EP2576058A1 - Procede de formation d'un depot localise et de forme definie d'un materiau a la surface d'un substrat - Google Patents
Procede de formation d'un depot localise et de forme definie d'un materiau a la surface d'un substratInfo
- Publication number
- EP2576058A1 EP2576058A1 EP11724618.1A EP11724618A EP2576058A1 EP 2576058 A1 EP2576058 A1 EP 2576058A1 EP 11724618 A EP11724618 A EP 11724618A EP 2576058 A1 EP2576058 A1 EP 2576058A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- substrate
- site
- zones
- solution
- sol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/32—Processes for applying liquids or other fluent materials using means for protecting parts of a surface not to be coated, e.g. using stencils, resists
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B33/00—Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00605—Making arrays on substantially continuous surfaces the compounds being directly bound or immobilised to solid supports
- B01J2219/00614—Delimitation of the attachment areas
- B01J2219/00617—Delimitation of the attachment areas by chemical means
- B01J2219/00619—Delimitation of the attachment areas by chemical means using hydrophilic or hydrophobic regions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/00274—Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
- B01J2219/00583—Features relative to the processes being carried out
- B01J2219/00603—Making arrays on substantially continuous surfaces
- B01J2219/00639—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium
- B01J2219/00644—Making arrays on substantially continuous surfaces the compounds being trapped in or bound to a porous medium the porous medium being present in discrete locations, e.g. gel pads
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/26—Processing photosensitive materials; Apparatus therefor
- G03F7/40—Treatment after imagewise removal, e.g. baking
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24802—Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
Definitions
- the present invention relates to the field of surface treatment and, more particularly, to the localized deposition of thin layers on a substrate.
- the present invention provides a method of forming a localized deposition and defined shape of a material on the surface of a substrate.
- the present invention also relates to the substrate on which thin layers have been deposited in a localized manner and its applications in various fields such as chemical functionalization, chemical analysis and substrate protection.
- the method of formation of immersion coatings known under the name “dip coating” is simply to immerse the substrate in a solution containing the "soil” and remove it under very controlled conditions and stable for get a film of regular thickness.
- the solution flows on the substrate.
- the substrate is covered with a film of "sol-gel” type, uniform and porous.
- spin coating The method of forming a spin-coating known as "spin coating" is also a thin-film deposition technique.
- the substrate is covered with an excess of solution, before being rotated at high speed.
- the solution spreads, the solvent evaporates and a homogeneous film is obtained.
- contact printing is to transfer molecules by contact between the topological patterns of a stamp and the substrate.
- This printing comprises the steps of (1) inking a stamp with the solution to be deposited, (2) putting the inked stamp in contact with the substrate and (3) depositing the stamp solution on the substrate.
- the inking of the patch in particular polydimethylsiloxane (PDMS) is, in the majority of cases, to deposit a drop of solution on the structured surface of the patch, then, after a period of time depending on the solution, remove it and dry under a stream of nitrogen.
- Inking is a key step in contact printing; the uniformity and nature of the deposit of the stamp solution will depend on the quality and nature of the final deposit.
- the inked stamp is then brought into contact with the substrate. Ideally, during this contact, only the top of the topographic patterns of the stamp comes into contact with the substrate. The molecules adsorbed on its surface are therefore transferred to the substrate by contact if they have a greater affinity with the substrate than with the patch. The stamp can finally be removed, leaving the patterns of the ink deposited on the substrate.
- Microgrop technology uses the principle of inkjet printing technology.
- the ejection head implemented in this technology is composed of a glass capillary surrounded by a piezo activator to eject the drop.
- the piezo trigger contracts and a pressure wave propagates in the liquid.
- the pressure differential accelerates the liquid.
- a small “column” of liquid leaves the capillary, and gives a droplet that flies freely in the air.
- volumes of 25 to 500 ⁇ are produced to obtain drops with diameters of 35 to 100 ⁇ .
