EP2585858A2 - Maschine, programmprodukt und computerimplementiertes verfahren zur simulierung von reservoirs als unstruktierte 2,5d-gitter - Google Patents

Maschine, programmprodukt und computerimplementiertes verfahren zur simulierung von reservoirs als unstruktierte 2,5d-gitter

Info

Publication number
EP2585858A2
EP2585858A2 EP11741334.4A EP11741334A EP2585858A2 EP 2585858 A2 EP2585858 A2 EP 2585858A2 EP 11741334 A EP11741334 A EP 11741334A EP 2585858 A2 EP2585858 A2 EP 2585858A2
Authority
EP
European Patent Office
Prior art keywords
grid
reservoir
unstructured
computer
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11741334.4A
Other languages
English (en)
French (fr)
Inventor
Mokhles M. Mezghani
Larry S. Fung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/820,939 external-priority patent/US20100263200A1/en
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Priority claimed from PCT/US2011/041160 external-priority patent/WO2011163166A2/en
Publication of EP2585858A2 publication Critical patent/EP2585858A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory
    • G06K19/07309Means for preventing undesired reading or writing from or onto record carriers
    • G06K19/07345Means for preventing undesired reading or writing from or onto record carriers by activating or deactivating at least a part of the circuit on the record carrier, e.g. ON/OFF switches
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K19/00Record carriers for use with machines and with at least a part designed to carry digital markings
    • G06K19/06Record carriers for use with machines and with at least a part designed to carry digital markings characterised by the kind of the digital marking, e.g. shape, nature, code
    • G06K19/067Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components
    • G06K19/07Record carriers with conductive marks, printed circuits or semiconductor circuit elements, e.g. credit or identity cards also with resonating or responding marks without active components with integrated circuit chips
    • G06K19/073Special arrangements for circuits, e.g. for protecting identification code in memory
    • G06K19/07309Means for preventing undesired reading or writing from or onto record carriers
    • G06K19/07318Means for preventing undesired reading or writing from or onto record carriers by hindering electromagnetic reading or writing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/20Finite element generation, e.g. wire-frame surface description, tesselation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V2210/00Details of seismic processing or analysis
    • G01V2210/60Analysis
    • G01V2210/66Subsurface modeling
    • G01V2210/663Modeling production-induced effects
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0254High voltage adaptations; Electrical insulation details; Overvoltage or electrostatic discharge protection ; Arrangements for regulating voltages or for using plural voltages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/07Electric details
    • H05K2201/073High voltage adaptations
    • H05K2201/0738Use of voltage responsive materials, e.g. voltage switchable dielectric or varistor materials

