EP2584260A1 - Totally aerated combustion burner - Google Patents

Totally aerated combustion burner Download PDF

Info

Publication number
EP2584260A1
EP2584260A1 EP11185667.0A EP11185667A EP2584260A1 EP 2584260 A1 EP2584260 A1 EP 2584260A1 EP 11185667 A EP11185667 A EP 11185667A EP 2584260 A1 EP2584260 A1 EP 2584260A1
Authority
EP
European Patent Office
Prior art keywords
plate
mixing chamber
chamber
combustion
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11185667.0A
Other languages
German (de)
French (fr)
Other versions
EP2584260B1 (en
Inventor
Kazuyuki Akagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rinnai Corp
Original Assignee
Rinnai Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rinnai Corp filed Critical Rinnai Corp
Priority to EP11185667.0A priority Critical patent/EP2584260B1/en
Publication of EP2584260A1 publication Critical patent/EP2584260A1/en
Application granted granted Critical
Publication of EP2584260B1 publication Critical patent/EP2584260B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • F23D14/04Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone induction type, e.g. Bunsen burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2900/00Special features of, or arrangements for burners using fluid fuels or solid fuels suspended in a carrier gas
    • F23D2900/00003Fuel or fuel-air mixtures flow distribution devices upstream of the outlet

Definitions

  • the present invention relates to a totally aerated combustion burner (or a fully primary aerated burner) which is equipped with a combustion plate having formed therein a multiplicity of flame holes and which discharges a premixed gas from the flame holes to perform totally aerated combustion (or fully primary aerated combustion) of the gas.
  • JP-2001-090913 A As this kind of totally aerated combustion burner, there is known one described in JP-2001-090913 A .
  • a side of the burner as is equipped with a combustion plate is defined as an upper surface, that a width direction of the burner is defined as a lateral direction, and that a depth direction of the burner is defined as a longitudinal direction, respectively.
  • the burner has: a distribution chamber facing the lower surface of the combustion plate; a mixing chamber located on the lower side of the distribution chamber; an air supply chamber located on the lower side of the mixing chamber, thereby supplying the primary air from a combustion fan; and a plurality of nozzle holes parallely formed in the front surface of the mixing chamber at a lateral distance from one another.
  • the burner has disposed therein an inclined plate extending from the front side of the mixing chamber in a manner to be inclined upward toward the rear thereof.
  • the inclined plate is provided with a plurality of openings at a lateral distance from one another so as to introduce therein the primary air from the air supply chamber. It is so arranged that the fuel gas ejected from each of the nozzle holes comes into collision with that portion of the inclined plate which is free from formation of the openings (also referred to as "an opening-free portion"), thereby diffusing the fuel gas.
  • the diffused fuel gas gets mixed with the primary air introduced from the openings so that the mixing of the fuel gas with the primary air is accelerated.
  • a totally aerated combustion burner equipped with a combustion plate in which a multiplicity of flame holes are formed to perform totally aerated combustion by ejecting a premixed gas from the flame holes.
  • the burner comprises, when such a side of the burner as is equipped with the combustion plate is defined as an upper surface, a width direction of the burner is defined as a lateral direction, and a depth direction of the burner is defined as a longitudinal direction: a distribution chamber facing a lower surface of the combustion plate; a mixing chamber on a lower side of the distribution chamber; and an air supply chamber on a lower side of the mixing chamber to thereby supply primary air from a combustion fan.
  • the mixing chamber has a front surface with a plurality of nozzle holes disposed in parallel with, and at a lateral distance from, one another so that a fuel gas to be ejected from the nozzle holes and the primary air from the air supply chamber get mixed in the mixing chamber to thereby generate the premixed gas for introduction thereof to the combustion plate through the distribution chamber.
  • the burner also comprises: a wall plate disposed upright on a bottom surface of the mixing chamber in a manner to lie opposite to the front surface of the mixing chamber while leaving a ventilation clearance to the front surface so that the fuel gas ejected from each of the nozzle holes collides with the wall plate; and an air inlet formed in such a portion at the bottom surface of the mixing chamber as to face the ventilation clearance, the air inlet being for introducing the primary air from the air supply chamber into the mixing chamber.
  • the primary air flows from the air supply opening through the ventilation clearance between the front surface of the mixing chamber and the wall plate. Then, the fuel gas ejected from each of the nozzle holes collides with the wall plate and is diffused. The diffused fuel gas gets mixed with the primary air that flows through the ventilation clearance, and the mixing of the fuel gas and the primary air is accelerated.
  • openings for introducing the primary air need not be formed in the wall plate. Therefore, even if the nozzle holes are deviated sidewise in some degree relative to the wall plate, it is possible to cause the fuel gas to collide with the wall plate to thereby stably mix the fuel gas and the primary air together. Accurate alignment between the nozzle holes and the wall plate consequently becomes unnecessary. As a result, the assembly of the burner becomes easy, and the cost reduction thereof can be achieved.
  • the wall plate is preferably inclined forward in an upward direction. According to this arrangement, the primary air introduced from the air inlet into the ventilation clearance collides with the wall plate from the lower side, so that the mixing of the primary air with the fuel gas flowing along the wall plate is accelerated.
  • the air inlet is wide and the ventilation clearance becomes gradually smaller toward the upper side, whereby the pressure loss can be reduced.
