0,1 0,1 0,5 600 nm % 0,6 0,8 1,6 0,9 0,9 1,4 630 nm % 4,5 7,8 6,9 4,8 4,2 3,3 700 nm % 31,7 49,9 30,4 26,0 22,5 11,2 950 nm % 45,5 40,3 55,3 51,5 53,6 50,8 1600 nm % 20,7 14,1 33,4 28,9 33,0 52,9 Lichttransmission Y % 0,9 1,3 1,3 0,8 0,8 1,1 Due to their content of high quartz mixed crystal as the predominant crystal phase, the examples have the desired low values of thermal expansion, measured in the temperature range between 20 and 700 ° C. The values characteristic of the invention for the transmission at the different wavelengths and for the light transmission, which is synonymous with "brightness" Y, are listed in the table. Table 1: Compositions and refining temperatures of crystallizable starting glasses according to the invention and comparison glass 5. Glass no. 1 2nd 3rd 4th 5 Compositions in% by weight based on oxide like glass No. 3 Li 2 O 3.82 3.87 3.86 2.98 Na 2 O 0.59 0.59 0.57 0.46 K 2 O 0.26 0.26 0.26 0.20 MgO 0.31 0.31 0.32 1.47 CaO 0.41 0.42 0.40 0.31 SrO - - - 0.52 BaO 2.31 2.32 2.29 1.86 ZnO 1.44 1.49 1.44 1.55 Al 2 O 3 20.4 20.6 20.6 20.0 SiO 2 64.8 65.1 65.0 65.3 TiO 2 3.09 2.54 3.11 4.44 ZrO 2 1.34 1.35 1.37 0.28 SnO 2 0.25 0.25 0.25 0.22 P 2 O 5 - - 0.10 - MnO 2 0.20 0.20 0.024 - CoO 0.21 0.21 0.089 0.047 Fe 2 O 3 0.18 0.18 0.077 0.095 NiO 0.27 0.27 0.13 0.15 V 2 O 5 0.015 - 0.018 0.012 Refining temperature, refining time ° C h 1640 2 1640 2 1640 2 1850 1 1640 2 Example No. 1 2nd 3rd 4th 5 6 Glass no. 1 2nd 3rd 3rd 4th 5 Thermal expansion α 20/700 10 -6 / K 0.43 0.31 0.15 0.15 0.15 1.18 Transmission standard light C, 2 ° thickness mm 2.5 3.0 3.5 4.0 3.5 2.5 400 nm % 0.3 0.2 0.9 0.4 0.3 <0.01 450 nm % 1.3 3.8 1.8 1.0 0.8 0.2 470 nm % 0.9 2.1 1.1 0.6 0.5 0.4 500 nm % 0.3 0.2 0.3 0.1 0.1 0.5 600 nm % 0.6 0.8 1.6 0.9 0.9 1.4 630 nm % 4.5 7.8 6.9 4.8 4.2 3.3 700 nm % 31.7 49.9 30.4 26.0 22.5 11.2 950 nm % 45.5 40.3 55.3 51.5 53.6 50.8 1600 nm % 20.7 14.1 33.4 28.9 33.0 52.9 Light transmission Y % 0.9 1.3 1.3 0.8 0.8 1.1

Claims (4)

