EP2585215B1 - Modified double metal cyanide catalysts, process for the preparation by treatment of crystalline dmc catalyst with bronsted acid and use thereof - Google Patents

Modified double metal cyanide catalysts, process for the preparation by treatment of crystalline dmc catalyst with bronsted acid and use thereof Download PDF

Info

Publication number
EP2585215B1
EP2585215B1 EP11736272.3A EP11736272A EP2585215B1 EP 2585215 B1 EP2585215 B1 EP 2585215B1 EP 11736272 A EP11736272 A EP 11736272A EP 2585215 B1 EP2585215 B1 EP 2585215B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
dmc catalyst
dmc
acid
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11736272.3A
Other languages
German (de)
French (fr)
Other versions
EP2585215A1 (en
Inventor
Igor Shishkov
Sirus Zarbakhsh
Achim LÖFFLER
Wolfgang Rohde
Zhang XINHONG
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP2585215A1 publication Critical patent/EP2585215A1/en
Application granted granted Critical
Publication of EP2585215B1 publication Critical patent/EP2585215B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • B01J27/26Cyanides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J35/30
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/10Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
    • B01J2231/14Other (co) polymerisation, e.g. of lactides, epoxides

Definitions

  • the invention relates to a method for the preparation of double metal cyanide (DMC) catalysts which are used in the production of polyether polyols and the DMC catalysts obtained.
  • DMC catalysts show enhanced performance in alkoxylation reactions, so that lower concentrations of the DMC catalyst can be used in polyether polyol production.
  • Polyether polyols are important intermediates utilized to manufacture a wide range of products, including polyurethanes.
  • Polyether polyols are produced by polymerization of epoxides, e.g., propylene or ethylene oxide. It is known that double metal catalysts (DMC catalysts) are effective polymerization catalysts, producing polyols with narrow molecular weight distribution, low viscosity and low unsaturation.
  • DMC catalysts double metal catalysts
  • DMC catalysts are normally prepared by combining an aqueous solution of a metal salt and an aqueous solution of a complex metal cyanide salt.
  • a metal salt for example, a metal salt, a metal salt, a complex metal cyanide salt.
  • U.S. Patents Nos. 5,470,813 and 5,714,639 describe preparation of DMC by combining an aqueous solution of ZnCl 2 (excess) with an aqueous solution of K 3 Co(CN) 6 .
  • the desired DMC catalyst in this case specifically Zn 3 [Co(CN) 6 ] 2 , precipitates from the mixture.
  • US 2002/193245 A1 describes one-step preparation of DMC catalysts by combining the aqueous solution of the first metal salt, e.g. ZnCl 2 , with the aqueous solution of the second metal salt, e.g. CoCl 2 , and the aqueous solution of the alkali metal cyanide, e.g. KCN, in a single step to synthesize the DMC catalyst, in this case specifically Zn 3 [Co(CN) 6 ] 2 .
  • the first metal salt e.g. ZnCl 2
  • the second metal salt e.g. CoCl 2
  • the alkali metal cyanide e.g. KCN
  • DMC catalyst synthesis is described in US-A 4,472,560 , US-A 4,477,589 , US-A 5,627,120 , US-A 5,482,908 , US-A 5,789,626 , US 6,376,420 B1 , US 6,869,905 B1 , EP 1 079 926 A1 , EP 1 194 231 A1 , EP 1 290 060 A1 , WO 2005/094989 A1 , US 2002/0177523 , US 2007/0203367 A1 , DE 198 09 538 A1 , and WO 99/56874 A1 .
  • Crystalline DMC catalysts are disclosed in US 6,303,833 B1 , US 6,613,714 B2 , US 6,689,710 B2 , US 7,470,823 B2 , US 2004/249221 A1 , US 2005/0203274 A1 , and US 2008/300376 A1 .
  • DMC catalysts for instance those described in US 6,689,710 B2 or US 2004/0249221 A1 , display high activity and afford polyether polyols with low unsaturation level, various attempts have been made to further increase catalyst activity, in order to be able to use smaller catalyst concentrations in the polyol production process and avoid an increase in the viscosity of the resulting polyols at DMC catalyst concentrations below 100 ppm.
  • Modifications to the process of catalyst preparation include continuous preparation of crystalline DMC catalysts via a mixing nozzle ( EP 1 799 344 A1 ), preparation of the DMC catalyst in ionic liquids ( WO 2008/095853 A1 ), or spray-drying the catalyst ( WO 2004/022227 A1 ).
  • EP 1 288 244 A1 discloses a process wherein a substantially crystalline double metal cyanide catalyst is subjected to a contact treatment by heating the catalyst with an aqueous solution containing an organic ligand and a metal salt at temperatures from 45 to 125 °C, and then separating the resulting solid from the obtained slurry.
  • CN 1 589 966 A teaches to treat zinc chloride having higher basicity with acid to regulate its basicity to an optimal value prior to using it for DMC catalyst preparation.
  • JP 5/331278 A discloses addition of acid to a polyol produced using a basic catalyst and subsequent propoxylation in the presence of a DMC catalyst without removing excess acid and salt formed, to produce a high molecular weight polyol.
  • EP 1 911 787 A2 describes a DMC-catalysed process for the production of polyether polyols which tolerates high water content in the low molecular weight starters.
  • the process uses a low molecular weight starter containing 200-5,000 ppm water and acidified with from about 10 ppm to about 2,000 ppm of at least one of an inorganic protic mineral acid and an organic acid.
  • US 6,028,230 A discloses an epoxide polymerization process comprising reacting an epoxide and an active hydrogencontaining initiator in the presence of (a) a substantially amorphous highly active double metal cyanide complex catalyst comprised of a double metal cyanide, an organic complexing agent, and a metal salt and (b) an effective amount of a non-protic Lewis acid.
  • the polyether polyol produced contains a reduced level of high molecular weight tail as compared to an analogous polyether polyol prepared in the absence of the non-protic Lewis acid.
  • the method yields a product containing a reduced amount of high molecular weight impurities even at 30 ppm catalyst concentration.
  • WO 01/53381 A1 discloses a method for the production of polyether alcohols by catalytic addition of alkylene oxides to H-functional starting substances using a combination of at least one multi-metal cyanide compound and at least one acid compound as catalyst. This was reported to shorten catalyst induction time and lead to a higher content of primary hydroxyl groups.
  • WO 01/04180 A1 teaches a method for preparing metal cyanide catalysts using polycarboxylic acids.
  • the method comprises mixing a first solution of a metal salt in an inert solvent with a second solution of a metal cyanide compound in an inert solvent in the presence of an organic polyacid.
  • the catalysts formed are reported to have larger particle sizes than conventional metal cyanide catalysts, facilitating separation from the polyol product.
  • Preferred organic polyacids are crosslinked or uncrosslinked polymers containing pendant carboxyl or carboxylate groups.
  • the method uses expensive organic polyacids and includes multiple washing/filtration steps.
  • US 6,063,897 A discloses treatment of a DMC catalyst comprising zinc hydroxyl groups by reacting the catalyst with a Br ⁇ nsted acid and subsequently removing at least a portion of any excess acid from the catalyst.
  • the catalyst obtained can be used in concentrations below 100 ppm, shows shorter initiation times and yields a polyol product with lower content of high molecular weight impurities.
  • the preparation of the hydroxide-containing DMC catalyst requires multiple sequences of filtration an reslurrying.
  • US 4,472,560 A teaches treatment of a DMC catalyst with acids and metal salts to increase catalytic activity.
  • treatment of Zn 3 [Co(CN) 6 ] 2 *12-14 H 2 O/ZnCl 2 with HCl/ZnSO 4 in DME resulted in an activity increase from 3.1 to 9.8 kg/g catalyst.
  • DMC catalysts having increased activity in polyether polyol production by ring-opening polymerisation of epoxides are obtained by treating a first crystalline DMC catalyst with a Br ⁇ nsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol.
  • the present invention provides a method for preparing a double metal cyanide (DMC) catalyst, comprising treating a first DMC catalyst with a Br ⁇ nsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol
  • a double metal cyanide (DMC) catalyst comprising treating a first DMC catalyst with a Br ⁇ nsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol
  • the first double metal cyanide catalyst is crystalline.
  • the first DMC catalyst corresponds to the formula Zn 3 [Co(CN) 6 ] 2 *Zn(OAc) 2 *nH 2 O (II)
  • n generally is in the range of from 1 to 24, for instance, from 7 to 9.
  • a suspension of the first DMC catalyst in a dispersing medium is used.
  • a dispersing medium water, alcohols, esters, ethers, heteroatom-containing organic ligands, e.g. Pluronic ® 6200, polyethers, polyesters, polyalcohols, polyetherols, propylene oxide/ethylene oxide copolymers, and/or their mixtures can be used.
  • the concentration of the DMC catalyst in the suspension is 0.05 to 90 wt.%, for instance 1 to 80 wt.%, 5 to 70 wt.%, 5 to 60 wt.% or even 10 to 60 wt.%.
  • the DMC catalyst suspension is stirred during the process at 0 to 3,000 rpm, for instance 100 to 2,000 rpm, 200 to 1,000 rpm, or even 300 to 700 rpm.
  • the DMC catalyst suspension is stirred during the conditioning process using a stirring power of 0 to 5 W/l, for instance, 0 to 1 W/l, 0 to 0.5 W/l, or even 0 to 0.1 W/l.
  • the first DMC catalyst is immobilized on an inert carrier, e.g. an inorganic oxide or a silicate, or a carrier comprised of an organic polymer, e.g. polystyrene or polyurethane.