Definitions

  • the present invention relates generally to computerized simulation of hydrocarbon reservoirs, and, more particularly, to a method and data system of 2.5D unstructured grid storage, calculation, and visualization.
  • a subterranean geologic body or formation contains multi-phase, multi-component fluids, and accordingly a petroleum reservoir may contain oil, natural gas, water and several constituent compounds, that may be modeled to predict the fluid flow from a reservoir, which is also known as reservoir simulation. Reservoir simulation models may be run before or after a well is drilled to determine production rate, etc. for the various methods.
  • reservoirs are of a sedimentary origin and have multiple layers that have thicknesses and depth variations throughout, which do not neatly follow the pattern of a structured grid. For example, a layer can disappear locally due to lack of deposition or subsequent erosion, which is known as a pinch-out. Also, uplifting (the raising of the earth's crust) and subsidence (the lowering of the earth's crust) over geologic time can lead to faulting and fracturing of the layers.
  • complex wells may be drilled into the reservoirs to extracts fluids from them or to inject fluids into them for pressure maintenance or enhance-oil-recovery operations, i.e., these wells may be multi-branched as shown in FIG. 5.
  • LGR local grid refinement
  • unstructured grids oil or gas reservoirs are subdivided into non-uniform elementary finite-volumes, i.e., grid cells or grid blocks. These grid cells can have variable numbers of faces and edges that are positioned to honor physical boundaries of geological structures and well geometry embedded within the reservoir. Accordingly, these maps may be very complex. Examples of unstructured gridding methods includes Voronoi diagrams, i.e., a grid where each cell has faces and edges that are closer to one Voronoi site or point than any other Voronoi site or point.
  • the global coordinate system e.g., (I,J,K) Cartesian indexing
  • a global hash table accessible by the computer processing each domain, to arrange for cell and domain cross-talk.
  • the global hash table for a model with, e.g., millions of cells can overwhelm the memory of for each of the parallel computers.
  • the machine, methods, and program products of this invention constitute the enabling technology to process a 2.5 dimensional unstructured grids for complex reservoirs and multi-lateral well simulations to more accurately approximate well and geological features and reduce the computational complexity of the simulation.
  • Applicants recognize one or more sources of problems with these prior art approaches. Applicants also recognize a need for more efficient methods, program products, and machines, for describing and modeling layered reservoirs, including modeling techniques and data structures with fewer data points and improved accuracy. Applicants recognize the potential of unstructured, e.g., fully unstructured in two dimensions, grids in reservoir simulation to completely model a reservoir with fewer data points than either a traditional structured grid or a hybrid structured-unstructured grid. In addition, Applicants recognize advantages in the nature of reservoir formation, i.e., through deposits resulting in layers, for 2.5D unstructured grids.
  • An embodiment of the machine comprises: a first computer server associated with a data pre-processor defining a pre-processing server, the pre-processing server having a processor and non-transitory memory and being adapted to send and receive data; a second computer server associated with computer storage and defining a file server; the file server having non-transitory file server memory and being adapted to send and receive data; a computer program product stored on the memory and including instructions that when executed by the processor cause the pre-processing server to perform a process of generating a grid and a process of encoding the grid to be stored on the file server, the instructions comprising the steps of: projecting static properties of the reservoir, including external and internal boundaries, onto a top surface of a future grid, constructing a 2D unstructured grid along the top surface of the future grid using static properties of the reservoir, the 2D unstructured grid having cells and the cells having vertexes defining the cell boundaries,
  • a computer program product adapted to supply 2.5 dimension simulations is also described herein.
  • An embodiment of a computer program product, stored in non-transitory computer memory, operable on a computer, comprises a set of instructions that, when executed by the computer, cause the computer to perform a process of generating a grid and a process of encoding the grid to be stored on the file server, the instructions comprising the steps of: projecting static properties of the reservoir, including external and internal boundaries, onto a top surface of a future grid, constructing a 2D unstructured grid along the top surface of the future grid using static properties of the reservoir, the 2D unstructured grid having cells and the cells having vertexes defining the cell boundaries, reconstructing the 2D unstructured grid along a bottom surface of the future grid; constructing a vertical line the thickness of the reservoir through the future grid, to join the corresponding vertexes in the 2D unstructured grids on the top and bottom surfaces; creating markers along the vertical line, the markers corresponding to each layer in the reservoir and being defined
  • the invention also comprises a computer-implemented method for generating grids.
  • An embodiment of the computer implemented method causing a computer as a preprocessing server to perform a process perform a process of generating a grid and a process of encoding the grid to be stored on the file server, the instructions comprising the steps of: projecting static properties of the reservoir, including external and internal boundaries, onto a top surface of a future grid, constructing a 2D unstructured grid along the top surface of the future grid using static properties of the reservoir, the 2D unstructured grid having cells and the cells having vertexes defining the cell boundaries, reconstructing the 2D unstructured grid along a bottom surface of the future grid; constructing a vertical line the thickness of the reservoir through the future grid, to join the corresponding vertexes in the 2D unstructured grids on the top and bottom surfaces; creating markers along the vertical line, the markers corresponding to each layer in the reservoir and being defined using a location of each layer's horizon; duplicating vertexes on
  • Other embodiments of the computer-implemented method include: generating a two-dimensional (2D) unstructured grid for the top surface of the reservoir, which comprises the steps of: determining a plurality of cell centers responsive to the predetermined grid density and the projected external and internal boundaries of the reservoir; generating a triangulation for the plurality of cell centers; partitioning the top surface of the reservoir into a plurality of convex polygons defining grid cells responsive to the determined triangulation; and determining a plurality of vertices responsive to the grid cells responsive to the partitioning so that the top surface grid is completely defined by x and y coordinates of the vertices of the plurality of grid cells of the gridded surface, the number of vertices per grid cell, and vertices associated with each grid cell.
  • 2D two-dimensional
  • conventional reservoir simulators are based on three-dimensional (3D) structured grids and generally use Cartesian grids (see, e.g., FIGS. 1 and 2) or corner point geometry (CPG) grids (see, e.g., FIGS. 3 and 4) for reservoir simulation.
  • Cartesian grids see, e.g., FIGS. 1 and 2
  • CPG corner point geometry
  • FIGS. 3 and 4 corner point geometry
  • traditional gridding techniques e.g., Cartesian and corner point geometry (CPG) grids
  • CPG Cartesian and corner point geometry
  • traditional gridding techniques have difficulty with complex geological features, such as, faults, pinch-outs, inclined beddings, aquifers, erosion, coarsening, fractures, multiple reservoirs, reservoir boundaries, and other complex features as understood by those skilled in the art.
