EP2584795A2 - Method for determining a compression characteristic curve - Google Patents

Method for determining a compression characteristic curve Download PDF

Info

Publication number
EP2584795A2
EP2584795A2 EP12188476.1A EP12188476A EP2584795A2 EP 2584795 A2 EP2584795 A2 EP 2584795A2 EP 12188476 A EP12188476 A EP 12188476A EP 2584795 A2 EP2584795 A2 EP 2584795A2
Authority
EP
European Patent Office
Prior art keywords
frequency
max
bark
hearing
knee point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP12188476.1A
Other languages
German (de)
French (fr)
Other versions
EP2584795A3 (en
EP2584795B1 (en
Inventor
Ronny Hannemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sivantos Pte Ltd
Original Assignee
Siemens Medical Instruments Pte Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Medical Instruments Pte Ltd filed Critical Siemens Medical Instruments Pte Ltd
Publication of EP2584795A2 publication Critical patent/EP2584795A2/en
Publication of EP2584795A3 publication Critical patent/EP2584795A3/en
Application granted granted Critical
Publication of EP2584795B1 publication Critical patent/EP2584795B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/70Adaptation of deaf aid to hearing loss, e.g. initial electronic fitting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2225/00Details of deaf aids covered by H04R25/00, not provided for in any of its subgroups
    • H04R2225/43Signal processing in hearing aids to enhance the speech intelligibility
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/35Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using translation techniques
    • H04R25/353Frequency, e.g. frequency shift or compression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R25/00Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception
    • H04R25/55Deaf-aid sets, i.e. electro-acoustic or electro-mechanical hearing aids; Electric tinnitus maskers providing an auditory perception using an external connection, either wireless or wired
    • H04R25/552Binaural

Definitions

  • the present invention relates to a method for determining a knee point of a frequency compression characteristic for a hearing device. Moreover, the present invention relates to a method for determining a frequency compression characteristic and a method for adjusting a binaural hearing system.
  • hearing device here is understood to mean any device which can be worn in or on the ear and triggers a sound stimulus, in particular a hearing device, headphones and the like.
  • Hearing aids are portable hearing aids that are used to care for the hearing impaired.
  • different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (ITE), e.g. Concha hearing aids or canal hearing aids (ITE, CIC).
  • BTE behind-the-ear hearing aids
  • RIC hearing aid with external receiver
  • ITE in-the-ear hearing aids
  • ITE in-the-ear hearing aids
  • ITE in-the-ear hearing aids
  • ITE concha hearing aids or canal hearing aids
  • the hearing aids listed by way of example are worn on the outer ear or in the ear canal.
  • bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.
  • Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer.
  • the input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil.
  • the output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized.
  • the amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for Carrying behind the ear, one or more microphones 2 are installed for recording the sound from the environment.
  • a signal processing unit 3 which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them.
  • the output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal.
  • the sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier.
  • the power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5
  • Frequency compression is a relatively new technology in hearing aids. Frequency compression makes high-frequency information audible that can not be heard without this procedure. This is achieved by an algorithm that maps high frequency information from higher frequencies to lower frequencies. Originally low frequencies are replaced with the new information.
  • the US 2011/0249843 A1 describes a method for determining a knee point of a frequency compression characteristic for a hearing aid.
  • a critical frequency in the frequency domain is determined, the input signal is analyzed, a cutoff frequency is defined, a source frequency above the cutoff frequency is identified, and a target frequency band below the cutoff frequency is identified.
  • the DE 10 2009 058 415 A1 describes that in a hearing aid existing sounds and in particular their fundamental frequencies are to be determined in the input signal and the frequency transpositions are to be executed in dependence on the determined fundamental frequencies.
  • the transposed harmonics are again placed on the frequency raster of the fundamental frequency, so that the sound property is retained even after the frequency transposition.
  • the object of the present invention is therefore to be able to adjust the frequency compression of a hearing device in a simple manner so that it is possible to achieve advantages in terms of speech intelligibility.
  • the knee point of the frequency compression characteristic is determined as a function of the maximum audible frequency of the user (ie the highest frequency audible by the user) of the hearing device. It is assumed that a frequency compression characteristic has at least two legs, which are connected to each other at the knee point. By suitable displacement of the knee point in accordance with the prescribed rule, it is thus possible to optimize the information that can be transmitted in the audible range to the user of the hearing device.
  • the knee point is always set above 1.5 kHz. Since below the knee point the frequencies are typically transmitted uncompressed, in the case of the knee point above 1.5 kHz, all essential spectral components are transmitted unchanged, allowing the user to distinguish female voices from male voices.
  • the knee point can be calculated using the Bark scale.
  • the Bark scale represents a psychoacoustic scale for the perceived pitch (tonality).
  • f_max_bark is the maximum audible frequency converted into a bark value
  • no_bands_down is a number of critical bands defined as a function of the maximum audible frequency.
  • a method for determining a frequency compression characteristic according to which an input value is mapped into an output value can be provided by determining a knee point according to the above methods, wherein below the knee point each input value is equal to the respective output value.
  • the lower part of a frequency compression characteristic is set from zero to the knee-point frequency. There is no compression in this frequency range.
  • the input value f_source_max can be calculated to the output value f_max, which corresponds to the maximum audible frequency, using the Bark scale.
  • the algorithm for adjusting the frequency compression is closer to the psychoacoustic magnitude of the actual perceptible pitch.
  • a method for automatic adjustment of a binaural hearing system can be provided. It is particularly advantageous if the just described frequency compression characteristic is determined for that ear of the user of the hearing devices, which has the lower hearing loss. This ensures that the user of the hearing devices is not lost information that the user could still hear.
  • a frequency compression algorithm of a hearing aid or other hearing device is to be adjusted to provide a benefit in terms of speech intelligibility as compared to the case of a hearing aid without frequency compression. All other parameters of the hearing aid except the frequency compression are not changed (gain, level compression, etc.).
  • this frequency compression characteristic 10 has the in FIG. 3 illustrated structure. It has two linear sections 11 and 12, of which the first section 11 leads from the origin of the diagram to a knee point 13, and the second linear section 12 from the knee point 13 to an end point 14. The first linear section 11 has the slope one, so that no frequency compression takes place in the frequency range from zero to the knee point 13 or the frequency f_cutoff.
  • the frequency compression characteristic is therefore characterized by three parameters: the frequency f_cutoff, which represents the two coordinates of the knee point 13 and the starting point of the actual frequency compression algorithm (all frequencies below f_cutoff are not affected by the algorithm), the frequency f_max, which is the maximum audible frequency and the frequency f_source_max corresponding to the original input frequency which is mapped to the output frequency f_max by the frequency compression characteristic.
  • the information in the original frequency range between f_cutoff and f_source_max is mapped to the area between f_cutoff and f_max. This reduction in bandwidth results in the audibility of high frequency information at lower frequencies at the expense of loss of original low frequency information.
  • the fact whether a user of a hearing device is suitable for the frequency compression according to the invention can be estimated reliably with two measurements. These measurements should be performed on the ear with better residual hearing.
  • the first measurement corresponds to an audiogram and the second measurement concerns the presence of a so-called dead region in the user's ear.
  • Based solely on the audiogram it is usually not possible to reliably determine the maximum audible frequency. This is because, for example, on the basilar membrane hairs are not excited by the sound waves directly to vibrate, but also by vibrations of the basilar membrane itself. Thus, for example, sound is heard, which is beyond an actual maximum audible frequency.
  • a dead area or its lower limit is determined by the so-called TEN test (see below).
  • a benefit achievable by a hearing aid can be calculated.
  • the calculation of the hearing aid output spectrum allows an estimate of the maximum audible frequency with the respective setting.
  • the intersection of the hearing aid output spectrum with the hearing loss (audiogram) determines the so-called maximum audible frequency f_max.
  • the frequency compression adjustment may be adjusted to specific needs (other hearing aid categories or specific subgroups of hearing impaired persons).
  • the calculated maximum audible frequency f_max can be changed to the resultant value.
  • the parameters of the frequency compression characteristic f_cutoff and f_source_max are preferably determined on the basis of frequency groups (critical bands), cf. Bark-Skala and Eberhard Zwicker: "Subdivision of the audible frequency range into critical bands", J. Acoust Soc. At the. Volume 33, page 248, Feb. 1961 ).
  • the starting point for the calculations is the maximum audible frequency f_max, which also corresponds to the lower frequency of a dead region. In step 15, therefore, the maximum audible frequency f_max is determined from the audiogram, which itself was measured in step 16, and possibly the TEN test, which was carried out in step 17.
  • the frequency f_cutoff in step 18 which represents the coordinates of the knee point 13.
  • the maximum source frequency f_source_max is determined as a function of the frequency f_max, which is mapped to the same frequency f_max.
  • a frequency compression characteristic curve 10 is determined with which the frequency compression algorithm is set.
  • the algorithm thus formed results in a frequency compression setting which ensures improved speech intelligibility.
  • the value of f_max becomes a bark value f_max_bark according to a method of H. Traunmuller (1990) "Analytical expressions for the tonotopic sensory scale" J. Acoust Soc. At the. 88: pages 97 to 100 transformed.
  • the value f_max_bark should be changeable, for example if a lower frequency compression is desired. It should then be ensured, for example for a given filter bank, that the changed value f_max_bark represents a frequency between 2 kHz and 8 kHz.
  • the frequency f_cutoff of the knee point can be calculated.
  • the knee point is therefore at a certain distance (counted in frequency groups) below the maximum audible frequency f_max.
  • values for f_max ⁇ 2 kHz would lead to f_cutoff values ⁇ 1.5 kHz, which should be avoided from an audiological point of view. Therefore, values for f_max ⁇ 2 kHz are always set to 2 kHz, regardless of the actual measured value.
  • the above calculations ensure that audiological requirements 1 and 2 (see above) are met. These requirements are the basis for improving speech intelligibility through the frequency compression algorithm.
  • the values in the table here refer to a filter bank with 48 channels, each with a bandwidth of 250 Hz.
  • the illustrated fitting strategy for a frequency compression algorithm combines several hearing aid fitting steps, which were typically done manually (eg, measurements on 2 cm 3 test volumes).
  • the hearing threshold resulting from wearing the hearing aid is used for the estimation of the maximum audible frequency, as is the usual manual unbundling of the center frequencies of the fricatives "s" and “sch” in the hearing aid fitting.
  • This manual method for separating "s” and “sch” is now automated in the manner according to the invention.
  • the concept of critical bandwidths (frequency groups according to the Bark scale) is preferably also used in the presented automatic adaptation, so that ultimately there are clear advantages in the automatic adaptation of frequency compression with regard to speech intelligibility.
  • the hearing impaired subjects show an improved speech intelligibility.
  • the adaptation strategy according to the invention of a frequency compression algorithm on the one hand shows a measurable improvement in speech intelligibility when frequency compression is activated and, on the other hand, a faster one Adaptation of hearing aids with frequency compression algorithms.
  • the adaptation can now be automated and does not require long measurements and fitting sessions.
  • it is also possible to predict an additional benefit with regard to speech intelligibility with frequency compression.
  • Another advantage is that improved speech intelligibility already sets up after initial adaptation.