  1. Glass-ceramic cooking surface for induction heating having improved coloured display capability and heat shielding, consisting of a transparent, coloured glass-ceramic plate which has a thickness in the range from 2.5 mm to 6 mm and has high-quartz mixed crystals as predominant crystal phase, where the glass-ceramic contains none of the chemical refining agents arsenic oxide and antimony oxide except for unavoidable traces in an amount of less than 0.05%,
    characterized by transmission values of the cooking surface of:
    > 0.4% at at least one wavelength in the blue range from 380 to 500 nm,
    > 2% - < 12% at 630 nm,
    < 45% at 1600 nm, preferably < 40%,
    and a light transmission in the visible range of 0.5-2%,
    > 0.1% in the range of visible light in the total wavelength range > 500 nm,
    in the near infrared at 950 nm > 30%,
    and in that
    the composition of the glass-ceramic (in percent by weight on an oxide basis) contains, as main constituents: Li2O 1.5 - 4.2 ∑ Na2O+K2O 0.2 - 1.5 MgO 0 - 3 ∑ CaO+SrO+BaO 0 - 4 ZnO 0 - 3 B2O3 0 - 2 Al2O3 19 - 23 SiO2 60 - 69 TiO2 1.5 - 6 ZrO2 0.5 - 2 P2O5 0 - 3 SnO2 0.1 - < 0.6 ∑ TiO2+ZrO2+SnO2 3.8 - 6
    and Fe2O3 0.03 - 0.3 in combination with CoO 0.05 - 0.3 NiO 0.05 - 0.3 Manganese compounds > 0 - 2 V2O5 0 - 0.06 Cr2O3 0 - 0.3.
  2. Glass-ceramic cooking surface for induction heating according to Claim 1,
    characterized in that
    the glass-ceramic has a bubble count of less than 3 bubbles/kg as a result of a temperature of the glass melt of greater than 1700°C, preferably greater than 1750°C.
  3. Process for producing a glass-ceramic cooking surface for induction heating with fast ceramicization of the crystallizable starting glass according to Claim 1 or 2 over a total time of less than 2 hours, preferably less than 80 minutes,
    characterized in that
    the ceramicization is carried out using the following program:
    a) increasing the temperature of the crystallizable glass to the temperature range of about 680°C within a period of 1-30 minutes;
    b) increasing the temperature of the crystallizable glass within the temperature range of nucleation from 680 to 810°C over a period of from 8 to 30 minutes;
    c) increasing the temperature of the glass containing crystallization nuclei within a period of from 2 to 30 minutes to the temperature range of a high crystal growth rate from 820 to 970°C;
    d) holding within the temperature range at the maximum temperature of from 820 to 970°C for up to 30 minutes in order to allow crystals of the type high-quartz mixed crystals to grow on the crystallization nuclei and then
    e) rapid cooling of the glass-ceramic obtained to room temperature.
  4. Process for producing a glass-ceramic cooking surface for induction heating according to Claim 3, characterized in that
    a bubble count of less than 3 bubbles/kg of glass is achieved as a result of a temperature of the glass melt of greater than 1700°C, preferably greater than 1750°C.
EP11735995.0A 2010-07-23 2011-07-15 Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding and method for producing such a cooktop Active EP2595930B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010032112A DE102010032112A1 (en) 2010-07-23 2010-07-23 Glass ceramic as cooking surface for induction heating with improved color display capability and heat shielding, method for making such a cooking surface and their use
PCT/EP2011/003540 WO2012010278A1 (en) 2010-07-23 2011-07-15 Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding, method for producing such a cooktop, and use of such a cooktop

Publications (2)

Publication Number Publication Date
EP2595930A1 EP2595930A1 (en) 2013-05-29
EP2595930B1 true EP2595930B1 (en) 2020-06-24

Family

ID=44503696

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11735995.0A Active EP2595930B1 (en) 2010-07-23 2011-07-15 Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding and method for producing such a cooktop

Country Status (6)

Country Link
US (1) US9018113B2 (en)
EP (1) EP2595930B1 (en)
JP (1) JP5911488B2 (en)
CN (1) CN103025674B (en)
DE (2) DE202010014361U1 (en)
WO (1) WO2012010278A1 (en)