  • traditional gridding techniques have, for example, difficulty with complex well geometries, such as, vertical wells, horizontal wells, deviated wells, multi-lateral wells, forked wells, and segmented wells. See, e.g., FIG. 5.
  • FIG. 1 is a perspective view of a model for a three-dimensional, Cartesian structured grid according to the prior art.
  • FIG. 2 is a perspective view of a model for a three-dimensional, Cartesian structured grid having indices (X, ⁇ , Z) according to the prior art.
  • FIG. 3 is a perspective view of a model for a three-dimensional, corner point geometry ("CPG"), structured grid showing six pillars defining the hexahedrons of the grid according to the prior art.
  • CPG corner point geometry
  • FIG. 4 a perspective view of a model for a three-dimensional, CPG, structured grid showing four interconnected hexahedrons according to the prior art
  • FIG. 5 is a plurality of graphs illustrating non-conventional well configurations according to the prior art.
  • FIG. 6 is a graph depicting fault modeling using a Cartesian grid according to the prior art.
  • FIG. 7 is a graph depicting local grid refinement of a Cartesian grid according to the prior art.
  • FIG. 8 is a diagram of a distributed network for processing the simulation using parallel computing according to an embodiment of the invention.
  • FIG. 9 is a flow diagram of the distributed network of FIG. 8 showing the software loaded on and the data flow from various components of the distributed network according to an embodiment of the invention.
  • FIG. 10 is a diagram a pre-processing server showing various components operable thereon and used in the distributed network according to an embodiment of the invention.
  • FIG. 11 is a diagram of a pre-processing server having a memory and a program product of an embodiment of the instant invention installed thereon
  • FIG. 12 is a graph showing a reservoir with a plurality of horizons that is used to generate a 2.5D grid using a machine, program product or method of an embodiment of the present invention.
  • FIG. 13 is a graph showing a plurality of reservoir markers designating the layers of a reservoir generated by a machine, program product and method of an embodiment of the present invention.
  • FIG. 14 is a diagram of an unstructured, two-dimensional grid, having cells, edges, faces and vertices, generated using an exemplary embodiment of the invention.
  • FIG. 15 is a diagram of an unstructured, two-dimensional grid having adjacency arrays for each vertex generated in compressed sparse row (CSR) format using an embodiment of the present invention.
  • FIG. 16 is an exemplary data system generated using a machine, program product and method of an embodiment of the present invention.
  • FIG. 17 is an exemplary table of dataset parameters for a data ser created using a machine, program product and methods of an embodiment of the present invention.
  • FIG. 18 is a model of a 2.5D grid generated using a machine, program product and methods of an embodiment of the present invention.
  • FIG. 19 is an exemplary diagram of vertex duplication used by a machine, program product and method of an embodiment of the present invention to model a vertical fault.
  • FIG. 20 is an exemplary model used by a machine, program product and method of an embodiment of the present invention to model a pinch-out.
  • FIG. 21 is an exemplary diagram of vertex duplication used by a machine, program product and method of an embodiment of the present invention to model a pinch-out.
  • FIG. 22 is an exemplary model generated by a machine, program product and method of an embodiment of the present invention to model a radial grid.
  • FIG. 23 is a flow chart for a method to generate a grid model for a reservoir according to an embodiment of the present invention.
  • FIG. 24 is a flow chart for a method to generate a two-dimensional (2D) unstructured grid model for a top surface of the reservoir according to an embodiment of the present invention.
  • FIG. 25 is an example of a 2.5D unstructured grid according to a data system embodiment of the present invention.
  • FIGS. 8 and 9 describe a networked group of computers defining an embodiment of the machine of the instant invention.
  • the exemplary machine consists of a pre-processing server 802 for generating and managing the reservoir grids and directing grid data into storage; a plurality of application servers 804 for receiving grid, well-production and completion data and processing reservoir simulations; file server 806 for the management and storage of simulation data, reservoir grids, geological data, well-production data, and well completion data in files or databases in the memory; post-processing server 808 for processing completed simulation data, workstations 810 for viewing simulations and well performance data generated by application servers 804 and computer network 816 for connecting the pre-processing server 802, application servers 804, file server 806 and postprocessing server 808 to workstations 810.
  • At least one file server 806 is employed by the machine to manage well production and completion data, grid data, and simulation data and to allow the preprocessing server 802, post processing server 808 and plurality of application servers 804 to upload data to and download data from the file server 806.
  • the file server 806 may include databases such as well completion database 902, well trajectory survey database 904, geological model database 906, and user gridding input database 908, each providing data to pre-processing server 802; databases or files storing grid geometry, grid geological properties, grid well perforation, model data, well history generated by pre-processing server 802 and input into the application servers 804; databases or files storing output maps, well output, and performance calculations generated by application server 804 and input into the post-processing server 808; and databases or files storing 2.5D visualization data, well plot analyses, and history match analyses output from post-processing server 808.
  • File server 806 may be network attached storage (NAS), storage area networks (SAN), or direct access storage (DAS), or any combination thereof, comprising, e.g., multiple hard disk drives. File server 806 may also allow various user workstations 810 to access and display data stored thereon. Accordingly, as is known in the art, file server 808 may have stored thereon database management system, e.g. a set of software programs that controls the organization, storage, management, and retrieval of data in the databases, such as 902/904/906/908.
  • database management system e.g. a set of software programs that controls the organization, storage, management, and retrieval of data in the databases, such as 902/904/906/908.
  • Databases 902/904/906/908, and any other databases or files stored in file server 806, may be separate databases as shown, or the same database, and well completion data, e.g., well production, completion and injection data; geological data e.g., fluid dynamics, rock porosity, etc; and simulation data, e.g., completed or partially complete grids or simulations, can be stored in a plurality of databases, tables, or fields in separate portions of the file server memory.
  • file server 806 provides the pre-processing server 802, each of the application servers 804, and the workstations 810 access to the databases through, e.g., database management software or other application.
  • a database server may be used to store the databases instead of or in addition to file server 806, and such a configuration is within the scope of this disclosure.
  • file server 806 may be configured so that the organization of data files that store simulation data and the output snap-shots of dynamic simulation results are independent of the number application servers 804 used to run a simulation model.
  • the inventive method may generate an indexing system to do parallel scattered I/O where each application server 804 reads data and write results for its portion of the simulation to the exact positions, i.e., data files, in the file server.