- WO 2008/040769 published April 10, 2008 provides a method for forming a polymer film (s), in particular chosen from polyvinyl alcohol, poly (hydroxy) styrene, polyimide, polyethylene oxide and polyvinylcarbazole, at sites predetermined values of a substrate.
- the proposed method is to create hydrophilic areas and hydrophobic areas on the substrate using a photoresist and photolithography.
- the polymer (s) is (are) then deposited (s) locally on the hydrophilic zones by using localized and selective microdeposition techniques of the piezoelectric actuator type, "pin and ring", ink jet printing, Archimedean screw and micropipettage.
- This process is applied to polymer solutions (s) low viscosity and therefore highly diluted, which makes the drying step to remove the necessary solvent and mandatory.
- the contact printing technique requires working on PDMS / sol-gel interactions.
- a feasibility and adhesion study between the PDMS and the sol-gel must be carried out.
- a PDMS patch comes in contact with the surface of the substrate, it quickly releases some molecules having a hydrophobic character. This contamination changes the wettability of a hydrophilic surface hydrophobic, which can cause changes in the behavior of sol-gel on the surface of the substrate.
- the present invention makes it possible to solve the disadvantages of the processes of the state of the art.
- the present invention provides a method for the localized deposition of a sol-gel type material.
- the method of the present invention applies not only to any type of sol-gel material but also to other materials and in particular to any polymeric material. It should be emphasized that the process according to the invention is not affected by the nature and in particular the viscosity of the solution containing said material or from which said material can be obtained.
- the method according to the present invention allows a localized and well-defined deposition of the material. It also has good reproducibility.
- the present invention provides a method of forming a localized deposition and of a defined shape of a material on the surface of a substrate comprising the steps of: delimiting, by photolithography, at the surface of said substrate, at least one localized site of defined shape, wettable by a solution containing said material or from which said material is obtained, the zones delimiting said site being non-wettable by said solution;
- said site and said areas being coplanar with the surface of the substrate.
- localized deposition and of defined shape of a material on the surface of a substrate is meant in the context of the present invention a deposition of the material on one (or more) predefined site (s) and chemically materialized on the surface of the substrate.
- the method according to the present invention comprises a first step which makes it possible to prepare, on the surface of the substrate, one (or more) sites (s) wettable (s) by the solution containing the material of interest or from this material is obtained, delimited (s), for example surrounded (s), by non-wettable zones by this solution.
- This first step implemented prior to the deposit of the solution therefore allows to control the surface on which the deposit is made.
- This first delimitation step successively implements a photosensitive resin, a photolithography and a non-wettable material by the solution containing the material of interest or from which this material is obtained, ie a material having a hydrophilic or hydrophobic character distinct from that of said material.
- the substrate thus obtained can be used immediately to deposit the solution, or stored from 2 to 12 months and especially from 6 to 6 months before the deposit of the solution is performed.
- This possibility of storage without the properties of the prepared substrate being affected is another advantage of the process according to the invention. This storage possibility allows the user to have a substrate ready to be manipulated, once the material to deposit selected and thus anticipates the needs of the user.
- the present invention is based on a judicious choice of a substrate comprising sites having a wettability vis-à-vis the solution containing the material of interest or from which this material is obtained, while the delimiting zones and in particular around the sites are non-wettable vis-à-vis this solution.
- a substrate comprising sites having a wettability vis-à-vis the solution containing the material of interest or from which this material is obtained, while the delimiting zones and in particular around the sites are non-wettable vis-à-vis this solution.
- the wettability is defined by the contact angle (or connection angle) that forms a drop of the solution with the substrate at the deposition site of this drop.
- the deposition sites are wettable vis-à-vis the solution
- a drop of this deposited solution will form a contact angle with respect to the deposition site generally presenting a value of less than 70 ° and in particular less than 60 ° while, for the non-wettable zones surrounding said site, it means that the contact angle formed between a drop of the solution and these zones generally has a value greater than 90 ° and in particular greater than 95 °.