  • an inert carrier e.g. an inorganic oxide or a silicate, or a carrier comprised of an organic polymer, e.g. polystyrene or polyurethane.
  • the immobilized first DMC catalyst can also be treated in suspension as described above.
  • the immobilized first DMC catalyst can be treated by rinsing with a Br ⁇ nsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol.
  • the method of the invention involves treatment of the first DMC catalyst with a Br ⁇ nsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol.
  • a Br ⁇ nsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol.
  • Suitable Br ⁇ nsted acids are hydrochloric acid, hydrobromic acid, nitric acid, or mixtures of these acids.
  • the concentration of the Br ⁇ nsted acid used for the treatment is in the range of from 0.0001 to 12 M, for instance, 0.001 M to 12 M, or 0.1 M to 6M or even 0.01 M to 6M.
  • the ratio of the molar acidic protons contained in the Br ⁇ nsted acid used for treating the first DMC catalyst to the molar amount of all Zn atoms of the first DMC catalyst is in the range of from 1:0.00001 to 1:1000000, for instance, 1:0.001 to 1:100000, or even 1:0.01 to 1:1000.
  • the Br ⁇ nsted acid is used in a molar amount which exceeds the molar amount of any metal salt M 1 g X n present in the first DMC catalyst.
  • a stoichiometric amount of acid relative to the molar amount of any metal salt M 1 g X n present in the first DMC catalyst, is used.
  • a substoichiometric amount of acid relative to the molar amount of any metal salt M 1 g X n present in the first DMC catalyst, is used.
  • the total amount of acid used may correspond to less than 2 equivalents of acid per mol of DMC catalyst, even if the process involves addition of more than one type of acid.
  • Isopropanol is used as the organic ligand.
  • the ligand is present in the reaction mixture before the addition of the Br ⁇ nsted acid, in a concentration of from 0.01 to 100 wt.%, for instance, from 0.1 to 95 wt.%, or even 20 to 80 wt.%.
  • the DMC compound can be resuspended in a pure ligand or mixture of ligands followed by addition of Br ⁇ nsted acid.
  • the ligand can be added together with a Br ⁇ nsted acid, or solid DMC can be added to a mixture of an organic ligand and a Br ⁇ nsted acid.
  • Acid can be added to the reaction mixture as a solution in different concentrations, for example from 0.0001 M to 12 M, or from 0.01 M to 8 M.
  • the first DMC catalyst is treated at a temperature in the range of from 0 to 120°C, for instance 10 to 100°C, or even 20 to 80°C.
  • the first DMC catalyst is treated for a period of time in the range of from 1 min to 24 hrs, for instance in the range of from 0.5 hr to 24 hrs, or even in the range of from 1 hrs to 10 hrs.
  • the first DMC catalyst is treated without first being isolated from the reaction mixture.
  • the treatment process can take place immediately after the synthesis of the catalyst.
  • the treatment may even performed in situ, without the need to transfer the reaction mixture to another vessel first.
  • the first DMC catalyst is isolated from the reaction mixture before the treatment with acid.
  • the DMC catalyst can be isolated by filtration or centrifugation. Conditioning may be directly performed on the wet catalyst. Alternatively, the catalyst may be dried before the conditioning process, e.g. using the drying methods mentioned above.
  • an organic ligand is added to the DMC catalyst or the DMC catalyst suspension, as the case may be, and one or more Br ⁇ nsted acids are subsequently added.
  • the DMC catalyst can be separated from the reaction mixture. Suitable methods are centrifugation, extraction with an organic solvent which is immiscible with water, decantation or filtration. In one embodiment, the catalyst is separated by filtration. The catalyst may subsequently be washed with water or organic ligands like isopropanol.
  • the DMC catalyst can be used in polymerisation reactions in the form of a wet filter cake or in dry form. Drying can be effected in an oven and/or under vacuum at a temperature in the range of from 30 to 120 °C, for instance 40 to 80 °C.
  • the catalyst can also be re-suspended in an organic starter compound or water.
  • the concentration of the catalyst in such a suspension normally is 0.01 to 90 wt.%, for instance 0.01 to 50 wt.%, 0.1 to 20 wt.%, or even 1 to 10 wt.%.
  • the present invention also provides a DMC catalyst obtainable by the process of the invention.
  • the composition of the catalyst corresponds to the formula Zn 3 [Co(CN) 6 ] 2 *[ a Zn(OAc) 2 * b ZnX 1 x * c ZnX 2 y * d ZnX 3 z ]*L* n H 2 O (III) wherein
  • a is greater than zero. In another embodiment of the invention, at least two of b, c, and d are different from zero.
  • the DMC catalyst is crystalline.
  • the DMC catalyst is characterized in that its XRD diagram can be indexed according to a hexagonal crystal system.
  • the catalyst is essentially crystalline (crystallinity >40%, for instance >70%, or >90%, or even >99%, as determined by XRD).
  • the DMC catalyst shows in its XRD diagram reflections corresponding to d-values of 6.3t0.1 ⁇ , 5.9 ⁇ 0.1 ⁇ , 4.7 ⁇ 0.1 ⁇ , 3.8 ⁇ 0.1 A, 3.0 ⁇ 0.1 ⁇ , 2.8 ⁇ 0.1 ⁇ , 2.4 ⁇ 0.1 ⁇ , 2.3 ⁇ 0.1 ⁇ .
  • the DMC catalyst shows in its XRD diagram reflections corresponding to d-values of 17.2 ⁇ 0.1 ⁇ , 15.4 ⁇ 0.1 ⁇ , 5.7 ⁇ 0.1 ⁇ , 4.7 ⁇ 0.1 ⁇ , 4.4 ⁇ 0.1 ⁇ , 3.9 ⁇ 0.1 ⁇ , 3.8 ⁇ 0.1 ⁇ , 3.0 ⁇ 0.1 ⁇ , 2.3 ⁇ 0.1 ⁇ .
  • the DMC catalyst shows in its XRD diagram reflections corresponding to d-values of 17.5 ⁇ 0.1 ⁇ , 16.7 ⁇ 0.1 ⁇ , 5.3 ⁇ 0.1 ⁇ , 4.6 ⁇ 0.1 ⁇ , 4.4 ⁇ 0.1 ⁇ , 3.8 ⁇ 0.1 ⁇ , 2.4 ⁇ 0.1 ⁇
  • the dried DMC catalyst has a specific area, determined via nitrogen sorption (N 2 -isotherm) according to DIN 66134, in the range of from 100 m 2 /g to 800 m 2 /g, for instance, in the range of from 130 m 2 /g to 650 m 2 /g.
  • the dried DMC catalyst has a mean BJH pore diameter (4V/A), determined via nitrogen sorption (N 2 -isotherm) according to German Standard DIN 66134, in the range of from 10 ⁇ to 150 ⁇ , for instance, in the range of from 20 ⁇ to 120 ⁇ .
  • the dried DMC catalyst has a N 2 pore volume, determined via nitrogen sorption (N 2 -isotherm) according to DIN 66134, in the range of from 0.035 to 0.26 ml/g for pore diameters in the range of from 2 to 200 nm.
  • the zinc content of the dried DMC catalyst is 26 to 32 wt.%, or even 27 to 30 wt.%.
  • the molar ratio zinc/cobalt is in the range of from 1.7 to 2.3, for instance 1.9 to 2.1.
  • the DMC catalyst of the present invention may be used in the polymerisation of epoxides. It may also be used in the copolymerisation of epoxides and lactones, anhydrides or carbon dioxide.
  • lactones for the copolymerisation with epoxides are substituted or unsubstituted lactones having 4-membered or larger rings, such as ⁇ -propiolactone, ⁇ -valerolactone, ⁇ -caprolactone, methyl- ⁇ -caprolactone, ⁇ , ⁇ -dimethyl- ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ -methyl- ⁇ -propiolactone, ⁇ , ⁇ -bis(chloromethyl) propiolactone, methyoxy- ⁇ -caprolactone, ethoxy- ⁇ -caprolactone, cyclohexyl- ⁇ -caprolactone, phenyl- ⁇ -caprolactone, benzyl- ⁇ -caprolactone, ⁇ -enantholactone, ⁇ -caprylolactone, ⁇ , ⁇ , ⁇ -trimethoxy- ⁇ -valerolactone, or ⁇ -butyrolactone, and mixtures thereof.
  • suitable anhydrides for the copolymerisation with epoxides are cyclic anhydrides, substituted or unsubstituted, having 5-membered or larger rings, such as maleic anhydride, succinic anhydride, phthalic anhydride, itaconic anhydride, cis-1,2,3,6-tetrahydrophthalic anhydride.
  • maleic anhydride, succinic anhydride or phthalic anhydride are used.
  • substituted succinic anhydrides like alkenyl succinic anhydrides having carbon-chains comprising from 6 to 20 carbon atoms are used.
  • the DMC catalyst of the present invention When the DMC catalyst of the present invention is utilised in the production of polyether polyols by ring-opening polymerisation of epoxides, it can be used at concentrations of less than 100 ppm, for example less than 75 ppm, or even 50 ppm or less, based on the total amount of polyol produced. Of course, the DMC catalyst of the present invention can also be used at concentrations >100 ppm.
  • the DMC catalyst of the present invention can be used to prepare polyether polyols having very high molecular weights, for instance polyether polyols having a number average molecular weight in the range of from 8,000 to 18,000 g/mol.
  • the DMC catalysts of the invention yield polyol products having lower viscosity.
  • the regenerated ion exchange resin was then used for preparing an essentially alkali-free hexacyanocobaltic acid.
  • a 0.24 molar solution of potassium hexacyanocobaltate in water was passed through the ion exchange resin at a rate of 1 bed volume per hour. After 2.5 bed volumes, the potassium hexacyanocobaltate solution was replaced by water.
  • the 2.5 bed volumes obtained had a mean hexacyanocobaltic acid content of 4.5% by weight and alkali metal contents of less than 1 ppm.
  • hexacyanocobaltic acid solutions used for the further examples were appropriately diluted with water.
  • the molar ratio zinc:cobalt reached at the end of the precipitation was 1.5:1.
  • the solid present in the precipitation suspension showed an X-ray diffraction pattern which could be indexed according to the cubic crystal system.
  • a further 3,690 g of aqueous zinc acetate dihydrate solution (zinc content: 2.6% by weight) were subsequently metered in over a period of 5 minutes while stirring at a stirring power of 0.4 W/l.
  • the molar ratio zinc:cobalt at this point in time was 2.1:1, and the pH was 4.02.
  • the suspension was stirred for another two hours.
  • the pH dropped from 4.02 to 3.27 during this time and then remained constant.
  • the precipitation suspension obtained in this way was subsequently filtered and the solid was washed on the filter with 6 times the cake volume of water.