  • the data and results stored in data files are always the same.
  • the well and reservoir data may be stored in databases, but all or a portion of grid data output from gridder 912 can be stored in an indexed files and are organized using global cell indexing, which is a variant of the number of application servers 804 used to process the model, e.g. compressed spare row (CSR) format.
  • CSR compressed spare row
  • CSR format stores data as groups and datasets that are arrays defined by the data's attributes, and provides faster access to data points and can support larger and more complex datasets than traditional database formats, e.g., SQL. Therefore, in such embodiments, some databases and file represented in FIG 3B could use CSR format for the datasets to indicate the spatial connectivities of grid cells in the model.
  • exemplary dataset array parameters may be defined using CSR protocols. While the creation of the datasets by gridder 912 will be discussed in detail below, datasets stored in file server 806 can be defined by a dataset type, data rank, dataset dimensions, and units. Together, the file server 806 can store enough datasets to define, completely and uniquely, the reservoir geometry utilizing a 2.5D unstructured grid of the instant invention.
  • workstations 810 are connected to the machine 800 using, e.g., communication network 916.
  • Workstations 810 may be any personal computer (PC) as is known in the art and may run UNIX, Linux, Windows®, or some other operating system compatible with the networked systems discussed herein.
  • workstations 810 may access computer program products stored on pre and post processing servers to input simulation or processing parameters.
  • simulation engineers positioned at workstations 810 could manually select fluid parameters, production characteristics, i.e., run a simulation with various well types such as multi-lateral wells with different numbers and sizes of laterals, reservoir or simulation size, rock features, etc., through software applications stored or accessible on the workstations.
  • Data entered from the workstations can be stored on the file server 806 memory, pre-processing server 802 memory, or post-processing server 808 memory for access during the reservoir simulation.
  • Simulation engineers may also access simulation data, partial or complete, simulation characteristics, run time, processor speed, compute processes run, etc., on application servers 804 as may be needed to monitor the simulation.
  • workstations 810 it is possible for workstations 810 to interface with a separate web or network server for access to the simulation through the communications network, and such a configuration may be preferred.
  • Communications network 816 connects the workstations 810, the machine 800, and various networked components together.
  • the computer network 916 can connect all of the system components using a local area network (“LAN”) or wide area network (“WAN”), or a combination thereof.
  • preprocessing server 802, file server 806, application servers 804, and post-processing server 808 may be privately networked to allow for faster communication and better data synchronization between computing nodes, or pre-processing server 802, application servers 804, file server 806, and post-processing server 808, may be networked using a LAN, with a web server (not shown) interfacing with the workstations 810 using a WAN.
  • At least one pre-processing server 802 and application servers 804 perform the functions of the inventive method of the invention, and are used to perform reservoir simulations.
  • pre-processing server 802 although represented as one server, may be a plurality of servers, e.g., may be configured as separate application servers and a web server, creates the unstructured 2.5 dimensional reservoir grid and assigns the distributed computers a portion of the grid for processing, as will be discussed herein below.
  • Application servers 804 perform the simulation processing functions for each of the grid cells loaded into the server for processing.
  • each of the application servers 804 may be workstations that can be used by individual simulation engineer to access data.
  • parallel processing techniques described herein are by way of example, and the methods and gridding software of the instant invention can be used in serial processing environments.
  • each application server performs a distributed read of the grid data it owns for processing.
  • each application server accessing the file server 802 is only required to read data regarding one process node.
  • the file server 806 is connected to a network of applications servers 804.
  • the applications servers 804 are depicted separately networked on TCP/IP network that allows for rapid communication between the compute nodes- though depending upon the cluster architecture, both the application servers 804 and pre-processing server 802 may be separately networked.
  • the application servers 804 may be configured as a PC cluster, with each application server having separate software loaded thereon on reading compute data from the file server 806 to perform data processing.
  • the application servers 804 may be configured as a compute cluster, or Beowulf cluster, where the pre-processing server 802 or similar server distributes files to the application server 804 using communication libraries that allow for data exchange.
  • system architecture may support a variety of operating systems and communications software for each of the pre-processing server 802 and application servers 804.
  • operating systems For example, Unix, Linux, Microsoft Compute Cluster, etc., are examples of operating systems that may be used to form a super computer like the one contemplated herein, and Message Passing Interface (MPI interfacing) or Parallel Virtual Machine (PVM) software libraries may be used to provide communication between the file server 806 and application servers 804 which is discussed in detail herein below.
  • MPI interfacing Message Passing Interface
  • PVM Parallel Virtual Machine
  • the pre-processing server 802 comprises a memory 1002, a program product 918, a processor 1006 and an input/output device ("I/O device") 1008.
  • I/O device 1008 connects the pre-processing server 802, via the network, to file server 806, and can be any I/O device 1008 including, but not limited to a network card/controller connected by a PCI bus to the motherboard, or hardware built into the motherboard to connect the pre-processing server 802 to the network 816. As can be seen, the I/O device 1008 is connected to the processor 1006.
  • Processor 1006 is the "brains" of the pre-processing server 802, and as such executes program product 918 and works in conjunction with the I/O device 1008 to direct data to memory 1002 and to send data from memory 1002 to the network. In this way, processor 1006 may also make available the program product 918 to the application servers 804 and workstations 810.
  • Processor 1006 can be any commercially available processor, or plurality of processors, adapted for use in an pre-processing server 802, e.g., Intel® Xeon® multicore processors, Intel® micro-architecture Nehalem, AMD OpteronTM multicore processors, etc.
  • processor 1006 may also include components that allow the pre-processing server 802 to be connected to a display [not shown] and keyboard that would allow a user direct access to the processor 1006 and memory 1002.
  • Memory 1002 may store several pre-processing software applications and the well history and grid data related to the methods described herein. As such, memory 1002 may consists of both non-volatile memory, e.g., hard disks, flash memory, optical disks, and the like, and volatile memory, e.g., SRAM, DRAM, SDRAM, etc., as required by embodiments of the instant invention. As one skilled in the art will appreciate, though memory 1002 is depicted on, e.g., the motherboard, of the pre-processing server 802, memory 1002 may also be a separate component or device, e.g., FLASH memory, connected to the pre-processing server 802. Memory 1002 may also store applications that the workstations 810 can access and run on the pre-processing server 802.
