EP2577341B1 - Relaxométrie par rmn à cyclage de champ - Google Patents

Relaxométrie par rmn à cyclage de champ Download PDF

Info

Publication number
EP2577341B1
EP2577341B1 EP11729365.4A EP11729365A EP2577341B1 EP 2577341 B1 EP2577341 B1 EP 2577341B1 EP 11729365 A EP11729365 A EP 11729365A EP 2577341 B1 EP2577341 B1 EP 2577341B1
Authority
EP
European Patent Office
Prior art keywords
magnetic field
evolution
polarization
field strength
field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11729365.4A
Other languages
German (de)
English (en)
Other versions
EP2577341B8 (fr
EP2577341A1 (fr
Inventor
Franz Fujara
Marian Fujara
Achim GÄDKE
Alexei Privalov
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovent eV Technologieentwicklung
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2577341A1 publication Critical patent/EP2577341A1/fr
Publication of EP2577341B1 publication Critical patent/EP2577341B1/fr
Application granted granted Critical
Publication of EP2577341B8 publication Critical patent/EP2577341B8/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/448Relaxometry, i.e. quantification of relaxation times or spin density
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/445MR involving a non-standard magnetic field B0, e.g. of low magnitude as in the earth's magnetic field or in nanoTesla spectroscopy, comprising a polarizing magnetic field for pre-polarisation, B0 with a temporal variation of its magnitude or direction such as field cycling of B0 or rotation of the direction of B0, or spatially inhomogeneous B0 like in fringe-field MR or in stray-field imaging