- a liquid will wet a solid substrate if it has a chemical affinity to it.
- a hydrophobic solid substrate will be wettable vis-à-vis the hydrophobic liquids and vice versa.
- deposited at said site directly on the substrate is meant, in the context of the present invention, that there is a direct contact between the substrate and the solution containing said material or from which said material is obtained and, ultimately, between the substrate and the material. Thus, no sub-layer separating the substrate from the solution and, ultimately, separating the substrate from the material does not exist.
- substrate is meant the substrate at the time of implementation of the method of the present, the latter having been, prior to this implementation, undergo a pre-treatment. The absence of an underlayer or intermediate layer avoids possible interactions between the latter and the deposited material.
- the first delimitation step makes it possible to obtain a chemical structuring of the surface of the substrate by playing only on the wettability. Indeed, this step does not implement a physical structuring involving relief elements of microstructure type in particular as described in patent application US 2003/148401. In other words, the wettable sites and non-wettable areas with respect to the solution containing the material of interest or from which this material is obtained present on the surface of the substrate are coplanar.
- the substrate used in the context of the present invention is a substantially plane solid substrate. It may be any substrate for carrying out this invention.
- a substrate there may be mentioned a biochip support or a microscope slide such as those conventionally used in silicon, glass, metal, in polymer or plastic. It can be of varied size and shape.
- the substrate may, prior to the implementation of the method according to the invention, have undergone a preparatory treatment so as to modify and / or improve the hydrophilic or hydrophobic properties of its surface.
- This treatment may consist of a chemical modification of the surface of the support by treatments such as oxidizing treatments or by depositing a coating on this surface by the usual deposition techniques known to those skilled in the art.
- This coating may be for example silicon; glass ; silicon dioxide or a (per) fluorinated polymer.
- the substrate may, prior to the implementation of the method according to the invention, have not undergone any preparatory treatment so as to modify and / or improve the hydrophilic or hydrophobic properties of its surface.
- the material deposited on said substrate may be a hydrophilic or hydrophobic material.
- the method according to the present invention is usable that the material to be deposited is hydrophilic or hydrophobic.
- the material deposited on said substrate is advantageously a porous material.
- the porosity of a material makes it possible to establish a nomenclature according to the size of the pores. Indeed, according to the rules established by the International Union of Pure and Applied Chemistry (IUPAC), we can distinguish, according to the average diameter of the pores in a material, the micropores (less than 20 ⁇ ), mesopores (20-500 ⁇ ) and macropores (more than 500 ⁇ ).
- the material used in the context of the present invention is, more generally, microporous. In a variant, the material used in the context of the present invention is mesoporous or macroporous.
- the material is macroporous, mesoporous or microporous, it has a specific surface area of 200 to 800 m 2 . g -1 , in particular from 300 to 700 m 2 . g -1 and, in particular, from 400 to 600 m 2 . g -1
- the material deposited on the substrate according to the process of the invention is a polymeric material and advantageously a porous polymeric material.
- polymeric material is intended to mean a natural or synthetic, soluble or insoluble and especially organic (co) polymer, said material being advantageously porous.
- the polymeric material used in the present invention may be a hydrogel.
- the polymer material that can be used in the context of the present invention is chosen from agarose; gelatin; cellulose; carboxymethylcellulose; an alginate; a polyolefin; a styrenic polymer such as an advantageously porous polystyrene resin; a halogenated hydrocarbon polymer such as polytetrafluoroethylene or poly (chlorotrifluoroethylene); a vinyl polymer such as poly (vinyl decanoate) or polyvinyl alcohol; a (meth) acrylic polymer such as poly (n-butyl acetate) or poly (benzyl) methacrylate); polyethylene glycol; poly (propylene fumarate); poly (ethylene fumarate); a poly (alpha-hydroxyester); a poly (orthoester); a polyanhydride; a poly (phosphazene); a poly (amide ester); a polylactic acid; a polyglycolic acid; polycaprolacton (PCL); poly
- the material deposited on the substrate according to the method of the invention is a sol-gel type material.