  • non-volatile memory e.g., hard disks, flash memory, optical disks, and the like
  • volatile memory e.g., SRAM, DRAM, SDRAM, etc.
  • memory 1002 may also be a
  • the file server is accessed e.g., data from well completion database 902, well trajectory survey database 904, geological model database 906, and user gridding input database 908, by the preprocessing server 802 to perform preliminary calculations and grid generation using the inventive software of the invention.
  • Gridder 912 pre-processes data from the database to grid the reservoir using the inventive computer program product 918 described herein.
  • Grid partitioning for reservoir simulation is done in software application 804, which include METIS/PARAMETIS method provided by George Karypis at the University of Minnesota and available for download at http://glaros.dtc.umn.edu/gkhome/views/metis.
  • the application servers 804 use the partition information to do a scatter read of data and to perform parallel reservoir simulation.
  • the simulation results can then be interpreted by postprocessing server 808.
  • post-processing server 808 accesses simulator results, including map output, well output and performance output, which may be stored on the file server 806, and generates user-friendly data displays.
  • post-processing server may have software loaded thereon that provides 2.5D visualization of the reservoir, well plots within the reservoir, and generates an analysis of the simulation results as compared with historical simulations.
  • pre-preprocessing server and post-processing server may be configured as the same server or cluster of servers.
  • workstations 810 can access the postprocessing server 808, or file server 806 to, e.g., modify, specify, control, upload, download or direct any output software.
  • each pre-processing server 802 may communicate with the file server 806, and file server 806 may communicate with application servers 804 using, e.g., a communications software such as MPI interfacing.
  • MPI interfacing comes with a plurality of library functions that include, but are not limited to, send receive operations, choosing between a Cartesian or graph-like logical data processing 804 or a unstructured topology, combining partial results of computations, synchronizing application servers for data exchange between sub-domains, as well as obtaining network-related information such as the number of processes in the computing session, current processor identity that a application server 804 is mapped to, neighboring processes accessible in a logical topology, etc.
  • the MPI interfacing software can operate with a plurality of software languages, including C, C++, FORTRAN, etc., allowing program product 1006 to be programmed or interfaced with a plurality of computer software program products programmed in different computer languages for greater scalability and functionality, e.g., an implementation where preprocessing server 802 is implemented as a plurality of servers running separate programs for pre-processing algorithms.
  • Program product 918 performs the methods of the invention and is stored and operable on the pre-processing server 802.
  • the program product 918 of the instant invention is stored in memory 1002 and operable on processor 1006, as shown in FIG. 11.
  • the program product 918 performs the steps of: projecting external and internal boundaries of a reservoir onto a top surface of a future grid(l 102), constructing a 2D unstructured grid along the top horizon and using fault lines and pinch-out locations (1104), reconstructing the unstructured grid along a bottom horizon taking into account the fault lines and pinch-out locations (1106), i.e., placing the unstructured grid slightly skewed from the position of the unstructured grid on a top horizon, constructing a vertical line to connect vertexes on the top and bottom unstructured grids, the vertical line corresponding to the depth of the reservoir, and assigning an index on the vertical line corresponding to a horizon of each layer in the reservoir (1108), constructing other vertical lines with different indexes when a
  • the program product may also partition the grid for processing by the application servers 804.
  • the grid cells and grid vertices can be retrieved by application servers 804 the grid cells and grid vertex indexes from memory for parallel processing, and reading well and reservoir property data into application servers to perform parallel global fluid flow simulation.
  • the preprocessing server 802 generates the grid data for the application servers 804 to provide parallel processing of the reservoir simulation.
  • the instructions of the program product of the instant invention will now be discussed in detail with reference to FIGS 18.
  • the computer program product first determines the locations of, e.g., layers, fault lines and pinch outs in the reservoir using the data from geological database 906.
  • an unstructured grid 1802 is constructed for the top layer of a future grid of the reservoir to honor the geological features of the reservoir, well geometries, etc using data from the well completion database, the well trajectory survey database, and any user input.
  • the unstructured 2D grid is obtained by projecting the external and internal boundaries of geological and well features, e.g., reservoir extensions, aquifers, production areas, well geometry, faults, pinchouts, etc., onto the top layer of the future grid.
  • cell centers are computed by determining a desired grid density, e.g., by user selection data from the user gridding input database 908, and projected external and internal boundaries of the future grid.
  • a Delaunay triangulation is generated for a plurality of cell centers 1806, i.e., the cell centers are the vertices for the triangulation.
  • Delaunay triangulations are triangulations in which no vertex of any triangle lies inside the circumcircle of another triangle.
  • various computer algorithms are known to automate Delaunay triangulation in two-dimensions for a set of points.
  • the center 1806 of each circumcircle around each triangle in the triangulation is joined to create grid cells defined as a plurality of convex polygons, i.e., the Voronoi grid is a dual graph of the Delauny triangulation of the cell centers chosen, and the grid cell can be completely described by the cell center chosen, the vertices of the cell, which correspond to the circumcircle centers, and the number of vertices per cell, which is the number of lines required to form a polygon from circumcircle centers.
  • the methods for generating Delaunay triangulations allow for efficient 2D, Voronoi grid generation, and the efficient storage of data to generate the grid in memory according to the techniques of the invention.
  • Voronoi diagrams which are locally orthogonal unstructured grids
  • Delaunay triangulations are well known and are further described in "Voronoi Diagrams - A survey of a Fundamental Geometric Structure" by Franz Aurenhammer, in ACM Computing Surveys, Vol. 23, No. 3, pages 345-405, September 1991.
  • a gridded surface is defined for a bottom layer 1810 of the future grid that is located in, e.g., an almost identical position to the grid generated for the top layer. So that the techniques of the invention achieve the desired computational efficiency, the grid cells in the top and bottom layers are substantially identical. Where non-vertical faults are being modeled using the grid, a small translation in the lateral position of the top and bottom grid cells is calculated, though as one skilled in the art will appreciate, when there are vertical faults or no faults in the reservoir being modeled, it is not necessary to translate the lateral positions of the grid cells in the top and bottom layers.
  • pillars 1812 are constructed that join the vertices of the Voronoi grid in the top layer to the vertices of the Voronoi grid in the bottom layer.
  • the pillars correspond to the depth of the reservoir.
  • the reservoir layers are determined.
  • a reservoir is made of geological units as understood by those skilled in the art, divided in layers.
  • the different layers can be limited vertically by horizons.