Abstract

The method involves determining (15) a maximum audible frequency of a hearing device. The knee point is determined by predefined rule in dependence on the maximum audible frequency. The parameters of frequency compression characteristic are constituted on a basis of frequency groups such that number of frequency groups is determined based on the maximum audible frequency. The maximum compression rate is set to be 4. An independent claim is included for method for adjusting a binaural hearing system.

Description

Die vorliegende Erfindung betrifft ein Verfahren zum Ermitteln eines Kniepunkts einer Frequenzkompressionskennlinie für eine Hörvorrichtung. Darüber hinaus betrifft die vorliegende Erfindung ein Verfahren zum Ermitteln einer Frequenzkompressionskennlinie und ein Verfahren zum Einstellen eines binauralen Hörsystems. Unter dem Begriff Hörvorrichtung wird hier jedes im oder am Ohr tragbares, einen Schallreiz auslösendes Gerät, insbesondere ein Hörgerät, Kopfhörer und dergleichen, verstanden.The present invention relates to a method for determining a knee point of a frequency compression characteristic for a hearing device. Moreover, the present invention relates to a method for determining a frequency compression characteristic and a method for adjusting a binaural hearing system. The term hearing device here is understood to mean any device which can be worn in or on the ear and triggers a sound stimulus, in particular a hearing device, headphones and the like.

Hörgeräte sind tragbare Hörvorrichtungen, die zur Versorgung von Schwerhörenden dienen. Um den zahlreichen individuellen Bedürfnissen entgegenzukommen, werden unterschiedliche Bauformen von Hörgeräten wie Hinter-dem-Ohr-Hörgeräte (HdO), Hörgerät mit externem Hörer (RIC: receiver in the canal) und In-dem-Ohr-Hörgeräte (IdO), z.B. auch Concha-Hörgeräte oder Kanal-Hörgeräte (ITE, CIC), bereitgestellt. Die beispielhaft aufgeführten Hörgeräte werden am Außenohr oder im Gehörgang getragen. Darüber hinaus stehen auf dem Markt aber auch Knochenleitungshörhilfen, implantierbare oder vibrotaktile Hörhilfen zur Verfügung. Dabei erfolgt die Stimulation des geschädigten Gehörs entweder mechanisch oder elektrisch.Hearing aids are portable hearing aids that are used to care for the hearing impaired. In order to meet the numerous individual needs, different types of hearing aids such as behind-the-ear hearing aids (BTE), hearing aid with external receiver (RIC: receiver in the canal) and in-the-ear hearing aids (ITE), e.g. Concha hearing aids or canal hearing aids (ITE, CIC). The hearing aids listed by way of example are worn on the outer ear or in the ear canal. In addition, bone conduction hearing aids, implantable or vibrotactile hearing aids are also available on the market. The stimulation of the damaged hearing takes place either mechanically or electrically.

Hörgeräte besitzen prinzipiell als wesentliche Komponenten einen Eingangswandler, einen Verstärker und einen Ausgangswandler. Der Eingangswandler ist in der Regel ein Schallempfänger, z. B. ein Mikrofon, und/oder ein elektromagnetischer Empfänger, z. B. eine Induktionsspule. Der Ausgangswandler ist meist als elektroakustischer Wandler, z. B. Miniaturlautsprecher, oder als elektromechanischer Wandler, z. B. Knochenleitungshörer, realisiert. Der Verstärker ist üblicherweise in eine Signalverarbeitungseinheit integriert. Dieser prinzipielle Aufbau ist in FIG 1 am Beispiel eines Hinter-dem-Ohr-Hörgeräts dargestellt. In ein Hörgerätegehäuse 1 zum Tragen hinter dem Ohr sind ein oder mehrere Mikrofone 2 zur Aufnahme des Schalls aus der Umgebung eingebaut. Eine Signalverarbeitungseinheit 3, die ebenfalls in das Hörgerätegehäuse 1 integriert ist, verarbeitet die Mikrofonsignale und verstärkt sie. Das Ausgangssignal der Signalverarbeitungseinheit 3 wird an einen Lautsprecher bzw. Hörer 4 übertragen, der ein akustisches Signal ausgibt. Der Schall wird gegebenenfalls über einen Schallschlauch, der mit einer Otoplastik im Gehörgang fixiert ist, zum Trommelfell des Geräteträgers übertragen. Die Energieversorgung des Hörgeräts und insbesondere die der Signalverarbeitungseinheit 3 erfolgt durch eine ebenfalls ins Hörgerätegehäuse 1 integrierte Batterie 5.Hearing aids have in principle as essential components an input transducer, an amplifier and an output transducer. The input transducer is usually a sound receiver, z. As a microphone, and / or an electromagnetic receiver, for. B. an induction coil. The output transducer is usually used as an electroacoustic transducer, z. As miniature speaker, or as an electromechanical transducer, z. B. bone conduction, realized. The amplifier is usually integrated in a signal processing unit. This basic structure is in FIG. 1 shown using the example of a behind-the-ear hearing aid. In a hearing aid housing 1 for Carrying behind the ear, one or more microphones 2 are installed for recording the sound from the environment. A signal processing unit 3, which is also integrated in the hearing aid housing 1, processes the microphone signals and amplifies them. The output signal of the signal processing unit 3 is transmitted to a loudspeaker or earpiece 4, which outputs an acoustic signal. The sound is optionally transmitted via a sound tube, which is fixed with an earmold in the ear canal, to the eardrum of the device carrier. The power supply of the hearing device and in particular the signal processing unit 3 is effected by a likewise integrated into the hearing aid housing 1 battery. 5

Frequenzkompression ist eine verhältnismäßig neue Technik bei Hörgeräten. Durch die Frequenzkompression werden hochfrequente Informationen hörbar, die ohne dieses Verfahren nicht gehört werden können. Erreicht wird dies durch einen Algorithmus, der Hochfrequenzinformation von höheren Frequenzen auf niedrigere Frequenzen abbildet. Ursprünglich niedrige Frequenzen werden dabei mit der neuen Information ersetzt.Frequency compression is a relatively new technology in hearing aids. Frequency compression makes high-frequency information audible that can not be heard without this procedure. This is achieved by an algorithm that maps high frequency information from higher frequencies to lower frequencies. Originally low frequencies are replaced with the new information.