  • the XRD pattern of the catalyst obtained displayed reflections at d-values of 8.45 ⁇ (4%), 6.40 ⁇ (2%), 6.16 ⁇ (7%), 5.60 ⁇ (5%), 5.20 ⁇ (100%), 5.01 ⁇ (3%), 4.80 ⁇ (45%), 4.72 ⁇ (7%), 4.23 ⁇ (7%), 4.11 ⁇ (5%), 4.05 ⁇ (4%), 3.91 ⁇ (9%), 3.75 ⁇ (25%), 3.60 ⁇ (44%), 3.46 ⁇ (42%), 3.34 ⁇ (5%), 3.23 ⁇ (6%), 3.08 ⁇ (5%), 2.82 ⁇ (13%), 2.77 ⁇ (15%), 2.70 ⁇ (5%), 2.61 ⁇ (40%), 2.40 ⁇ (16%), 2.25 ⁇ (16%) 2.04 ⁇ (14%), 1.88 ⁇ (13%), where the values in brackets represent the relative intensity of the respective reflection.
  • the catalyst was dried for 16 h at 60°C under reduced pressure, losing 51.4% of its mass in the process. According to elemental analysis, the dried catalyst contained about 28 wt.% Zn and had the approximate formula Zn 3 [Co(CN) 6 ] 2 *[Zn(OAc) 2 ] 2 *nH 2 O.
  • Catalyst A prepared as above were suspended in 150 ml 6M HCl, the suspension was stirred for 1 h, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml water and again isolated by filtration. This washing procedure was repeated three times.
  • the XRD pattern of the catalyst obtained showed formation of a cubic phase with reflections at 5.93 ⁇ (8%), 5.13 ⁇ (100%), 3.63 ⁇ (39%), 3.10 ⁇ (9.2%), 2.96 ⁇ (6.5%), 2.57 ⁇ (66.4%), 2.36 ⁇ (6.5%), 2.30 ⁇ (33.8%), 2.10 ⁇ (13.1%), 1.98 ⁇ (8.0%), 1.81 ⁇ (16.3%), 1.74 ⁇ (7.3%), 1.71 ⁇ (18.0%), 1.62 ⁇ (17.4%), 1.57 ⁇ (4.2%), 1.55 ⁇ (6.0%), 1.48 ⁇ (4.9%), 1.42 ⁇ (8.9%), 1.37 ⁇ (7.8%), the values in brackets representing the relative intensity of the respective reflection. Elemental analysis of the dried catalyst by AAS showed a Zn content of 26,3 wt.%., attributed to Zn 3 [Co(CN) 6 ] 2 *12 H 2 O (calculated Zn content 25 wt.%).
  • Catalyst A prepared as above 50 g were suspended in 75 ml isopropanol, followed by addition of 375 ml 6M HCl, the suspension was stirred for 1 h, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml isopropanol and again isolated by filtration. This washing procedure was repeated three times.
  • the catalyst was dried for 16 h at 60°C under reduced pressure, losing 61.3% of its mass in the process.
  • the dried catalyst contained 28.6 wt.% Zn, 13.1 wt.% Co, 18.8 wt.% N, 7.8 wt.% Cl, 23.9 wt.% C and 2.0 wt.% H.
  • this composition is close to the formula Zn 3 [Co(CN) 6 ] 2 *ZnCl 2 * y ( iso- C 3 H 7 O)* x H 2 O, indicating a complete substitution of the acetate groups in the starting material.
  • the XRD pattern of the undried catalyst obtained showed complete disappearance of the reflections of the untreated catalyst and formation of a new catalyst phase.
  • the XRD pattern of the catalyst displayed reflections mainly occurring at d-values of 17.18 ⁇ (16%), 15.35 ⁇ (100%), 6.47 ⁇ (10%), 6.30 ⁇ (11%), 5.70 ⁇ (40%), 4.65 ⁇ (80%), 4.35 ⁇ (22%), 3.85 ⁇ (18%), 3.78 ⁇ (56%), 3.68 ⁇ (13%), 3.40 ⁇ (12%), 3.24 ⁇ (12%), 3.08 ⁇ (14%), 2.95 ⁇ (18%), 2.85 ⁇ (15%), 2.64 ⁇ (10%), 2.58 ⁇ (14%), 2.42 ⁇ (16%), 2.32 ⁇ (17%), 2.18 ⁇ (14%), 2.12 ⁇ (18%), 1.89 ⁇ (17%), the values in brackets representing the relative intensity of the respective reflection.
  • the XRD pattern of the dried catalyst displayed reflections mainly occurring at d-values of 6.32 ⁇ (24%), 5.87 ⁇ (7.8%), 4.73 ⁇ (100%), 4.20 ⁇ (7%), 3.75 ⁇ (45%), 3.04 ⁇ (14%), 2.53 (8.2%), 2.79 ⁇ (18%), 2.36 ⁇ (17%), 2.31 ⁇ (17%), 1.96 ⁇ (13%), 1.87 ⁇ (8%), 1.60 ⁇ (5%), 1.57 ⁇ (5%), the values in brackets representing the relative intensity of the respective reflection.
  • the pore size distribution and specific area of the dried catalyst were determined via nitrogen sorption (N 2 -isotherm) according to German Standard DIN 66134.
  • the shape of the N 2 -isotherm of the catalyst corresponded to a material with a mean BJH pore diameter (4V/A) of 22 ⁇ and a BET surface area of 608 m 2 /g, with a N 2 pore volume of 0.035 ml/g for pore diameters in the range from 2 to 200 nm
  • the catalyst was dried for 16 h at 60°C under reduced pressure, losing 57% of its mass in the process. According to elemental analysis, the dried catalyst contained 27.5 wt.% Zn.
  • the XRD pattern of the undried catalyst obtained showed complete disappearance of the reflections of the untreated catalyst and formation of a new catalyst phase.
  • the XRD pattern of the catalyst displayed reflections mainly occurring at d-values of 9.31 ⁇ (13.4%), 5.99 ⁇ (12.4%), 5.71 ⁇ (24.1%), 5.49 ⁇ (28.8%), 4.69 ⁇ (48.8%), 4.64 ⁇ (26.8%), 4.57 ⁇ (100%), 4.10 ⁇ (44.7%), 4.07 ⁇ (19.8%), 4.02 ⁇ (19.3%), 3.98 ⁇ (37.2%), 3.74 ⁇ (22.1%), 3.58 ⁇ (15.5%), 3.55 ⁇ (14.2%), 3.12 ⁇ (11.8%), 2.87 ⁇ (11.6%), 2.68 ⁇ (17.2%), 2.54 ⁇ (12.3%), 2.43 ⁇ (10.5%), 2.41 ⁇ (11.9%), 2.37 ⁇ (10.3%), 2.36 ⁇ (19%), 2.31 ⁇ (14.2%), 2.29 ⁇ (18.3%), 2.13 ⁇ (2
  • the catalyst was dried for 16 h at 60°C under reduced pressure, losing 63.6% of its mass in the process. According to elemental analysis, the dried catalyst contained 27.3 wt.% Zn and 1.1 wt.% Cl. These results suggest that probably not all the acetate groups were substituted by Cl atoms and, deduced from the Zn:Cl ratio, the catalyst formula is close to Zn 3 [Co(CN) 6 ] 2 *[Zn(OAc) 2 ] 0.85 *[ZnCl 2 ] 0.15 *x(H 2 O)*y( i PrOH).
  • the XRD pattern of the undried catalyst displayed reflections mainly occurring at d-values of 14.92 ⁇ (12%), 6.31 ⁇ (10.5%), 6.05 ⁇ (11.5%), 5.78 ⁇ (23.8%), 5.56 ⁇ (23.8%), 5.48 ⁇ (11%), 5.30 ⁇ (25.6%), 4.75 ⁇ (92.6%), 4.69 ⁇ (16.3%), 4.61 ⁇ (100%), 4.25 ⁇ (36.2%), 4.18 ⁇ (17.8%), 4.14 ⁇ (55.2%), 4.09 ⁇ (13.4%), 4.06 ⁇ (19.3%), 4.02 ⁇ (45.9%), 3.98 ⁇ (9.7%), 3.80 ⁇ (30.8%), 3.77 ⁇ (17.9%), 3.61 ⁇ (14.3%), 3.58 ⁇ (15.3%), 3.14 ⁇ (17.9%), 3.03 ⁇ (11.6%), 2.89 ⁇ (20.5%), 2.70 ⁇ (12.7%), 2.55 ⁇ (17.2%), 2.44 ⁇ (17.5%), 2.43 ⁇ (16%), 2.39 ⁇ (10.1%), 2.37
  • the catalyst was dried for 16 h at 60°C under reduced pressure, losing 40.1% of its mass in the process. According to elemental analysis, the dried catalyst contained 29.1 wt.% Zn, 0.49 wt.% Cl and 0.04 wt.% Br. These results suggest that probably not all the acetate groups were substituted by Cl atoms and, deduced from the Zn:Cl:Br ratio, the catalyst composition is close to the formula Zn 3 [Co(CN) 6 ] 2 *[Zn(OAc) 2 ] 0.92 *(ZnCl 2 ) 0.06 *(ZnBr 2 ) 0.02 *xH 2 O*Y i PrOH
  • the XRD pattern of the undried catalyst displayed reflections mainly occurring at d-values of 9.35 ⁇ (16.9%), 6.00 ⁇ (11.7%), 5.73 ⁇ (27.1%), 5.51 ⁇ (27%), 5.21 ⁇ (15.7%), 4.79 ⁇ (16.6%), 4.70 ⁇ (60.3%), 4.64 ⁇ (24.9%), 4.58 ⁇ (100%), 4.49 ⁇ (10.9%), 4.11 ⁇ (41.5%), 3.99 ⁇ (34.4%), 3.74 ⁇ (29.5%), 3.59 ⁇ (23.1%), 3.55 ⁇ (13.8%), 3.46 ⁇ (11.7%), 3.12 ⁇ (10.7%), 2.87 ⁇ (13.5%), 2.69 ⁇ (12.1%), 2.68 ⁇ (15.5%), 2.61 ⁇ (11.8%), 2.54 ⁇ (11.9%), 2.41 ⁇ (15%), 2.38 ⁇ (12.2%), 2.36 ⁇ (20.6%), 2.31 ⁇ (11.6%), 2.30 ⁇ (17.3%), 2.13 ⁇ (28.8%), 2.11 ⁇ (9.9%), 1.
  • the catalyst was dried for 16 h at 60°C under reduced pressure, losing 53.6% of its mass in the process. According to elemental analysis, the dried catalyst contained 25.8 wt.% Zn, 11.5% Co, 1.7% H, 16.8% N, 18.9% C and 15.7% Br.
  • the Zn:Co:Br ratio deduced from the elemental composition can be attributed to a formula Zn 3 [Co(CN) 6 ] 2 *ZnBr 2 *n( i PrOH)*m(H 2 O).
  • the XRD pattern of the undried catalyst obtained showed complete disappearance of the reflections of the untreated catalyst and formation of a new catalyst phase.
  • the XRD pattern of the catalyst displayed reflections mainly occurring at d-values of 17.53 ⁇ (57.3%), 16.73 ⁇ (23.6%), 15.90 ⁇ (11.9%), 6.12 ⁇ (13.1%), 5.68 ⁇ (12.3%), 5.30 ⁇ (20.2%), 4.63 ⁇ (29.4%), 4.53 ⁇ (34.8%), 4.44 ⁇ (48.7%), 3.76 ⁇ (100.0 %), 3.69 ⁇ (15.2%), 3.17 ⁇ (10.6%), 2.87 ⁇ (13.0%), 2.45 ⁇ (14.9%), 2.42 ⁇ (20.7%), 2.41 ⁇ (11.1%), 2.18 ⁇ (13.0%), 2.14 ⁇ (20.7%), 1.94 ⁇ (10.9%), 1.89 ⁇ (16.0%), the values in brackets representing the relative intensity of the respective reflection.
  • N 2 -isotherm of the catalyst corresponded to a material with a mean BJH pore diameter (4V/A) of 113 ⁇ and BET surface area of 149 m 2 /g, with a N 2 pore volume of 0.26 ml/g for pore diameters in the range from 2 to 200 nm
  • Catalyst A prepared as above were suspended in 55 ml isopropanol, followed by addition of 58 ml 0.1M HCl and 58 ml 0.1M HBr, the suspension was stirred for 1 h at 60°C, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml isopropanol and again isolated by filtration. This washing procedure was repeated three times.
  • the catalyst was dried for 16 h at 60°C under reduced pressure, losing 59.9% of its mass in the process. According to elemental analysis, the dried catalyst contained 28.0 wt.% Zn, 0.77 wt.% Cl and 0.4 wt.% Br. These results suggest that probably not all the acetate groups were substituted by Cl atoms and, deduced from the Zn:Cl:Br ratio, the catalyst composition is close to the formula Zn 3 [Co(CN) 6 ] 2 *[Zn(OAc) 2 ] 0.87 *(ZnCl 2 ) 0.1 *(ZnBr 2 ) 0.03 *xH 2 O*Y i PrOH
  • the XRD pattern of the undried catalyst displayed reflections mainly occurring at d-values of 2.47 ⁇ (9.7%), 2.44 ⁇ (40.4%), 2.42 ⁇ (14.7%), 2.39 ⁇ (12.4%), 2.37 ⁇ (31.3%), 2.32 ⁇ (11.4%), 2.22 ⁇ (32.1%), 2.14 ⁇ (30.7%), 2.12 ⁇ (14.2%), 2.08 ⁇ (15.3%), 1.96 ⁇ (17%), 1.93 ⁇ (9.3%), 1.90 ⁇ (12.5%), 1.87 ⁇ (9.3%), 1.71 ⁇ (13.3%), 1.70 ⁇ (12.3%), 1.66 ⁇ (10.4%), 1.58 ⁇ (11.7%), 1.54 ⁇ (10%), 1.39 ⁇ (9%), the values in brackets representing the relative intensity of the respective reflection.
  • the viscosity of the polyols obtained was measured at 25°C using a rotation vicosimeter Rheotec RC 20 with spindle CC 25 DIN (diameter: 12,5 mm; internal diameter oft the measuring cylinder: 13,56 mm) at a shearing rate of 50 s -1 .
  • Table 1 (summary of polymerization examples 1-15).
  • Catalyst / Example Catalyst load [ppm] Induction period [min] OH# [mg KOH/g] Viscosity [mPas] A / 1* 70 2 22.9 3,541 A / 2* 50 2 23.2 5,326 B / 3* 70 No reaction C / 4 70 4 23.7 1,520 C / 5 62 14 26.2 1,554 D / 6 83 5 23.2 1,896 D / 7 50 5 22.8 2,590 E / 8 83 4 23.7 1,468 E / 9 62 23.3 1,817 F / 10 70 4 23.6 1,467 F / 11 50 7 22.5 2,040 G / 12 76 12 23.6 1,418 G / 13 58 12 24.3 1,454 H / 14 70 3 23.3 1,605 H / 15 50 2 22.4 2,531 * Comparative Example