- Sol-gel materials are generally prepared in a solvent, which is preferably miscible with water and evaporable under mild conditions, wherein the precursors are soluble.
- silicon alkoxides mention may in particular be made of alcohols, such as that methanol, ethanol; ethers, such as diethyl ether and tetrahydrofuran; chlorinated solvents, such as chloroform, CH 2 Cl 2, C 2 H 5 Cl 2 or other aprotic solvents such as CH 3 CN, acetone, methyl ethyl ketone, or dioxane or protic acids such as acetic acid, formamide.
- alcohols such as that methanol, ethanol
- ethers such as diethyl ether and tetrahydrofuran
- chlorinated solvents such as chloroform, CH 2 Cl 2, C 2 H 5 Cl 2 or other aprotic solvents such as CH 3 CN, acetone, methyl ethyl ketone, or dioxane or protic acids such as acetic acid, formamide.
- chlorinated solvents such as chloroform, CH 2 Cl 2, C 2 H 5 Cl 2 or other
- Small particles of size generally less than 1 nanometer are then formed. They aggregate and form lacunary clusters suspended in the liquid: it is the soil.
- the polycondensation continues over time, the viscosity of the soil increases until gelation: the soil becomes a gel.
- Solid sol-gel material is obtained by drying the gel. During this step, the residual and interstitial solvents escape from the polymer network formed and evaporate, causing the contraction of the material.
- the soil therefore corresponds to a solution from which the material of interest to be deposited, in this case, the sol-gel material is obtained.
- the sol-gel material used in the context of the present invention is essentially prepared from 1 to 4 alkoxysilane precursors and essentially obtained from the hydrolysis of 1 to 4 alkoxysilane precursors.
- the sol-gel material used in the context of the present invention is therefore essentially consisting of units resulting from the hydrolysis of a single alkoxysilane precursor or from 2, 3 or 4 different alkoxysilane precursors.
- TMOS tetramethoxysilane
- TEOS tetraethoxysilane
- TPOS tetrapropoxysilane
- TBOS tetrabutoxysilane
- MTMOS methyltrimethoxysilane
- ETMOS propyltrimethoxysilane
- MTEOS methyltriethoxysilane
- ETEOS ethyltriethoxysilane
- PTEOS propyltriethoxysilane
- APTES 3-aminopropyltriethoxysilane
- ATMS 3-aminopropyltrimethoxysilane
- trimethoxysilane 3-carboxypropyltriethoxysilane, 3-carboxypropyltrimethoxysilane, 1,2-bis (triethoxysilyl) ethane, 1,2-bis (trimethoxysilyl) ethane, (3,3,3-trichloropropyl) triethoxysilane, 3,3,3-trifluoropropyltrimethoxysilane and mixtures thereof.
- the alkoxysilane precursor used in the context of the present invention is the TMOS.
- the sol-gel material may also contain structuring compounds such as organic polymers, such as ionomers and in particular fluorinated organic polymers derived from ethylene with an acid function, such as NAFION®, and also generally neutral surfactants.
- the final sol-gel material generally contains at most 95% by weight of alkoxysilane derivatives, in particular at most 85% by weight of alkoxysilane derivatives and, in particular, from 60 to 80% by weight of alkoxysilane derivatives. .
- the material deposited on the substrate according to the process of the invention is a polymeric material or a sol-gel material, it may further comprise at least one probe molecule.
- at least one probe molecule is incorporated into the material used in the context of the present invention.
- probe molecule is meant, in the context of the present invention, a molecule specific for one (or more) analyte (s) for which contacting with at least one of these analytes results in at least one modification of the spectral properties of this probe molecule.
- the probe molecule used in the context of the present invention is a molecule which has fluorogenic or chromogenic properties, that is to say that it becomes fluorescent or stains when it interacts with at least one specific analyte .
