EP2584294B1 - Cold-gas supply device for a nmr-appliance - Google Patents
Cold-gas supply device for a nmr-appliance Download PDFInfo
- Publication number
- EP2584294B1 EP2584294B1 EP12306262.2A EP12306262A EP2584294B1 EP 2584294 B1 EP2584294 B1 EP 2584294B1 EP 12306262 A EP12306262 A EP 12306262A EP 2584294 B1 EP2584294 B1 EP 2584294B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- probe
- gases
- exchanger
- cold
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000007789 gas Substances 0.000 claims description 135
- 239000000523 sample Substances 0.000 claims description 68
- 239000007788 liquid Substances 0.000 claims description 37
- 238000009434 installation Methods 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 19
- 238000005481 NMR spectroscopy Methods 0.000 claims description 16
- 238000012546 transfer Methods 0.000 claims description 11
- 238000009835 boiling Methods 0.000 claims description 9
- 239000000112 cooling gas Substances 0.000 claims description 5
- 238000005259 measurement Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 230000015572 biosynthetic process Effects 0.000 claims description 2
- 238000005755 formation reaction Methods 0.000 claims description 2
- 238000009987 spinning Methods 0.000 claims 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 63
- 229910052757 nitrogen Inorganic materials 0.000 description 28
- 239000000203 mixture Substances 0.000 description 6
- 238000010276 construction Methods 0.000 description 4
- 238000005004 MAS NMR spectroscopy Methods 0.000 description 3
- 235000021183 entrée Nutrition 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000001073 sample cooling Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 238000005057 refrigeration Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012549 training Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D3/00—Devices using other cold materials; Devices using cold-storage bodies
- F25D3/10—Devices using other cold materials; Devices using cold-storage bodies using liquefied gases, e.g. liquid air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C13/00—Details of vessels or of the filling or discharging of vessels
- F17C13/005—Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure
- F17C13/006—Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats
- F17C13/007—Details of vessels or of the filling or discharging of vessels for medium-size and small storage vessels not under pressure for Dewar vessels or cryostats used for superconducting phenomena
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0337—Heat exchange with the fluid by cooling
- F17C2227/0339—Heat exchange with the fluid by cooling using the same fluid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0369—Localisation of heat exchange in or on a vessel
- F17C2227/0372—Localisation of heat exchange in or on a vessel in the gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2227/00—Transfer of fluids, i.e. method or means for transferring the fluid; Heat exchange with the fluid
- F17C2227/03—Heat exchange with the fluid
- F17C2227/0367—Localisation of heat exchange
- F17C2227/0369—Localisation of heat exchange in or on a vessel
- F17C2227/0374—Localisation of heat exchange in or on a vessel in the liquid
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C9/00—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure
- F17C9/02—Methods or apparatus for discharging liquefied or solidified gases from vessels not under pressure with change of state, e.g. vaporisation
- F17C9/04—Recovery of thermal energy
Definitions
- the present invention relates to the field of measurement and imaging equipment and installations using nuclear magnetic resonance (NMR), in particular the so-called low temperature Magic Angle Spinning (LTMAS) NMR techniques (Magic Angle Spinning). temperature).
- NMR nuclear magnetic resonance
- LTMAS low temperature Magic Angle Spinning
- LTMAS Magic Angle Spinning
- the invention more particularly relates to a cold gas supply device of a device or an NMR installation of the aforementioned type, and a corresponding installation.
- Some LT MAS NMR probes operate with very cold gases at temperatures close to liquid nitrogen (77.3 K). These gases guide and rotate the sample generally contained in a small tube called a rotor inserted in a stator, but also the cooling of this sample.
- VT sample cooling gas
- Bearing bearing
- Drive drive
- gases have traditionally pressures of 1 to 4 bar and typical flow rates vary from 20 to 60 Nl / min. The pressure and the flow rate depend on the speed of rotation of the sample programmed by the user.
- these aforementioned gases from bottles, cans or similar reservoirs at room temperature, are cooled by passing through three exchangers (one per gas) contained in three pressurized chambers filled in part with liquid nitrogen.
- the internal pressure of each chamber is regulated and kept constant by an electronic controller.
- the controller regulates the internal pressure of the chambers by acting on the heating power of heating resistors immersed in the liquid nitrogen of the chambers.
- a constant pressure of the liquid nitrogen in the chamber in equilibrium with its vapor means that the temperature of the liquid nitrogen in the chamber is constant. In this way, the boiling temperature of the liquid nitrogen of each chamber is controlled.
- it is essential to supply dry gases that do not contain liquefied gases.
- This mechanical assembly constituted by these three exchangers is a cold gas supply device, commonly called LTMAS cooling device.
- a device according to the preamble of claim 1 is described in document FR-A-2 926 629.
- the consumption can reach 201 / hr, or 480 liters per day when the rotational speed of the rotor is high.
- the total consumption of liquid nitrogen is directly proportional to the internal pressure of the chambers containing the exchangers.
- each chamber is a function of the speed of rotation of the rotor.
- a high rotational speed is achieved with higher gas flow rates especially for "Drive” and "Bearing” gases.
- the heat exchange surfaces of the chambers are dimensioned to be able to evacuate the maximum thermal power.
- the present invention aims to overcome the aforementioned drawbacks, by proposing an optimized solution to significantly reduce the liquid nitrogen consumption of the aforementioned devices, while taking into account the specificities of the different gaseous flows concerned.
- the subject of the invention is a device for supplying cold gases to an installation or an NMR analysis apparatus equipped with a measurement probe having the features of claim 1.
- the figures 1 and 2 show a cold gas supply device 1 of an installation or an NMR analysis apparatus 2 equipped with a measurement probe 3, said cold gases ensuring the cooling of the sample 3 'contained in the probe 3 but also its lift and rotation training.
- This feed device 1 essentially comprises an insulated tank 4 containing liquid gas 5 at boiling temperature and in which are arranged exchangers 6, 6 ', 6 "traversed by the streams of gas to be cooled, these exchangers being connected to one or more vacuum transfer lines 7, 7 ', 7 "(insulated) conveying the cooled gases to the probe 3.
- this device 1 also comprises at least one additional heat exchanger 8, 8 ', 8 "ensuring a pre-cooling of the gas flow concerned before its routing to the corresponding exchanger 6, 6', 6", said or each additional exchanger 8, 8 ', 8 “in the form of a double-flow (or counter-current) heat exchanger supplied either by the gaseous vapor 5' produced by the boiling of the liquid gas 5 in the tank 4, either by the cold gas 9 discharged out of the probe or escaping at the probe 3.
- the invention thus makes it possible to recover at least part of the cold gas frigories that are not currently exploited and intended to be discharged into the atmosphere.
- each exchanger 6, 6 ', 6 is associated, upstream with respect to the gaseous flow in question, an additional pre-cooling exchanger 8, 8', 8", as shown the figure 1 .