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202010014361U1 (en) * 2010-07-23 2010-12-30 Schott Ag Glass ceramic as cooking surface for induction heating with improved color display capability and heat shielding
FR2975391A1 (en) * 2011-05-16 2012-11-23 Eurokera QUARTZ-BETA VITROCERAMICS WITH CONTROLLED TRANSMISSION CURVE; ARTICLES IN VITROCERAMIC LENSES, PRECURSORIC GLASSES.
DE102011050870A1 (en) 2011-06-06 2012-12-06 Schott Ag display device
DE102011050867A1 (en) 2011-06-06 2012-12-06 Schott Ag High-strength colored. smooth glass ceramic as a cooking surface on both sides
FR2976683B1 (en) 2011-06-15 2013-11-08 Eurokera VITROCERAMIC ARTICLE WITH COLOR LUMINOUS DISPLAY.
DE102011114741B3 (en) * 2011-09-28 2012-12-13 E.G.O. Elektro-Gerätebau GmbH Display device, electrical device and method of display
DE102012202695B4 (en) * 2012-02-22 2015-10-22 Schott Ag Process for the preparation of glasses and glass ceramics, LAS glass and LAS glass ceramics and their use
DE102012202696B4 (en) 2012-02-22 2015-10-15 Schott Ag Process for the preparation of glasses and glass ceramics, glass and glass ceramic and their use
JP2013249221A (en) * 2012-05-31 2013-12-12 Nippon Electric Glass Co Ltd Li2O-Al2O3-SiO2-BASED CRYSTALLIZED GLASS AND METHOD FOR PRODUCING THE SAME
DE102012105576B4 (en) 2012-06-26 2016-12-15 Schott Ag Glass ceramic and process for its production and glass ceramic hob
DE102012105572B4 (en) * 2012-06-26 2019-05-29 Schott Ag Process for producing a glass ceramic with a predetermined transmission
EP2890652B1 (en) * 2012-08-28 2022-09-14 Corning Incorporated Colored and opaque glass-ceramic(s), associated colorable and ceramable glass(es), and associated process(es)
US9296641B2 (en) * 2012-11-01 2016-03-29 Owens-Brockway Glass Container Inc. Inspectable black glass containers
FR2998293B1 (en) 2012-11-22 2014-12-19 Eurokera QUARTZ-BETA VITROCERAMICS WITH CONTROLLED TRANSMISSION CURVE AND HIGH IRON OXIDE CONTENT; ARTICLES IN VITROCERAMIC LENSES, PRECURSOR GLASSES
FR2998294B1 (en) * 2012-11-22 2014-12-19 Eurokera QUARTZ-BETA VITROCERAMICS WITH CONTROLLED TRANSMISSION CURVE AND HIGH IRON OXIDE AND TIN OXIDE CONTENT; ARTICLES IN VITROCERAMIC LENSES, PRECURSOR GLASSES
FR3002532B1 (en) * 2013-02-28 2015-02-27 Eurokera LITHIUM ALUMINOSILICATE TYPE VITROCERAMIC COMPRISING A SOLID BETA-SPODUMENE SOLUTION
ES2942635T3 (en) * 2013-02-28 2023-06-05 Eurokera Arsenic-free non-opaque beta-spodumene glass-ceramic showing brown-gray coloration
EP3321592A1 (en) * 2013-07-16 2018-05-16 Schott Ag Cooking apparatus with light elements