- the interaction of the probe molecule with at least one specific analyte produces a detectable optical signal.
- the interaction may consist in the creation of irreversible and selective binding, in particular of the covalent bonding type between the probe molecule and at least one specific analyte.
- probe molecules that can be used in the context of the present invention and are known for detecting specific, volatile or liquid analytes such as an adhéhyde, formaldehyde, acetaldehyde, naphthalene, a primary amine, especially aromatic amine, indole, skatole, tryptophan,
- Urobilinogen, pyrrole, benzene, toluene, xylene, styrene, napthalene and volatile biomarkers such as 1-methyl naphthalene, p-methyl anisate, methyl nicotinate and o-phenyl anisole.
- Such probe molecules are chosen in particular from the enaminomes and corresponding ⁇ -diketone / amine pairs, imines and hydrazines, 4-aminopent-3-en-2-one (Fluoral-P), croconic acid and aldehyde-functional probe molecules such as p-dimethylaminobenzaldehyde (DMABA or DAB), p-dimethylaminocinnamaldehyde (DMACA), p-methoxybenzaldehyde (MOB) and 4-methoxy-1-naphthaldehyde (MON), mixtures and salts derived from these compounds. Additional information on the usable probe molecules can be found in the international application WO 2007/031657 published on March 22, 2007.
- the material used in the context of the present invention is preferably a porous material as defined above.
- the molecule (s) -sonde (s) is (are) on the surface of the pores of the polymeric material or sol-gel type.
- the probe molecules can be adsorbed on the surface pores of this material and / or bound to this surface by non-covalent bonds (hydrogen bonds or ionic bonds) and / or by covalent bonds.
- the probe molecules are distributed throughout the volume of the material.
- the use of a porous material thus makes it possible to control the diffusion of particularly gaseous analytes and to promote their bringing into contact with the probe molecules.
- the substrate is advantageously transparent or translucent so as not to affect the detection of the signal emitted by the probe molecule in the presence of at least one probe molecule. less a specific analyte.
- the weight percentage of probe molecules is advantageously from 0.01 to 30%, in particular from 0.1 to 20% and, more particularly, from 1 to 10%, relative to the total weight of the polymer material or of the porous sol-gel type. .
- the method according to the present invention comprises, more particularly, the steps of:
- the process according to the present invention has two variants based on the hydrophilic or hydrophobic character of the surface of the substrate.
- the solution containing the material to be deposited or from which this material is obtained is also hydrophilic.
- This first variant comprises the steps of:
- Ci depositing, on said zones, a more hydrophobic compound than the surface of said substrate
- step (ci) removing the remaining photosensitive resin whereby said localized site and defined form is more hydrophilic than the compound deposited in step (ci);
- the second variant concerns the case where the surface of the substrate and the solution containing the material to be deposited or from which this material is obtained are hydrophobic.
- This second variant comprises the steps of:
- the steps (a), (a1) and (a 2 ) consist in depositing a thin layer of a photoresist on the surface of the substrate. It may be necessary, prior to this deposition step, to subject the surface of the substrate to an oxidizing treatment, or to a layer of adhesion with a promising adhesion promoter such as HMDS (for hexamethyldimethylsiloxane). The objective of this preliminary step is to obtain a better adhesion of the resin which will be applied thereafter.
- thin layer is meant a layer having a substantially uniform thickness of between 10 nm and 100 ⁇ m and in particular between 50 nm and 20 ⁇ m.
- This deposit can be carried out by any technique making it possible to obtain a thin layer of resin.
- said deposition is carried out by immersion (“dip coating”), by spraying (“spray coating”) or by centrifugation (“spin coating”), the latter making it possible to spread using centrifugal forces on a spinning wheel. small amount of photoresist on a substrate.
- the photosensitive resin used in the context of the present invention may be a resin called "positive”, that is to say a resin whose insolated areas are removed by the chemical developer or a resin called "negative" c ' that is to say a resin whose non-insolated zones are eliminated by the chemical developer.