Damit sich der Frequenzkompressionsalgorithmus auch hinsichtlich Sprachverständlichkeit als profitabel erweist, muss dieser Algorithmus in einer speziellen Art parametriert werden. Derzeit ist man jedoch nicht in der Lage, verlässlich darzulegen, dass durch einen Frequenzkompressionsalgorithmus Vorteile bezüglich der Sprachverständlichkeit erwartet werden können. Insbesondere fehlt es an einer definierten Strategie, einen Frequenzkompressionsalgorithmus so zu parametrieren, dass sich hinsichtlich der Sprachverständlichkeit ein Profit ergibt. Da die Sprachverständlichkeit sehr wichtig ist, damit Hörgeschädigte an täglichen Unterhaltungen in befriedigender Weise teilnehmen können, und damit sie mit ihrem Hörgerät zufrieden sind, ist es entsprechend bedeutsam, mit Hörgeräten eine bessere Sprachverständlichkeit erlangen zu können.In order for the frequency compression algorithm to be profitable in terms of speech intelligibility, this algorithm must be parameterized in a special way. However, there is currently no way to reliably demonstrate that speech frequency benefits can be expected through a frequency compression algorithm. In particular, there is a lack of a defined strategy to parameterize a frequency compression algorithm in such a way that there is a profit in terms of speech intelligibility. Since speech intelligibility is very important for hearing-impaired people to be able to participate satisfactorily in daily conversations, and for them to be satisfied with their hearing aid, it is correspondingly important to be able to obtain better speech intelligibility with hearing aids.

Derzeit übliche Techniken zur Einstellung von Frequenzkompressionsalgorithmen berücksichtigen nicht die akustische Feinstruktur von Konsonanten und Vokalen wie etwa deren Mittenfrequenz oder andere Charakteristiken, z. B. Formanten. Heutige Anpassstrategien, die während einer Erstanpassung angewandt werden, zielen eher auf eine erhöhte Rückkopplungsstabilität anstatt auf Vorteile bzgl. Sprachverständlichkeit. Nur durch eine äußerst mühsame und zeitaufwändige, manuelle Feineinstellung lässt sich ein zusätzlicher Nutzen bzgl. Sprachverständlichkeit erreichen.Currently common techniques for setting frequency compression algorithms do not consider the acoustic Fine structure of consonants and vowels such as their center frequency or other characteristics, eg. B. formants. Today's fitting strategies applied during initial fitting are aimed at increased feedback stability rather than speech intelligibility benefits. Only through a very tedious and time-consuming, manual fine adjustment can be an additional benefit in terms of speech intelligibility reach.

Die US 2011/0249843 A1 beschreibt ein Verfahren zur Bestimmung eines Kniepunkts einer Frequenzkompressionskennlinie für eine Hörhilfe. Dabei wird eine kritische Frequenz in dem Frequenzbereich bestimmt, das Eingangssignal wird analysiert, eine Grenzfrequenz wird definiert, eine Quellfrequenz oberhalb der Grenzfrequenz wird identifiziert und ein Zielfrequenzband unterhalb der Grenzfrequenz wird identifiziert.The US 2011/0249843 A1 describes a method for determining a knee point of a frequency compression characteristic for a hearing aid. A critical frequency in the frequency domain is determined, the input signal is analyzed, a cutoff frequency is defined, a source frequency above the cutoff frequency is identified, and a target frequency band below the cutoff frequency is identified.

Die DE 10 2009 058 415 A1 beschreibt, dass bei einem Hörgerät im Eingangssignal vorhandene Klänge und insbesondere deren Grundfrequenzen ermittelt werden sollen und die Frequenztranspositionen in Abhängigkeit von den ermittelten Grundfrequenzen ausgeführt werden sollen. Die transponierten Obertöne werden dabei wieder auf das Frequenz-Raster der Grundfrequenz gelegt, sodass die Klang-Eigenschaft auch nach der Frequenztransposition erhalten bleibt.The DE 10 2009 058 415 A1 describes that in a hearing aid existing sounds and in particular their fundamental frequencies are to be determined in the input signal and the frequency transpositions are to be executed in dependence on the determined fundamental frequencies. The transposed harmonics are again placed on the frequency raster of the fundamental frequency, so that the sound property is retained even after the frequency transposition.

In dem Artikel "Verbesserte Hörbarkeit für Menschen mit hochgradigem Hörverlust" von O. Bürkli-Halevy et al., veröffentlicht in Hörakustik 3, 2008, Seiten 8 bis 14 ist beschrieben, dass bei Hörgeräten eine Frequenzkompression mit einem Kompressionsverhältnis zwischen 1,5:1 und 4:1 verwendet werden soll.In the article "Improved audibility for people with severe hearing loss" by O. Bürkli-Halevy et al., Published in Hörakustik 3, 2008, pages 8-14 It is described that in hearing aids a frequency compression with a compression ratio between 1.5: 1 and 4: 1 should be used.

Die Aufgabe der vorliegenden Erfindung besteht somit darin, die Frequenzkompression einer Hörvorrichtung in einfacher Weise so einstellen zu können, dass sich Vorteile bezüglich Sprachverständlichkeit erzielen lassen.The object of the present invention is therefore to be able to adjust the frequency compression of a hearing device in a simple manner so that it is possible to achieve advantages in terms of speech intelligibility.

Erfindungsgemäß wird diese Aufgabe gelöst durch ein Verfahren zum Ermitteln eines Kniepunkts einer Frequenzkompressionskennlinie für eine Hörvorrichtung, durch

  • Ermitteln einer maximal hörbaren Frequenz eines Nutzers der Hörvorrichtung, und
  • Ermitteln des Kniepunkts mittels einer vorgegebenen Vorschrift in Abhängigkeit von der maximal hörbaren Frequenz, wobei
  • Parameter der Frequenzkompressionskennlinie auf der Basis von Frequenzgruppen gebildet werden.
According to the invention, this object is achieved by a method for determining a knee point of a frequency compression characteristic curve for a hearing device
  • Determining a maximum audible frequency of a user of the hearing device, and
  • Determining the knee point by means of a predetermined rule as a function of the maximum audible frequency, wherein
  • Parameters of the frequency compression characteristic are formed on the basis of frequency groups.

In vorteilhafter Weise wird also der Kniepunkt der Frequenzkompressionskennlinie in Abhängigkeit von der maximal hörbaren Frequenz des Nutzers (also der höchsten vom Nutzer hörbaren Frequenz) der Hörvorrichtung bestimmt. Dabei wird davon ausgegangen, dass eine Frequenzkompressionskennlinie mindestens zwei Schenkel aufweist, die an dem Kniepunkt miteinander verbunden sind. Durch geeignete Verschiebung des Kniepunkts entsprechend der vorgegebenen Vorschrift lässt sich so die Information optimieren, die in dem hörbaren Bereich an den Nutzer der Hörvorrichtung übertragen werden kann.Advantageously, therefore, the knee point of the frequency compression characteristic is determined as a function of the maximum audible frequency of the user (ie the highest frequency audible by the user) of the hearing device. It is assumed that a frequency compression characteristic has at least two legs, which are connected to each other at the knee point. By suitable displacement of the knee point in accordance with the prescribed rule, it is thus possible to optimize the information that can be transmitted in the audible range to the user of the hearing device.

Vorzugsweise wird der Kniepunkt in jedem Fall oberhalb von 1,5 kHz festgelegt. Da unterhalb des Kniepunkts die Frequenzen typischerweise unkomprimiert übertragen werden, werden im Fall des Kniepunkts oberhalb von 1,5 kHz alle wesentlichen Spektralanteile unverändert übertragen, die es dem Nutzer ermöglichen, weibliche Stimmen von männlichen Stimmen zu unterscheiden.Preferably, the knee point is always set above 1.5 kHz. Since below the knee point the frequencies are typically transmitted uncompressed, in the case of the knee point above 1.5 kHz, all essential spectral components are transmitted unchanged, allowing the user to distinguish female voices from male voices.

Der Kniepunkt kann mit Hilfe der Bark-Skala berechnet werden. Die Bark-Skala stellt eine psychoakustische Skala für die wahrgenommene Tonhöhe (Tonheit) dar.The knee point can be calculated using the Bark scale. The Bark scale represents a psychoacoustic scale for the perceived pitch (tonality).