FR3008695B1 (en) 2013-07-16 2021-01-29 Corning Inc ALUMINOSILICATE GLASS THE COMPOSITION OF WHICH IS FREE OF ALKALINE METALS, SUITABLE AS A SUBSTRATE FOR BAKING PLATES FOR INDUCTION HEATING
US9701574B2 (en) 2013-10-09 2017-07-11 Corning Incorporated Crack-resistant glass-ceramic articles and methods for making the same
CN103641320B (en) * 2013-12-06 2015-12-02 辽宁红山玉科技有限公司 A kind of black glass ceramic toner and black glass ceramic
EP2921830B8 (en) * 2014-02-28 2021-03-31 BSH Hausgeräte GmbH Cooking hob
FR3020359B1 (en) 2014-04-29 2016-05-06 Eurokera PARTIALLY CRYSTALLIZED GLASS PLATE
DK3572384T3 (en) 2014-10-08 2021-01-04 Corning Inc HIGH STRENGTH GLASS CERAMICS WITH PETALITE AND LITHIUM SILICATE STRUCTURES
DE102015104412A1 (en) * 2015-03-24 2016-09-29 Schott Ag Process for changing the geometry of glass ceramics and coated glass ceramic articles produced according to the method
DE102017118451A1 (en) * 2016-12-23 2018-06-28 Schott Ag Hob with display
CN110050039B (en) * 2016-12-27 2022-04-29 花王株式会社 Resin composition
FR3067345B1 (en) 2017-06-07 2020-09-25 Eurokera LOW LITHIUM QUARTZ-BETA TRANSPARENT VITROCERAMICS
DE202018102537U1 (en) 2017-12-22 2018-05-22 Schott Ag Furnishings and fittings for kitchens or laboratories with lighting elements
DE102018110855A1 (en) 2017-12-22 2018-06-28 Schott Ag Glass-ceramic with reduced lithium content
DE102018110897A1 (en) 2017-12-22 2018-06-21 Schott Ag Furnishings and equipment for kitchens or laboratories with display devices
DE202018102534U1 (en) 2017-12-22 2018-05-15 Schott Ag Transparent, colored lithium aluminum silicate glass-ceramic
DE102018110909A1 (en) 2017-12-22 2018-06-21 Schott Ag Cover plate with neutral color coating
JP7046688B2 (en) * 2018-04-13 2022-04-04 株式会社オハラ Reinforced crystallized glass
FR3088321B1 (en) 2018-11-09 2021-09-10 Eurokera LOW LITHIUM TRANSPARENT QUARTZ-BETA VITROCERAMICS
JP6897704B2 (en) * 2019-03-29 2021-07-07 Tdk株式会社 Black mark composition and electronic components using it
CN113891865A (en) 2019-05-29 2022-01-04 康宁股份有限公司 Colored glass ceramic with petalite and lithium silicate structure
FR3109937B1 (en) * 2020-05-07 2022-05-13 Eurokera Transparent quartz-β glass-ceramics with specific transmission
JP7031094B2 (en) * 2020-06-22 2022-03-08 湖州大享玻璃制品有限公司 Li2O-Al2O3-SiO2-based crystallized glass and Li2O-Al2O3-SiO2-based crystalline glass
JP7052956B1 (en) 2020-10-19 2022-04-12 湖州大享玻璃制品有限公司 Li2O-Al2O3-SiO2-based crystallized glass and Li2O-Al2O3-SiO2-based crystalline glass