- any positive or negative photoresist known to those skilled in the art can be used in the context of the present invention.
- TELR-P0003PV resin Tokyo Ohka Kogyo Co Ltd
- SU-8 resin Shell Chemical
- the resin can be heated to a temperature between 80 ° C and 125 ° C and in particular between 90 ° C and 115 ° C for a duration depending on the thickness of the layer and generally between 1 and 30 min. This annealing step makes it possible to eliminate the solvent.
- the steps (b), (bi) and (b 2 ) of the process according to the invention consist in irradiating the resin layer by means of UV radiation through a mask defining the insolated zones and non-insolated zones and thus the outline (or the limits) of the localized site (s) and of definite form then to eliminate either the insolated zones or the non-insolated zones.
- the location, size and shape of the mask used define the location, size and shape of the site (s) as previously defined (s) and therefore the location, size and shape of the site. deposition of material according to the method of the invention.
- the site (s) as previously defined (s) and therefore the (or) deposit (s) material may be in the form of pads or spots having a diameter of between 1 ym and 5 cm or in the form of strips whose length can reach up to 20 cm and the width is between 1 ym and 2 cm.
- Any mask usually used in photolithography can be used in the context of the present invention.
- such a mask can be made of quartz and / or chromium.
- the irradiation (or insolation) UV is between 100 and 1500 mJ.cm 2 and in particular between 200 to 1000 mJ.cm 2 .
- the UV irradiation may be carried out for a period of between 1 sec and 2 min and in particular between 5 sec and 1 min.
- a step of annealing the resin may be necessary to complete the photopolymerization induced by the UV irradiation. This annealing step is carried out advantageously between 80 ° C and 110 ° C and in particular between 90 ° C and 95 ° C for 15 to 30 min.
- the exposed areas i.e. light-cured or non-insolated areas become insensitive to a large majority of solvents.
- the insolated zones for the positive resins or the non-insolated zones for the negative resins may subsequently be dissolved by a solvent, revealing the surface of the substrate at the zones as previously defined.
- the solvent also called the developer to implement to remove certain areas of the resin after its UV irradiation.
- TMA 2308 gammabutyrolactone
- GBL gammabutyrolactone
- PGMEA propylene Methyl Ethyl Acetate Glycol
- KOH KOH or NaOH.
- the resin may be subjected to a annealing step at a temperature between 80 ° C. and 150 ° C and especially between 90 ° C and 130 ° C and for a period of between 30 sec and 30 min and especially between 1 and 10 min.
- Steps (c), (ci) and (c 2 ) of the method according to the present invention consist in depositing, on the surface of the substrate at the zones where the photoresist was removed during steps (b), (bi) and (b 2 ), a more hydrophilic or hydrophobic compound than the substrate surface.
- This compound is advantageously chosen from polytetrafluoroethylene such as TEFLON®; silicon oxycarbide; a hydrophobic chain silane such as trichloromethylsilane (TCMS), trichloroethylsilane, trichloro (n-propyl) silane, trimethoxymethylsilane, triethoxymethylsilane, (3-phenylpropyl) methyldichlorosilane (PMDS), benzyltrichlorosilane, methylbenzyltrichlorosilane, trifluoromethylbenzyltrichlorosilane, methyltriethoxysilane, (3-phenylpropyl) methyldimethoxysilane, (3-phenylpropyl) methyldiethoxysilane or (1H, 1H, 2H, 2H) perfluorodecyl trichlorosilane (FDTS); or a hydrophilic chain silane such as 3-a
- steps (c), (ci) and (c 2 ) of the process according to the present invention consist in grafting this compound at the zones as previously defined.
- grafting is meant creating a covalent bond between the compound and the surface of the substrate, said bond involving an atom of the compound and an atom of the surface of the substrate.
- this grafting step may consist of a silanization step.