  • the air supply chamber has an air supply opening which is formed on the bottom surface of the air supply chamber at a position rearward of the air inlet so that the primary air from the combustion fan flows into the air inlet, there will be generated a flow of the primary air along the ceiling portion of the air supply chamber toward the air inlet.
  • the primary air will flow into the air inlet while it has a forward-looking directional component.
  • the primary air flows partially toward that portion of the ventilation clearance which lies closer to the front end thereof. Consequently, the primary air will not collide with the wall plate successfully.
  • a guide plate is disposed vertically downward at a longitudinal position between the air inlet in a ceiling portion of the air supply chamber and the air supply opening such that the flow of the primary air directed to the air inlet along the ceiling portion of the air supply chamber is curved downward to a portion below the air inlet.
  • the primary air can be effectively prevented from flowing into the air inlet while it maintains a forward-looking directional component.
  • the primary air efficiently collides with the wall plate, so that the mixing of the fuel gas with the primary air can be accelerated.
  • the burner further comprises gutter-shaped baffle plates each being disposed in the ventilation clearance so as to be longitudinally elongated under the respective nozzle holes, and rising plate portions on respective lateral sides of each baffle plate are laterally inclined so that the upper-side distance of the rising plate portions becomes larger.
  • the primary air is obstructed by the baffle plates and does not collide with the fuel gas to be ejected from each of the nozzle holes. It is consequently possible to make the fuel gas surely collide with the wall plate without being influenced by the primary air even at the time of a weak burn at which the ejection of the fuel gas is made small in quantity. The mixing of the fuel gas and the primary air can thus be accelerated. Moreover, because the rising plate portions on respective lateral sides of each baffle plate are inclined so that the upper-side distance of the rising plate portions becomes larger, the primary air does not hit the fuel gas ejected from each of the nozzle holes even if the nozzle holes are somewhat deviated sidewise relative to the baffle plates. Accurate alignment of the nozzle holes and the baffle plates therefore becomes unnecessary.
  • baffle plates and the guide plate are disposed, preferably a plurality of the baffle plates are integrally press-formed into a single piece of plate member with a rear end portion thereof being bent downward to form the guide plate. According to this arrangement, the number of parts of the burner can be reduced, and a still further cost reduction thereof can be achieved.
  • FIGS. 1 and 2 show a totally aerated combustion burner 1 according to one embodiment of the invention.
  • the burner 1 has a burner main body 2 which is formed into a box shape, and a combustion plate 3 which is made of ceramics and which is provided with a multiplicity of flame holes 3a. By the way, the flame holes 3a are not illustrated in FIG. 1 .
  • the description is made in the following on condition that such a side of the burner as is equipped with the combustion plate 3 is defined as an upper surface, that the width direction of the burner 1 is defined as a lateral direction, and that the depth direction of the burner 1 is defined as a longitudinal direction.
  • the burner main body 2 On an outer peripheral part of the upper surface of the burner main body 2, there is disposed a flange portion 2a to which is connected a lower end of a combustion housing (not illustrated) in which are housed an object to be subjected to heating, such as a heat exchanger, and the like. Further, the burner main body 2 contains therein: a distribution chamber 4 which faces the lower surface of the combustion plate 3; and, on the lower side thereof, a mixing chamber 5 which is partitioned from the distribution chamber 4 by a floor wall 2b which is integral with the burner main body 2. Still furthermore, an air supply chamber 6 is disposed on the lower side of the mixing chamber 5. It is thus so arranged that the primary air is supplied to the air supply chamber 6 by a combustion fan 7.
  • a laterally elongated opening portion 41 which is communicated with the mixing chamber 5.
  • the distribution chamber 4 is partitioned into an upper and a lower, i.e., a total of two, spaces by a partition plate 42. It is thus so arranged that a premixed gas that has flown into the lower space of the distribution chamber 4 through the opening portion 41 is introduced into the combustion plate 3 through a multiplicity of distribution holes 42a, formed in the partition plate 42, and the upper space of the distribution chamber 4.
  • the premixed gas introduced into the combustion plate 3 is ejected from the flame holes 3a so as to perform totally aerated combustion.
  • the front surface 51 of the mixing chamber 5 is closed by a vertical wall 2c which is integral with the burner main body 2.
  • the front surface 51 is provided with a plurality of nozzle holes 52 which are made up of holes penetrating the vertical wall 2c in a manner parallel with, and at a lateral distance from, one another.
  • a gas manifold 8 through a partition plate 81 which defines a nozzle passage 52a communicating with the plurality of nozzle holes 52.
  • the partition plate 81 is provided with an opening (not illustrated) which communicates a gas passage 82 inside the gas manifold 8 and the nozzle passage 52a together.
  • the gas manifold 8 is provided with a solenoid valve 83 having a valve body 83a which opens and closes the above-mentioned opening. It is thus so arranged that, when the solenoid valve 83 is opened, the fuel gas is supplied to the nozzle passage 52a so that the fuel gas is ejected from each of the nozzle holes 52.
  • a wall plate 55 upright in a manner to lie opposite to the front surface 51 of the mixing chamber 5 while leaving (or maintaining) a ventilation clearance 54 between the front surface 51 and the wall plate 55 so that the fuel gas to be ejected from each of the nozzle holes 52 collides with the wall plate 55.