Description

    Field of the Invention
  • The invention relates to a method for the preparation of double metal cyanide (DMC) catalysts which are used in the production of polyether polyols and the DMC catalysts obtained. The DMC catalysts show enhanced performance in alkoxylation reactions, so that lower concentrations of the DMC catalyst can be used in polyether polyol production.
  • Background of the Invention
  • Polyether polyols are important intermediates utilized to manufacture a wide range of products, including polyurethanes. Polyether polyols are produced by polymerization of epoxides, e.g., propylene or ethylene oxide. It is known that double metal catalysts (DMC catalysts) are effective polymerization catalysts, producing polyols with narrow molecular weight distribution, low viscosity and low unsaturation.
  • DMC catalysts are normally prepared by combining an aqueous solution of a metal salt and an aqueous solution of a complex metal cyanide salt. For example, U.S. Patents Nos. 5,470,813 and 5,714,639 describe preparation of DMC by combining an aqueous solution of ZnCl2 (excess) with an aqueous solution of K3Co(CN)6. The desired DMC catalyst, in this case specifically Zn3[Co(CN)6]2, precipitates from the mixture.
  • US 2002/193245 A1 describes one-step preparation of DMC catalysts by combining the aqueous solution of the first metal salt, e.g. ZnCl2, with the aqueous solution of the second metal salt, e.g. CoCl2, and the aqueous solution of the alkali metal cyanide, e.g. KCN, in a single step to synthesize the DMC catalyst, in this case specifically Zn3[Co(CN)6]2.
  • Although DMC catalysts, for instance those described in US 6,689,710 B2 or US 2004/0249221 A1 , display high activity and afford polyether polyols with low unsaturation level, various attempts have been made to further increase catalyst activity, in order to be able to use smaller catalyst concentrations in the polyol production process and avoid an increase in the viscosity of the resulting polyols at DMC catalyst concentrations below 100 ppm.
  • Modifications to the process of catalyst preparation include continuous preparation of crystalline DMC catalysts via a mixing nozzle ( EP 1 799 344 A1 ), preparation of the DMC catalyst in ionic liquids ( WO 2008/095853 A1 ), or spray-drying the catalyst ( WO 2004/022227 A1 ).
  • In order to increase catalyst activity, a number of conditioning methods have been proposed. US 2004/0242937 A1 teaches conditioning of a crystalline DMC catalyst by ultrasonic irradiation, in order to effect deagglomeration of the catalyst particles. WO 03/029326 A1 describes conditioning of the DMC catalyst at 80-130°C in the reactor prior to the polymerization.
  • EP 1 288 244 A1 discloses a process wherein a substantially crystalline double metal cyanide catalyst is subjected to a contact treatment by heating the catalyst with an aqueous solution containing an organic ligand and a metal salt at temperatures from 45 to 125 °C, and then separating the resulting solid from the obtained slurry.
  • CN 1 589 966 A teaches to treat zinc chloride having higher basicity with acid to regulate its basicity to an optimal value prior to using it for DMC catalyst preparation.
  • US 6,077,978 A teaches to prevent DMC catalyst deactivation by addition of an acid to the vessel or to a starter compound for polyol production. The acid neutralizes basic impurities in the starter compound, so that complicated purification of the starter compound can be dispensed with. However, no information regarding the effect of the acid on the DMC catalyst was provided.
  • JP 5/331278 A discloses addition of acid to a polyol produced using a basic catalyst and subsequent propoxylation in the presence of a DMC catalyst without removing excess acid and salt formed, to produce a high molecular weight polyol.
  • EP 1 911 787 A2 describes a DMC-catalysed process for the production of polyether polyols which tolerates high water content in the low molecular weight starters. The process uses a low molecular weight starter containing 200-5,000 ppm water and acidified with from about 10 ppm to about 2,000 ppm of at least one of an inorganic protic mineral acid and an organic acid.
  • US 6,028,230 A discloses an epoxide polymerization process comprising reacting an epoxide and an active hydrogencontaining initiator in the presence of (a) a substantially amorphous highly active double metal cyanide complex catalyst comprised of a double metal cyanide, an organic complexing agent, and a metal salt and (b) an effective amount of a non-protic Lewis acid. The polyether polyol produced contains a reduced level of high molecular weight tail as compared to an analogous polyether polyol prepared in the absence of the non-protic Lewis acid. The method yields a product containing a reduced amount of high molecular weight impurities even at 30 ppm catalyst concentration.
  • WO 01/53381 A1 discloses a method for the production of polyether alcohols by catalytic addition of alkylene oxides to H-functional starting substances using a combination of at least one multi-metal cyanide compound and at least one acid compound as catalyst. This was reported to shorten catalyst induction time and lead to a higher content of primary hydroxyl groups.
  • WO 01/04180 A1 teaches a method for preparing metal cyanide catalysts using polycarboxylic acids. The method comprises mixing a first solution of a metal salt in an inert solvent with a second solution of a metal cyanide compound in an inert solvent in the presence of an organic polyacid. The catalysts formed are reported to have larger particle sizes than conventional metal cyanide catalysts, facilitating separation from the polyol product. Preferred organic polyacids are crosslinked or uncrosslinked polymers containing pendant carboxyl or carboxylate groups. However, the method uses expensive organic polyacids and includes multiple washing/filtration steps.
  • US 6,063,897 A discloses treatment of a DMC catalyst comprising zinc hydroxyl groups by reacting the catalyst with a Brønsted acid and subsequently removing at least a portion of any excess acid from the catalyst. The catalyst obtained can be used in concentrations below 100 ppm, shows shorter initiation times and yields a polyol product with lower content of high molecular weight impurities. However, the preparation of the hydroxide-containing DMC catalyst requires multiple sequences of filtration an reslurrying.
  • US 4,472,560 A teaches treatment of a DMC catalyst with acids and metal salts to increase catalytic activity. In Example 16, treatment of Zn3[Co(CN)6]2*12-14 H2O/ZnCl2 with HCl/ZnSO4 in DME resulted in an activity increase from 3.1 to 9.8 kg/g catalyst.
  • Summary
  • It has now been found that DMC catalysts having increased activity in polyether polyol production by ring-opening polymerisation of epoxides are obtained by treating a first crystalline DMC catalyst with a Brønsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol.
  • Detailed Description
  • The present invention provides a method for preparing a double metal cyanide (DMC) catalyst, comprising treating a first DMC catalyst with a Brønsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol The first double metal cyanide catalyst is crystalline.
  • The first DMC catalyst corresponds to the formula

            Zn3[Co(CN)6]2*Zn(OAc)2*nH2O     (II)