- oxidizing treatment is meant, in the context of the present invention, a treatment (or pretreatment) aimed at oxidizing the surface of the substrate used and / or preparing the surface for future oxidation by formation of radicals .
- Such an oxidative treatment is based on two major types of surface modifications based on:
- plasma treatment in particular oxygen treatment, UV treatment, X-ray or gamma treatment, irradiation treatment with electrons and heavy ions or
- the compound deposited during steps (c), (ci) and (c 2 ) has a thickness of between 1 and 100 nm and in particular between 2 and 50 nm.
- steps (d), (di) and (d 2 ) of the process according to the present invention consist in eliminating the photoresist remaining on the site (s) as (s) as previously defined (s). These steps require the use of a treatment and one (or more) solution (s) or solvent (s) capable (s) to remove the resin and thus to expose the surface of the substrate at these sites , without removing the deposited compound and advantageously grafted at the regions of the substrate during steps (c), (ci) and (c 2 ).
- steps (d), (di) and (d 2 ) allow delimiting a (or) hydrophilic site (s) and vice versa, when the substrate is hydrophobic.
- Such a treatment can be done under ultrasound and using one (or more) bath (s) in a solvent or in several identical or different solvents such as acetone, methanol or ethanol.
- the substrate and, more particularly, the site (s) of the substrate at which the resin was removed during steps (c), ) and (c 2 ) can be dried (s).
- the sites and the substrate are in the same material, they are of the same chemical nature and therefore have the same chemical composition.
- the surface of the substrate is not functionalized at the sites, unlike the area-level surface. This absence of functionalization makes it possible to avoid chemical interactions with the solution containing the material or from which the material is obtained and, in fact, avoiding any chemical denaturation of the latter or of the material obtained.
- Steps (e), (ei) and (e 2 ) consist in depositing the material of interest at the site (s) as previously defined.
- these stages are characterized by the fact that the solution containing this material or from which this material is obtained is deposited not only at this or these site (s) but also at the level of the zones (or them) delimiting and especially the (or the) surrounding.
- the deposition process used during steps (e), (ei) and (e 2 ) is advantageously chosen from the group consisting of an immersion deposit such as "dip coating", a vapor deposition (" spray coating "), a spin coating and a coating deposit. In general, these are thin film deposition techniques, as opposed to microdrop deposit techniques.
- the deposition process during steps (e), (ei) and (e 2 ) is, more particularly, a spin coating.
- the solution implemented during steps (d), (di) and (d 2 ) can be a sol, a sol-gel in formation, a sol-gel, a solution in which the material is dissolved, a solution wherein the material is in suspension, an emulsion containing the material, a dispersion containing the material or a solution comprising the precursors of this material such as the same or different monomers.
- the material of interest further comprises one (or more) molecule (s) -sonde (s)
- it (s) may be incorporated into the material after the preparation of the material.
- the incorporation can be carried out by gas diffusion by contacting the probe molecule in gaseous form directly with the material (under partial vacuum or by circulation of the gas) or in a liquid way by placing the material directly in the gas phase. a solution (aqueous or solvent) containing the dissolved or diluted probe molecule.
- This incorporation can also be done by functionalization or post-doping consisting in creating a covalent bond between the material and the probe molecule.
- the probe molecule (s) may be directly added to the solution containing the material or from which the material is obtained, which results in direct encapsulation of the probe molecule in the material thus allowing a better distribution of the probe molecules in the material.
- the deposition of material following steps (e), (ei) and (e 2 ) may have a large volume, typically between 50 ym 3 and 200 mm 3 and, in particular, between 100 ym 3 and 5 mm 3 , with a thickness of between 30 nm and 100 ⁇ m and in particular between 100 nm and 5 ⁇ m.
- the method according to the present invention allows to control the thickness of deposited material, the latter depending mainly on the viscosity of the solution containing the material or from which it is obtained.
- these parameters which are the viscosity of the solution and the parameters during the deposition of steps (e), (ei) and (e 2 )
- the method makes it possible to deposit a reproducible quantity of material.