In vorteilhafter Weise wird eine Koordinate f_cutoff des Kniepunkts mit Hilfe der Formel f_cutoff = 1960 ( f_max_bark - no_bands_down + 0 , 53 / 26 , 28 - f_max_bark - no_bands_down

Figure imgb0001
berechnet, wobei f_max_bark die maximale hörbare Frequenz umgerechnet in einen Bark-Wert und no_bands_down eine in Abhängigkeit von der maximal hörbaren Frequenz festgelegte Anzahl an Frequenzgruppen (critical bands) bedeutet. Damit muss in einer Zuordnungsvorschrift lediglich noch festgelegt werden, wie hoch der Wert no bands down in Einheiten von Frequenzgruppen (critical bands) in Abhängigkeit von der maximal hörbaren Frequenz ist. Dieser Wert lässt sich analytisch für jede Frequenz oder aber beispielsweise tabellarisch für einzelne Frequenzkanäle festlegen.Advantageously, a coordinate f_cutoff of the knee point is calculated using the formula f_cutoff = 1960 ( f_max_bark - no_bands_down + 0 . 53 / 26 . 28 - f_max_bark - no_bands_down
Figure imgb0001
where f_max_bark is the maximum audible frequency converted into a bark value and no_bands_down is a number of critical bands defined as a function of the maximum audible frequency. Thus, in an assignment rule, it is only necessary to determine what the value no bands down in units of frequency bands (critical bands) is as a function of the maximum audible frequency. This value can be determined analytically for each frequency or, for example, in tabular form for individual frequency channels.

In einer Weiterentwicklung kann somit ein Verfahren zum Ermitteln einer Frequenzkompressionskennlinie, gemäß der ein Eingangswert in einen Ausgangswert abgebildet wird, durch Ermitteln eines Kniepunkts entsprechend der obigen Verfahren bereitgestellt werden, wobei unterhalb des Kniepunkts jeder Eingangswert gleich dem jeweiligen Ausgangswert ist. Damit ist auf alle Fälle der untere Teil einer Frequenzkompressionskennlinie von der Frequenz null bis zu der Kniepunktfrequenz festgelegt. In diesem Frequenzbereich findet keine Kompression statt.Thus, in a further development, a method for determining a frequency compression characteristic according to which an input value is mapped into an output value can be provided by determining a knee point according to the above methods, wherein below the knee point each input value is equal to the respective output value. Thus, in any case, the lower part of a frequency compression characteristic is set from zero to the knee-point frequency. There is no compression in this frequency range.

Oberhalb des Kniepunkts findet typischerweise Kompression statt. Hier sollte die Kompressionsrate maximal den Wert 4 erreichen. Höhere Kompressionsraten führen zu irritierenden Übertragungen.Above the knee point, compression typically occurs. Here the compression rate should maximally reach the value 4. Higher compression rates lead to irritating transmissions.

Auch hier kann der Eingangswert f_source_max zu demjenigen Ausgangswert f_max, der der maximal hörbaren Frequenz entspricht, mit Hilfe der Bark-Skala berechnet werden. Damit ist der Algorithmus zur Einstellung der Frequenzkompression näher an der psychoakustischen Größe der tatsächlich wahrnehmbaren Tonhöhe geführt.Again, the input value f_source_max can be calculated to the output value f_max, which corresponds to the maximum audible frequency, using the Bark scale. Thus, the algorithm for adjusting the frequency compression is closer to the psychoacoustic magnitude of the actual perceptible pitch.

Um die Frequenzkompressionskennlinie oberhalb des Kniepunkts konkret festzulegen, kann der Eingangswert f_source_max für den maximal hörbaren Ausgangswert f_max mit Hilfe der Formel f_source_max = 1960 f_max_bark + no_bands_up + 0 , 53 / 26 , 28 - f max bark + no bands up

Figure imgb0002

berechnet werden, wobei f_max_bark die maximal hörbare Frequenz umgerechnet in einen Bark-Wert und no_bands_up eine in Abhängigkeit von der maximal hörbaren Frequenz festgelegte Anzahl an Frequenzgruppen (critical bands) bedeutet. Auch hier ist dann nur noch für jede maximal hörbare Frequenz f_max bzw. den höchsten hörbaren Kanal eine Anzahl an Frequenzgruppen festzulegen, deren Gesamtbreite den Abstand vom Kniepunkt (f_cutoff) zur Originalfrequenz f_source_max bildet, die entsprechend der Kompressionskennlinie auf die maximal hörbare Frequenz f_max abgebildet wird.In order to specify the frequency compression characteristic above the knee point, the input value f_source_max for the maximum audible output value f_max can be determined using the formula f_source_max = 1960 f_max_bark + no_bands_up + 0 . 53 / 26 . 28 - f max bark + no bands up
Figure imgb0002

where f_max_bark is the maximum audible frequency converted to a bark value and no_bands_up is a number of frequency bands (critical bands) determined as a function of the maximum audible frequency. Here, too, a number of frequency groups whose total width forms the distance from the knee point (f_cutoff) to the original frequency f_source_max, which is mapped to the maximum audible frequency f_max in accordance with the compression characteristic, is only then defined for each maximum audible frequency f_max or the highest audible channel ,

Mit der oben dargestellten erfindungsgemäßen Ermittlung der Frequenzkompressionskennlinie kann ein Verfahren zur automatischen Einstellung eines binauralen Hörsystems bereitgestellt werden. Dabei ist es besonders vorteilhaft, wenn die eben geschilderte Frequenzkompressionskennlinie für dasjenige Ohr des Nutzers der Hörvorrichtungen ermittelt wird, das den geringeren Hörverlust aufweist. Damit wird sichergestellt, dass für den Nutzer der Hörvorrichtungen nicht Information verloren geht, die der Nutzer noch hören könnte.With the inventive determination of the frequency compression characteristic shown above, a method for automatic adjustment of a binaural hearing system can be provided. It is particularly advantageous if the just described frequency compression characteristic is determined for that ear of the user of the hearing devices, which has the lower hearing loss. This ensures that the user of the hearing devices is not lost information that the user could still hear.

Die vorliegende Erfindung wird nun anhand der beigefügten Zeichnungen näher erläutert, in denen zeigen:

FIG 1
den prinzipiellen Aufbau eines Hörgeräts gemäß dem Stand der Technik;
FIG 2
ein Blockschaltdiagramm zur Bestimmung einer Frequenzkompressionskennlinie und
FIG 3
eine erfindungsgemäße Frequenzkompressionskennlinie.
The present invention will now be explained in more detail with reference to the accompanying drawings, in which:
FIG. 1
the basic structure of a hearing aid according to the prior art;
FIG. 2
a block diagram for determining a frequency compression characteristic and
FIG. 3
a frequency compression characteristic according to the invention.

Die nachfolgend näher geschilderten Ausführungsbeispiele stellen bevorzugte Ausführungsformen der vorliegenden Erfindung dar.The embodiments described in more detail below represent preferred embodiments of the present invention.

Mit dem unten beschriebenen Einstell- bzw. Anpassalgorithmus soll ein Frequenzkompressionsalgorithmus eines Hörgeräts oder einer anderen Hörvorrichtung so eingestellt werden, dass sich ein Nutzen hinsichtlich der Sprachverständlichkeit ergibt verglichen mit dem Fall eines Hörgeräts ohne Frequenzkompression. Alle anderen Parameter des Hörgeräts außer der Frequenzkompression werden nicht verändert (Verstärkung, Pegelkompression usw.).With the adjustment algorithm described below, a frequency compression algorithm of a hearing aid or other hearing device is to be adjusted to provide a benefit in terms of speech intelligibility as compared to the case of a hearing aid without frequency compression. All other parameters of the hearing aid except the frequency compression are not changed (gain, level compression, etc.).

In dem Hörgerät ist ein Frequenzkompressionsalgorithmus implementiert, dessen Frequenzkompressionskennlinie 10 (vergleiche FIG 3) die Abbildung einer Eingangsfrequenz f_in (= f_source) auf eine Ausgangsfrequenz f_out (= f_destination) darstellt. Üblicherweise besitzt diese Frequenzkompressionskennlinie 10 die in FIG 3 dargestellte Struktur. Sie besitzt zwei lineare Abschnitte 11 und 12, wovon der erste Abschnitt 11 vom Ursprung des Diagramms zu einem Kniepunkt 13 führt, und der zweite lineare Abschnitt 12 von dem Kniepunkt 13 zu einem Endpunkt 14. Der erste lineare Abschnitt 11 besitzt die Steigung eins, so dass in dem Frequenzbereich von null bis zum Kniepunkt 13 bzw. der Frequenz f_cutoff keine Frequenzkompression stattfindet.In the hearing aid, a frequency compression algorithm is implemented whose frequency compression characteristic 10 (cf. FIG. 3 ) represents the mapping of an input frequency f_in (= f_source) to an output frequency f_out (= f_destination). Usually, this frequency compression characteristic 10 has the in FIG. 3 illustrated structure. It has two linear sections 11 and 12, of which the first section 11 leads from the origin of the diagram to a knee point 13, and the second linear section 12 from the knee point 13 to an end point 14. The first linear section 11 has the slope one, so that no frequency compression takes place in the frequency range from zero to the knee point 13 or the frequency f_cutoff.