  • In formula (II), n generally is in the range of from 1 to 24, for instance, from 7 to 9.
  • In one embodiment of the method of the present invention, a suspension of the first DMC catalyst in a dispersing medium is used. As the dispersing medium, water, alcohols, esters, ethers, heteroatom-containing organic ligands, e.g. Pluronic® 6200, polyethers, polyesters, polyalcohols, polyetherols, propylene oxide/ethylene oxide copolymers, and/or their mixtures can be used.
  • In one embodiment of the process, the concentration of the DMC catalyst in the suspension is 0.05 to 90 wt.%, for instance 1 to 80 wt.%, 5 to 70 wt.%, 5 to 60 wt.% or even 10 to 60 wt.%.
  • In one embodiment, the DMC catalyst suspension is stirred during the process at 0 to 3,000 rpm, for instance 100 to 2,000 rpm, 200 to 1,000 rpm, or even 300 to 700 rpm.
  • In one embodiment, the DMC catalyst suspension is stirred during the conditioning process using a stirring power of 0 to 5 W/l, for instance, 0 to 1 W/l, 0 to 0.5 W/l, or even 0 to 0.1 W/l.
  • In another embodiment of the method of the present invention, the first DMC catalyst is immobilized on an inert carrier, e.g. an inorganic oxide or a silicate, or a carrier comprised of an organic polymer, e.g. polystyrene or polyurethane. In case the carrier is in the form of beads or grains, the immobilized first DMC catalyst can also be treated in suspension as described above. Alternatively, the immobilized first DMC catalyst can be treated by rinsing with a Brønsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol. The method of the invention involves treatment of the first DMC catalyst with a Brønsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, and nitric acid, and mixtures thereof, in the presence of an organic ligand which is isopropanol. Suitable Brønsted acids are hydrochloric acid, hydrobromic acid, nitric acid, or mixtures of these acids.
  • In one embodiment of the process, the concentration of the Brønsted acid used for the treatment is in the range of from 0.0001 to 12 M, for instance, 0.001 M to 12 M, or 0.1 M to 6M or even 0.01 M to 6M. The ratio of the molar acidic protons contained in the Brønsted acid used for treating the first DMC catalyst to the molar amount of all Zn atoms of the first DMC catalyst is in the range of from 1:0.00001 to 1:1000000, for instance, 1:0.001 to 1:100000, or even 1:0.01 to 1:1000.
  • In one embodiment of the process, the Brønsted acid is used in a molar amount which exceeds the molar amount of any metal salt M1 gXn present in the first DMC catalyst. In another embodiment, a stoichiometric amount of acid, relative to the molar amount of any metal salt M1 gXn present in the first DMC catalyst, is used. In still another embodiment, a substoichiometric amount of acid, relative to the molar amount of any metal salt M1 gXn present in the first DMC catalyst, is used. For instance, when the composition of the first DMC catalyst corresponds to the formula Zn3[Co(CN)6]2*Zn(OAc)2*nH2O, the total amount of acid used may correspond to less than 2 equivalents of acid per mol of DMC catalyst, even if the process involves addition of more than one type of acid.
  • Isopropanol is used as the organic ligand.
  • In one embodiment of the process, the ligand is present in the reaction mixture before the addition of the Brønsted acid, in a concentration of from 0.01 to 100 wt.%, for instance, from 0.1 to 95 wt.%, or even 20 to 80 wt.%. Of course, the DMC compound can be resuspended in a pure ligand or mixture of ligands followed by addition of Brønsted acid. Alternatively, the ligand can be added together with a Brønsted acid, or solid DMC can be added to a mixture of an organic ligand and a Brønsted acid. Acid can be added to the reaction mixture as a solution in different concentrations, for example from 0.0001 M to 12 M, or from 0.01 M to 8 M.
  • The first DMC catalyst is treated at a temperature in the range of from 0 to 120°C, for instance 10 to 100°C, or even 20 to 80°C.
  • The first DMC catalyst is treated for a period of time in the range of from 1 min to 24 hrs, for instance in the range of from 0.5 hr to 24 hrs, or even in the range of from 1 hrs to 10 hrs.
  • In one embodiment of the invention, the first DMC catalyst is treated without first being isolated from the reaction mixture. The treatment process can take place immediately after the synthesis of the catalyst. In case a suitable reactor is used for the preparation of the first DMC catalyst, the treatment may even performed in situ, without the need to transfer the reaction mixture to another vessel first.
  • In another embodiment, the first DMC catalyst is isolated from the reaction mixture before the treatment with acid. As mentioned above, the DMC catalyst can be isolated by filtration or centrifugation. Conditioning may be directly performed on the wet catalyst. Alternatively, the catalyst may be dried before the conditioning process, e.g. using the drying methods mentioned above.
  • In one embodiment of the process, an organic ligand is added to the DMC catalyst or the DMC catalyst suspension, as the case may be, and one or more Brønsted acids are subsequently added.
  • After the treatment process, the DMC catalyst can be separated from the reaction mixture. Suitable methods are centrifugation, extraction with an organic solvent which is immiscible with water, decantation or filtration. In one embodiment, the catalyst is separated by filtration. The catalyst may subsequently be washed with water or organic ligands like isopropanol.
  • The DMC catalyst can be used in polymerisation reactions in the form of a wet filter cake or in dry form. Drying can be effected in an oven and/or under vacuum at a temperature in the range of from 30 to 120 °C, for instance 40 to 80 °C. The catalyst can also be re-suspended in an organic starter compound or water. The concentration of the catalyst in such a suspension normally is 0.01 to 90 wt.%, for instance 0.01 to 50 wt.%, 0.1 to 20 wt.%, or even 1 to 10 wt.%.
  • The present invention also provides a DMC catalyst obtainable by the process of the invention. The composition of the catalyst corresponds to the formula

            Zn3[Co(CN)6]2*[aZn(OAc)2*bZnX1 x*cZnX2 y*dZnX3 z]*L*nH2O     (III)