  • the first horizon can be the top of the reservoir; the last horizon can be the bottom of the reservoir, with the remaining horizons dividing the reservoir into layers.
  • the vertical (or near-vertical) line defining, e.g., a pillar named z-line 102 can include a series of markers 101, where each marker 101 corresponds to an intersection of a horizon 100 defining the layer with the z ine.
  • markers 101 determine the position to replicate the unstructured grid 1802 for simulation, and such an unstructured grid is replicated at every marker.
  • the duplicate vertices can then have, for example, different z-lines connecting the top and bottom layers.
  • the duplicated vertices can be in substantially the same location as the original vertices and vary based upon the position of the fault line. From a visualization point of view, one group of vertices (e.g., the original vertices) is to be on one side of the fault and the other group (e.g., the duplicated vertices) is to be on the other side of the fault - with the portion of the unstructured grid on either side being replicated along the markers.
  • a subset of a plurality of z-lines wherein each z-line in the subset has one or more identical adjacent markers representing horizon depths model a pinch-out, e.g., an eroded layer, or a coarsening, as shown in FIGS 20 and 21. Accordingly, by determining different markers 101 for layers surrounding, e.g., a fault or a pinch-out, the horizons do not need to be uniformly spaced, but instead may follow from the properties of the geological units.
  • the machine, program products and methods of the invention are not limited to generating 2.5D unstructured grids.
  • the machine program products and methods of the invention may generate, for example, 2.5D structured grids that use Cartesian, CPG or radial structured horizon layers as shown in FIGS. 20 and 22.
  • Data system of such embodiments can provide horizon grid surfaces that are identical with each cell a rectangle, and vertical or nearly vertical z-lines that are uniformly spaced.
  • a graph is regular, with each internal cell having four neighbors.
  • a Cartesian grid may be generated for the horizons with Local Grid Refinement (LGR) to model complex geological features.
  • LGR Local Grid Refinement
  • the horizon surfaces are identical with each cell a rectangle; the z-lines are vertical.
  • the graph stencil with LGR is irregular; the number of cell neighbors is variable and characterized by the adjacency data of the graph.
  • the grid may be generated using corner point geometry (CPG).
  • the z-lines can be slanted.
  • a radial grid may be approximated.
  • the horizon surfaces can be delineated with cell vertex points located at concentric disks.
  • a conversion e.g. a straightforward or mechanical conversion, of a three-dimensional (3D) Cartesian grid into a format for 2.5D unstructured grids, e.g., data structure embodiments as described herein, may not reduce the number of data points or the memory requirements associated therewith, i.e., if every data point from the original grid is represented in the converted format. If the layered nature of the reservoir is taken into account, however, fewer data points are necessary to accurately model, simulate, and visualize the reservoir utilizing a 2.5D unstructured grid embodiment, allowing for a reduction in the number of data points ultimately processes. It will be further understood by those skilled in the art that 2.5 dimensional unstructured grids have advantages and benefits independent of storage memory requirements, including standardization for algorithm development and processing, memory allocation and retrieval, and others.
  • a data system 108 is output from the preprocessing server 802 and represents a reservoir having a plurality of geological layers delineated by horizons, as described above.
  • the data system 108 can include, for example, a first data file 105, that contains data needed to model a geometry of a reservoir as 2.5D unstructured grid.
  • the data system 108 can also include, for example, an optional second data file 106 to contain data related to one or more static properties of the reservoir.
  • Static properties can include, for example, a porosity value, a permeability value, and a rock type. Values for the static properties can be defined for each cell center.
  • the data system can also include, for example, an optional third data file 107 to contain data related to one or more dynamic properties of the reservoir at a plurality of dates.
  • Dynamic properties of the reservoir can include, for example, a pressure value, a temperature value, and a saturation value. Values for the dynamic properties can be also defined for each cell center at each date.
  • the static and dynamic properties, e.g., attributes, of the cells can be straightforward given the reservoir geometry, i.e., the first data file 105 that contains data related to the model of a reservoir as 2.5D unstructured grid. The combination of the first, second, and third data files, 105, 106, and 107 respectively, allows for a complete description of the reservoir.
  • a first data file 105 for containing data related to model a geometry of a reservoir as 2.5D unstructured grid is written into memory using CSR format, as illustrated in FIG. 17.
  • CSR format as illustrated in FIG. 17.
  • a group of datasets for data file 105 is defined using a dataset type, dataset rank, dataset dimensions and dataset units.
  • Such datasets can include: a first dataset 121 having coordinates of a plurality of vertices associated with grid cells of a two-dimensional (2D) unstructured grid for a top surface of the reservoir, in a second dataset 122, coordinates of a plurality of vertices associated with grid cells of a two-dimensional (2D) unstructured grid for a bottom surface of the reservoir, e.g., each vertex associated with an unstructured grid for the bottom surface can correspond to one vertex associated with an unstructured grid for the top surface, and the bottom surface grid can have similar grid cell centers as the top surface grid (to be discussed in detail below); in a third dataset 123, a number of vertices per cell for each grid cell; in a fourth dataset 124, a list of vertices defining each grid cell; and in a fifth dataset 125 a plurality of z-lines 102 comprising a plurality of markers 101, stored therein.
  • data file 105 can include, in a sixth dataset 126, coordinates of a plurality of cell centers associated with grid cells of a two- dimensional (2D) unstructured grid for the top surface of the reservoir; in a seventh dataset 127, an adjacency list of other vertices for each vertex from the unstructured grid for the top surface defining an adjacency dataset; in an eighth dataset 128, a dataset comprising a plurality of pointers to the adjacency list defining an x-adjacency dataset so that the adjacency and x-adjacency datasets describe a grid dual graph for the unstructured grid for the top surface of the reservoir using a compressed sparse row (CSR) data representation.
  • CSR compressed sparse row
  • first, second, third, fourth, and fifth datasets, 121, 122, 123, 124, and 125, respectively can completely and uniquely define the reservoir geometry
  • additional datasets i.e., the sixth, seventh, and eighth datasets, 126, 127, and 128, respectively, provide advantages and benefits, for example, for grid transmissibility calculations and grid visualization using level of detail (LOD) techniques.
  • LOD level of detail
  • a two-dimensional (2D) unstructured grid each grid cell 118 defined by vertices 116 and having a cell center 117, is defined using the techniques above.
  • a graph 110, i.e., the unstructured grid, can be represented by various data elements defined as the datasets above.
  • the data elements can include, for example, the x and y coordinates of the vertices for top and bottom grid surfaces 113 (dataset 121 and dataset 122); the number of vertices per cell 114 (dataset 123); a list of vertices 115 associated with, i.e., identified with, each grid cell (data set 124); z-line depths (dataset 125); cell center coordinates (dataset 126); adjacency (dataset 127); and x-adjacency (dataset 128).
  • data set 124 z-line depths
  • dataset 126 cell center coordinates
  • adjacency dataset 127