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11100230A (en) 1997-09-25 1999-04-13 Nippon Electric Glass Co Ltd Infrared ray transmitting glass ceramics
JP4120897B2 (en) 1997-09-25 2008-07-16 日本電気硝子株式会社 Infrared transmitting glass ceramics
DE19939787C2 (en) 1999-08-21 2003-11-27 Schott Glas Transparent glass-ceramic, which can be colored dark with the addition of vanadium oxide, with high-quartz mixed crystals as the predominant crystal phase, process for their production and their use
DE602004016588D1 (en) 2003-01-31 2008-10-30 Nippon Electric Glass Co Hob top part
DE102004024583A1 (en) 2004-05-12 2005-12-08 Schott Ag Translucent or opaque cooking surface consisting of a colorable glass ceramic and its use
US7507681B2 (en) * 2007-02-28 2009-03-24 Eurokera Glass-ceramic, articles and fabrication process
DE102008040097B4 (en) * 2008-07-02 2011-04-21 Schott Ag Black tinted LAS glass ceramic
DE202008017803U1 (en) 2008-10-07 2010-08-12 Schott Ag Transparent, colored cooking surface with improved color display capability
DE102008054386B3 (en) * 2008-12-08 2010-06-17 Schott Ag Transparent low-density glass-ceramic and its use
DE102009011850B3 (en) * 2009-03-05 2010-11-25 Schott Ag Process for the environmentally friendly melting and refining of a glass melt for a starting glass of a lithium-aluminum-silicate (LAS) glass ceramic and their use
DE102009013127B9 (en) * 2009-03-13 2015-04-16 Schott Ag Transparent, colored cooking surface and method for indicating an operating state of such
FR2946041B1 (en) * 2009-05-29 2012-12-21 Eurokera VITROCERAMIC AND ARTICLES IN VITROCERAMIC, IN PARTICULAR COOKING PLATES, COLORED
FR2955574B1 (en) * 2010-01-22 2014-08-08 Eurokera BETA-QUARTZ VITROCERAMICS; ARTICLES THEREOF VITROCERAMIC; METHODS OF OBTAINING; PRECURSOR LENSES.
DE202010014361U1 (en) 2010-07-23 2010-12-30 Schott Ag Glass ceramic as cooking surface for induction heating with improved color display capability and heat shielding
DE102011050867A1 (en) * 2011-06-06 2012-12-06 Schott Ag High-strength colored. smooth glass ceramic as a cooking surface on both sides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2013535392A (en) 2013-09-12
CN103025674A (en) 2013-04-03
JP5911488B2 (en) 2016-05-11
EP2595930A1 (en) 2013-05-29
DE102010032112A1 (en) 2012-01-26
US20130201678A1 (en) 2013-08-08
CN103025674B (en) 2015-09-30
DE202010014361U1 (en) 2010-12-30
US9018113B2 (en) 2015-04-28
WO2012010278A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
EP2595930B1 (en) Glass ceramic as a cooktop for induction heating having improved colored display capability and heat shielding and method for producing such a cooktop
EP3728152B1 (en) Transparent, encapsulated lithium aluminium silicate glass ceramic and method for the production and use of the glass ceramic
EP2406195B1 (en) Transparent colored glass-ceramic cooking plate
EP2349942B1 (en) Transparent, dyed cooktop having improved color display capability, and method for producing such a cooktop
DE102010032113B9 (en) Transparent or transparent colored lithium aluminum silicate glass-ceramic with adjustable thermal expansion and its use
EP2532629B1 (en) Coloured, high strength glass ceramic, smooth on both sides, used as cooktop
EP1837314B1 (en) Plate of transparent, colourless lithium aluminium slicate glass ceramic with opaque, coloured underside coating
DE202009018536U1 (en) Transparent, colored cooking surface
WO2024110091A1 (en) Lithium aluminum silicate glass-ceramic
WO2024110090A1 (en) Lithium aluminum silicate glass-ceramic
WO2024110093A1 (en) Lithium aluminum silicate glass-ceramic
EP4375251A1 (en) Lithium aluminium silicate glass ceramic
WO2024110092A1 (en) Lithium aluminum silicate glass-ceramic
EP4375243A1 (en) Lithium aluminium silicate glass ceramic
DE202023106962U1 (en) Lithium aluminum silicate glass ceramic
EP4375252A1 (en) Lithium aluminium silicate glass ceramic
EP4375246A1 (en) Lithium aluminium silicate glass ceramic
EP4375245A1 (en) Lithium aluminium silicate glass ceramic
EP4375249A1 (en) Lithium aluminium silicate glass ceramic

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121129

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140414

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: H05B 6/12 20060101ALI20200130BHEP

Ipc: F24C 15/10 20060101ALI20200130BHEP

Ipc: C03C 3/097 20060101ALI20200130BHEP

Ipc: C03C 3/087 20060101AFI20200130BHEP

Ipc: C03C 10/12 20060101ALI20200130BHEP

Ipc: C03C 4/02 20060101ALI20200130BHEP

Ipc: H04R 25/00 20060101ALI20200130BHEP

Ipc: C03B 32/02 20060101ALI20200130BHEP

INTG Intention to grant announced

Effective date: 20200214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011016768

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1283743

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200925

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200924

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201026

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201024

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011016768

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200715

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

26N No opposition filed

Effective date: 20210325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200715

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200924

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1283743

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200624

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 13