  • the wall plate 55 is inclined upward in a forward direction at a predetermined angle ⁇ . If this inclination angle ⁇ is set to be too large, the pressure loss at the ventilation clearance 54 increases. Accordingly, the inclination angle ⁇ shall preferably be set to a range of 5 degrees to 45 degrees. In this embodiment, the inclination angle ⁇ is set to about 20 degrees.
  • a laterally elongated air inlet 56 which introduces the primary air from the air supply chamber 6 into the mixing chamber 5.
  • the wall plate 55 and the air inlet 56 by bending a front portion of a plate member which is other than the burner main body 2 that constitutes the bottom surface 53 of the mixing chamber 5.
  • the ventilation clearance 54 is provided with a longitudinally elongated baffle plate 57 so as to be positioned under each of the nozzle holes 52.
  • Each of the baffle plates 57 is formed, as shown in FIG. 3 , into a gutter (or trough) shape having rising (or erected) plate portions 57a, 57a on respective lateral sides of each baffle plate 57.
  • the rising plate portions 57a, 57a on lateral sides are inclined in the lateral direction so that the lateral distance between the rising plate portions 57a, 57a becomes larger toward the upper side.
  • the rising plate portions 57a are not disposed in that rear portion of the baffle plates 57 which is closer to the wall plate 55.
  • the bottom surface 61 of the air supply chamber 6 is provided with an air supply opening 62 into which the primary air from the combustion fan 7 flows.
  • a guide plate 63 vertically downward so as to introduce the flow of the primary air which is directed to the air inlet 56 along the ceiling portion of the air supply chamber 6, by curving it (i.e., the flow of the primary air) downward to a position below the air inlet 56.
  • a single piece of plate member 9 is press-formed to thereby integrally form a plurality of baffle plates 57. The rear end portion of this plate member 9 is bent downward to thereby form the guide plate 63.
  • the primary air flows from the air inlet 56 through the ventilation clearance 54 between the front surface 51 of the mixing chamber 5 and the wall plate 55.
  • the fuel gas ejected from each of the nozzle holes 52 collides with the wall plate 55 and is diffused.
  • the diffused fuel gas gets mixed with the primary air that flows through the ventilation clearance 54 to thereby accelerate the mixing of the fuel gas and the primary air.
  • the fuel gas and the primary air get sufficiently mixed with each other while they flow from the ventilation clearance 54 to that portion of the mixing chamber 5 which lies rearward of the wall plate 55, whereby a homogeneous premixed gas sufficiently mixed together is generated.
  • the opening portion for introducing the primary air it is not necessary in this invention to form in the wall plate 55 the opening portion for introducing the primary air. Accordingly, even if the nozzle holes 52 are somewhat deviated sidewise relative to the wall plate 55, it is still possible to cause the fuel gas to collide with the wall plate 55 to thereby stably mix the fuel gas and the primary air together. Consequently, accurate positional alignment of the nozzle holes 52 with the wall plate 55 becomes unnecessary. As a result, the assembly of the burner becomes easy, and the cost reduction thereof can be achieved.
  • the wall plate 55 stands upright, there is a possibility that the primary air flowing through the ventilation clearance 54 is not sufficiently supplied to the neighborhood of the wall plate 55, and that part of the fuel gas which is collided with the wall plate 55 flows to the upper end of the wall plate without getting mixed with the primary air.
  • the wall plate 55 since the wall plate 55 is forwardly inclined in the upward direction, the primary air to be introduced from the air inlet 56 into the ventilation clearance 54 collides with the wall plate 55 from the lower part thereof to thereby accelerate the mixing of the primary air with the fuel gas flowing along the wall plate 55.
  • the air inlet 56 remains wider and the ventilation clearance 54 gradually gets narrower toward the upper end. Therefore, the pressure loss can be reduced and the rotational number of the combustion fan 7 can be made smaller. As a result, the noise of the fan can be reduced.
  • the primary air efficiently collides with the wall plate 55 and the mixing of the fuel gas and the primary air can be accelerated. Further, the fact that the rear portion of the baffle plates 57 is not provided with the rising plate portions 57a also contributes to the improvement in the efficiency of collision of the primary air with the wall plate 55.
  • the primary air is disturbed by the baffle plates 57, the primary air will not collide with the fuel gas ejected from each of the nozzle holes 52. Therefore, even at the time of weak burning at which the amount of ejection of the fuel gas is made small, the fuel gas can be caused to surely collide with the wall plate 55 without being influenced by the primary air, whereby the mixing of the fuel gas and the primary air can be accelerated. Further, since the distance between the upper ends of the rising plate portions 57a, 57a on both lateral sides of the baffle plates 57 is made larger, the primary air will not collide with the fuel gas ejected from the nozzle holes 52 even if the nozzle holes 52 may be slightly deviated sidewise relative to the baffle plates 57. Accordingly, accurate positional alignment between the nozzle holes 52 and the baffle plates 57 becomes unnecessary.
  • the plurality of baffle plates 57 and the guide plate 63 are integrally press-formed into a single piece of sheet plate member 9 in this embodiment, the number of parts can be reduced, and further cost reduction can be achieved.
  • the invention is not limited to the embodiment.
  • a gas manifold may be installed on the front surface 51 of the mixing chamber 5 so as to close the front surface 51.
  • a plurality of nozzle holes are formed in parallel with one another on the gas manifold.
  • the upper and the lower directions do not define the direction at the time of using the burner.
  • This invention includes not only a burner to be used in an overhead posture in which the combustion plate 3 is directed upward, but also a burner to be used in a downward posture in which the combustion plate 3 is directed downward, as well as in a lateral posture in which the combustion plate 3 is directed laterally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