- the additional exchanger 8 providing the precooling of the cold gas for cooling the sample 3 ' is supplied with gaseous vapor 5' produced by the boiling of the liquid gas 5 in the tank 4 and the exchangers additional 8 'and 8 "ensuring the precooling of the cold gases to respectively provide lift and rotation of the sample 3' are fed by the gases 9 evacuated or escaping at the probe 3.
- each additional exchanger 8, 8 ', 8 is constituted by an arrangement of two concentric ducts or tubes 10, 10', one of which is traversed by the flow of the gas to be pre-cooled (primary circuit), preferably the inner tube or conduit, and the other 10 '(secondary circuit) is traversed by the flow of the cooling gas formed by the gaseous vapor 5' of boiling liquid gas 5 of the tank 4 or by the gases 9 evacuated or s escaping from the level of the probe 3.
- each additional exchanger 8, 8', 8 is advantageously a counter flow or flow exchanger opposed.
- the three additional exchangers 8, 8 ', 8 " are grouped into a single structural unit 11, for example in the form of a single coil 11 consisting of a interlaced arrangement of three helical tubular formations 10, 10 'each corresponding to one of the three additional exchangers 8, 8', 8 ".
- the additional exchangers 8, 8 ', 8 " preferentially grouped structurally into one only unit 11 housed in an insulated housing 11 'are at least partially arranged in the upper part 4' of the tank 4 enclosing the liquid gas 5 and the exchangers 6, 6 ', 6 ", advantageously being mounted in a cover 4" closing said reservoir 4.
- the aim of the invention is to reduce the consumption of liquid gas (generally nitrogen) in NMR installations, in particular those using LTMAS probes, and to this end the general method used consists in pre-cooling all MAS gas before passing them through the different exchangers 6, 6 ', 6 ".
- liquid gas generally nitrogen
- the invention exploits the hitherto unused cooling power of all the cold gases produced during the operation of the feed device 1 and the NMR probe 3.
- a transfer rod 12 'MAS gas to the probe 3 which is fixed on the housing 11' isolated by an internal vacuum.
- a seal and the lid is held on the liquid nitrogen tank by flanges.
- the invention provides three pre-coolers 8, 8 ', 8 "for the gases” VT “," Bearing “and” Drive ".
- Each additional exchanger forming gas pre-cooler is a countercurrent heat exchanger, the construction of which is called “tube in tube” and which has a helical shape.
- the inner tube 10 (for example 8 mm) circulates the gas to be cooled from top to bottom ( Figures 1 and 3 ).
- the annular section between the inner tube 10 and the outer tube 10 '(for example 16 mm) circulates the cold precooling gas from bottom to top.
- the gas "VT" enters at room temperature and the cold pre-cooling gas is vented to the air at the top of the coil of the figure 3 .
- the precooled gas VT exits the bottom of the coil 11 and then passes into the exchanger 6.
- the three pre-coolers 8, 8 ', 8 "for the gases” VT "," Bearing “and” Drive are contained in the housing 11' .
- G1 represents the VT gas flow at ambient temperature
- G1 ' represents the precooled gas flow VT
- G2 represents the gas vapor flow 5' discharged from the upper part 4 'of the tank 4
- G2' represents the vapor flow gas 5 'escaping into the environment.
- the cold gas 9 from the probe 3 is used to pre-cool the gases "BEARING” and "DRIVE".
- This cold gas (“exhaust") 9 coming out of the probe 3 is in fact a gas resulting from the mixing of all the cold gases (VT, Bearing and Drive) leaving the stator 3 ".
- the gas VT is (at the level of the 6/8 assembly) pre-cooled only by the gas 5 'called "boil-off" of the tank LN 2 (reference 4).
- This "boil-off" gas of the LN 2 tank is produced continuously, said gas flow being created by the total thermal power dissipated in the liquid nitrogen. This is the sum of the thermal losses of the reservoir LN 2 4 and the thermal powers dissipated by each chamber 6 "'containing an exchanger 6, 6', 6" (the power released by each chamber depends solely on the internal pressure of this chamber). bedroom).
- the boil-off gas 5 ' were to be used, possibly in admixture with the gas 9, to pre-cool the DRIVE and BEARING gases, the DRIVE and BEARING gas pressures would be disturbed further upstream. in the probe 3. These variations would then cause fluctuations in the speed of rotation of the rotor 3 'which would therefore become difficult to control.
- the cold gas 9 discharged from the probe 3 is at a higher temperature (of the order of 120-140 K), which would increase the consumption of liquid nitrogen and the boil-off of the tank 4.
- the gas 5 'boil-off always circulates in the secondary circuit 10'.
- partial liquefaction of the VT gas is never observed in this pre-cooler 8, since the pressure of the gas VT is then low (P ⁇ 0.5 bar) while the boil-off gas temperature is 80 K or more.
- a single can of 200 liters of LN2 is sufficient to ensure continuous operation for 24 hours for moderate rotational speeds of the rotor, that is to say less than 10 KHz with a probe equipped with a rotor of 3 , 2 mm.
- NMR measuring installation 2 in particular of the LT MAS probe type, in which the probe 3 is supplied with cold gases providing cooling (VT), lift (BEARING) and rotation (DRIVE ) of the sample (rotor 3 '), said installation 2 comprising and / or being fluidly connected to a supply device 7, 7', 7 "in cold gases, conveying these gases via feed lines corresponding respectively ( Fig. 4 and 5 ).
- VT cooling
- BEARING lift
- DRIVE rotation
- This installation 2 is characterized in that the feed device is a feed device 1 as described above.
- this installation 2 advantageously comprises a transfer rod 12 thermally insulated and preferentially flexible, intended to convey the gases 9 discharged or escaping from the probe 3 to the exchanger (s) additional (s) 8 ', 8 "concerned (s) and connecting the exhaust tube 15 of the probe 3 to the tank 4 of liquid gas 5.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Sampling And Sample Adjustment (AREA)
Description
La présente invention concerne le domaine des équipements et des installations de mesure et d'imagerie utilisant la résonance magnétique nucléaire (RMN), en particulier les techniques de RMN dites LTMAS (Low Temperature Magic Angle Spinning - Rotation à l'angle magique et à basse température).The present invention relates to the field of measurement and imaging equipment and installations using nuclear magnetic resonance (NMR), in particular the so-called low temperature Magic Angle Spinning (LTMAS) NMR techniques (Magic Angle Spinning). temperature).
L'invention a plus particulièrement comme objet un dispositif d'alimentation en gaz froids d'un appareil ou d'une installation RMN du type précité, ainsi qu'une installation correspondante.The invention more particularly relates to a cold gas supply device of a device or an NMR installation of the aforementioned type, and a corresponding installation.