Die Frequenzkompressionskennlinie ist also durch drei Parameter charakterisiert: die Frequenz f_cutoff, die die beiden Koordinaten des Kniepunkts 13 darstellt und dem Startpunkt des eigentlichen Frequenzkompressionsalgorithmus entspricht (alle Frequenzen unter f_cutoff sind von dem Algorithmus nicht beeinflusst), die Frequenz f_max, die die maximal hörbare Frequenz darstellt, und die Frequenz f_source_max, die derjenigen Originaleingangsfrequenz entspricht, die durch die Frequenzkompressionskennlinie auf die Ausgangsfrequenz f_max abgebildet wird. Es wird also die Information im Originalfrequenzbereich zwischen f_cutoff und f_source_max auf den Bereich zwischen f_cutoff und f_max abgebildet. Diese Reduktion der Bandbreite führt zur Hörbarkeit von Hochfrequenzinformation bei niedrigeren Frequenzen auf die Kosten eines Verlustes von ursprünglicher Tieffrequenzinformation.The frequency compression characteristic is therefore characterized by three parameters: the frequency f_cutoff, which represents the two coordinates of the knee point 13 and the starting point of the actual frequency compression algorithm (all frequencies below f_cutoff are not affected by the algorithm), the frequency f_max, which is the maximum audible frequency and the frequency f_source_max corresponding to the original input frequency which is mapped to the output frequency f_max by the frequency compression characteristic. Thus, the information in the original frequency range between f_cutoff and f_source_max is mapped to the area between f_cutoff and f_max. This reduction in bandwidth results in the audibility of high frequency information at lower frequencies at the expense of loss of original low frequency information.

Eine vorteilhafte Anpassformel für den Frequenzkompressionsalgorithmus erfüllt jedoch folgende audiologischen Anforderungen:

  1. 1. Die Hörbarkeit von Reibelauten (Frikative) ist erhöht. Insbesondere soll bei aktiviertem Frequenzkompressionsalgorithmus die Mittenfrequenz des Lauts "s" von derjenigen des Lauts "sch" verschieden sein.
  2. 2. Eine Vokalverwechslung zwischen den Vokalen "e" und "i" soll minimiert sein. Bei aktiviertem Frequenzkompressionsalgorithmus sollen die verschobenen Frequenzen des zweiten Vokalformanten von "e" und "i" voneinander verschieden sein, vorzugsweise unabhängig von der Erfüllung der anderen Anforderungen.
  3. 3. Es soll so viel Originalinformation wie möglich erhalten bleiben. Anders ausgedrückt: der Verlust an Originalfrequenzinformation soll minimiert werden. Daher soll der Kniepunkt bzw. f_cutoff möglichst hoch sein, und die resultierende Frequenzkompressionsrate soll mit Rücksicht auf die anderen Anforderungen so klein wie möglich sein. Insbesondere sollte die Frequenzkompressionsrate jedoch maximal den Wert 4 erreichen.
  4. 4. Der Frequenzkompressionsalgorithmus soll bei binauraler Versorgung immer an das Ohr angepasst werden, das das bessere Hörvermögen besitzt.
  5. 5. Bei binauraler Versorgung soll in beiden Hörgeräten die gleiche Einstellung des Frequenzkompressionsalgorithmus angewandt werden, um einen konsistenten Schalleindruck an beiden Ohren zu erreichen, so dass ein kortikales Neuerlernen der auditorischen Wahrnehmung möglich ist.
  6. 6. Die Unterscheidbarkeit von Sprachbeispielen der beiden Geschlechter soll gegeben sein. Daher soll die Frequenz f_cutoff des Kniepunkts 13 nicht unter 1,5 kHz liegen.
However, an advantageous adaptation formula for the frequency compression algorithm fulfills the following audiological requirements:
  1. 1. The audibility of fricatives is increased. In particular, when the frequency compression algorithm is activated, the center frequency of the sound "s" should be different from that of the sound "sch".
  2. 2. A vocal confusion between the vowels "e" and "i" should be minimized. With the frequency compression algorithm enabled, the shifted frequencies of the second vowel formant of "e" and "i" should be different from each other, preferably independent of meeting the other requirements.
  3. 3. Keep as much original information as possible. In other words, the loss of original frequency information should be minimized. Therefore, the knee point or f_cutoff should be as high as possible, and the resulting frequency compression rate should be as small as possible in view of the other requirements. In particular, however, the frequency compression rate should maximally reach the value 4.
  4. 4. The frequency compression algorithm should always be adapted for binaural supply to the ear, which has the better hearing.
  5. 5. For binaural care, the same frequency compression algorithm setting should be used in both hearing aids to achieve a consistent sound impression on both ears so that cortical re-learning of auditory perception is possible.
  6. 6. The distinction of language examples of the two sexes should be given. Therefore, the frequency f_cutoff of the knee point 13 should not be less than 1.5 kHz.

Die Tatsache, ob ein Nutzer einer Hörvorrichtung für die erfindungsgemäße Frequenzkompression geeignet ist, lässt sich zuverlässig mit zwei Messungen abschätzen. Diese Messungen sollen an dem Ohr mit der besseren Resthörfähigkeit durchgeführt werden. Die erste Messung entspricht einem Audiogramm und die zweite Messung betrifft das Vorhandensein einer so genannten toten Region im Gehör des Nutzers. Allein anhand des Audiogramms ist es in der Regel nicht zuverlässig möglich, die maximal hörbare Frequenz zu bestimmen. Dies liegt daran, dass beispielsweise auf der Basilarmembran Härchen nicht durch die Schallwellen direkt zum Schwingen angeregt werden, sondern auch durch Schwingungen der Basilarmembran selbst. Damit wird beispielsweise Schall hörbar, der jenseits einer eigentlichen maximal hörbaren Frequenz liegt. Um daher die maximal hörbare Frequenz besser bestimmen zu können, wird beispielsweise ein toter Bereich bzw. dessen Untergrenze mit dem so genannten TEN-Test (siehe unten) ermittelt.The fact whether a user of a hearing device is suitable for the frequency compression according to the invention can be estimated reliably with two measurements. These measurements should be performed on the ear with better residual hearing. The first measurement corresponds to an audiogram and the second measurement concerns the presence of a so-called dead region in the user's ear. Based solely on the audiogram, it is usually not possible to reliably determine the maximum audible frequency. This is because, for example, on the basilar membrane hairs are not excited by the sound waves directly to vibrate, but also by vibrations of the basilar membrane itself. Thus, for example, sound is heard, which is beyond an actual maximum audible frequency. In order to better determine the maximum audible frequency, for example, a dead area or its lower limit is determined by the so-called TEN test (see below).

Auf der Basis eines gegebenen Audiogramms und einer gewählten Anpassformel (z. B. ConnexxFit) kann ein durch ein Hörgerät erzielbarer Nutzen berechnet werden. Die Berechnung des Hörgeräteausgangsspektrums ermöglicht eine Schätzung der maximal hörbaren Frequenz mit der jeweiligen Einstellung. Der Schnittpunkt des Hörgeräteausgangsspektrums mit dem Hörverlust (Audiogramm) bestimmt die so genannte maximal hörbare Frequenz f_max.On the basis of a given audiogram and a chosen fitting formula (eg ConnexxFit), a benefit achievable by a hearing aid can be calculated. The calculation of the hearing aid output spectrum allows an estimate of the maximum audible frequency with the respective setting. The intersection of the hearing aid output spectrum with the hearing loss (audiogram) determines the so-called maximum audible frequency f_max.