Definitions

  • the invention relates to a Kernspinrelaxometrie Kunststoff according to the preamble of claim 1.
  • Field-Cycling NMR Nuclear Magnetic Resonance
  • Relaxometry is a well-known method by which measurements of the magnetic field (B 0 field) dependent longitudinal (spin-lattice) relaxation time (T 1 ) over a field strength range of over six decades, ie between 10 - 6 T to about 1 T, can be performed. It is of particular interest to measure nuclear spin relaxation in the smallest possible magnetic fields in order to obtain information about, for example, slow dynamic processes in samples of interest.
  • the basic principle of nuclear spin relaxometry is that the nuclear spin system of a sample is first pre-polarized by means of a polarization magnetic field. Subsequently, this polarization magnetic field is quickly switched to a defined other value (evolution magnetic field). The nuclear spin polarization now relaxes to the thermal equilibrium value prevailing in this evolutionary magnetic field. After the (variable) evolution time is switched to a detection magnetic field in which by means of suitable radio frequency pulses, the instantaneous nuclear spin polarization is measured as a function of the evolution time. From this dependence, the spin-lattice relaxation time (longitudinal relaxation time) in the selected evolutionary magnetic field can then be determined directly.
  • the object of the invention is to provide an improved MRI method.
  • Kernspinrelaxometrie Kunststoff is achieved by a Kernspinrelaxometrie Kunststoff according to claim 1.
  • the decisive factor here is that the evolution magnetic field direction differs from the polarization magnetic field direction.
  • a damped precession of the nuclear magnetization around the axis of the evolutionary magnetic field with the strength of the evolutionary magnetic field corresponding Larmor frequency is deliberately brought about.
  • This precession is measured simultaneously with the nuclear spin lattice relaxation time. Since the same nuclear spins perform both the Larmor precession and the spin-lattice relaxation, an assignment of the measured relaxation time or the relaxation time distribution to a magnetic field strength of the evolutionary magnetic field is possible, excluding all systematic error sources.
  • the size of the magnetic fields of the evolutionary magnetic field down to fractions of a microticla ( ⁇ T) can be measured.
  • the measurement of field strength is perfectly in-situ, i. performed by the examined nuclear spins themselves.
  • the change in the polarization field strength to the evolution field strength is nonadiabatically fast. This means that during the switching of the magnetic field from the polarization field strength to the evolution field strength no thermal exchange of the nuclear spin system with the environment (the grid) takes place, wherein no change of direction of the magnetization vector of the nuclear spins takes place when switching the magnetic field. This makes it possible to actually assign the measured nuclear spin relaxation to the evolution field.
  • the polarization magnetic field is generated by a first magnet arrangement and the evolution magnetic field by a second magnet arrangement, wherein the spatial position of the sample during the implementation of the method relative to the first and second magnet arrangement is constant over time.
  • the change of the polarization field strength to the evolution field strength is effected only by switching the respective magnet arrangements, whereby the sample itself is not moved during the measurement.
  • the first and the second magnet arrangement can also be one and the same arrangement, which is energized differently in order to produce the polarization field or the evolution field.
  • the change of the polarization field strength to the evolution field strength is effected by a relative movement of sample, polarization magnetic field and evolutionary magnetic field (mechanical field cycling).
  • the sample is moved spatially from the polarization magnetic field into the evolutionary magnetic field.
  • the measurement of the field strength takes place simultaneously with the relaxometry experiment. This ensures that the relaxometry data can be unambiguously assigned to the evolutionary magnetic field prevailing at the time of the relaxometry measurement. A temporal variation due to, for example, temperature fluctuations and / or magnetic field strength fluctuations thus remains irrelevant. In addition, the total measurement time can be reduced in such an approach.
  • the measured polarization as a function of the evolution time describes a damped oscillation curve
  • the determination of the evolution field strength comprises a determination of the curve of the damped oscillation curve, specifically the determination of the oscillation frequency.
  • the measurement curve obtained in the method according to the invention (polarization as a function of the evolution time) has an oscillating component and also shows an exponential profile of the polarization with increasing evolution time corresponding to the longitudinal relaxation.
  • the oscillation frequency of the said oscillation curve corresponds to the Larmor frequency of the nuclear spins, with which the nuclear spins precess at the sample location due to the evolutionary magnetic field.
  • the Larmor frequency and thus the magnetic field strength of the evolutionary magnetic field can be determined directly from said oscillation curve.
  • the polarization field strength is equal to the detection field strength and the polarization magnetic field direction is equal to the detection magnetic field direction.
  • the use of a polarization field strength equal to the detection field strength is merely an optional possibility of said nuclear spin relaxometry method.
  • the choice of the polarization field strength equal to the detection field strength further simplifies the determination of the evolutionary magnetic field and also of the relaxation behavior of the nuclear spins.
  • the measurement of the polarization of the nuclear spins of the sample takes place via a radio frequency readout pulse and a subsequent free induction decay or via a suitable readout pulse sequence (e.g., spin echo or CPMG).
  • a radio frequency readout pulse and a subsequent free induction decay or via a suitable readout pulse sequence (e.g., spin echo or CPMG).
  • spin echo or CPMG a suitable readout pulse sequence
  • the resulting evolutionary-dependent polarization of the nuclear spins exhibits an easy-to-analyze and characteristic behavior in the form of an exponential curve in combination with an oscillation.
  • FIG. 1 illustrates the time course of a field-cycling NMR relaxometry experiment.
  • the method begins with the pre-polarization of nuclear spins of a sample in a large magnetic field, the so-called polarization magnetic field.
  • This polarization magnetic field has an order of magnitude of up to one Tesla.
  • the nuclear spin magnetization After the nuclear spin magnetization has reached a saturation state after a period of 100, a sufficient (non-adiabatic) fast switching of the magnetic field to a small, adjustable in its orientation evolution magnetic field such that the nuclear spins can not follow.
  • the polarization magnetic field direction of the polarization magnetic field was the B z direction 106, so that the magnetization of the nuclear spins also points in the direction 106.
  • the magnetic field is again switched to a detection magnetic field, the z-component of the magnetization being registered in the detection magnetic field over a period of time 104.
  • the registration of the z component of the magnetization takes place, for example, via a radio frequency read pulse and a free induction decay or via a spin echo pulse sequence during the period 104.
  • the in FIG. 1 explain the method shown so that the polarization magnetic field is nonadiabatically downshifted to a tilted evolution magnetic field, wherein the observation of (due to transverse relaxation, T 2 , T 2 *) attenuated precession to the direction of the evolutionary magnetic field B ev and the relaxation-induced decrease of the magnetization in Evolution magnetic field based on the nuclear spin signal in the detection magnetic field after irradiation, for example, a 90 ° radio frequency pulse as a function of the evolution period 102 takes place.
  • the FIG. 2 shows the measurement result of a 1 H NMR measurement in an aqueous CuSO 4 solution.
  • the direction of the polarization field is in the direction 106 (z-direction), whereas the direction of the evolution magnetic field is in direction 108, ie tilted by about 45 ° with respect to the z-direction.
  • this leads to a precession of the magnetization M by B ev .
  • the detection of the z component of the magnetization in the detection magnetic field as a function of the evolution time duration ⁇ results in a signal oscillation 202 which oscillates approximately symmetrically about a center line 204.
  • the determination of the oscillation frequency, the amplitude ratios and the offset 200 of the centerline 204 relative to the baseline of the Oscillation curve allows the complete determination of the evolutionary magnetic field.
  • FIG. 3 shows another example of 1 H NMR measurement in an aqueous CuSO 4 solution.
  • the direction of the evolution magnetic field 108 in the vicinity of the Z axis, that is, the evolution magnetic field direction differs only slightly from the polarization magnetic field direction 106.
  • an oscillation behavior 300 of the magnetization arises as a function of the evolution period 102, with the oscillation amplitude of the oscillation 300 only marginally an average 302 varies.
  • the oscillation field can be completely determined.
  • the precession frequency is only 200 Hz, whereby the z-component of the evolution field is about 5 ⁇ T and the x-component is 1 - 2 ⁇ T.
  • the measurement shown here demonstrates the procedure for a simultaneous measurement of the evolutionary magnetic field and the spin-lattice relaxation time:
  • An evolutionary magnetic field that is slightly tilted to the z-axis is approached nonadiabatically rapidly.
  • the nuclear spins precess in their Larmor frequency and thus provide the desired information about the evolution field strength.
  • the precession corresponds to the oscillation 400 of the magnetization curve.
  • the oscillation 400 is damped due to the transverse relaxation.
  • Another disintegration component 402 of the magnetization provides the spin-lattice relaxation time T 1 in the evolution field.
  • the FIG. 5 shows a schematic view of a nuclear spin relaxometry device, a so-called field-cycling NMR relaxometer.
  • the device 500 which allows a simultaneous measurement of the evolution magnetic field, consists of a fast switchable main coil 504, an also quickly switchable auxiliary coil 506 and fast switching correction coils, for example, for the x, y and z direction.
  • These correction coils are in the FIG. 5 generally designated by reference numeral 502 and include, for example, Helmholtz coil pairs.
  • the correction coils 502 are initially used to compensate for stray magnetic fields and the geomagnetic fields at the location of the sample 508.
  • the coil 504 is used in this example both for generating the polarization magnetic field and the detection magnetic field in the direction 106th In the FIG. 5 it is assumed that the detection magnetic field is identical to the polarization magnetic field.
  • the required tilted evolution magnetic field in the direction 108 is in the embodiment of the Fig. 5 is generated by the three correction coils 502, wherein the auxiliary coil 506 is needed to prevent zero crossings of the magnetic field by magnetic field overshoot during rapid downshifting of the main coil 504 by briefly applying an additional field.
  • small z-magnetic fields can be well realized thereby.
  • the coils 506, 504 and 502 are supplied via a corresponding power supply 510 with electrical energy in the desired manner.
  • the control of the power supply and thus the coils 502, 504 and 506 via a data processing system 512 which for this purpose has a processor 514 and a memory 516.
  • the memory 516 has instructions executable by the processor 514 for carrying out the method according to the invention.
  • An interface 518 of the data processing system 512 is used to transmit control signals to the power supply 510.
  • FIG. 5 Field-cycling relaxometer shown allows the determination of the magnetic field strength of the evolutionary magnetic field 506 at the sample location 508 in-situ by the examined nuclear spins of the sample 508 itself.
  • the field strength is measured simultaneously with the relaxometry experiment, the size of the magnetic fields to fractions of a Microtesla is measurable.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Claims (5)