  • x-adjacency dataset 128, while top and bottom grid surfaces are stored in the grid, additional horizon data may also be stored in separate files for the grid (or may be constructed by the simulator using the above-described datasets).
  • an adjacency structure of a graph may be written to file server 806 in compressed sparse row storage format (CSR) to each dataset 127 and 128, as illustrated in FIG. 15.
  • CSR compressed sparse row storage format
  • the adjacency structure of a graph with n vertices and m edges is represented using two arrays: xadj 111 and adjncy 112.
  • the xadj array is of size (n+l) whereas the adjncy array is of size 2m.
  • this format stores both (v; u) and ( «; v).
  • the adjacency list of vertex is stored in array adjncy starting at index xadj[ ] and ending at (but not including) index xadj[ +l] (i.e., adjncy[xadj[z]] through and including adjncy[xadj[/ ' +l]-l]). That is, for each vertex , its adjacency list is stored in consecutive locations in the array adjncy, and the array xadj is used to point to where it begins and where it ends.
  • vertex 1 has two adjacent vertices, 2 and 9; and vertex 2 has three adjacent vertices, 1, 5, and 3.
  • the array xadj stores 1 (the pointer to the start of the list) and 3 (the pointer to the start of the adjacency list for vertex 2).
  • the array adjncy stores [2, 9, 1, 3, 5 . . . ]. Therefore, the pointer 1 points to the start of the list of vertices adjacent to vertex 1, and pointer 3 points to the start of the list of vertices adjacent to vertex 2.
  • FIG. 15 illustrates the CSR format for an example 32-vertex graph.
  • the adjacency graph can be the same for all layers of a reservoir; thus, only one two-dimensional (2D) graph can be needed to describe the reservoir with respect to lateral connectivity.
  • Embodiments of the present invention can include, for example, a computer- implemented method to model a reservoir 180, as illustrated in FIG. 23.
  • the reservoir can, for example, include a plurality of geological layers delineated by horizons. (See, e.g., FIGS. 9, 12-13).
  • the computer-implemented method 180 can include projecting external and internal boundaries of a reservoir onto a top surface of the future grid (step 182).
  • the external and internal boundaries of a reservoir can any number, e.g., three, of the following: a reservoir extension, an aquifer, a production area, a multi-lateral well (as illustrated in FIG. 5), and a fault (as illustrated in FIG. 19).
  • the computer-implemented method 180 can include generating a two-dimensional (2D) unstructured grid for the top surface of the future grid (step 183) responsive to a predetermined grid density and the projected external and internal boundaries of the reservoir.
  • the two-dimensional (2D) unstructured grid can include a plurality of contiguous convex polygons defining grid cells, with each grid cell having a cell center and a plurality of vertices. (See, e.g., FIGS. 14 and 15)
  • the computer- implemented method 180 can include generating a two-dimensional (2D) unstructured grid for a bottom surface of the future grid (step 184) responsive to the grid cell centers of the two-dimensional (2D) unstructured grid for the top surface of the future grid and a predetermined translation amount.
  • the two-dimensional (2D) unstructured grid can include a plurality of contiguous convex polygons defining grid cells, with each grid cell having a cell center and a plurality of vertices, so that the bottom surface grid has similar grid cell centers as the top surface grid and so that each vertex of the plurality of vertices of the unstructured grid for the top surface corresponds to one vertex of the plurality of vertices of the unstructured grid for the bottom surface.
  • the computer-implemented method 180 can include associating, for each vertex of the plurality of vertices of the unstructured grid for the top surface, a pillar joining one vertex from the unstructured grid for the top surface to the corresponding bottom surface vertex (step 185).
  • the computer-implemented method 180 can include generating a plurality of z-lines 186.
  • the z-lines can include a plurality of markers. See, e.g., FIG. 13.
  • Each z-line can be associated with one of the plurality of vertices of the unstructured grid for the top surface, and each marker can define a depth corresponding to an intersection of a horizon and an associated pillar (step 186).
  • the unstructured grid can then be replicated for each of the horizons using the markers (step 188)The unstructured grids for the top and bottom surfaces of the reservoir and the associated z-lines can thereby generate a 2.5D unstructured grid to model the reservoir.
  • generating a two- dimensional (2D) unstructured grid for the top surface of the future grid can further include a computer-implemented method 190.
  • the computer-implemented method 190 can include determining a plurality of cell centers responsive to the predetermined grid density and the projected external and internal boundaries of the reservoir (step 192).
  • the computer-implemented method 190 can include generating a triangulation for the plurality of cell centers (step 193).
  • the computer-implemented method 190 can include partitioning the top surface of the reservoir into a plurality of convex polygons defining grid cells responsive to the determined triangulation (step 194).
  • the triangulation can be a Delaunay triangulation
  • the grid cells can be Voronoi cells.
  • the computer-implemented method 190 can include determining a plurality of vertices responsive to the grid cells responsive to the partitioning so that the top surface grid is completely defined by x and y coordinates of the vertices of the plurality of grid cells of the gridded surface, the number of vertices per grid cell, and vertices associated with each grid cell (step 195).
  • generating a two-dimensional (2D) structured grid for the top surface of the future grid involves determining a Voronoi grid.
  • the Voronoi grid can then be the two-dimensional, unstructured grid for the top surface of the future grid that, when combined with an unstructured grid for the bottom surface of the future grid and with z-line embodiments as described herein, generate data structure embodiments to thereby generate the 2.5D unstructured grids to represent, simulate, and visualize the reservoir.
  • Example embodiments further include generating a visual depiction of the data system modeling the reservoir as an unstructured 2.5D grid, as illustrated in FIG. 25.
  • FIG. 25 further illustrates an exemplary 2.5D grid, to model a reservoir, generated using the machine, computer program product, and methods of an embodiment of the invention.
  • embodiments of the present invention can include, for example, orders of magnitude fewer data points to describe a reservoir than a traditional three- dimensional (3D) structured grid or hybrid structured-unstructured grid as understood by those skilled in the art. That is, embodiments of the present invention can include datasets sized significantly less than those of a traditional solution. As understood by those skilled in the art, fewer data points result in reduced computation resources, including time and processing power.
  • a memory requirement to store a 2.5D unstructured grid modeling the geometry of a reservoir according to an embodiment of the present invention can be significantly less than the memory requirement to store a fully three-dimensional (3D) grid of the reservoir.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Software Systems (AREA)
  • Geometry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Graphics (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
EP11741334.4A 2010-06-22 2011-06-21 Maschine, programmprodukt und computerimplementiertes verfahren zur simulierung von reservoirs als unstruktierte 2,5d-gitter Withdrawn EP2585858A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/820,939 US20100263200A1 (en) 2005-11-22 2010-06-22 Wireless communication device using voltage switchable dielectric material
PCT/US2011/041160 WO2011163166A2 (en) 2010-06-22 2011-06-21 Machine, program product, and computer-implemented method to simulate reservoirs as 2.5d unstructured grids