Die maximal hörbare Frequenz f_max lässt sich beispielsweise mit folgenden Schritten abschätzen:

  • a) Bestimmen des 99%-Perzentils eines sprachmodulierten 65 dB Störgeräusches (z. B. ISTS-Störgeräusch (internationales Sprachtestsignal) gemäß der internationalen Norm IEC 60118-15).
  • b) Berechnen der Verstärkung des Hörgeräts im eingesetzten Zustand (insertion gain) für einen vorliegenden Hörverlust mit Hilfe eines Anpassalgorithmus oder statischen Modells für ein spezifisches Hörgerät.
  • c) Addieren der Resultate von a) und b). Diese Summe entspricht dem Frequenzspektrum (aided speech spectrum) am Trommelfell.
  • d) Berechnen des Schnittpunkts des vorliegenden Audiogramms mit dem Ergebnis von c), was zu der maximal hörbaren Frequenz f_max führt.
The maximum audible frequency f_max can be estimated, for example, with the following steps:
  • a) Determine the 99% percentile of a speech-modulated 65 dB noise (eg, ISTS noise (international speech test signal) in accordance with international standard IEC 60118-15).
  • b) calculating the gain of the hearing aid in the inserted state (insertion gain) for an existing hearing loss using a fitting algorithm or static model for a specific hearing aid.
  • c) adding the results of a) and b). This sum corresponds to the frequency spectrum (aided speech spectrum) on the eardrum.
  • d) calculating the intersection of the present audiogram with the result of c) resulting in the maximum audible frequency f_max.

Wenn andere Perzentile oder andere ISTS-Störgeräuschpegel in a) verwendet werden, kann die Frequenzkompressionsanpassung an spezielle Bedürfnisse (andere Hörgerätekategorien oder bestimmte Untergruppen von hörgeschädigten Personen) angepasst werden.If other percentiles or other ISTS noise levels are used in a), the frequency compression adjustment may be adjusted to specific needs (other hearing aid categories or specific subgroups of hearing impaired persons).

Wenn eine so genannte tote Region auf der Basis des Audiogramms geschätzt oder mit einem anderen diagnostischen Test (z. B. dem TEN-Test) gemessen wird, kann die berechnete maximal hörbare Frequenz f_max auf den resultierenden Wert geändert werden. Eine tote Region kann vorliegen, wenn ein Hörverlust bei einer bestimmten Frequenz mindestens 80 dB (HL = Hearing Level) beträgt und die Differenz zwischen zwei benachbarten Oktaven mindestens 50 dB (HL) beträgt.When a so-called dead region is estimated on the basis of the audiogram or measured with another diagnostic test (eg, the TEN test), the calculated maximum audible frequency f_max can be changed to the resultant value. A dead region may be present if hearing loss at a particular frequency is at least 80 dB (HL = Hearing Level) and the difference between two adjacent octaves is at least 50 dB (HL).

Nachfolgend wird anhand von FIG 2 und FIG 3 dargestellt, wie eine Frequenzkompressionskennlinie automatisch ermittelt werden kann. Dazu werden die Parameter der Frequenzkompressionskennlinie f_cutoff und f_source_max vorzugsweise auf der Basis von Frequenzgruppen (critical bands) ermittelt, vergleiche Bark-Skala und Eberhard Zwicker: "Subdivision of the audible frequency range into critical bands (Frequenzgruppen)", J. Acoust Soc. Am. Band 33, Seite 248, Feb. 1961 ). Der Ausgangspunkt für die Berechnungen stellt die maximal hörbare Frequenz f_max dar, die auch der unteren Frequenz einer toten Region entspricht. In dem Schritt 15 wird also aus dem Audiogramm, welches selbst in Schritt 16 gemessen wurde, und ggf. dem TEN-Test, der in Schritt 17 durchgeführt wurde, die maximale hörbare Frequenz f_max ermittelt. In Abhängigkeit von dieser Frequenz f_max wird die Frequenz f_cutoff in Schritt 18 ermittelt, die die Koordinaten des Kniepunkts 13 repräsentiert. Ferner wird in Schritt 19 die maximale Quellfrequenz f_source_max in Abhängigkeit von der Frequenz f_max bestimmt, welche auf eben die Frequenz f_max abgebildet wird. Schließlich wird aus den Parametern f_max, f_cutoff und f_source_max in Schritt 20 eine Frequenzkompressionskennlinie 10 ermittelt, mit der der Frequenzkompressionsalgorithmus eingestellt wird.The following is based on FIG. 2 and FIG. 3 shown how a frequency compression characteristic can be determined automatically. For this purpose, the parameters of the frequency compression characteristic f_cutoff and f_source_max are preferably determined on the basis of frequency groups (critical bands), cf. Bark-Skala and Eberhard Zwicker: "Subdivision of the audible frequency range into critical bands", J. Acoust Soc. At the. Volume 33, page 248, Feb. 1961 ). The starting point for the calculations is the maximum audible frequency f_max, which also corresponds to the lower frequency of a dead region. In step 15, therefore, the maximum audible frequency f_max is determined from the audiogram, which itself was measured in step 16, and possibly the TEN test, which was carried out in step 17. Depending on this frequency f_max, the frequency f_cutoff in step 18, which represents the coordinates of the knee point 13. Furthermore, in step 19, the maximum source frequency f_source_max is determined as a function of the frequency f_max, which is mapped to the same frequency f_max. Finally, from the parameters f_max, f_cutoff and f_source_max in step 20, a frequency compression characteristic curve 10 is determined with which the frequency compression algorithm is set.

Der damit gebildete Algorithmus führt zu einer Frequenzkompressionseinstellung, welche eine verbesserte Sprachverständlichkeit gewährleistet.The algorithm thus formed results in a frequency compression setting which ensures improved speech intelligibility.

Vorzugsweise wird der Wert von f_max auf einen Bark-Wert f_max_bark entsprechend einem Verfahren von H. Traunmüller (1990) "Analytical expressions for the tonotopic sensory scale" J. Acoust Soc. Am. 88: Seiten 97 bis 100 transformiert.Preferably, the value of f_max becomes a bark value f_max_bark according to a method of H. Traunmuller (1990) "Analytical expressions for the tonotopic sensory scale" J. Acoust Soc. At the. 88: pages 97 to 100 transformed.

Die Transformation erfolgt gemäß der Formel f max bark = 26 , 81 f max / 1960 + f max - 0 , 53.

Figure imgb0003
The transformation takes place according to the formula f max bark = 26 . 81 f max / 1960 + f max - 0 . 53rd
Figure imgb0003

Optional soll der Wert f_max_bark veränderbar sein, wenn beispielsweise eine geringere Frequenzkompression gewünscht wird. Es soll dann beispielsweise für eine vorgegebene Filterbank sichergestellt sein, dass der veränderte Wert f_max_bark eine Frequenz zwischen 2 kHz und 8 kHz repräsentiert.Optionally, the value f_max_bark should be changeable, for example if a lower frequency compression is desired. It should then be ensured, for example for a given filter bank, that the changed value f_max_bark represents a frequency between 2 kHz and 8 kHz.

Mit Hilfe nachstehender Formel und der Werte no bands down, die eine Anzahl von Frequenzgruppen darstellen, kann die Frequenz f_cutoff des Kniepunkts berechnet werden. Der Kniepunkt liegt also in einem gewissen Abstand (gezählt in Frequenzgruppen) unterhalb der maximal hörbaren Frequenz f_max. Die entsprechende Formel lautet: f_cutoff = 1960 f_max_bark - no_bands_down + 0 , 53 / 26 , 28 - f max bark - no bands down

Figure imgb0004
Using the formula below and the no bands down values representing a number of frequency groups, the frequency f_cutoff of the knee point can be calculated. The knee point is therefore at a certain distance (counted in frequency groups) below the maximum audible frequency f_max. The corresponding formula is: f_cutoff = 1960 f_max_bark - no_bands_down + 0 . 53 / 26 . 28 - f max bark - no bands down
Figure imgb0004

Mit dem dargestellten Algorithmus würden Werte für f_max < 2 kHz zu f_cutoff-Werten < 1,5 kHz führen, was aus audiologischer Sicht vermieden werden soll. Daher werden Werte für f_max < 2 kHz immer auf 2 kHz gesetzt, unabhängig vom tatsächlich gemessenen Wert.With the illustrated algorithm, values for f_max <2 kHz would lead to f_cutoff values <1.5 kHz, which should be avoided from an audiological point of view. Therefore, values for f_max <2 kHz are always set to 2 kHz, regardless of the actual measured value.