A totally aerated combustion burner (1) having a combustion plate (3) with a multiplicity of flame holes (3a) includes a distribution chamber (4), a mixing chamber (5), and an air supply chamber (6). The mixing chamber (5) has a front surface with a plurality of nozzle holes (52) disposed in parallel with, and at a lateral distance from, one another so that a fuel gas to be ejected from the nozzle holes (52) and the primary air from the air supply chamber (6) get mixed in the mixing chamber (5). A wall plate (55) is disposed upright on a bottom surface of the mixing chamber (5) in a manner to lie opposite to the front surface of the mixing chamber while leaving a ventilation clearance to the front surface. An air inlet (56) is formed in such a portion at the bottom surface of the mixing chamber as to face the ventilation clearance.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to a totally aerated combustion burner (or a fully primary aerated burner) which is equipped with a combustion plate having formed therein a multiplicity of flame holes and which discharges a premixed gas from the flame holes to perform totally aerated combustion (or fully primary aerated combustion) of the gas.
  • 2. Description of the Related Art
  • As this kind of totally aerated combustion burner, there is known one described in JP-2001-090913 A . Suppose that such a side of the burner as is equipped with a combustion plate is defined as an upper surface, that a width direction of the burner is defined as a lateral direction, and that a depth direction of the burner is defined as a longitudinal direction, respectively. Then the burner has: a distribution chamber facing the lower surface of the combustion plate; a mixing chamber located on the lower side of the distribution chamber; an air supply chamber located on the lower side of the mixing chamber, thereby supplying the primary air from a combustion fan; and a plurality of nozzle holes parallely formed in the front surface of the mixing chamber at a lateral distance from one another. It is thus so arranged that the fuel gas ejected from these nozzle holes and the primary air from the air supply chamber get mixed in the mixing chamber, thereby generating a premixed gas, and that the premixed gas is introduced into the combustion plate through the distribution chamber.
  • Moreover, at the front part of the mixing chamber, the burner has disposed therein an inclined plate extending from the front side of the mixing chamber in a manner to be inclined upward toward the rear thereof. The inclined plate is provided with a plurality of openings at a lateral distance from one another so as to introduce therein the primary air from the air supply chamber. It is so arranged that the fuel gas ejected from each of the nozzle holes comes into collision with that portion of the inclined plate which is free from formation of the openings (also referred to as "an opening-free portion"), thereby diffusing the fuel gas. According to this arrangement, the diffused fuel gas gets mixed with the primary air introduced from the openings so that the mixing of the fuel gas with the primary air is accelerated.
  • However, in the prior art as described above, if the position of the opening-free portion in the inclined plate and the position of the nozzle holes are out of lateral alignment with each other, the fuel gas ejected from the nozzle holes sometimes does not collide with the opening-free portion of the inclined plate but enters the openings, resulting in poor mixing of the fuel gas and the primary air. Accordingly, it becomes necessary to accurately align the opening-free portion with the nozzle holes. As a result, the assembling of the above-mentioned parts becomes troublesome, thereby bringing about an increase in cost.
  • SUMMARY
  • It is an object of the invention to provide a totally aerated combustion burner capable of stably mixing the fuel gas and the primary air even if the nozzle holes are out of alignment in some degree.
  • In order to achieve the above-mentioned object, according to the invention, there is provided a totally aerated combustion burner equipped with a combustion plate in which a multiplicity of flame holes are formed to perform totally aerated combustion by ejecting a premixed gas from the flame holes. The burner comprises, when such a side of the burner as is equipped with the combustion plate is defined as an upper surface, a width direction of the burner is defined as a lateral direction, and a depth direction of the burner is defined as a longitudinal direction: a distribution chamber facing a lower surface of the combustion plate; a mixing chamber on a lower side of the distribution chamber; and an air supply chamber on a lower side of the mixing chamber to thereby supply primary air from a combustion fan. The mixing chamber has a front surface with a plurality of nozzle holes disposed in parallel with, and at a lateral distance from, one another so that a fuel gas to be ejected from the nozzle holes and the primary air from the air supply chamber get mixed in the mixing chamber to thereby generate the premixed gas for introduction thereof to the combustion plate through the distribution chamber. The burner also comprises: a wall plate disposed upright on a bottom surface of the mixing chamber in a manner to lie opposite to the front surface of the mixing chamber while leaving a ventilation clearance to the front surface so that the fuel gas ejected from each of the nozzle holes collides with the wall plate; and an air inlet formed in such a portion at the bottom surface of the mixing chamber as to face the ventilation clearance, the air inlet being for introducing the primary air from the air supply chamber into the mixing chamber.
  • According to the invention, the primary air flows from the air supply opening through the ventilation clearance between the front surface of the mixing chamber and the wall plate. Then, the fuel gas ejected from each of the nozzle holes collides with the wall plate and is diffused. The diffused fuel gas gets mixed with the primary air that flows through the ventilation clearance, and the mixing of the fuel gas and the primary air is accelerated. It is to be noted here that openings for introducing the primary air need not be formed in the wall plate. Therefore, even if the nozzle holes are deviated sidewise in some degree relative to the wall plate, it is possible to cause the fuel gas to collide with the wall plate to thereby stably mix the fuel gas and the primary air together. Accurate alignment between the nozzle holes and the wall plate consequently becomes unnecessary. As a result, the assembly of the burner becomes easy, and the cost reduction thereof can be achieved.
  • Now, if the wall plate stands vertically, there is a possibility that the primary air flowing through the ventilation clearance is not sufficiently supplied to the neighborhood of the wall plate and, therefore, that a part of the fuel gas collided with the wall plate flows to the upper end of the wall plate without getting mixed with the primary air. As a solution, according to the invention, the wall plate is preferably inclined forward in an upward direction. According to this arrangement, the primary air introduced from the air inlet into the ventilation clearance collides with the wall plate from the lower side, so that the mixing of the primary air with the fuel gas flowing along the wall plate is accelerated. In addition, unlike the case in which the wall plate is disposed, without inclination, closer to the nozzle holes so that the longitudinal width of the ventilation clearance is made smaller, the air inlet is wide and the ventilation clearance becomes gradually smaller toward the upper side, whereby the pressure loss can be reduced.