Certaines sondes de mesure du type RMN LT MAS fonctionnent avec des gaz très froids à des températures proches de l'azote liquide (77,3 K). Ces gaz assurent le guidage et la rotation de l'échantillon généralement contenu dans un petit tube appelé rotor inséré dans un stator, mais aussi le refroidissement de cet échantillon.Some LT MAS NMR probes operate with very cold gases at temperatures close to liquid nitrogen (77.3 K). These gases guide and rotate the sample generally contained in a small tube called a rotor inserted in a stator, but also the cooling of this sample.
A cet effet, on utilise trois flux gazeux distincts, généralement désignés par : "VT" (gaz de refroidissement de l'échantillon), "Bearing" (palier) et "Drive" (entraînement). Ces gaz ont traditionnellement des pressions de 1 à 4 bars et les débits typiques varient de 20 à 60 Nl/minute. La pression et le débit dépendent de la vitesse de rotation de l'échantillon programmée par l'utilisateur.For this purpose, three separate gaseous streams, generally designated by "VT" (sample cooling gas), "Bearing" (bearing) and "Drive" (drive) are used. These gases have traditionally pressures of 1 to 4 bar and typical flow rates vary from 20 to 60 Nl / min. The pressure and the flow rate depend on the speed of rotation of the sample programmed by the user.
Habituellement, ces gaz précités, provenant de bouteilles, bidons ou réservoirs analogues à température ambiante, sont refroidis en passant dans trois échangeurs (un par gaz) contenus dans trois chambres pressurisées remplies en partie avec de l'azote liquide. La pression interne de chaque chambre est régulée et maintenue constante par un contrôleur électronique. Le contrôleur régule la pression interne des chambres en agissant sur la puissance de chauffage de résistances chauffantes plongées dans l'azote liquide des chambres.Usually, these aforementioned gases, from bottles, cans or similar reservoirs at room temperature, are cooled by passing through three exchangers (one per gas) contained in three pressurized chambers filled in part with liquid nitrogen. The internal pressure of each chamber is regulated and kept constant by an electronic controller. The controller regulates the internal pressure of the chambers by acting on the heating power of heating resistors immersed in the liquid nitrogen of the chambers.
Une pression constante de l'azote liquide dans la chambre en équilibre avec sa vapeur signifie que la température de l'azote liquide dans la chambre est constante. On contrôle de cette manière la température d'ébullition de l'azote liquide de chaque chambre. Pour une rotation correcte du rotor MAS, il est indispensable de fournir des gaz secs ne contenant pas de gaz liquéfiés.A constant pressure of the liquid nitrogen in the chamber in equilibrium with its vapor means that the temperature of the liquid nitrogen in the chamber is constant. In this way, the boiling temperature of the liquid nitrogen of each chamber is controlled. For correct rotation of the MAS rotor, it is essential to supply dry gases that do not contain liquefied gases.
Cet ensemble mécanique constitué par ces trois échangeurs constitue un dispositif d'alimentation en gaz froids, communément appelé dispositif de refroidissement LTMAS.This mechanical assembly constituted by these three exchangers is a cold gas supply device, commonly called LTMAS cooling device.
Un dispositif selon le préambule de la revendication 1 est décrit dans le document FR-A-2 926 629.A device according to the preamble of
Ces dispositifs de refroidissement connus fonctionnent parfaitement, mais présentent l'inconvénient de consommer une assez grande quantité d'azote liquide.These known cooling devices work perfectly, but have the disadvantage of consuming a large amount of liquid nitrogen.
Ainsi, la consommation peut atteindre 201/hr, soit 480 litres par jour quand la vitesse de rotation du rotor est élevée. La consommation totale d'azote liquide est directement proportionnelle à la pression interne des chambres contenant les échangeurs.Thus, the consumption can reach 201 / hr, or 480 liters per day when the rotational speed of the rotor is high. The total consumption of liquid nitrogen is directly proportional to the internal pressure of the chambers containing the exchangers.
Or, la pression de chaque chambre est fonction de la vitesse de rotation du rotor. Une vitesse de rotation élevée est obtenue avec des débits de gaz plus importants en particulier pour les gaz "Drive" et "Bearing". Les surfaces d'échange thermique des chambres sont dimensionnées pour pouvoir évacuer la puissance thermique maximale.However, the pressure of each chamber is a function of the speed of rotation of the rotor. A high rotational speed is achieved with higher gas flow rates especially for "Drive" and "Bearing" gases. The heat exchange surfaces of the chambers are dimensioned to be able to evacuate the maximum thermal power.
Bien évidemment, une consommation d'azote liquide importante entraîne une augmentation notable du coût de fonctionnement de l'installation et nécessite une manipulation fréquente de réservoirs d'azote liquide par l'utilisateur du dispositif. Pour assurer le fonctionnement permanent du dispositif 24h/24h, l'utilisateur doit typiquement mettre en place deux fois par jour un bidon de 200 litres rempli d'azote liquide, ce en vue de maintenir le niveau constant dans le réservoir d'azote principal dans lequel sont disposées les chambres renfermant les échangeurs.Of course, a significant consumption of liquid nitrogen causes a significant increase in the operating cost of the installation and requires frequent handling of liquid nitrogen tanks by the user of the device. To ensure the continuous operation of the device 24h / 24h, the user must typically set up twice a day a 200 liter can filled with liquid nitrogen, in order to maintain the constant level in the main nitrogen tank in which are arranged chambers enclosing the exchangers.
Bien que le document
La présente invention a pour but de surmonter les inconvénients précités, en proposant une solution optimisée permettant de réduire de façon significative la consommation d'azote liquide des dispositifs précités, tout en tenant compte des spécificités des différents flux gazeux concernés.The present invention aims to overcome the aforementioned drawbacks, by proposing an optimized solution to significantly reduce the liquid nitrogen consumption of the aforementioned devices, while taking into account the specificities of the different gaseous flows concerned.
A cet effet, l'invention a pour objet un dispositif d'alimentation en gaz froids d'une installation ou d'un appareil d'analyse RMN équipé d'une sonde de mesure présentant les caractéristiques de la revendication 1.For this purpose, the subject of the invention is a device for supplying cold gases to an installation or an NMR analysis apparatus equipped with a measurement probe having the features of
L'invention sera mieux comprise, grâce à la description ci-après, qui se rapporte à des modes de réalisation préférés, donnés à titre d'exemples non limitatifs, et expliqués avec référence aux dessins schématiques annexés, dans lesquels :
- la
figure 1 est une représentation schématique et de principe du dispositif d'alimentation selon l'invention ; - la
figure 2 est une vue en élévation latérale et en coupe d'un dispositif d'alimentation selon un mode de réalisation avantageux de l'invention ; - la
figure 3 est une vue en coupe de l'unité structurelle formée par l'arrangement des échangeurs additionnels selon une variante préférée du dispositif représentéfigures 1 et2 (seul l'échangeur additionnel pour le gaz de refroidissement de l'échantillon est représenté en totalité) ; - la
figure 4 est une représentation schématique partielle d'une installation de mesure RMN (seule la structure enveloppante de la sonde est représentée et non l'appareil RMN lui-même), montrant les branchements fluidiques la reliant à un dispositif d'alimentation tel que représenté auxfigures 1 et2 , et, - la
figure 5 est une représentation partielle plus détaillée et à une échelle différente de la partie de la sonde entourant l'échantillon, faisant partie de l'installation représentéefigure 4 , avec indication symbolique des flux de gaz.