Mit der nun folgenden Formel und den in der nachfolgenden Tabelle aufgeführten Werten no_bands_up ebenfalls in der Einheit "CB" (Frequenzgruppen) lässt sich für eine jeweils aktuelle Frequenz f_max der weitere Kennlinienparameter f_source_max berechnen: f_source_tmp = 1960 f_max_bark + no_bands_up + 0 , 53 / 26 , 28 - f_max_bark + no_bands_up

Figure imgb0005
f max in [Hz] No bands down in [CB] No bands up in [CB] 1500 3 7 1750 2 6 2000 2 5,5 2250 2 4, 8 2500 1, 8 4 2750 2 3, 8 3000 2 3,2 3250 2 3 3500 2 2,5 3750 2 2,3 4000 2 2,2 4250 1, 8 2 4500 2 2 4750 2 1, 8 5000 1, 8 1, 7 5250 2 1, 6 5500 1, 8 1,5 5750 1, 8 1, 6 6000 1, 6 1,5 6250 1, 6 1,5 6500 1, 6 1,4 6750 1, 6 1,4 7000 1, 8 1,5 7250 1, 8 1,4 7500 2 1,3 7750 2 1,2 8000 2 1,2 With the following formula and the values no_bands_up listed in the following table also in the unit "CB" (frequency groups), the further characteristic parameter f_source_max can be calculated for a current frequency f_max: f_source_tmp = 1960 f_max_bark + no_bands_up + 0 . 53 / 26 . 28 - f_max_bark + no_bands_up
Figure imgb0005
f max in [Hz] No bands down in [CB] No bands up in [CB] 1500 3 7 1750 2 6 2000 2 5.5 2250 2 4, 8 2500 1, 8 4 2750 2 3, 8 3000 2 3.2 3250 2 3 3500 2 2.5 3750 2 2.3 4000 2 2.2 4250 1, 8 2 4500 2 2 4750 2 1, 8 5000 1, 8 1, 7 5250 2 1, 6 5500 1, 8 1.5 5750 1, 8 1, 6 6000 1, 6 1.5 6250 1, 6 1.5 6500 1, 6 1.4 6750 1, 6 1.4 7000 1, 8 1.5 7250 1, 8 1.4 7500 2 1.3 7750 2 1.2 8000 2 1.2

Die obigen Berechnungen stellen sicher, dass die audiologischen Anforderungen 1. und 2. (siehe oben) erfüllt sind. Diese Anforderungen sind die Basis für eine Verbesserung der Sprachverständlichkeit durch den Frequenzkompressionsalgorithmus. Die Werte in der Tabelle sind hier auf eine Filterbank mit 48 Kanälen bezogen, die jeweils eine Bandbreite von 250 Hz besitzen.The above calculations ensure that audiological requirements 1 and 2 (see above) are met. These requirements are the basis for improving speech intelligibility through the frequency compression algorithm. The values in the table here refer to a filter bank with 48 channels, each with a bandwidth of 250 Hz.

Die dargestellte Anpassstrategie für einen Frequenzkompressionsalgorithmus kombiniert mehrere Hörgeräteanpassschritte, die üblicherweise manuell durchgeführt wurden (z. B. Messungen an 2 cm3 - Testvolumina). Beispielsweise wird die sich beim Tragen des Hörgeräts ergebende Hörschwelle für die Schätzung der maximal hörbaren Frequenz genutzt, ebenso wie das sonst übliche manuelle Entflechten der Mittenfrequenzen der Frikative "s" und "sch" bei der Hörgeräteanpassung. Dieses manuelle Verfahren zur Trennung von "s" und "sch" wird nun auf die erfindungsgemäße Weise automatisiert. Vorzugsweise wird bei der vorgestellten automatischen Anpassung auch das Konzept der kritischen Bandweiten (Frequenzgruppen gemäß Bark-Skala) genutzt, so dass sich letztlich deutliche Vorteile bei der automatischen Anpassung einer Frequenzkompression im Hinblick auf Sprachverständlichkeit ergeben. Bereits nach einer kurzen Gewöhnungsphase an den veränderten Schalleindruck aufgrund der Frequenzkompression zeigen die hörgeschädigten Probanden eine verbesserte Sprachverständlichkeit.The illustrated fitting strategy for a frequency compression algorithm combines several hearing aid fitting steps, which were typically done manually (eg, measurements on 2 cm 3 test volumes). For example, the hearing threshold resulting from wearing the hearing aid is used for the estimation of the maximum audible frequency, as is the usual manual unbundling of the center frequencies of the fricatives "s" and "sch" in the hearing aid fitting. This manual method for separating "s" and "sch" is now automated in the manner according to the invention. The concept of critical bandwidths (frequency groups according to the Bark scale) is preferably also used in the presented automatic adaptation, so that ultimately there are clear advantages in the automatic adaptation of frequency compression with regard to speech intelligibility. Already after a short period of getting used to the changed sound impression due to the frequency compression, the hearing impaired subjects show an improved speech intelligibility.

In vorteilhafter Weise zeigt die erfindungsgemäße Anpassstrategie eines Frequenzkompressionsalgorithmus zum einen eine messbare Verbesserung der Sprachverständlichkeit bei aktivierter Frequenzkompression und zum anderen eine schnellere Anpassung der Hörgeräte mit Frequenzkompressionsalgorithmen. Insbesondere kann die Anpassung nun automatisiert werden und bedarf keiner langen Messungen und Anpasssitzungen. Des Weiteren ist auch eine Vorhersage eines zusätzlichen Nutzens bzgl. der Sprachverständlichkeit mit der Frequenzkompression möglich. Ein weiterer Vorteil besteht darin, dass sich eine verbesserte Sprachverständlichkeit bereits nach der Erstanpassung einstellt.Advantageously, the adaptation strategy according to the invention of a frequency compression algorithm on the one hand shows a measurable improvement in speech intelligibility when frequency compression is activated and, on the other hand, a faster one Adaptation of hearing aids with frequency compression algorithms. In particular, the adaptation can now be automated and does not require long measurements and fitting sessions. Furthermore, it is also possible to predict an additional benefit with regard to speech intelligibility with frequency compression. Another advantage is that improved speech intelligibility already sets up after initial adaptation.

Claims (10)

Verfahren zum Ermitteln eines Kniepunkts (13) einer Frequenzkompressionskennlinie (10) für eine Hörvorrichtung, durch - Ermitteln einer maximal hörbaren Frequenz (f_max) eines Nutzers der Hörvorrichtung, und - Ermitteln des Kniepunkts (13) mittels einer vorgegebenen Vorschrift in Abhängigkeit von der maximal hörbaren Frequenz (f_max),
dadurch gekennzeichnet, dass
- Parameter der Frequenzkompressionskennlinie (10) auf der Basis von Frequenzgruppen gebildet werden.
Method for determining a knee point (13) of a frequency compression characteristic (10) for a hearing device, by Determining a maximum audible frequency (f_max) of a user of the hearing device, and Determining the knee point (13) by means of a predetermined rule as a function of the maximum audible frequency (f_max),
characterized in that
- Parameters of the frequency compression characteristic (10) are formed on the basis of frequency groups.
Verfahren nach Anspruch 1, wobei der Kniepunkt (13) in jedem Fall oberhalb von 1,5 kHz festgelegt wird.The method of claim 1, wherein the knee point (13) is set in any case above 1.5 kHz. Verfahren nach Anspruch 1 oder 2, wobei der Kniepunkt (13) mit Hilfe von Werten der Bark-Skala berechnet wird.Method according to claim 1 or 2, wherein the knee point (13) is calculated by means of values of the Bark scale. Verfahren nach Anspruch 3, wobei eine Koordinate f_cutoff des Kniepunkts (13) mit Hilfe der Formel f_cutoff = 1960 f_max_bark - no_bands_down + 0 , 53 / 26 , 28 - f max bark - no bands down
Figure imgb0006

berechnet wird, und wobei f_max_bark die maximal hörbare Frequenz umgerechnet in einen Bark-Wert sowie no_bands_down eine in Abhängigkeit von der maximal hörbaren Frequenz festgelegte Anzahl an Frequenzgruppen bedeutet.
Method according to claim 3, wherein a coordinate f_cutoff of the knee point (13) is given by the formula f_cutoff = 1960 f_max_bark - no_bands_down + 0 . 53 / 26 . 28 - f max bark - no bands down
Figure imgb0006