  1. Procédé de relaxométrie de spin nucléaire pour la détermination du comportement de relaxation longitudinale de spins nucléaires d'un échantillon, comprenant les étapes suivantes :
    - exposer l'échantillon à un champ magnétique de polarisation statique pour la polarisation de saturation des spins nucléaires, dans lequel le champ magnétique de polarisation présente une intensité de champ de polarisation et une direction de champ magnétique de polarisation (106) prédéterminée de sorte que la polarisation des spins nucléaires est dirigée dans la direction z ;
    - modifier l'intensité du champ de polarisation pour obtenir une intensité de champ d'évolution en exposant l'échantillon à un champ magnétique d'évolution statique, dans lequel la modification de l'intensité du champ de polarisation pour obtenir l'intensité du champ d'évolution s'effectue de manière non adiabatique, dans lequel l'échantillon est exposé à l'intensité du champ d'évolution au cours d'une période d'évolution prédéterminée (102), dans lequel le champ magnétique d'évolution présente une direction de champ magnétique d'évolution (108) prédéterminée, dans lequel l'intensité du champ d'évolution est inférieure à l'intensité du champ de polarisation,
    - exposer l'échantillon à un champ magnétique de détection statique et mesurer la composante z de la magnétisation des spins nucléaires dans le champ magnétique de détection, dans lequel le champ magnétique de détection présente une intensité de champ de détection et une direction de champ magnétique de détection prédéterminée, dans lequel l'intensité du champ de détection est supérieure à l'intensité du champ d'évolution, dans lequel la mesure de la magnétisation des spins nucléaires est effectuée par une séquence d'impulsions de lecture,
    - répéter les étapes précédentes pour différentes périodes d'évolution et déterminer le comportement de relaxation longitudinale des spins nucléaires à partir de la composante z mesurée de la magnétisation en fonction de la durée respective des différentes périodes d'évolution,
    caractérisé en ce que la direction du champ magnétique d'évolution (108) est différente de la direction du champ magnétique de polarisation (106), dans lequel l'intensité du champ d'évolution est également déterminée à partir de la composante z mesurée de la magnétisation en fonction de la durée respective des différentes périodes d'évolution, dans lequel la composante z mesurée de la magnétisation décrit une courbe d'oscillation amortie (202 ; 300 ; 400) en fonction de la durée respective des différentes périodes d'évolution, dans lequel la détermination de l'intensité du champ d'évolution comprend une détermination de la fréquence d'oscillation de la courbe d'oscillation (202 ; 300 ; 400).
  2. Procédé selon l'une des revendications précédentes, dans lequel le champ magnétique de polarisation est généré par un premier dispositif magnétique et le champ magnétique d'évolution est généré par un deuxième dispositif magnétique, dans lequel la position spatiale de l'échantillon est constante dans le temps pendant l'exécution du procédé par rapport aux premier et deuxième dispositifs magnétiques.
  3. Procédé selon l'une des revendications précédentes, dans lequel la modification de l'intensité du champ de polarisation pour obtenir l'intensité du champ d'évolution est provoquée par un mouvement de l'échantillon par rapport au champ magnétique de polarisation et au champ magnétique d'évolution.
  4. Procédé selon l'une des revendications précédentes, dans lequel l'intensité du champ de polarisation est égale à l'intensité du champ de détection et la direction du champ magnétique de polarisation (106) est identique à la direction du champ magnétique de détection.
  5. Procédé selon l'une des revendications précédentes, dans lequel la mesure de la polarisation des spins nucléaires de l'échantillon est effectuée par l'intermédiaire d'une impulsion de lecture radiofréquence et d'une désintégration par induction libre.
EP11729365.4A 2010-06-01 2011-05-30 Relaxométrie par rmn à cyclage de champ Active EP2577341B8 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201010022385 DE102010022385B9 (de) 2010-06-01 2010-06-01 Fieldcycling-Kernspinrelaxometrieverfahren und -vorrichtung sowie Computerprogrammprodukt
PCT/EP2011/002662 WO2011151049A1 (fr) 2010-06-01 2011-05-30 Relaxométrie rmn à champ cyclé