- the
figure 1 is a schematic and basic representation of the feeding device according to the invention; - the
figure 2 is a side elevation and sectional view of a feeder according to an advantageous embodiment of the invention; - the
figure 3 is a sectional view of the structural unit formed by the arrangement of additional exchangers according to a preferred variant of the device shownfigures 1 and2 (only the additional exchanger for the sample cooling gas is represented in full); - the
figure 4 is a partial schematic representation of an NMR measuring installation (only the enveloping structure of the probe is shown and not the NMR apparatus itself), showing the fluidic connections connecting it to a feed device as shown in FIGS.figures 1 and2 and, - the
figure 5 is a more detailed partial representation on a different scale of the part of the probe surrounding the sample, forming part of the installation shownfigure 4 , with symbolic indication of gas flows.
Les
Conformément à l'invention, ce dispositif 1 comprend également au moins un échangeur additionnel 8, 8', 8" assurant un prérefroidissement du flux de gaz concerné avant son acheminement vers l'échangeur 6, 6', 6" correspondant, ledit ou chaque échangeur additionnel 8, 8', 8" se présentant sous la forme d'un échangeur à double flux (ou à contre-courant) alimenté soit par la vapeur gazeuse 5' produite par l'ébullition du gaz liquide 5 dans le réservoir 4, soit par le gaz froid 9 évacué hors de la sonde ou s'échappant au niveau de la sonde 3.According to the invention, this
L'invention permet ainsi de récupérer au moins une partie des frigories des gaz froids non exploités actuellement et destinés à être évacués dans l'atmosphère.The invention thus makes it possible to recover at least part of the cold gas frigories that are not currently exploited and intended to be discharged into the atmosphere.
Le prérefroidissement résultant du gaz concerné entraîne une diminution de la puissance thermique à transférer par l'échangeur 6, 6', 6" correspondant et donc une réduction du besoin de réfrigération par l'azote liquide 5 (dans lequel les échangeurs 6, 6', 6" sont disposés, généralement à l'intérieur de chambres 6'" contrôlées en température et en pression).The precooling resulting from the gas concerned results in a reduction in the heat power to be transferred by the
Ce concept de base de l'invention est appliqué aux trois gaz froids.This basic concept of the invention is applied to the three cold gases.
Ainsi, selon l'invention, il est prévu qu'à chaque échangeur 6, 6', 6" est associé, en amont par rapport au flux gazeux concerné, un échangeur additionnel de prérefroidissement 8, 8', 8", comme le montre la
Egalement en accord avec l'invention, l'échangeur additionnel 8 assurant le prérefroidissement du gaz froid destiné à refroidir l'échantillon 3' est alimenté en vapeur gazeuse 5' produite par l'ébullition du gaz liquide 5 dans le réservoir 4 et les échangeurs additionnels 8' et 8" assurant le prérefroidissement des gaz froids destinés à assurer respectivement la sustentation et la rotation de l'échantillon 3' sont alimentés par les gaz 9 évacués ou s'échappant au niveau de la sonde 3.Also in accordance with the invention, the
On assure ainsi la fourniture de gaz secs pour la sustentation et la mise en rotation de la sonde 3, même après un arrêt prolongé de l'installation 2 (du fait de l'interdépendance entre les débits des gaz 9 et des gaz de sustentation et de rotation comme expliqué ci-après).This ensures the supply of dry gases for the lift and the rotation of the
Conformément à un mode de réalisation de l'invention, aboutissant à un transfert thermique efficace et ressortant de la
En vue d'aboutir à une exploitation optimale du pouvoir frigorifique des vapeurs gazeuses 5' et des gaz d'échappement 9, avec un prérefroidissement progressif, chaque échangeur additionnel 8, 8', 8" est avantageusement un échangeur à contre courant ou à flux opposés.With a view to achieving optimum utilization of the refrigerating power of the gaseous vapors 5 'and the
Selon une variante constructive avantageuse de l'invention, ressortant des
Préférentiellement, comme le montre la
Un exemple de réalisation pratique non limitatif va à présent être décrit en détail et en relation avec les
Comme indiqué précédemment, l'invention vise à réduire la consommation en gaz liquide (généralement de l'azote) dans les installations RMN, en particulier celles utilisant des sondes LTMAS, et à cette fin le moyen général mis en oeuvre consiste à prérefroidir tous les gaz MAS avant de les faire passer dans les différents échangeurs 6, 6', 6".As indicated above, the aim of the invention is to reduce the consumption of liquid gas (generally nitrogen) in NMR installations, in particular those using LTMAS probes, and to this end the general method used consists in pre-cooling all MAS gas before passing them through the
A cet effet, l'invention exploite le pouvoir de refroidissement jusqu'à présent inutilisé de tous les gaz froids produits lors du fonctionnement du dispositif d'alimentation 1 et de la sonde RMN 3.For this purpose, the invention exploits the hitherto unused cooling power of all the cold gases produced during the operation of the
Dans les installations actuelles, deux sources de gaz froids aisément exploitables ont pu être relevées par l'inventeur :
- 1) Lors du fonctionnement du dispositif d'alimentation 1, il se produit en permanence une ébullition de l'azote liquide 5 dans le réservoir principal 4, provoquée par le refroidissement des gaz MAS dans les chambres 6'" et le transfert de chaleur vers l'extérieur de ces chambres. Ce gaz (azote) très froid, est communément appelé « boil-off ». Il est inutilisé dans la construction actuelle de ces dispositifs d'alimentation et il est simplement rejeté à l'air libre par des tubes débouchant sur le haut du dispositif.
- 2) Dans la sonde RMN LTMAS, les gaz froids "VT", "Bearing" et "Drive" en quittant le
stator 3" se mélangent dans le volume interne de l'enveloppe externe 2' de lasonde 3. Le mélange gaz froid résultant est rejeté hors de la sonde à l'atmosphère par un tube d'échappement débouchant du boitier de base de la sonde. L'enveloppe constituant l'enveloppe externe 2' de la sonde est bien isolée thermiquement et par conséquent le gaz d'échappement reste à basse température. La température du gaz en sortie, simplement évacué dans l'air actuellement, peut être comprise entre 120 à 140K en fonctionnement permanent.