    wherein
    • L is isopropanol;
    • X corresponds to chloride, bromide, or nitrate;
    • a, b, c, d, and n are integers or fractions greater than or equal to zero, with the proviso that at least one of b, c, and d is different from zero;
    • x, y and z are chosen so that the compound is electrically neutral.
  • In one embodiment of the invention, a is greater than zero. In another embodiment of the invention, at least two of b, c, and d are different from zero.
  • The DMC catalyst is crystalline.
  • In one embodiment of the invention, the DMC catalyst is characterized in that its XRD diagram can be indexed according to a hexagonal crystal system. The catalyst is essentially crystalline (crystallinity >40%, for instance >70%, or >90%, or even >99%, as determined by XRD).
  • In one embodiment of the invention, the DMC catalyst shows in its XRD diagram reflections corresponding to d-values of 6.3t0.1 Å, 5.9±0.1 Å, 4.7±0.1 Å, 3.8±0.1 A, 3.0±0.1 Å, 2.8±0.1 Å, 2.4±0.1 Å, 2.3±0.1 Å.
  • In another embodiment of the invention, the DMC catalyst shows in its XRD diagram reflections corresponding to d-values of 17.2±0.1 Å, 15.4±0.1 Å, 5.7±0.1 Å, 4.7±0.1 Å, 4.4±0.1 Å, 3.9±0.1 Å, 3.8±0.1 Å, 3.0±0.1 Å, 2.3±0.1 Å.
  • In yet another embodiment of the invention, the DMC catalyst shows in its XRD diagram reflections corresponding to d-values of 17.5±0.1 Å, 16.7±0.1 Å, 5.3±0.1 Å, 4.6±0.1 Å, 4.4±0.1 Å, 3.8±0.1 Å, 2.4±0.1 Å
  • In one embodiment of the invention, the dried DMC catalyst has a specific area, determined via nitrogen sorption (N2-isotherm) according to DIN 66134, in the range of from 100 m2/g to 800 m2/g, for instance, in the range of from 130 m2/g to 650 m2/g.
  • In one embodiment of the invention, the dried DMC catalyst has a mean BJH pore diameter (4V/A), determined via nitrogen sorption (N2-isotherm) according to German Standard DIN 66134, in the range of from 10 Å to 150 Å, for instance, in the range of from 20 Å to 120 Å.
  • In one embodiment of the invention, the dried DMC catalyst has a N2 pore volume, determined via nitrogen sorption (N2-isotherm) according to DIN 66134, in the range of from 0.035 to 0.26 ml/g for pore diameters in the range of from 2 to 200 nm.
  • In one embodiment, the zinc content of the dried DMC catalyst is 26 to 32 wt.%, or even 27 to 30 wt.%. In one embodiment the molar ratio zinc/cobalt is in the range of from 1.7 to 2.3, for instance 1.9 to 2.1.
  • The DMC catalyst of the present invention may be used in the polymerisation of epoxides. It may also be used in the copolymerisation of epoxides and lactones, anhydrides or carbon dioxide.
  • Examples of suitable lactones for the copolymerisation with epoxides are substituted or unsubstituted lactones having 4-membered or larger rings, such as β-propiolactone, δ-valerolactone, ε-caprolactone, methyl-ε-caprolactone, β,β-dimethyl-β-propiolactone, β-methyl-β-propiolactone, α-methyl-β-propiolactone, α,α-bis(chloromethyl) propiolactone, methyoxy-ε-caprolactone, ethoxy-ε-caprolactone, cyclohexyl-ε-caprolactone, phenyl-ε-caprolactone, benzyl-ε-caprolactone, ζ-enantholactone, η-caprylolactone, α,β,γ-trimethoxy-δ-valerolactone, or β-butyrolactone, and mixtures thereof. In one particular embodiment, ε-caprolactone is used.
  • Examples of suitable anhydrides for the copolymerisation with epoxides are cyclic anhydrides, substituted or unsubstituted, having 5-membered or larger rings, such as maleic anhydride, succinic anhydride, phthalic anhydride, itaconic anhydride, cis-1,2,3,6-tetrahydrophthalic anhydride. In one embodiment, maleic anhydride, succinic anhydride or phthalic anhydride are used. In one particular embodiment, substituted succinic anhydrides like alkenyl succinic anhydrides having carbon-chains comprising from 6 to 20 carbon atoms are used.
  • When the DMC catalyst of the present invention is utilised in the production of polyether polyols by ring-opening polymerisation of epoxides, it can be used at concentrations of less than 100 ppm, for example less than 75 ppm, or even 50 ppm or less, based on the total amount of polyol produced. Of course, the DMC catalyst of the present invention can also be used at concentrations >100 ppm.
  • The DMC catalyst of the present invention can be used to prepare polyether polyols having very high molecular weights, for instance polyether polyols having a number average molecular weight in the range of from 8,000 to 18,000 g/mol.
  • In comparison to the DMC catalysts used as starting materials in the process of the present invention (the first DMC catalysts), the DMC catalysts of the invention yield polyol products having lower viscosity.
  • It will be understood that the features mentioned above and those described hereinafter can be used not only in the combination specified but also in other combinations or on their own, without departing from the scope of the present invention.
  • The present invention will now be described in more detail in the examples below. It is to be understood that the examples are not intended to limit the scope of the present invention and are merely an illustration of a preferred embodiment of the invention.
  • Examples Catalyst preparation and conditioning Preparation of Hexacyanocobaltic Acid:
  • (according to US 6,689,710 B2 )
  • 7 1 of strongly acidic ion exchange resin in the sodium form (Amberlite® 252 Na, Rohm and Haas) were placed in an ion exchange column (length 1 m, volume 7.7 1). The ion exchange resin was subsequently converted into the H form by passing 10% hydrochloric acid through the ion exchange column at a rate of 2 bed volumes per hour for 9 hours, until the sodium content in the eluate was less than 1 ppm. The ion exchange resin was subsequently washed with water until neutral.
  • The regenerated ion exchange resin was then used for preparing an essentially alkali-free hexacyanocobaltic acid. For this purpose, a 0.24 molar solution of potassium hexacyanocobaltate in water was passed through the ion exchange resin at a rate of 1 bed volume per hour. After 2.5 bed volumes, the potassium hexacyanocobaltate solution was replaced by water. The 2.5 bed volumes obtained had a mean hexacyanocobaltic acid content of 4.5% by weight and alkali metal contents of less than 1 ppm.
  • The hexacyanocobaltic acid solutions used for the further examples were appropriately diluted with water.
  • Catalyst A (comparative):
  • (according to US 6,689,710 B2 )
  • 16,000 g of aqueous hexacyanocobaltic acid (cobalt content: 9 g/l) were placed in a 30 1 stirred vessel equipped with a propeller stirrer, immersed tube for introduction of the metal salt solution, pH probe and light scattering probe and were heated to 50°C while stirring. Subsequently, while stirring at a stirring power of 0.4 W/l, 9,224 g of aqueous zinc acetate dihydrate solution (zinc content: 2.6% by weight) which had likewise been heated to 50°C were metered in over a period of 15 minutes.
  • The molar ratio zinc:cobalt reached at the end of the precipitation was 1.5:1. The solid present in the precipitation suspension showed an X-ray diffraction pattern which could be indexed according to the cubic crystal system.
  • 351 g of Pluronic® PE 6200 (BASF SE) were added to this suspension and the mixture was stirred for another 10 minutes.
  • A further 3,690 g of aqueous zinc acetate dihydrate solution (zinc content: 2.6% by weight) were subsequently metered in over a period of 5 minutes while stirring at a stirring power of 0.4 W/l.
  • The molar ratio zinc:cobalt at this point in time was 2.1:1, and the pH was 4.02. The suspension was stirred for another two hours. The pH dropped from 4.02 to 3.27 during this time and then remained constant. The precipitation suspension obtained in this way was subsequently filtered and the solid was washed on the filter with 6 times the cake volume of water.
  • The XRD pattern of the catalyst obtained displayed reflections at d-values of 8.45 Å (4%), 6.40 Å (2%), 6.16 Å (7%), 5.60 Å (5%), 5.20 Å (100%), 5.01 Å (3%), 4.80 Å (45%), 4.72 Å (7%), 4.23 Å (7%), 4.11 Å (5%), 4.05 Å (4%), 3.91 Å (9%), 3.75 Å (25%), 3.60 Å (44%), 3.46 Å (42%), 3.34 Å (5%), 3.23 Å (6%), 3.08 Å (5%), 2.82 Å (13%), 2.77 Å (15%), 2.70 Å (5%), 2.61 Å (40%), 2.40 Å (16%), 2.25 Å (16%) 2.04 Å (14%), 1.88 Å (13%), where the values in brackets represent the relative intensity of the respective reflection.
  • Before elemental analysis, the catalyst was dried for 16 h at 60°C under reduced pressure, losing 51.4% of its mass in the process. According to elemental analysis, the dried catalyst contained about 28 wt.% Zn and had the approximate formula Zn3[Co(CN)6]2*[Zn(OAc)2]2*nH2O.
  • Catalyst B (comparative):
  • 20 g of Catalyst A prepared as above were suspended in 150 ml 6M HCl, the suspension was stirred for 1 h, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml water and again isolated by filtration. This washing procedure was repeated three times.
  • The XRD pattern of the catalyst obtained showed formation of a cubic phase with reflections at 5.93 Å (8%), 5.13 Å (100%), 3.63 Å (39%), 3.10 Å (9.2%), 2.96 Å (6.5%), 2.57 Å (66.4%), 2.36 Å (6.5%), 2.30 Å (33.8%), 2.10 Å (13.1%), 1.98 Å (8.0%), 1.81 Å (16.3%), 1.74 Å (7.3%), 1.71 Å (18.0%), 1.62 Å (17.4%), 1.57 Å (4.2%), 1.55 Å (6.0%), 1.48 Å (4.9%), 1.42 Å (8.9%), 1.37 Å (7.8%), the values in brackets representing the relative intensity of the respective reflection. Elemental analysis of the dried catalyst by AAS showed a Zn content of 26,3 wt.%., attributed to Zn3[Co(CN)6]2*12 H2O (calculated Zn content 25 wt.%).
  • Catalyst C
  • 50 g of Catalyst A prepared as above were suspended in 75 ml isopropanol, followed by addition of 375 ml 6M HCl, the suspension was stirred for 1 h, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml isopropanol and again isolated by filtration. This washing procedure was repeated three times.
  • Before elemental analysis, the catalyst was dried for 16 h at 60°C under reduced pressure, losing 61.3% of its mass in the process. According to elemental analysis, the dried catalyst contained 28.6 wt.% Zn, 13.1 wt.% Co, 18.8 wt.% N, 7.8 wt.% Cl, 23.9 wt.% C and 2.0 wt.% H. Surprisingly, this composition is close to the formula Zn3[Co(CN)6]2*ZnCl2*y(iso-C3H7O)*xH2O, indicating a complete substitution of the acetate groups in the starting material.
  • The XRD pattern of the undried catalyst obtained showed complete disappearance of the reflections of the untreated catalyst and formation of a new catalyst phase. The XRD pattern of the catalyst displayed reflections mainly occurring at d-values of 17.18 Å (16%), 15.35 Å (100%), 6.47 Å (10%), 6.30 Å (11%), 5.70 Å (40%), 4.65 Å (80%), 4.35 Å (22%), 3.85 Å (18%), 3.78 Å (56%), 3.68 Å (13%), 3.40 Å (12%), 3.24 Å (12%), 3.08 Å (14%), 2.95 Å (18%), 2.85 Å (15%), 2.64 Å (10%), 2.58 Å (14%), 2.42 Å (16%), 2.32 Å (17%), 2.18 Å (14%), 2.12 Å (18%), 1.89 Å (17%), the values in brackets representing the relative intensity of the respective reflection.
  • The XRD pattern of the dried catalyst displayed reflections mainly occurring at d-values of 6.32 Å (24%), 5.87 Å (7.8%), 4.73 Å (100%), 4.20 Å (7%), 3.75 Å (45%), 3.04 Å (14%), 2.53 (8.2%), 2.79 Å (18%), 2.36 Å (17%), 2.31 Å (17%), 1.96 Å (13%), 1.87 Å (8%), 1.60 Å (5%), 1.57 Å (5%), the values in brackets representing the relative intensity of the respective reflection. The diffraction lines in the diffractogram can be indexed with a hexagonal crystal system with lattice constants a = 7.5 ± 0.2 Å and c = 27.5 ± 0.5 Å.
  • The pore size distribution and specific area of the dried catalyst were determined via nitrogen sorption (N2-isotherm) according to German Standard DIN 66134. The shape of the N2-isotherm of the catalyst corresponded to a material with a mean BJH pore diameter (4V/A) of 22 Å and a BET surface area of 608 m2/g, with a N2 pore volume of 0.035 ml/g for pore diameters in the range from 2 to 200 nm
  • Catalyst D
  • 7 g of Catalyst A prepared as above were suspended in 30 ml isopropanol, followed by addition of 150 ml 3M HNO3, the suspension was stirred for 1 h, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml isopropanol and again isolated by filtration. This washing procedure was repeated three times.
  • Before elemental analysis, the catalyst was dried for 16 h at 60°C under reduced pressure, losing 57% of its mass in the process. According to elemental analysis, the dried catalyst contained 27.5 wt.% Zn.
  • The XRD pattern of the undried catalyst obtained showed complete disappearance of the reflections of the untreated catalyst and formation of a new catalyst phase. The XRD pattern of the catalyst displayed reflections mainly occurring at d-values of 9.31 Å (13.4%), 5.99 Å (12.4%), 5.71 Å (24.1%), 5.49 Å (28.8%), 4.69 Å (48.8%), 4.64 Å (26.8%), 4.57 Å (100%), 4.10 Å (44.7%), 4.07 Å (19.8%), 4.02 Å (19.3%), 3.98 Å (37.2%), 3.74 Å (22.1%), 3.58 Å (15.5%), 3.55 Å (14.2%), 3.12 Å (11.8%), 2.87 Å (11.6%), 2.68 Å (17.2%), 2.54 Å (12.3%), 2.43 Å (10.5%), 2.41 Å (11.9%), 2.37 Å (10.3%), 2.36 Å (19%), 2.31 Å (14.2%), 2.29 Å (18.3%), 2.13 Å (26.4%), 2.11 Å (9.2%), the values in brackets representing the relative intensity of the respective reflection.
  • Catalyst E
  • 20 g of Catalyst A prepared as above were suspended in 55 ml isopropanol, followed by addition of 210 ml 0.1M HCl, the suspension was stirred for 1 h, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml isopropanol and again isolated by filtration. This washing procedure was repeated three times.
  • Before elemental analysis, the catalyst was dried for 16 h at 60°C under reduced pressure, losing 63.6% of its mass in the process. According to elemental analysis, the dried catalyst contained 27.3 wt.% Zn and 1.1 wt.% Cl. These results suggest that probably not all the acetate groups were substituted by Cl atoms and, deduced from the Zn:Cl ratio, the catalyst formula is close to Zn3[Co(CN)6]2*[Zn(OAc)2]0.85*[ZnCl2]0.15*x(H2O)*y(iPrOH).
  • The XRD pattern of the undried catalyst displayed reflections mainly occurring at d-values of 14.92 Å (12%), 6.31 Å (10.5%), 6.05 Å (11.5%), 5.78 Å (23.8%), 5.56 Å (23.8%), 5.48 Å (11%), 5.30 Å (25.6%), 4.75 Å (92.6%), 4.69 Å (16.3%), 4.61 Å (100%), 4.25 Å (36.2%), 4.18 Å (17.8%), 4.14 Å (55.2%), 4.09 Å (13.4%), 4.06 Å (19.3%), 4.02 Å (45.9%), 3.98 Å (9.7%), 3.80 Å (30.8%), 3.77 Å (17.9%), 3.61 Å (14.3%), 3.58 Å (15.3%), 3.14 Å (17.9%), 3.03 Å (11.6%), 2.89 Å (20.5%), 2.70 Å (12.7%), 2.55 Å (17.2%), 2.44 Å (17.5%), 2.43 Å (16%), 2.39 Å (10.1%), 2.37 Å (28,1%), 2.30 Å (16.3%), 2.14 Å (28.7%), 2.12 Å (12%), 2.07 Å (12.2%), 1.95 Å (9.4%), 1.93 Å (9%), 1.90 Å (10.8%), the values in brackets representing the relative intensity of the respective reflection.
  • Catalyst F
  • 20 g of Catalyst A prepared as above were suspended in 55 ml isopropanol, followed by addition of 5.8 ml 1M HCl and 5.8 ml 1M HBr, the suspension was stirred for 1 h, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml isopropanol and again isolated by filtration. This washing procedure was repeated three times.
  • Before elemental analysis, the catalyst was dried for 16 h at 60°C under reduced pressure, losing 40.1% of its mass in the process. According to elemental analysis, the dried catalyst contained 29.1 wt.% Zn, 0.49 wt.% Cl and 0.04 wt.% Br. These results suggest that probably not all the acetate groups were substituted by Cl atoms and, deduced from the Zn:Cl:Br ratio, the catalyst composition is close to the formula