  • In case the air supply chamber has an air supply opening which is formed on the bottom surface of the air supply chamber at a position rearward of the air inlet so that the primary air from the combustion fan flows into the air inlet, there will be generated a flow of the primary air along the ceiling portion of the air supply chamber toward the air inlet. As a result, the primary air will flow into the air inlet while it has a forward-looking directional component. Then, the primary air flows partially toward that portion of the ventilation clearance which lies closer to the front end thereof. Consequently, the primary air will not collide with the wall plate successfully. As a solution, preferably a guide plate is disposed vertically downward at a longitudinal position between the air inlet in a ceiling portion of the air supply chamber and the air supply opening such that the flow of the primary air directed to the air inlet along the ceiling portion of the air supply chamber is curved downward to a portion below the air inlet. According to this arrangement, the primary air can be effectively prevented from flowing into the air inlet while it maintains a forward-looking directional component. As a result, the primary air efficiently collides with the wall plate, so that the mixing of the fuel gas with the primary air can be accelerated.
  • Moreover, according to the invention, preferably the burner further comprises gutter-shaped baffle plates each being disposed in the ventilation clearance so as to be longitudinally elongated under the respective nozzle holes, and rising plate portions on respective lateral sides of each baffle plate are laterally inclined so that the upper-side distance of the rising plate portions becomes larger.
  • According to this arrangement, the primary air is obstructed by the baffle plates and does not collide with the fuel gas to be ejected from each of the nozzle holes. It is consequently possible to make the fuel gas surely collide with the wall plate without being influenced by the primary air even at the time of a weak burn at which the ejection of the fuel gas is made small in quantity. The mixing of the fuel gas and the primary air can thus be accelerated. Moreover, because the rising plate portions on respective lateral sides of each baffle plate are inclined so that the upper-side distance of the rising plate portions becomes larger, the primary air does not hit the fuel gas ejected from each of the nozzle holes even if the nozzle holes are somewhat deviated sidewise relative to the baffle plates. Accurate alignment of the nozzle holes and the baffle plates therefore becomes unnecessary.
  • By the way, it is also conceivable to widen the breadth between the rising plate portions on both lateral sides of each of the baffle plates all the way down to the lower ends thereof. In such an arrangement, however, the pressure loss of the primary air flowing between the adjoining baffle plates becomes large. In contrast to this, if the rising plate portions are laterally inclined as described above, the clearance between the adjoining baffle plates becomes larger at the lower part of the clearance, and the pressure loss of the primary air can thus be reduced.
  • Moreover, in case the above-mentioned baffle plates and the guide plate are disposed, preferably a plurality of the baffle plates are integrally press-formed into a single piece of plate member with a rear end portion thereof being bent downward to form the guide plate. According to this arrangement, the number of parts of the burner can be reduced, and a still further cost reduction thereof can be achieved.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • FIG. 1 is a perspective view, partly shown in section, of a burner according to an embodiment of this invention.
    • FIG. 2 is a sectional side view of the burner according to the embodiment.
    • FIG. 3 is an enlarged sectional view of the burner taken along the line III-III in FIG. 2.
    DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS
  • FIGS. 1 and 2 show a totally aerated combustion burner 1 according to one embodiment of the invention. The burner 1 has a burner main body 2 which is formed into a box shape, and a combustion plate 3 which is made of ceramics and which is provided with a multiplicity of flame holes 3a. By the way, the flame holes 3a are not illustrated in FIG. 1. The description is made in the following on condition that such a side of the burner as is equipped with the combustion plate 3 is defined as an upper surface, that the width direction of the burner 1 is defined as a lateral direction, and that the depth direction of the burner 1 is defined as a longitudinal direction.
  • On an outer peripheral part of the upper surface of the burner main body 2, there is disposed a flange portion 2a to which is connected a lower end of a combustion housing (not illustrated) in which are housed an object to be subjected to heating, such as a heat exchanger, and the like. Further, the burner main body 2 contains therein: a distribution chamber 4 which faces the lower surface of the combustion plate 3; and, on the lower side thereof, a mixing chamber 5 which is partitioned from the distribution chamber 4 by a floor wall 2b which is integral with the burner main body 2. Still furthermore, an air supply chamber 6 is disposed on the lower side of the mixing chamber 5. It is thus so arranged that the primary air is supplied to the air supply chamber 6 by a combustion fan 7.
  • At a rear part of the floor wall 2b which is the bottom surface of the distribution chamber 4, there is formed a laterally elongated opening portion 41 which is communicated with the mixing chamber 5. The distribution chamber 4 is partitioned into an upper and a lower, i.e., a total of two, spaces by a partition plate 42. It is thus so arranged that a premixed gas that has flown into the lower space of the distribution chamber 4 through the opening portion 41 is introduced into the combustion plate 3 through a multiplicity of distribution holes 42a, formed in the partition plate 42, and the upper space of the distribution chamber 4. The premixed gas introduced into the combustion plate 3 is ejected from the flame holes 3a so as to perform totally aerated combustion.
  • The front surface 51 of the mixing chamber 5 is closed by a vertical wall 2c which is integral with the burner main body 2. The front surface 51 is provided with a plurality of nozzle holes 52 which are made up of holes penetrating the vertical wall 2c in a manner parallel with, and at a lateral distance from, one another. Moreover, on an outer surface of the vertical wall 2c, there is mounted a gas manifold 8 through a partition plate 81 which defines a nozzle passage 52a communicating with the plurality of nozzle holes 52. The partition plate 81 is provided with an opening (not illustrated) which communicates a gas passage 82 inside the gas manifold 8 and the nozzle passage 52a together. The gas manifold 8 is provided with a solenoid valve 83 having a valve body 83a which opens and closes the above-mentioned opening. It is thus so arranged that, when the solenoid valve 83 is opened, the fuel gas is supplied to the nozzle passage 52a so that the fuel gas is ejected from each of the nozzle holes 52.
  • On the bottom surface 53 of the mixing chamber 5, there is disposed a wall plate 55 upright in a manner to lie opposite to the front surface 51 of the mixing chamber 5 while leaving (or maintaining) a ventilation clearance 54 between the front surface 51 and the wall plate 55 so that the fuel gas to be ejected from each of the nozzle holes 52 collides with the wall plate 55. The wall plate 55 is inclined upward in a forward direction at a predetermined angle θ. If this inclination angle θ is set to be too large, the pressure loss at the ventilation clearance 54 increases. Accordingly, the inclination angle θ shall preferably be set to a range of 5 degrees to 45 degrees. In this embodiment, the inclination angle θ is set to about 20 degrees. In that portion of the bottom surface 53 of the mixing chamber 5 which faces the ventilation clearance 54, there is formed a laterally elongated air inlet 56 which introduces the primary air from the air supply chamber 6 into the mixing chamber 5. Further, in this embodiment, there are formed the wall plate 55 and the air inlet 56 by bending a front portion of a plate member which is other than the burner main body 2 that constitutes the bottom surface 53 of the mixing chamber 5.