- 1) During the operation of the
feed device 1,liquid nitrogen 5 is continuously boiled in themain tank 4, caused by the cooling of the MAS gases in the chambers 6 '"and the heat transfer to The outside of these chambers, which is very cold, is commonly called "boil-off." It is unused in the actual construction of these feeders and is simply vented to the open by tubes. leading to the top of the device. - 2) In the LTMAS NMR, the cold gases "VT", "Bearing" and "Drive" leaving the
stator 3 "are mixed in the internal volume of the outer shell 2 'of theprobe 3. The cold gas mixture The resultant is discharged from the probe into the atmosphere by an exhaust pipe opening from the base housing of the probe, the envelope constituting the outer shell 2 'of the probe is well thermally insulated and therefore the gas of Exhaust remains at low temperature The temperature of the gas outlet, simply vented into the air at present, can be between 120 to 140K in continuous operation.
Comme le montrent les
Dans son mode de réalisation, l'invention prévoit trois prérefroidisseurs 8, 8', 8" pour les gaz "VT", "Bearing" et "Drive".In its embodiment, the invention provides three
Chaque échangeur additionnel formant prérefroidisseur de gaz est un échangeur à contre-courant, dont la construction est dite "tube dans tube" et qui présente une forme hélicoïdale. Dans le tube interne 10 (par exemple de 8 mm) circule le gaz à refroidir de haut en bas (
Sur la
Les entrées des trois échangeurs additionnels formant prérefroidisseurs sont alimentées par les deux sources de gaz froids indiqués ci-dessus. Plus précisément :
- 1) Le gaz "VT" est prérefroidi par le gaz (azote) froid "boil-off " 5' produit dans le réservoir 4
d'azote liquide 5 dans lequel sont plongés les échangeurs 6, 6', 6". Ce gaz froid 5'passe par l'entrée 13 du conduit externe 10' de prérefroidissement. Dès que le contrôle de la pression des chambres 6'" est activé, c'est-à-dire dès que les pressions des chambres sont constantes, il se produit une ébullition dans le réservoir 4 autour des chambres et le gaz froid produit (vapeur gazeuse 5') passe par le circuit formé par le tube externe 10' de l'échangeur additionnel 8. - 2) Les gaz froids en sortie des échangeurs 6, 6', 6" sont dirigés vers la sonde par la canne de transfert 12' qui est accouplée à une ligne de transfert interne isolée 14, logée dans la partie basse de la
structure de sonde 3. Les gaz ressortent de la ligne interne près du stator 3". Le gaz "BEARING" assure la sustentation, le gaz "DRIVE" l'entraînement du rotor et le gaz "VT" refroidit la partie centrale du tube échantillon 3'. - 3)
La sonde RMN 3 est isolée thermiquement par une double paroi sous vide 2' (Dewar). En ressortant du stator 3", les trois gaz se mélangent dans le volume interne de la sonde 3 et sortent mélangés parle tube d'échappement 15, débouchant à l'extérieur du boitier fermant la partie basse de la structure de la sonde 3 (Figure 4 ).
La canne de retour flexible 12 isolée par le vide insérée dans letube d'échappement 15 de la sonde de mesure RMN est retenue par exemple par un écrou et un joint torique. L'autre extrémité de la canne peut être emmanchée dans un adaptateur 16 fixé sous le couvercle 4" du réservoir 4d'azote liquide 5. Elle est maintenue en place par exemple par un écrou et un joint d'étanchéité.
L'adaptateur 16 distribue le gaz froid (mélange de gaz évacués de la sonde 3) vers les deux entrées des deux prérefroidisseurs 8'et 8" par deux tubes en plastique. - 4) La surface d'échange thermique de chaque chambre 6"' est la partie supérieure non isolée thermiquement qui sert à transférer la puissance thermique vers l'extérieur de la chambre, c'est-à-dire vers l'azote liquide 5 du réservoir 4. La surface d'échange de chaque chambre 6"' a pu être réduite de 50 % environ par rapport à la version d'origine sans pré refroidissement. Cette diminution de surface à été rendue possible car la puissance thermique à évacuer dans chaque chambre est plus faible, en raison du pré-refroidissement des gaz MAS.
- 1) The gas "VT" is pre-cooled by the gas (nitrogen) cold "boil-off" 5 'produced in the
tank 4 ofliquid nitrogen 5 in which the 6, 6', 6 "are immersed. 5 'passes through theexchangers inlet 13 of the externalpre-cooling duct 10. As soon as the control of the pressure of the chambers 6''is activated, ie as soon as the pressures of the chambers are constant, it occurs. a boiling in thetank 4 around the chambers and the cold gas produced (vapor gas 5 ') passes through the circuit formed by the outer tube 10' of theadditional exchanger 8. - 2) The cold gases leaving the
6, 6 ', 6 "are directed towards the probe by the transfer rod 12' which is coupled to an insulatedexchangers internal transfer line 14, housed in the lower part of theprobe structure 3. The gases emerge from the inner line near thestator 3 ". The gas "BEARING" provides the lift, the "DRIVE" gas the rotor drive and the "VT" gas cools the central part of the sample tube 3 '. - 3) The
NMR probe 3 is thermally insulated by a double vacuum wall 2 '(Dewar). Coming out of thestator 3 ", the three gases mix in the internal volume of theprobe 3 and exit mixed by theexhaust tube 15, opening out of the housing closing the lower part of the structure of the probe 3 (Figure 4 ).
The vacuum-insulatedflexible return rod 12 inserted in theexhaust tube 15 of the NMR measuring probe is held for example by a nut and an O-ring. The other end of the rod can be fitted into anadapter 16 fixed under thecover 4 "of thetank 4 ofliquid nitrogen 5. It is held in place for example by a nut and a seal.
Theadapter 16 distributes the cold gas (gas mixture discharged from the probe 3) to the two inlets of the twopre-coolers 8 'and 8 "by two plastic tubes. - 4) The heat exchange surface of each
chamber 6 "'is the non-thermally insulated upper part which serves to transfer the thermal power to the outside of the chamber, that is to say to theliquid nitrogen 5 of thetank 4. The exchange area of each 6 "chamber could be reduced by about 50% compared to the original version without pre-cooling. This surface reduction has been made possible because the thermal power to be evacuated in each chamber is lower, because of the pre-cooling of the MAS gases.