            Zn3[Co(CN)6]2*[Zn(OAc)2]0.92*(ZnCl2)0.06*(ZnBr2)0.02*xH2O*Y iPrOH

  • The XRD pattern of the undried catalyst displayed reflections mainly occurring at d-values of 9.35 Å (16.9%), 6.00 Å (11.7%), 5.73 Å (27.1%), 5.51 Å (27%), 5.21 Å (15.7%), 4.79 Å (16.6%), 4.70 Å (60.3%), 4.64 Å (24.9%), 4.58 Å (100%), 4.49 Å (10.9%), 4.11 Å (41.5%), 3.99 Å (34.4%), 3.74 Å (29.5%), 3.59 Å (23.1%), 3.55 Å (13.8%), 3.46 Å (11.7%), 3.12 Å (10.7%), 2.87 Å (13.5%), 2.69 Å (12.1%), 2.68 Å (15.5%), 2.61 Å (11.8%), 2.54 Å (11.9%), 2.41 Å (15%), 2.38 Å (12.2%), 2.36 Å (20.6%), 2.31 Å (11.6%), 2.30 Å (17.3%), 2.13 Å (28.8%), 2.11 Å (9.9%), 1.89 Å (10%), 1.88 Å (9.2%), 1.66 Å (9.3%), the values in brackets representing the relative intensity of the respective reflection.
  • Catalyst G
  • 20 g of Catalyst A prepared as above were suspended in 30 ml isopropanol, followed by addition of 150 ml 3M HBr, the suspension was stirred for 1 h, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml isopropanol and again isolated by filtration. This washing procedure was repeated three times.
  • Before elemental analysis, the catalyst was dried for 16 h at 60°C under reduced pressure, losing 53.6% of its mass in the process. According to elemental analysis, the dried catalyst contained 25.8 wt.% Zn, 11.5% Co, 1.7% H, 16.8% N, 18.9% C and 15.7% Br. The Zn:Co:Br ratio deduced from the elemental composition can be attributed to a formula Zn3[Co(CN)6]2*ZnBr2*n(iPrOH)*m(H2O).
  • The XRD pattern of the undried catalyst obtained showed complete disappearance of the reflections of the untreated catalyst and formation of a new catalyst phase. The XRD pattern of the catalyst displayed reflections mainly occurring at d-values of 17.53 Å (57.3%), 16.73 Å (23.6%), 15.90 Å (11.9%), 6.12 Å (13.1%), 5.68 Å (12.3%), 5.30 Å (20.2%), 4.63 Å (29.4%), 4.53 Å (34.8%), 4.44 Å (48.7%), 3.76 Å (100.0 %), 3.69 Å (15.2%), 3.17 Å (10.6%), 2.87 Å (13.0%), 2.45 Å (14.9%), 2.42 Å (20.7%), 2.41 Å (11.1%), 2.18 Å (13.0%), 2.14 Å (20.7%), 1.94 Å (10.9%), 1.89 Å (16.0%), the values in brackets representing the relative intensity of the respective reflection.
  • The shape of N2-isotherm of the catalyst corresponded to a material with a mean BJH pore diameter (4V/A) of 113 Å and BET surface area of 149 m2/g, with a N2 pore volume of 0.26 ml/g for pore diameters in the range from 2 to 200 nm
  • Catalyst H
  • 20 g of Catalyst A prepared as above were suspended in 55 ml isopropanol, followed by addition of 58 ml 0.1M HCl and 58 ml 0.1M HBr, the suspension was stirred for 1 h at 60°C, and the catalyst was isolated by filtration. The solids were reslurried in 300 ml isopropanol and again isolated by filtration. This washing procedure was repeated three times.
  • Before elemental analysis, the catalyst was dried for 16 h at 60°C under reduced pressure, losing 59.9% of its mass in the process. According to elemental analysis, the dried catalyst contained 28.0 wt.% Zn, 0.77 wt.% Cl and 0.4 wt.% Br. These results suggest that probably not all the acetate groups were substituted by Cl atoms and, deduced from the Zn:Cl:Br ratio, the catalyst composition is close to the formula

            Zn3[Co(CN)6]2*[Zn(OAc)2]0.87*(ZnCl2)0.1*(ZnBr2)0.03*xH2O*Y iPrOH

  • The XRD pattern of the undried catalyst displayed reflections mainly occurring at d-values of 2.47 Å (9.7%), 2.44 Å (40.4%), 2.42 Å (14.7%), 2.39 Å (12.4%), 2.37 Å (31.3%), 2.32 Å (11.4%), 2.22 Å (32.1%), 2.14 Å (30.7%), 2.12 Å (14.2%), 2.08 Å (15.3%), 1.96 Å (17%), 1.93 Å (9.3%), 1.90 Å (12.5%), 1.87 Å (9.3%), 1.71 Å (13.3%), 1.70 Å (12.3%), 1.66 Å (10.4%), 1.58 Å (11.7%), 1.54 Å (10%), 1.39 Å (9%), the values in brackets representing the relative intensity of the respective reflection.
  • Polymerisation examples: Examples 1-15
  • A 300 ml autoclave was charged with 40 g of PPG (OH# = 100, F = 1.98) and 50-83 ppm, relative to the total amount of polyol product, of one of the DMC catalysts A-H, as shown in Table 1. The reactor was heated to 130°C and flushed twice with nitrogen. Then the reaction mixture was vacuum dried for 30 minutes and 4.8 ml of propylene oxide were added. The time required for activation of the catalyst (induction period) is also shown in Table 1. After reaching constant pressure, the temperature was decreased to 100°C and another 145.8 ml of PO were added. After completion of the polymerisation, the reaction mixture was vacuum stripped for 30 minutes and the reactor was drained. About 180 g of product were obtained in each successful experiment. The OH numbers and viscosities of the products obtained are summarized in Table 1.
  • The viscosity of the polyols obtained was measured at 25°C using a rotation vicosimeter Rheotec RC 20 with spindle CC 25 DIN (diameter: 12,5 mm; internal diameter oft the measuring cylinder: 13,56 mm) at a shearing rate of 50 s-1. Table 1 (summary of polymerization examples 1-15).
    Catalyst / Example Catalyst load [ppm] Induction period [min] OH# [mg KOH/g] Viscosity [mPas]
    A / 1* 70 2 22.9 3,541
    A / 2* 50 2 23.2 5,326
    B / 3* 70 No reaction
    C / 4 70 4 23.7 1,520
    C / 5 62 14 26.2 1,554
    D / 6 83 5 23.2 1,896
    D / 7 50 5 22.8 2,590
    E / 8 83 4 23.7 1,468
    E / 9 62 2 23.3 1,817
    F / 10 70 4 23.6 1,467
    F / 11 50 7 22.5 2,040
    G / 12 76 12 23.6 1,418
    G / 13 58 12 24.3 1,454
    H / 14 70 3 23.3 1,605
    H / 15 50 2 22.4 2,531
    * Comparative Example

Claims (13)

  1. A method for preparing a DMC catalyst, comprising treating a first crystalline DMC catalyst having the formula Zn3[Co(CN)6]2*Zn(OAc)2*nH2O with a Brønsted acid selected from the group consisting of hydrochloric acid, hydrobromic acid, nitric acid, and mixtures thereof in the presence of an organic ligand which is isopropanol.
  2. A crystalline DMC catalyst obtainable by the process of claim 1.
  3. The catalyst of claim 2 corresponding to the formula

            Zn3[Co(CN)6]2*[aZn(OAc)2*bZnX1 x*cZnX2 y*dZnX3 2]*L*nH2O

    wherein
    L is isopropanol;
    X is selected from the group consisting of chloride, bromide, and nitrate;
    a, b, c, d, and n are integers or fractions greater than or equal to zero, with the proviso that a is greater than zero and at least one of b, c, and d is different from zero; or at least two of b, c, and d are greater than zero;
    x, y and z are chosen so that the compound is electrically neutral.
  4. The DMC catalyst of claim 2, crystallizing in the hexagonal crystal system.
  5. The DMC catalyst of claim 2, showing in its XRD diagram reflections corresponding to d-values of 6.3±0.1 Å, 5.9±0.1 Å, 4.7±0.1 Å, 3.8±0.1 Å, 3.0±0.1 Å, 2.8±0.1 Å, 2.4±0.1 Å, 2.3±0.1 Å.
  6. The DMC catalyst of claim 2, showing in its XRD diagram reflections corresponding to d-values of 17.2±0.1 Å, 15.4±0.1 Å, 5.7±0.1 Å, 4.7±0.1 Å, 4.4±0.1 Å, 3.9±0.1 Å, 3.8±0.1 Å, 3.0±0.1 Å, 2.3±0.1 Å.
  7. The DMC catalyst of claim 2, showing in its XRD diagram reflections corresponding to d-values of 17.5±0.1 Å, 16.7±0.1 Å, 5.3±0.1 Å, 4.6±0.1 Å, 4.4±0.1 Å, 3.8±0.1 Å, 2.4±0.1 Å
  8. The DMC catalyst of any one of claims 2 to 7, having a zinc content of 26 to 32 wt.-%.
  9. The DMC catalyst of any one of claims 2 to 8, having a molar ratio zinc/cobalt of from 1.7 to 2.3.
  10. The DMC catalyst of any one of claims 2 to 9, having a specific area, determined via nitrogen sorption (N2-isotherm) according to DIN 66134, in the range of from 100 m2/g to 800 m2/g.
  11. The DMC catalyst of any one of claims 2 to 10, having a mean BJH pore diameter (4V/A), determined via nitrogen sorption (N2-isotherm) according to DIN 66134, in the range of from 10 Å to 150 Å.
  12. The DMC catalyst of any one of claims 2 to 11, having a N2 pore volume, determined via nitrogen sorption (N2-isotherm) according to DIN 66134, in the range of from 0.035 to 0.26 ml/g for pore diameters in the range of from 2 to 200 nm.
  13. Use of a DMC catalyst according to any one of claims 2 to 12 in the polymerisation of epoxides; or the copolymerisation of epoxides with lactones, anhydrides, or carbon dioxide; or in the production of polyether polyols.
EP11736272.3A 2010-06-23 2011-06-17 Modified double metal cyanide catalysts, process for the preparation by treatment of crystalline dmc catalyst with bronsted acid and use thereof Active EP2585215B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/074322 WO2011160296A1 (en) 2010-06-23 2010-06-23 Modified double metal cyanide catalyst
PCT/EP2011/003014 WO2011160797A1 (en) 2010-06-23 2011-06-17 Modified double metal cyanide catalysts, process for the preparation by treatment of crystalline dmc catalyst with bronsted acid and use thereof