  • Furthermore, the ventilation clearance 54 is provided with a longitudinally elongated baffle plate 57 so as to be positioned under each of the nozzle holes 52. Each of the baffle plates 57 is formed, as shown in FIG. 3, into a gutter (or trough) shape having rising (or erected) plate portions 57a, 57a on respective lateral sides of each baffle plate 57. The rising plate portions 57a, 57a on lateral sides are inclined in the lateral direction so that the lateral distance between the rising plate portions 57a, 57a becomes larger toward the upper side. The rising plate portions 57a are not disposed in that rear portion of the baffle plates 57 which is closer to the wall plate 55.
  • At a position nearer to the rear side than the air inlet 56, the bottom surface 61 of the air supply chamber 6 is provided with an air supply opening 62 into which the primary air from the combustion fan 7 flows. Moreover, at a longitudinal position between the air inlet 56 in the ceiling portion of the air supply chamber 6 and the air supply opening 62, there is disposed a guide plate 63 vertically downward so as to introduce the flow of the primary air which is directed to the air inlet 56 along the ceiling portion of the air supply chamber 6, by curving it (i.e., the flow of the primary air) downward to a position below the air inlet 56. In this embodiment, a single piece of plate member 9 is press-formed to thereby integrally form a plurality of baffle plates 57. The rear end portion of this plate member 9 is bent downward to thereby form the guide plate 63.
  • According to this embodiment, the primary air flows from the air inlet 56 through the ventilation clearance 54 between the front surface 51 of the mixing chamber 5 and the wall plate 55. The fuel gas ejected from each of the nozzle holes 52 collides with the wall plate 55 and is diffused. The diffused fuel gas gets mixed with the primary air that flows through the ventilation clearance 54 to thereby accelerate the mixing of the fuel gas and the primary air. The fuel gas and the primary air get sufficiently mixed with each other while they flow from the ventilation clearance 54 to that portion of the mixing chamber 5 which lies rearward of the wall plate 55, whereby a homogeneous premixed gas sufficiently mixed together is generated.
  • Unlike the inclined plate in the above-mentioned conventional example, it is not necessary in this invention to form in the wall plate 55 the opening portion for introducing the primary air. Accordingly, even if the nozzle holes 52 are somewhat deviated sidewise relative to the wall plate 55, it is still possible to cause the fuel gas to collide with the wall plate 55 to thereby stably mix the fuel gas and the primary air together. Consequently, accurate positional alignment of the nozzle holes 52 with the wall plate 55 becomes unnecessary. As a result, the assembly of the burner becomes easy, and the cost reduction thereof can be achieved.
  • By the way, if the wall plate 55 stands upright, there is a possibility that the primary air flowing through the ventilation clearance 54 is not sufficiently supplied to the neighborhood of the wall plate 55, and that part of the fuel gas which is collided with the wall plate 55 flows to the upper end of the wall plate without getting mixed with the primary air. In contrast to this, according to this embodiment, since the wall plate 55 is forwardly inclined in the upward direction, the primary air to be introduced from the air inlet 56 into the ventilation clearance 54 collides with the wall plate 55 from the lower part thereof to thereby accelerate the mixing of the primary air with the fuel gas flowing along the wall plate 55. Moreover, unlike the case in which the wall plate 55 is made close to the nozzle holes 52 without inclining it so that the longitudinal width of the ventilation clearance 54 is made narrower, the air inlet 56 remains wider and the ventilation clearance 54 gradually gets narrower toward the upper end. Therefore, the pressure loss can be reduced and the rotational number of the combustion fan 7 can be made smaller. As a result, the noise of the fan can be reduced.
  • By the way, if the primary air that has flown from the air supply opening 62 into the air supply chamber 6 along the ceiling portion of the air supply chamber 6 while maintaining the forward-looking directional component, the primary air will flow partially to the forward-side portion of the ventilation clearance 54. As a result, the primary air will not collide with the wall plate 55. According to this embodiment, however, due to the guide plate 63 vertically and downwardly disposed on the ceiling portion of the air supply chamber 6, the flow of the primary air that is directed toward the air inlet 56 along the ceiling portion of the air supply chamber 6 will be guided downward. It is thus possible to effectively prevent the primary air from flowing into the air inlet 56 while maintaining the forward-looking directional component. As a result, the primary air efficiently collides with the wall plate 55 and the mixing of the fuel gas and the primary air can be accelerated. Further, the fact that the rear portion of the baffle plates 57 is not provided with the rising plate portions 57a also contributes to the improvement in the efficiency of collision of the primary air with the wall plate 55.
  • Moreover, because the primary air is disturbed by the baffle plates 57, the primary air will not collide with the fuel gas ejected from each of the nozzle holes 52. Therefore, even at the time of weak burning at which the amount of ejection of the fuel gas is made small, the fuel gas can be caused to surely collide with the wall plate 55 without being influenced by the primary air, whereby the mixing of the fuel gas and the primary air can be accelerated. Further, since the distance between the upper ends of the rising plate portions 57a, 57a on both lateral sides of the baffle plates 57 is made larger, the primary air will not collide with the fuel gas ejected from the nozzle holes 52 even if the nozzle holes 52 may be slightly deviated sidewise relative to the baffle plates 57. Accordingly, accurate positional alignment between the nozzle holes 52 and the baffle plates 57 becomes unnecessary.
  • By the way, it is also conceivable to widen the lateral width between the rising plate portions 57a on both sides of each of the baffle plates 57 down to the lower ends of the rising plate portions 57a. In such an arrangement, however, the pressure loss of the primary air to flow through the adjoining baffle plates 57, 57 will become large. On the other hand, if the rising plate portion 57a is laterally inclined as in this embodiment, the clearance between the adjoining baffle plates 57, 57 will become wider at their lower portions, whereby the pressure loss of the primary air can be reduced.
  • Moreover, because the plurality of baffle plates 57 and the guide plate 63 are integrally press-formed into a single piece of sheet plate member 9 in this embodiment, the number of parts can be reduced, and further cost reduction can be achieved.
  • Although the embodiment of the invention has been described above with reference to the accompanying drawings, the invention is not limited to the embodiment. For example, although the front surface 51 of the mixing chamber 5 is closed by the vertical wall 2c that is integral with the burner main body 2 in the above-mentioned embodiment, a gas manifold may be installed on the front surface 51 of the mixing chamber 5 so as to close the front surface 51. In this case, a plurality of nozzle holes are formed in parallel with one another on the gas manifold.
  • Moreover, although such a side of the burner as is equipped with the combustion plate is defined as the upper surface, the upper and the lower directions do not define the direction at the time of using the burner. This invention includes not only a burner to be used in an overhead posture in which the combustion plate 3 is directed upward, but also a burner to be used in a downward posture in which the combustion plate 3 is directed downward, as well as in a lateral posture in which the combustion plate 3 is directed laterally.