L'affectation spécifique des sources de froid (gaz "boil off" 5' et mélange de gaz 9 évacués par la sonde 3) respectivement aux différents pré-refroidisseurs 8, 8', 8" est essentielle pour le bon fonctionnement de l'installation 4.The specific allocation of the cold sources ("boil off" gas 5 'and
Ainsi, et comme déjà mentionné précédemment et illustré par les
Le gaz VT est (au niveau de l'ensemble 6/8) pré-refroidi uniquement par le gaz 5' dit « boil-off » du réservoir LN2 (référence 4). Ce gaz "boil-off" du réservoir LN2 est produit en permanence, ledit flux de gaz étant créé par la puissance thermique totale dissipée dans l'azote liquide. C'est la somme des pertes thermiques du réservoir LN2 4 et des puissances thermiques dissipées par chaque chambre 6"' contenant un échangeur 6, 6', 6" (la puissance dégagée par chaque chambre est fonction uniquement de la pression interne de cette chambre).The gas VT is (at the level of the 6/8 assembly) pre-cooled only by the gas 5 'called "boil-off" of the tank LN 2 (reference 4). This "boil-off" gas of the LN 2 tank is produced continuously, said gas flow being created by the total thermal power dissipated in the liquid nitrogen. This is the sum of the thermal losses of the
Cette affectation particulière présente, de manière surprenante, l'avantage d'éviter les problèmes liés à des variations non contrôlées au niveau de la rotation et éventuellement de la sustentation du rotor 3' intégrant l'échantillon.This particular assignment has, surprisingly, the advantage of avoiding problems related to uncontrolled variations in the rotation and possibly the lift of the rotor 3 'integrating the sample.
En effet, lors du remplissage périodique du réservoir 4 d'azote liquide pour maintenir son niveau sensiblement constant, la pression interne du réservoir augmente sensiblement.Indeed, during the periodic filling of the
Si, dans ces conditions, le gaz boil-off 5' devait être utilisé, éventuellement en mélange avec le gaz 9, pour pré-refroidir les gaz DRIVE et BEARING, il en résulterait des perturbations des pressions des gaz DRIVE et BEARING plus en amont dans la sonde 3. Ces variations provoqueraient alors des fluctuations de la vitesse de rotation du rotor 3' qui deviendrait de ce fait difficilement contrôlable. De plus, le gaz froid 9 évacué de la sonde 3 est à une température plus élevée (de l'ordre 120-140 K), ce qui augmenterait la consommation d'azote liquide et le "boil off" du réservoir 4.If, under these conditions, the boil-off gas 5 'were to be used, possibly in admixture with the
Quand dans le circuit primaire 10 d'un pré-refroidisseur 8, 8', 8" ne circule aucun gaz, ou si le débit du gaz concerné est faible, il est recommandé de stopper le débit de gaz froid dans le circuit secondaire 10' car une liquéfaction partielle du gaz du circuit primaire 10 pourrait se produire. Ainsi, si le gaz boil-off (dont la température est estimée à 80 K env.) devait être utilisé pour pré-refroidir le gaz DRIVE ou BEARING, qui sont sous une pression de 1 à 3 bars, on pourrait liquéfier partiellement ces gaz. Or, cela nuirait gravement au bon fonctionnement du rotor 3' car les gaz BEARING et DRIVE doivent être absolument exempts de gouttelettes de gaz azote liquéfié.When in the
De plus, lors des phases d'insertion ou d'éjection de l'échantillon, le rotor 3' est à l'arrêt et tous les débits des gaz dans la sonde 3 sont nuls. Par conséquent les débits secondaires des échangeurs BEARING 6' et DRIVE 6" sont également nuls et les gaz BEARING et DRIVE présents dans les pré-refroidisseurs 8' et 8" ne peuvent pas être liquéfiés. Au contraire, si le gaz boil-off 5' était utilisé au secondaire 10' des pré-refroidisseurs BEARING 6' et DRIVE 6", il existerait une possibilité effective de liquéfaction de ces gaz. La construction selon l'invention évite ainsi d'éventuels problèmes de mise en rotation du rotor 3 à échantillon.In addition, during the insertion or ejection phases of the sample, the rotor 3 'is stopped and all the flow rates of the gases in the
En outre, dans le cas particulier de l'échangeur pré-refroidisseur 8 pour le gaz VT, quand le débit du gaz primaire est arrêté, le gaz 5' boil-off circule toujours dans le circuit secondaire 10'. Cependant on ne constate jamais de liquéfaction partielle du gaz VT dans ce pré-refroidisseur 8, car la pression du gaz VT est alors faible (P << 0.5 bar) tandis que la température de gaz boil-off est de 80 K ou plus. De plus, si une liquéfaction devait se produire, cela ne créerait pas de problème particulier pour le bon fonctionnement de la sonde 3 car le gaz VT n'influence pas la rotation, ni la sustentation de l'échantillon.In addition, in the particular case of the
Grâce aux dispositions spécifiques de l'invention, il a été possible de réduire de façon très significative la consommation d'azote liquide, tout en garantissant la qualité et les caractéristiques des gaz transmis vers la sonde 3.Thanks to the specific provisions of the invention, it has been possible to very significantly reduce the consumption of liquid nitrogen, while ensuring the quality and characteristics of the gases transmitted to the
Avec un prototype, l'inventeur a pu mesurer une consommation de 6.5 1/LN2 par heure (avec un rotor de 3.2 mm tournant à 8 KHz). On obtient ainsi une réduction de plus de 50 % environ par rapport à la consommation mesurée sur un dispositif d'alimentation équivalent connu, ne présentant pas les caractéristiques de l'invention telle que ressortant de la description ci-dessus.With a prototype, the inventor was able to measure a consumption of 6.5 1 / LN2 per hour (with a 3.2 mm rotor rotating at 8 KHz). This gives a reduction of more than about 50% compared to the consumption measured on a known equivalent supply device, not having the characteristics of the invention as apparent from the description above.
La réduction de la consommation de d'azote liquide réduit le nombre de manipulations de bidons d'azote liquide auxiliaires utilisés pour maintenir le niveau d'azote liquide constant dans le réservoir principal.Reducing the consumption of liquid nitrogen reduces the number of manipulations of auxiliary liquid nitrogen cans used to maintain the constant level of liquid nitrogen in the main tank.
Grâce à l'invention, il y a donc moins d'opérations de mises en place et de branchements de bidons à réaliser chaque jour. Ainsi, un seul bidon de 200 litres de LN2 suffit à assurer le fonctionnement en continu pendant 24 heures pour des vitesses de rotation du rotor modérées, c'est-à-dire inférieure à 10 KHz avec une sonde équipée d'un rotor de 3,2 mm.Thanks to the invention, there is therefore less implementation operations and connections of cans to be made every day. Thus, a single can of 200 liters of LN2 is sufficient to ensure continuous operation for 24 hours for moderate rotational speeds of the rotor, that is to say less than 10 KHz with a probe equipped with a rotor of 3 , 2 mm.