Publications (1)

Publication Number Publication Date
EP2585858A2 true EP2585858A2 (de) 2013-05-01

Family

ID=47625686

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11741334.4A Withdrawn EP2585858A2 (de) 2010-06-22 2011-06-21 Maschine, programmprodukt und computerimplementiertes verfahren zur simulierung von reservoirs als unstruktierte 2,5d-gitter

Country Status (3)

Country Link
EP (1) EP2585858A2 (de)
AU (1) AU2011271175B2 (de)
CA (1) CA2803144C (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115345079A (zh) * 2022-10-20 2022-11-15 中科数智能源科技(深圳)有限公司 一种2.5d非结构化网络的油藏数值模拟数据处理方法及系统
CN117077575A (zh) * 2023-10-16 2023-11-17 西安石油大学 一种碳酸盐岩油藏酸压酸液滞留时间计算方法及装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140236559A1 (en) 2013-02-18 2014-08-21 Saudi Arabian Oil Company Systems, methods, and computer-readable media for modeling complex wellbores in field-scale reservoir simulation
US10808501B2 (en) 2014-03-17 2020-10-20 Saudi Arabian Oil Company Modeling intersecting faults and complex wellbores in reservoir simulation
US10677960B2 (en) 2014-03-17 2020-06-09 Saudi Arabian Oil Company Generating unconstrained voronoi grids in a domain containing complex internal boundaries
CN112906114B (zh) * 2021-02-23 2022-04-26 中国科学院武汉岩土力学研究所 一种地质体与结构体的自洽整合建模方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100017181A1 (en) * 2008-06-27 2010-01-21 Thibaud Mouton Method for Constructing a Hybrid Grid From a CPG Type Grid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6018497A (en) * 1997-02-27 2000-01-25 Geoquest Method and apparatus for generating more accurate earth formation grid cell property information for use by a simulator to display more accurate simulation results of the formation near a wellbore
US7596480B2 (en) * 2005-04-14 2009-09-29 Saudi Arabian Oil Company Solution method and apparatus for large-scale simulation of layered formations

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100017181A1 (en) * 2008-06-27 2010-01-21 Thibaud Mouton Method for Constructing a Hybrid Grid From a CPG Type Grid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011163166A2 *
XIAO-HUI WU ET AL: "Effect of Grid Deviation on Flow Solutions", SPE JOURNAL, 1 March 2009 (2009-03-01), pages 67 - 77, XP055417699, Retrieved from the Internet <URL:https://www.onepetro.org/download/journal-paper/SPE-92868-PA?id=journal-paper/SPE-92868-PA> DOI: 10.2118/92868-PA *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115345079A (zh) * 2022-10-20 2022-11-15 中科数智能源科技(深圳)有限公司 一种2.5d非结构化网络的油藏数值模拟数据处理方法及系统
CN115345079B (zh) * 2022-10-20 2023-01-10 中科数智能源科技(深圳)有限公司 一种2.5d非结构化网络的油藏数值模拟数据处理方法及系统
CN117077575A (zh) * 2023-10-16 2023-11-17 西安石油大学 一种碳酸盐岩油藏酸压酸液滞留时间计算方法及装置
CN117077575B (zh) * 2023-10-16 2024-02-23 西安石油大学 一种碳酸盐岩油藏酸压酸液滞留时间计算方法及装置

Also Published As

Publication number Publication date
CA2803144C (en) 2014-04-29
AU2011271175A1 (en) 2013-01-31
CA2803144A1 (en) 2011-12-29
AU2011271175B2 (en) 2014-11-20

Similar Documents

Publication Publication Date Title
US8463586B2 (en) Machine, program product, and computer-implemented method to simulate reservoirs as 2.5D unstructured grids
US9177086B2 (en) Machine, computer program product and method to carry out parallel reservoir simulation
US8386227B2 (en) Machine, computer program product and method to generate unstructured grids and carry out parallel reservoir simulation
US10838108B2 (en) Method and system for interpolating discontinuous functions in a subsurface model
CN110529077B (zh) 在储层仿真中对交叉故障和复杂井眼进行建模
EP2811112B1 (de) Maschine, Computerprogrammprodukt und Verfahren zur Erzeugung unstrukturierter Gitter und Ausführung von paralleler Reservoirsimulation
EP2686714B1 (de) Gitter aus einem ablagerungsraum
EP3293552B1 (de) System und verfahren zum editieren von geologischen modellen durch wechseln zwischen volumenbasierten modellen und oberflächenbasierten strukturmodellen mit stratigrafischen faserbündeln
CA2803144C (en) Machine, program product, and computer-implemented method to simulate reservoirs as 2.5d unstructured grids
CA2820999A1 (en) Systems and methods for subsurface reservoir simulation
US11041969B2 (en) Methods and systems for modeling subsurfaces containing partial faults
EP2631685A2 (de) Bauen von überschobenen Gittern für Sedimentbecken mit strukturellen und stratigrafischen Schnittstellen
Li et al. Generalized prism grid: a pillar-based unstructured grid for simulation of reservoirs with complicated geological geometries
Olafadehan et al. Grid design and numerical modeling of multiphase flow in complex reservoirs using orthogonal collocation schemes
Blessent Integration of 3D geological and numerical models based on tetrahedral meshes for hydrogeological simulations in fractured porous media

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121220

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20151007

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20200103