and wherein f_max_bark means the maximum audible frequency converted into a bark value and no_bands_down means a number of frequency groups determined in dependence on the maximum audible frequency.
Verfahren zum Ermitteln einer Frequenzkompressionskennlinie (10), gemäß der ein Eingangswert in einen Ausgangswert abgebildet wird, durch Ermitteln eines Kniepunkts (13) gemäß einem der vorhergehenden Ansprüche, wobei unterhalb des Kniepunkts (13) jeder Eingangswert gleich dem jeweiligen Ausgangswert ist.A method for determining a frequency compression characteristic (10) according to which an input value is mapped into an output value by determining a knee point (13) according to one of the preceding claims, wherein below the knee point (13) each input value is equal to the respective output value. Verfahren nach Anspruch 5, wobei die maximale Kompressionsrate 4 beträgt.The method of claim 5, wherein the maximum compression rate is 4. Verfahren nach Anspruch 5 oder 6, wobei ein Eingangswert f_source_max zu demjenigen Ausgangswert f_max, der der maximal hörbaren Frequenz entspricht, mit Hilfe der Bark-Skala berechnet wird.A method according to claim 5 or 6, wherein an input value f_source_max is calculated to the output value f_max corresponding to the maximum audible frequency using the Bark scale. Verfahren nach Anspruch 7, wobei der Eingangswert f_source_max mit Hilfe der Formel f_source_max = 1960 f_max_bark + no_bands_up + 0 , 53 / 26 , 28 - f max bark + no bands up
Figure imgb0007

berechnet wird, und wobei f_max bark die maximal hörbare Frequenz (f_max) umgerechnet in einen Bark-Wert sowie no_bands_up eine in Abhängigkeit von der maximal hörbaren Frequenz festgelegte Anzahl an Frequenzgruppen bedeutet.
The method of claim 7, wherein the input value f_source_max using the formula f_source_max = 1960 f_max_bark + no_bands_up + 0 . 53 / 26 . 28 - f max bark + no bands up
Figure imgb0007

and wherein f_max bark means the maximum audible frequency (f_max) converted into a bark value and no_bands_up a number of frequency groups defined as a function of the maximum audible frequency.
Verfahren zum Einstellen eines binauralen Hörsystems mit zwei Hörvorrichtungen mit dem Schritt des Ermittelns einer Frequenzkompressionskennlinie (10) gemäß einem der Ansprüche 5 bis 8.Method for adjusting a binaural hearing system with two hearing devices, comprising the step of determining a frequency compression characteristic (10) according to one of Claims 5 to 8. Verfahren nach Anspruch 9, wobei die Frequenzkompressionskennlinie gemäß einem der Ansprüche 5 bis 8 für dasjenige Ohr des Nutzers der Hörvorrichtungen ermittelt wird, das den geringeren Hörverlust aufweist.A method according to claim 9, wherein the frequency compression characteristic according to one of claims 5 to 8 is determined for the ear of the user of the hearing devices which has the lower hearing loss.
EP12188476.1A 2011-10-21 2012-10-15 Method for determining a compression characteristic curve Active EP2584795B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102011085036A DE102011085036A1 (en) 2011-10-21 2011-10-21 Method for determining a compression characteristic

Publications (3)

Publication Number Publication Date
EP2584795A2 true EP2584795A2 (en) 2013-04-24
EP2584795A3 EP2584795A3 (en) 2014-07-16
EP2584795B1 EP2584795B1 (en) 2017-07-19

Family

ID=47278076

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12188476.1A Active EP2584795B1 (en) 2011-10-21 2012-10-15 Method for determining a compression characteristic curve

Country Status (4)

Country Link
US (1) US9232326B2 (en)
EP (1) EP2584795B1 (en)
DE (1) DE102011085036A1 (en)
DK (1) DK2584795T3 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9775999B2 (en) 2013-08-09 2017-10-03 Advanced Bionics Ag System comprising a cochlear stimulation device and a second hearing stimulation device and a method for adjustment according to a response to combined stimulation
US10575103B2 (en) 2015-04-10 2020-02-25 Starkey Laboratories, Inc. Neural network-driven frequency translation
US9843875B2 (en) 2015-09-25 2017-12-12 Starkey Laboratories, Inc. Binaurally coordinated frequency translation in hearing assistance devices
CN114786107B (en) * 2022-05-10 2023-08-22 东南大学 Hearing aid fitting method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058415A1 (en) 2009-12-16 2011-06-22 Siemens Medical Instruments Pte. Ltd. Method for frequency transposition in a hearing aid device and hearing aid device
US20110249843A1 (en) 2010-04-09 2011-10-13 Oticon A/S Sound perception using frequency transposition by moving the envelope

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7248711B2 (en) * 2003-03-06 2007-07-24 Phonak Ag Method for frequency transposition and use of the method in a hearing device and a communication device
MY141426A (en) * 2006-04-27 2010-04-30 Dolby Lab Licensing Corp Audio gain control using specific-loudness-based auditory event detection

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058415A1 (en) 2009-12-16 2011-06-22 Siemens Medical Instruments Pte. Ltd. Method for frequency transposition in a hearing aid device and hearing aid device
US20110249843A1 (en) 2010-04-09 2011-10-13 Oticon A/S Sound perception using frequency transposition by moving the envelope

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BARK-SKALA; EBERHARD ZWICKER: "Subdivision of the audible frequency range into critical bands (Frequenzgruppen", J. ACOUST SOC. AM., vol. 33, February 1961 (1961-02-01), pages 248
H. TRAUNMÜLLER: "Analytical expressions for the tonotopic sensory scale", J. ACOUST SOC. AM., vol. 88, 1990, pages 97 - 100, XP055122062
O. BÜRKLI-HALEVY ET AL.: "Verbesserte Hörbarkeit für Menschen mit hochgradigem Hörverlust", HÖRAKUSTIK, vol. 3, 2008, pages 8 - 14

Also Published As

Publication number Publication date
US20130101123A1 (en) 2013-04-25
DK2584795T3 (en) 2017-10-23
US9232326B2 (en) 2016-01-05
EP2584795A3 (en) 2014-07-16
EP2584795B1 (en) 2017-07-19
DE102011085036A1 (en) 2013-04-25

Similar Documents

Publication Publication Date Title
EP3451705B1 (en) Method and apparatus for the rapid detection of own voice
DE60222813T2 (en) HEARING DEVICE AND METHOD FOR INCREASING REDEEMBLY
DE69933141T2 (en) TONE PROCESSOR FOR ADAPTIVE DYNAMIC RANGE IMPROVEMENT
DE102017214164B3 (en) Method for operating a hearing aid and hearing aid
EP2229010B1 (en) Hearing aid and method for noise compensation in a hearing aid
DE102012200745B4 (en) Method and hearing device for estimating a component of one&#39;s own voice
DE102008031150B3 (en) Method for noise suppression and associated hearing aid
DE102007017761A1 (en) Method for adapting a binaural hearing aid system
EP2584795B1 (en) Method for determining a compression characteristic curve
DE102007035171A1 (en) Method for adapting a hearing aid by means of a perceptive model
DE102012203349B4 (en) Method for adapting a hearing device based on the sensory memory and adaptation device
DE102009004185B3 (en) Method for converting input signal into output signal in e.g. headphone, involves forming output signal formed from intermediate signals with mixing ratio that depends on result of classification
EP2658289B1 (en) Method for controlling an alignment characteristic and hearing aid
EP1351550B1 (en) Method for adapting a signal amplification in a hearing aid and a hearing aid
EP2629550B1 (en) Hearing device with adaptive filter and method of filtering an audio signal
DE102011006472B4 (en) Method for improving speech intelligibility with a hearing aid device and hearing aid device
EP2635048B1 (en) Amplification of a speech signal based on the input level
DE102013207080B4 (en) Binaural microphone adaptation using your own voice
EP3048813B1 (en) Method and device for suppressing noise based on inter-subband correlation
DE102011089865B4 (en) Method for adapting a frequency compression device of a hearing device and corresponding adaptation device
EP2622879B1 (en) Method and device for frequency compression
DE102011006511B4 (en) Hearing aid and method for operating a hearing aid
DE102021210098A1 (en) Method of operating a hearing aid
DE102008064382A1 (en) Hearing device i.e. behind-the-ear hearing device, has transposition device for transposing part of frequency range of output signal, and control device releasing transposing of transposition device in cent steps
DE102011087692B4 (en) Hearing apparatus and method for improving the visibility of a portion of an input signal for a user of the hearing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H04R 25/00 20060101AFI20140612BHEP

17P Request for examination filed

Effective date: 20150113

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIVANTOS PTE. LTD.

17Q First examination report despatched

Effective date: 20160315

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170407

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: E. BLUM AND CO. AG PATENT- UND MARKENANWAELTE , CH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 911484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012010793

Country of ref document: DE

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

Effective date: 20171019

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170719

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIVANTOS PTE. LTD.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171019

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171020

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171119

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012010793

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

26N No opposition filed

Effective date: 20180420

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171015

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171015

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 911484

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20121015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231025

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231023

Year of fee payment: 12

Ref country code: DK

Payment date: 20231025

Year of fee payment: 12

Ref country code: DE

Payment date: 20231018

Year of fee payment: 12

Ref country code: CH

Payment date: 20231102

Year of fee payment: 12