Publications (3)

Publication Number Publication Date
EP2577341A1 EP2577341A1 (fr) 2013-04-10
EP2577341B1 true EP2577341B1 (fr) 2018-12-19
EP2577341B8 EP2577341B8 (fr) 2019-03-13

Family

ID=44508415

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11729365.4A Active EP2577341B8 (fr) 2010-06-01 2011-05-30 Relaxométrie par rmn à cyclage de champ

Country Status (3)

Country Link
EP (1) EP2577341B8 (fr)
DE (1) DE102010022385B9 (fr)
WO (1) WO2011151049A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018187217A1 (fr) * 2017-04-02 2018-10-11 Imagion Biosystems Inc. Procédés et appareils relatifs à des mesures de relaxométrie magnétique en présence d'une réponse environnementale à une excitation magnétique
CN111965719B (zh) * 2020-07-21 2024-03-15 中海油田服务股份有限公司 一种弛豫时间测量方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9808333D0 (en) * 1998-04-18 1998-06-17 Inst Of Food Research A cyclic field-cycling spectrometer
ITMI20070847A1 (it) * 2007-04-23 2008-10-24 Stelar S R L Metodo per l'acquisizione e l'accumulo di un segnale di risonanza magnetica nucleare in presenza di instabilita' di campo magnetico ed in particolare per le procedure di acquisizione e trattamento di segnali nmr utilizzati per lo studio dei tempi di