L'invention a également pour objet une installation 2 de mesure RMN, en particulier du type à sonde LT MAS, dans laquelle la sonde 3 est alimentée en gaz froids assurant le refroidissement (VT), la sustentation (BEARING) et la rotation (DRIVE) de l'échantillon (rotor 3'), ladite installation 2 comprenant et/ou étant reliée fluidiquement à un dispositif d'alimentation 7, 7', 7" en gaz froids, acheminant ces gaz par l'intermédiaire de lignes d'alimentation respectivement correspondantes (
Cette installation 2 est caractérisée en ce que le dispositif d'alimentation est un dispositif d'alimentation 1 tel que décrit ci-dessus.This
Comme indiqué précédemment, cette installation 2 comprend avantageusement une canne de transfert 12 isolée thermiquement et préférentiellement flexible, destinée à acheminer les gaz 9 évacués ou s'échappant de la sonde 3 vers le ou les échangeur(s) additionnel(s) 8', 8" concerné(s) et reliant le tube d'échappement 15 de la sonde 3 au réservoir 4 à gaz liquide 5.As indicated above, this
Bien entendu, l'invention n'est pas limitée aux modes de réalisation décrits et représentés aux dessins annexés. Des modifications restent possibles, notamment du point de vue de la constitution des divers éléments ou par substitution d'équivalents techniques, sans sortir pour autant du domaine de protection selon les revendications.Of course, the invention is not limited to the embodiments described and shown in the accompanying drawings. Modifications are possible, in particular from the point of view of the constitution of the various elements or by substitution of technical equivalents, without departing from the scope of protection according to the claims.
Claims (7)
- Device (1) for supplying three cold gases to an NMR analysis installation or appliance (2) equipped with a measurement probe (3),
these three cold gases cooling the sample (3') contained in the probe (3), but also supporting and spinning it,
the said supply device (1) essentially comprising an insulated reservoir (4) containing liquid gas (5) at boiling point and in which there are placed three exchangers (6, 6', 6") through which the three flows of gas that are to be cooled pass, three vacuum transfer lines (7, 7', 7") respectively conveying the said three flows of cooled gas towards the probe (3),
the said exchangers (6, 6', 6") being respectively connected to the said transfer lines (7, 7', 7"), with:a first exchanger (6) through which there passes the cold gas which cools the sample (3'),a second exchanger (6') through which there passes the cold gas that supports the sample (3'),a third exchanger (6") through which there passes the cold gas that provides the drive that spins the said sample (3'),the said supply device (1) also comprising three additional exchangers (8, 8', 8"), each of which is associated upstream with one of the three exchangers (6, 6', 6"), precools the relevant flow of gas before it is conveyed to the corresponding exchanger (6, 6', 6") and takes the form of a dual-flow exchanger,the additional exchanger (8) that precools the cold gas intended for cooling the sample (3') being supplied with gaseous vapour (5') produced by the boiling off of the liquid gas (5) in the reservoir (4),the said supply device (1) being characterized in that the additional exchangers (8' and 8") that precool the dry cold gases intended respectively for supporting and for spinning the sample (3') are supplied by the gases (9) removed or escaping from the probe (3). - Device according to Claim 1, characterized in that each additional exchanger (8, 8', 8") consists of an arrangement of two concentric pipes or tubes (10, 10') one (10) of which has passing through it the flow of gas that is to be precooled, this preferably being the internal tube or pipe, and the other (10') of which has passing through it the flow of cooling gas formed by the gaseous vapour (5') of the boiling-off of the liquid gas (5) of the reservoir (4) or by the gases (9) removed or escaping from the probe (3).
- Device according to either one of Claims 1 and 2, characterized in that each additional exchanger (8, 8', 8") is a countercurrent or counter flow exchanger.
- Device according to any one of Claims 1 to 3, characterized in that the three additional exchangers (8, 8', 8") are grouped together into a single structural entity (11), for example in the form of a single serpentine coil (11) made up of an interlaced arrangement of three helicoidal tubular formations (10, 10') each one corresponding to one of the three additional exchangers (8, 8', 8").
- Device according to any one of Claims 1 to 4, characterized in that the three additional exchangers (8, 8', 8"), preferably structurally grouped together into a single entity (11) housed in an insulated casing (11'), are at least partially arranged in the upper part (4') of the reservoir (4) containing the liquid gas (5) and the exchangers (6, 6', 6"), while advantageously being mounted in a lid (4") that closes the said reservoir (4).
- NMR measurement installation, particularly of the LTMAS probe type, in which the probe is supplied with cold gases for cooling, supporting and spinning the sample, the said installation comprising and/or being fluidically connected to a cold gas supply device conveying these gases via respectively corresponding supply lines,
the installation (2) being characterized in that the supply device is a supply device (1) according to any one of Claims 1 to 5. - Installation according to Claim 6, characterized in that it comprises a transfer pipe (12) that is thermally insulated and preferably flexible, intended to convey the gases (9) removed or escaping from the probe (3) towards the additional exchanger(s) (8', 8") concerned and connecting the exhaust tube (15) of the probe (3) to the reservoir (4) containing liquid gas (5).
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1159356A FR2981442A1 (en) | 2011-10-17 | 2011-10-17 | COLD GAS SUPPLY DEVICE AND NMR INSTALLATION COMPRISING SUCH A DEVICE |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2584294A1 EP2584294A1 (en) | 2013-04-24 |
EP2584294B1 true EP2584294B1 (en) | 2017-03-22 |
Family
ID=47049110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12306262.2A Active EP2584294B1 (en) | 2011-10-17 | 2012-10-12 | Cold-gas supply device for a nmr-appliance |
Country Status (4)
Country | Link |
---|---|
US (1) | US10041629B2 (en) |
EP (1) | EP2584294B1 (en) |
JP (1) | JP5978092B2 (en) |
FR (1) | FR2981442A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104741630A (en) * | 2015-04-20 | 2015-07-01 | 满城县永红铸造机械有限公司 | Automatic loading and unloading device for lathe |
JP6549980B2 (en) * | 2015-12-22 | 2019-07-24 | 日本電子株式会社 | Spinner for NMR measurement |
FR3046678B1 (en) * | 2016-01-12 | 2018-02-16 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | SYSTEM FOR FLUID CHANNELING OF AN NMR SYSTEM AND METHOD FOR OPERATING SUCH A SYSTEM |
DE102016218772A1 (en) * | 2016-09-28 | 2018-03-29 | Bruker Biospin Gmbh | Improved tempering of an NMR MAS rotor |