Publications (2)

Publication Number Publication Date
EP2585215A1 EP2585215A1 (en) 2013-05-01
EP2585215B1 true EP2585215B1 (en) 2017-09-27

Family

ID=44543137

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11736272.3A Active EP2585215B1 (en) 2010-06-23 2011-06-17 Modified double metal cyanide catalysts, process for the preparation by treatment of crystalline dmc catalyst with bronsted acid and use thereof

Country Status (3)

Country Link
EP (1) EP2585215B1 (en)
ES (1) ES2653156T3 (en)
WO (2) WO2011160296A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010039090A1 (en) 2010-08-09 2012-02-09 Basf Se Process for the preparation of polyether alcohols
WO2020062816A1 (en) 2018-09-29 2020-04-02 杭州普力材料科技有限公司 Mixed acid-modified zinc-cobalt two-metal cyanide catalyst and preparation method thereof
CN110964191B (en) * 2018-09-29 2021-02-02 杭州普力材料科技有限公司 Mixed acid modified zinc-cobalt double metal cyanide catalyst and preparation method thereof
WO2023075987A1 (en) * 2021-10-25 2023-05-04 Dow Global Technologies Llc Polyether polymerization process

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829505A (en) 1970-02-24 1974-08-13 Gen Tire & Rubber Co Polyethers and method for making the same
AU551979B2 (en) 1982-03-31 1986-05-15 Shell Internationale Research Maatschappij B.V. Epoxy polymerisation catalysts
AU552988B2 (en) 1982-03-31 1986-06-26 Shell Internationale Research Maatschappij B.V. Polymerizing epoxides and catalyst suspensions for this
JPH05331278A (en) 1992-05-29 1993-12-14 Asahi Glass Co Ltd Production of polyether having high molecular weight
US5470813A (en) 1993-11-23 1995-11-28 Arco Chemical Technology, L.P. Double metal cyanide complex catalysts
US5482908A (en) 1994-09-08 1996-01-09 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5639705A (en) 1996-01-19 1997-06-17 Arco Chemical Technology, L.P. Double metal cyanide catalysts and methods for making them
US5627120A (en) 1996-04-19 1997-05-06 Arco Chemical Technology, L.P. Highly active double metal cyanide catalysts
US5900384A (en) 1996-07-18 1999-05-04 Arco Chemical Technology L.P. Double metal cyanide catalysts
US5714428A (en) 1996-10-16 1998-02-03 Arco Chemical Technology, L.P. Double metal cyanide catalysts containing functionalized polymers
US6077978A (en) 1997-09-17 2000-06-20 Arco Chemical Technology L.P. Direct polyoxyalkylation of glycerine with double metal cyanide catalysis
DE19742978A1 (en) 1997-09-29 1999-04-01 Basf Ag Multimetal cyanide complexes as catalysts
DE19842382A1 (en) 1998-09-16 2000-03-23 Bayer Ag Double metal cyanide catalyst
DE19809538A1 (en) 1998-03-05 1999-09-09 Basf Ag Process for the preparation of double metal cyanide catalysts
CN1080589C (en) * 1998-04-29 2002-03-13 中国科学院山西煤炭化学研究所 Double metal cyanide catalyst and its prepn. method
US6063897A (en) * 1998-05-05 2000-05-16 Arco Chemical Technology, L.P. Acid-treated double metal cyanide complex catalysts
US6028230A (en) 1998-06-05 2000-02-22 Arco Chemical Technology, L.P. Epoxide polymerization process
US6613714B2 (en) 1999-06-02 2003-09-02 Basf Aktiengesellschaft Multimetal cyanide compounds, their preparation and their use
CN1360608A (en) 1999-07-09 2002-07-24 陶氏化学公司 Method for preparing metal cyanide catalysts using polycarboxylic acids
US6423662B1 (en) 1999-07-09 2002-07-23 Dow Global Technologies Inc. Incipient wetness method for making metal-containing cyanide catalysts
DE10001779A1 (en) 2000-01-18 2001-07-19 Basf Ag Production of polyether-alcohol, used as starting material for polyurethane production, involves alkoxylation of H-functional starter with alkylene oxide in the presence of multi-metal cyanide catalyst and acid compound
WO2001064772A1 (en) 2000-02-29 2001-09-07 Basf Aktiengesellschaft Method for producing multimetal cyanide compounds
US6429166B1 (en) 2000-05-19 2002-08-06 Dow Global Technologies Inc. Method for preparing metal cyanide catalyst/polyol initiator slurries
US6436867B1 (en) 2000-08-01 2002-08-20 Basf Corporation One-step synthesis of double metal cyanides
KR100418058B1 (en) 2001-04-18 2004-02-14 에스케이씨 주식회사 Catalyst of double metal cyanide complex for polyol manufacturing
DE10141122A1 (en) 2001-08-22 2003-03-13 Basf Ag Process for increasing the catalytic activity of multimetal cyanide compounds
EP1288244A1 (en) 2001-08-31 2003-03-05 Asahi Glass Company, Limited Double metal cyanide complex catalyst for ring opening polymerization of alkylene oxide and its production process
DE10147711A1 (en) 2001-09-27 2003-04-10 Basf Ag Process for the preparation of polyether alcohols
DE10156117A1 (en) 2001-11-15 2003-05-28 Basf Ag Process for the preparation of polyether alcohols
DE10210596A1 (en) 2002-03-11 2003-09-25 Basf Ag Polyethers and their use as carrier oils
DE10228254A1 (en) 2002-06-24 2004-01-22 Basf Ag Process for the preparation of polyether alcohols
WO2004022227A1 (en) 2002-08-15 2004-03-18 Basf Aktiengesellschaft Method for the production of multimetal cyanide catalysts
CN1589966A (en) 2003-09-05 2005-03-09 中国石化集团天津石油化工公司 Preparation of bimetal cyanide catalyst using acid treating metal salt
KR100581616B1 (en) 2004-02-03 2006-05-22 에스케이씨 주식회사 Stereochemistry Polyetherpolyol and Manufacturing Method of the same
US6869905B1 (en) 2004-03-02 2005-03-22 Basf Corporation Synthesis of double metal cyanides with non-aqueous solutions
DE102004048735A1 (en) 2004-10-05 2006-04-27 Basf Ag Process for the continuous production of DMC catalysts
DE102005011581A1 (en) * 2005-03-10 2006-09-14 Basf Ag Process for the preparation of DMC catalysts
KR20070112793A (en) * 2005-03-22 2007-11-27 쉘 인터내셔날 리써취 마트샤피지 비.브이. Process for the preparation of an improved double metal cyanide complex catalyst, double metal cyanide catalyst and use of such catalyst
DE102005057895A1 (en) 2005-12-02 2007-06-06 Basf Ag Preparing multi-metal cyanide compound, useful to prepare e.g. polyetherpolyol, comprises reacting aqueous solution of a metal salt and -cyanometallate compound to give a multi-metal cyanide compound followed by reacting with a salt
US20080021191A1 (en) 2006-07-20 2008-01-24 Reese Jack R High water content tolerant process for the production of polyethers
MX2009008311A (en) 2007-02-05 2009-08-12 Basf Se Dmc catalysts, method for the production thereof and use thereof.
CN101085829B (en) * 2007-06-22 2010-06-02 广西壮族自治区化工研究院 Catalyst for synthesizing polyether glycol from sucrose and oxidized olefin and preparation method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
WO2011160296A1 (en) 2011-12-29
WO2011160797A8 (en) 2012-10-11
ES2653156T3 (en) 2018-02-06
WO2011160797A1 (en) 2011-12-29
EP2585215A1 (en) 2013-05-01

Similar Documents

Publication Publication Date Title
KR100355336B1 (en) Highly active double metal cyanide catalyst
US6806393B2 (en) Multimetal cyanide compounds, their preparation and their use
US5545601A (en) Polyether-containing double metal cyanide catalysts
US7015364B2 (en) Process for preparing polyether polyols
JP4413998B2 (en) Highly active double metal cyanide catalyst
CA2306378C (en) Crystalline double metal cyanide catalysts for producing polyether polyols
EP2709757B1 (en) Process for preparing highly active double metal cyanide catalysts and their use in the synthesis of polyether polyols
CA2179946A1 (en) Highly active double metal cyanide complex catalysts
EP2585215B1 (en) Modified double metal cyanide catalysts, process for the preparation by treatment of crystalline dmc catalyst with bronsted acid and use thereof
JP2002524249A (en) Double metal cyanide catalysts for producing polyether polyols
EP2490805B1 (en) Conditioning of double metal cyanide catalysts
JP4975935B2 (en) Method for producing metal cyanide catalyst / polyol initiator slurry
KR100555266B1 (en) Double Metal Cyanide Catalysts Containing Polyester for Preparing Polyether Polyoles
CA2315766C (en) Improved double-metal cyanide catalysts for the production of polyether polyols
CN1311716A (en) Bimetallic-cyanide catalysts used for preparing polyether polyols
JP2002524248A (en) Double metal cyanide catalysts for producing polyether polyols
CA2252398C (en) Highly active double metal cyanide catalysts
KR20020028210A (en) Metal catalysts complexed with sulfone or sulfoxide compounds

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130123

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131025

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170508

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 931488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011041902

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170927

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2653156

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180206

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 931488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171228

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180127

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011041902

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

26N No opposition filed

Effective date: 20180628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180617

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180617

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170927

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20200626

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20200710

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210630

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20220902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210618

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230627

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20230626

Year of fee payment: 13