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102010022385B4 (de) 2012-11-29
EP2577341B8 (fr) 2019-03-13
WO2011151049A1 (fr) 2011-12-08
DE102010022385B9 (de) 2013-05-29
EP2577341A1 (fr) 2013-04-10
DE102010022385A1 (de) 2011-12-01

Similar Documents

Publication Publication Date Title
EP0074022B1 (fr) Dispositif de tomographie à spin nucléaire
DE102011078680B3 (de) Magnetfeldunempfindliche CEST-Bildgebung
DE2921253C2 (fr)
DE2921252C2 (fr)
DE19511791C1 (de) Verfahren zur Shimmung eines Magnetsystems eines Kernspintomographen und Vorrichtung zur Durchführung des Verfahrens
DE102008014060B4 (de) Verfahren zur Bestimmung einer Phasenlage einer Magnetisierung und Magnetresonanzanlage
DE19750637A9 (de) Verfahren zur Messung und Kompensation von durch Wirbelströme induzierten sich örtlich und zeitlich ändernden Magnetfeldern
DE102015221888B4 (de) Gleichzeitige MRT-Mehrschichtmessung
DE10354941B4 (de) Bestimmung der B1-Feldstärke bei MR-Messungen
DE102011087210B4 (de) Verfahren zur Ermittlung einer Ansteuerungssequenz beim parallelen Senden
DE112012005359T5 (de) Verwendung von gradientenspulen zum korrigieren von b0-feldinhomogenitäten höherer ordnung bei mr-bildgebung
DE102005040540B4 (de) Verfahren und Gerät zur Nachweisverbesserung einer schwachsensitiven Atomkernart in der NMR-Spektroskopie
DE102005015069B4 (de) Verfahren zur Vermeidung linearer Phasenfehler in der Magnetresonanz-Spektroskopie
DE102019105770A1 (de) Parallele mr-bildgebung mit spektraler fettunterdrückung
DE4024161A1 (de) Pulssequenz zur schnellen ermittlung von bildern der fett- und wasserverteilung in einem untersuchungsobjekt mittels der kernmagnetischen resonanz
DE102012209295B4 (de) Bestimmung einer objektspezifischen B1-Verteilung eines Untersuchungsobjekts im Messvolumen in der Magnetresonanztechnik
DE102013201671B3 (de) Verfahren zum Erfassen von MR-Daten und zur Bestimmung eines B1-Magnetfelds sowie entsprechend ausgestaltete Magnetresonanzanlage
DE3539256C2 (de) Verfahren zur Darstellung der kernmagnetischen Eigenschaften eines zu untersuchenden Objektes
EP2577341B1 (fr) Relaxométrie par rmn à cyclage de champ
DE102011082669B4 (de) Hyperintense Darstellung von Bereichen im Umfeld von Dipolfeldern mittels MRI
DE102014204995B4 (de) Verfahren und Magnetresonanzanlage zur Fettsättigung
DE102013227170B3 (de) Verfahren und Steuereinrichtung zur Ansteuerung eines Magnetresonanzsystems
DE112019001281T5 (de) Mr-bildgebung mit spiralerfassung
DE19747563A9 (de) Lageerfassungsvorrichtung
EP2676151B1 (fr) Détermination de la forme d'impulsions rf pour l'excitation sélective dans l'imagerie par résonance magnétique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130102

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150206

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180626

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FUJARA, MARIAN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: FUJARA, MARIAN

Inventor name: PRIVALOV, ALEXEI

Inventor name: GAEDKE, ACHIM

Inventor name: FUJARA, FRANZ

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502011015182

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1079293

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190115

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: INNOVENT E.V.

REG Reference to a national code

Ref country code: CH

Ref legal event code: PK

Free format text: BERICHTIGUNG B8

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190319

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190319

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190320

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190419

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502011015182

Country of ref document: DE

Representative=s name: PATENTANWAELTE LIEDTKE & PARTNER, DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190419

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502011015182

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

26N No opposition filed

Effective date: 20190920

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190531

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1079293

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230531

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240626

Year of fee payment: 14