Claims (5)

  1. A totally aerated combustion burner equipped with a combustion plate in which a multiplicity of flame holes are formed to perform totally aerated combustion by ejecting a premixed gas from the flame holes, the burner comprising, when such a side of the burner as is equipped with the combustion plate is defined as an upper surface, a width direction of the burner is defined as a lateral direction, and a depth direction of the burner is defined as a longitudinal direction:
    a distribution chamber facing a lower surface of the combustion plate;
    a mixing chamber on a lower side of the distribution chamber;
    an air supply chamber on a lower side of the mixing chamber to thereby supply primary air from a combustion fan,
    wherein the mixing chamber has a front surface with a plurality of nozzle holes disposed in parallel with, and at a lateral distance from, one another so that a fuel gas to be ejected from the nozzle holes and the primary air from the air supply chamber get mixed in the mixing chamber to thereby generate the premixed gas for introduction thereof to the combustion plate through the distribution chamber;
    a wall plate disposed upright on a bottom surface of the mixing chamber in a manner to lie opposite to the front surface of the mixing chamber while leaving a ventilation clearance to the front surface so that the fuel gas ejected from each of the nozzle holes collides with the wall plate; and
    an air inlet formed in such a portion at the bottom surface of the mixing chamber as to face the ventilation clearance, the air inlet being for introducing the primary air from the air supply chamber into the mixing chamber.
  2. The totally aerated combustion burner according to claim 1, wherein the wall plate is inclined forward in an upward direction.
  3. The totally aerated combustion burner according to claim 2, wherein the air supply chamber has an air supply opening which is formed on the bottom surface of the air supply chamber at a position rearward of the air inlet so that the primary air from the combustion fan flows into the air inlet, wherein the burner further comprises a guide plate disposed vertically downward at a longitudinal position between the air inlet in a ceiling portion of the air supply chamber and the air supply opening such that the flow of the primary air directed to the air inlet along the ceiling portion of the air supply chamber is curved downward to a portion below the air inlet.
  4. The totally aerated combustion burner according to claim 1, further comprising:
    gutter-shaped baffle plates each being disposed in the ventilation clearance so as to be longitudinally elongated under the respective nozzle holes, wherein rising plate portions on respective lateral sides of each baffle plate are laterally inclined so that the upper-side distance of the rising plate portions becomes larger.
  5. The totally aerated combustion burner according to claim 3, further comprising:
    gutter-shaped baffle plates each being disposed in the ventilation clearance so as to be longitudinally elongated under the respective nozzle holes, wherein rising plate portions on respective lateral sides of each baffle plates are laterally inclined so that the upper-side distance of the rising plate portions becomes larger, and wherein a plurality of the baffle plates are integrally press-formed into a single piece of plate member with a rear end portion thereof being bent downward to form the guide plate.
EP11185667.0A 2011-10-18 2011-10-18 Totally aerated combustion burner Active EP2584260B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP11185667.0A EP2584260B1 (en) 2011-10-18 2011-10-18 Totally aerated combustion burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP11185667.0A EP2584260B1 (en) 2011-10-18 2011-10-18 Totally aerated combustion burner