US20220349628A1 (en) * | 2018-01-24 | 2022-11-03 | National Institute Of Standards And Technology (Nist) | Compact Low-power Cryo-Cooling Systems for Superconducting Elements |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2034754A6 (en) * | 1968-03-06 | 1970-12-18 | Mille Gaston | |
JPS60817A (en) * | 1983-05-27 | 1985-01-05 | Mitsubishi Electric Corp | Filtration apparatus for removing impurity |
JPS62224987A (en) * | 1986-03-27 | 1987-10-02 | Mitsubishi Electric Corp | Cryogenic cooler |
US5067330A (en) * | 1990-02-09 | 1991-11-26 | Columbia Gas System Service Corporation | Heat transfer apparatus for heat pumps |
DE4013111C2 (en) * | 1990-04-25 | 1994-05-26 | Spectrospin Ag | RF receiver coil arrangement for NMR spectrometers |
US5193349A (en) * | 1991-08-05 | 1993-03-16 | Chicago Bridge & Iron Technical Services Company | Method and apparatus for cooling high temperature superconductors with neon-nitrogen mixtures |
SE9200108D0 (en) * | 1992-01-15 | 1992-01-15 | Haakan Toerner | SITTING AND DEVICE FOR COATING A SURFACE WITH A HEATED SUBSTANCE |
DE19744763C2 (en) * | 1997-10-10 | 1999-09-02 | Bruker Ag | NMR probe head with integrated remote tuning |
US6438969B1 (en) * | 2001-07-12 | 2002-08-27 | General Electric Company | Cryogenic cooling refrigeration system for rotor having a high temperature super-conducting field winding and method |
US6442949B1 (en) * | 2001-07-12 | 2002-09-03 | General Electric Company | Cryongenic cooling refrigeration system and method having open-loop short term cooling for a superconducting machine |
EE00582U1 (en) * | 2004-04-20 | 2006-01-16 | Keemilise ja Bioloogilise Füüsika Instituut | High resolution low temperature solid state nuclear magnetic resonance probe |
US7151374B2 (en) * | 2005-01-12 | 2006-12-19 | Doty Scientific, Inc. | NMR MAS probe with cryogenically cooled critical circuit components |
JP4933323B2 (en) * | 2007-03-28 | 2012-05-16 | 国立大学法人京都大学 | High resolution NMR probe |
FR2926629B1 (en) * | 2008-01-21 | 2010-04-02 | Bruker Biospin Sa | THERMAL EXCHANGER DEVICE AND NMR INSTALLATION COMPRISING SUCH A DEVICE |
FR2926692B1 (en) | 2008-01-23 | 2010-02-19 | Airbus France | METHODS AND DEVICES FOR IMPROVING COMMUNICATION RELIABILITY BETWEEN AN AIRCRAFT AND A REMOTE SYSTEM |
US8013608B2 (en) * | 2009-06-19 | 2011-09-06 | Jeol Resonance Inc. | High-resolution NMR probe |
-
2011
- 2011-10-17 FR FR1159356A patent/FR2981442A1/en active Pending
-
2012
- 2012-10-12 EP EP12306262.2A patent/EP2584294B1/en active Active
- 2012-10-16 JP JP2012229022A patent/JP5978092B2/en active Active
- 2012-10-17 US US13/653,591 patent/US10041629B2/en active Active
Non-Patent Citations (1)
Title |
---|
None * |
Also Published As
Publication number | Publication date |
---|---|
FR2981442A1 (en) | 2013-04-19 |
JP5978092B2 (en) | 2016-08-24 |
US10041629B2 (en) | 2018-08-07 |
JP2013088433A (en) | 2013-05-13 |
US20130091870A1 (en) | 2013-04-18 |
EP2584294A1 (en) | 2013-04-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2584294B1 (en) | Cold-gas supply device for a nmr-appliance | |
EP2105695B1 (en) | Heat-exchanger device and NMR installation comprising such a device | |
BE1017473A5 (en) | DEVICE AND METHOD FOR COOLING BEVERAGES. | |
FR2574529A1 (en) | APPARATUS COMBINING A REFRIGERANT FLUID RESERVOIR, A BUFFER RESERVOIR AND A HEAT EXCHANGER. | |
FR2509839A1 (en) | LEAK DETECTION APPARATUS IN A CRYOGENIC TANK | |
EP2250425B1 (en) | System for heating pressurised liquefied gas stores | |
FR2792707A1 (en) | METHOD AND DEVICE FOR COLD HOLDING TANKS FOR STORING OR TRANSPORTING LIQUEFIED GAS | |
FR2951242A1 (en) | Supplying sub-cooled cryogenic liquid from a reservoir to a consumer equipment, comprises placing a liquid nitrogen bath in a heat exchanger immersed in a bath of (non)cryogenic liquid, and controlling the bath at a predetermined level | |
CA2909101A1 (en) | Method and facility for supplying at least one machining station with subcooled cryogenic liquid | |
FR2815695A1 (en) | PRESSURE GAS STORAGE DEVICE | |
FR2769354A1 (en) | High-pressure gas tank filling procedure and apparatus | |
EP0084308A2 (en) | Regulating device for a Joule-Thomson effect cooling apparatus | |
EP2255124B1 (en) | Gas electric heating system | |
FR2931222A1 (en) | SYSTEM AND METHOD FOR VAPORIZING A CRYOGENIC FLUID, IN PARTICULAR LIQUEFIED NATURAL GAS, BASED ON CO2 | |
EP2187143B1 (en) | Dip-tube heating system with latent heat recovery | |
CA2131590A1 (en) | High pressure gas storage tank and high pressure storage and dispensing installation | |
EP3312133A1 (en) | Drinking water dispensing apparatus capable of producing carbonated water | |
FR2901713A1 (en) | METHOD FOR DISTRIBUTING PRECURSOR PRODUCTS, IN PARTICULAR PYROPHORIC PRODUCTS | |
EP1295074A1 (en) | Device for thermal stabilisation of an object to be cooled | |
EP0305257A1 (en) | Process and apparatus for the cryogenic cooling of an object | |
CH530601A (en) | Mobile liquefied gas refrigeration system for perish - able products | |
EP1774215A1 (en) | Active thermal insulating device for gas piping | |
FR2590357A1 (en) | Cooling device with Joule-Thomson expansion and its application to photodetectors | |
FR2878317A1 (en) | Heat exchange device for e.g. geothermal heating installation, has compressor associated to heat exchanging tubing that comprises winding of superposed coils and defines inner space in which compressor is disposed | |
FR2748547A1 (en) | Freezing of delicate food products using low flow rate cryogenic fluid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
17P | Request for examination filed |
Effective date: 20131023 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
17Q | First examination report despatched |
Effective date: 20160315 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F17C 9/02 20060101ALI20161004BHEP Ipc: F25D 3/10 20060101AFI20161004BHEP |
|
INTG | Intention to grant announced |
Effective date: 20161025 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 878191 Country of ref document: AT Kind code of ref document: T Effective date: 20170415 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602012030090 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: DR. GRAF AND PARTNER AG INTELLECTUAL PROPERTY, CH |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170622 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170623 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 878191 Country of ref document: AT Kind code of ref document: T Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170622 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170724 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170722 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602012030090 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
26N | No opposition filed |
Effective date: 20180102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171012 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20121012 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170322 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20231025 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20231023 Year of fee payment: 12 Ref country code: DE Payment date: 20231018 Year of fee payment: 12 Ref country code: CH Payment date: 20231102 Year of fee payment: 12 |