Publications (2)

Publication Number Publication Date
EP2584260A1 true EP2584260A1 (en) 2013-04-24
EP2584260B1 EP2584260B1 (en) 2017-03-08

Family

ID=44799889

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11185667.0A Active EP2584260B1 (en) 2011-10-18 2011-10-18 Totally aerated combustion burner

Country Status (1)

Country Link
EP (1) EP2584260B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150928A1 (en) * 2017-02-14 2018-08-23 伸和コントロールズ株式会社 Air conditioner
WO2018219888A1 (en) 2017-05-31 2018-12-06 Bosch Termotecnologia S.A. Mixing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206318A (en) * 1986-03-05 1987-09-10 Matsushita Electric Ind Co Ltd Gas burner
GB2260806A (en) * 1991-10-22 1993-04-28 Peter Bellis Gas burner with associated distributor
JPH05340519A (en) * 1992-06-10 1993-12-21 Paloma Ind Ltd Combustion apparatus
US5423675A (en) * 1993-11-08 1995-06-13 Kratsch; Kenneth Burner mixing chamber
GB2284883A (en) * 1993-12-06 1995-06-21 John Poole Atmospheric gas burner
JP2001090913A (en) 1999-09-20 2001-04-03 Rinnai Corp Mixing part unit
WO2009091115A2 (en) * 2008-01-16 2009-07-23 Kyungdong Navien Co., Ltd. Bunsen burner using lean-rich combustion type

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206318A (en) * 1986-03-05 1987-09-10 Matsushita Electric Ind Co Ltd Gas burner
GB2260806A (en) * 1991-10-22 1993-04-28 Peter Bellis Gas burner with associated distributor
JPH05340519A (en) * 1992-06-10 1993-12-21 Paloma Ind Ltd Combustion apparatus
US5423675A (en) * 1993-11-08 1995-06-13 Kratsch; Kenneth Burner mixing chamber
GB2284883A (en) * 1993-12-06 1995-06-21 John Poole Atmospheric gas burner
JP2001090913A (en) 1999-09-20 2001-04-03 Rinnai Corp Mixing part unit
WO2009091115A2 (en) * 2008-01-16 2009-07-23 Kyungdong Navien Co., Ltd. Bunsen burner using lean-rich combustion type

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018150928A1 (en) * 2017-02-14 2018-08-23 伸和コントロールズ株式会社 Air conditioner
TWI681156B (en) * 2017-02-14 2020-01-01 日商伸和控制工業股份有限公司 Air conditioner
US11555619B2 (en) 2017-02-14 2023-01-17 Shinwa Controls Co., Ltd. Air conditioner
WO2018219888A1 (en) 2017-05-31 2018-12-06 Bosch Termotecnologia S.A. Mixing device

Also Published As

Publication number Publication date
EP2584260B1 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
US8827693B2 (en) Totally aerated combustion burner
EP3012526B1 (en) Combustion plate
US9970679B2 (en) Burner assembly for a heating furnace
JP4751754B2 (en) Flat burner and combustion apparatus using the same
EP1930656A2 (en) Primary combustion burner
US20100294214A1 (en) Burner for gas boiler
KR101747609B1 (en) Combustion device
US9551488B2 (en) Flat burner
JP4730743B2 (en) All primary combustion burners
EP2584260B1 (en) Totally aerated combustion burner
JP2016011825A (en) Combustion apparatus
TWI640724B (en) Rear vent and combustion device provided with the same
AU2011236078B2 (en) Totally aerated combustion burner
CN210485712U (en) Full premix burner assembly and gas water heater with same
CN115013810A (en) Combustion apparatus
US6598599B2 (en) Hot air space heater
JP5368386B2 (en) All primary combustion burners
CN105737151B (en) Burner
CN113503539A (en) Integrated thick and thin combustion system
CN213873221U (en) Double-ejection micro-flame distributor, gas burner and water heater
CN217274130U (en) Burner with a burner head
CN219222402U (en) Injection assembly, injection system and gas cooker with injection system
CN108980828B (en) Combustion apparatus
US11988383B2 (en) Combustion apparatus
EP3470736B1 (en) Firebrick and stove

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20131021

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F23D 14/70 20060101ALI20160919BHEP

Ipc: F23D 14/64 20060101ALI20160919BHEP

Ipc: F23D 14/04 20060101AFI20160919BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 873865

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011035655

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170609

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 873865

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170608

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170710

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170708

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011035655

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

26N No opposition filed

Effective date: 20171211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011035655

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171018

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20111018

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221026

Year of fee payment: 12

Ref country code: GB

Payment date: 20221020

Year of fee payment: 12