- the deposition of a reproducible amount of material is particularly verified, when using a sol type solution since the method of preparation of a sol type solution to control the viscosity.
- the solutions used in the context of the present invention and in particular the sol solutions have a viscosity of between 10 ⁇ 3 and 1 Pa.s (between 1 and 1000 cp) and, in particular, between 2.10 -3 and 0. , 1 Pa.s (between 2 and 100 cp), for a shear of 100 rpm and at room temperature (ie 21 ° C ⁇ 2 ° C).
- the material obtained can be subjected to post-treatment steps such as drying or hardening, particularly thermal annealing or under irradiation.
- post-treatment steps such as drying or hardening, particularly thermal annealing or under irradiation.
- the drying step is not mandatory.
- the sol-gel type materials deposited on the surface of the substrate may also be called “monoliths" or "xerogels”.
- the present invention also relates to a substrate on the surface of which a material has been deposited in at least one localized site and of defined shape according to the process of the present invention, said material being a sol-gel type material as previously defined.
- the sol-gel type material may comprise in in addition to a probe molecule as defined above.
- a particular example of such a substrate is a substrate having on its surface at least one deposition of a sol-gel material obtained from tetramethoxysilane (TMOS or tetramethylorthosilicate) and comprising Fluoral-P as a probe molecule.
- TMOS tetramethoxysilane
- TMOS tetramethylorthosilicate
- the present invention also relates to a substrate on the surface of which a material has been deposited in at least one localized site and of defined shape according to the process of the present invention, said material being a polymeric material as previously defined comprising at least a probe molecule as defined above.
- the present invention relates to the use of such a substrate for trapping and / or detecting and possibly quantifying at least one chemical compound.
- the chemical compound is an analyte of the probe molecule incorporated in the material deposited on the substrate.
- the present invention provides a method for protecting a substrate consisting of forming on the surface of the substrate a deposition of a particular polymeric material or sol-gel type according to the method of the invention.
- the protection sought may be a protection against corrosion or against wear.
- a person skilled in the art will be able to choose the material best suited to achieve this goal.
- usable materials mention may be made, for example, of abrasion-resistant coatings based on SiO 2 - ZrO 2 which may be deposited on metals in order to protect them against corrosion.
- FIG. 1 shows a schematization of the steps (a) and (b) of a variant of the method according to the present invention implementing a glass substrate, a hydrophilic depositing material of the sol-gel type containing a probe molecule and a positive photosensitive resin.
- Figure 2 shows a schematization of steps (c) and (d) of the variant of the method according to the present invention of Figure 1.
- Figure 3 shows a schematization of step (e) of the variant of the method according to the present invention of Figure 1, this step consisting of a deposition of the sol-gel material.
- Figure 4 shows photographs of two sol-gel deposits obtained according to the method of the present invention ( Figure 4A and 4B). DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
- the substrate used is a glass slide.
- the resin used is the
- TELR-P0003PV propylene glycol monomethyl ether acetate, Tokyo Ohka Kogyo Co. Ltd
- a firing step is necessary in order to rapidly remove a portion of the solvents and to ensure the polymerization of the matrix. This annealing is carried out for 1 min at a temperature of 110 ° C.
- Sunstroke is the exposure of certain areas of the resin, through a masking system, to ultraviolet radiation ( Figure 1, step (b)).
- the mask used is a photolithography mask made of quartz and chrome.
- Insolation is performed with a UV lamp type MA8, the insolation time is 20 sec at a power of 390 W.
- the resin is then revealed using a TMA 238 developer provided by JSR.
- This developer is a basic aqueous solution (normality 0.28 N) typically containing tetramethylammonium hydroxide, KOH and NaOH. It eliminates the insolated resin ( Figure 1, step (b)). Then an annealing step is necessary in order to remove the residual solvents and to crosslink the resin. This annealing is carried out for 2 min at 130 ° C.
- step (c) a silanization step (FIG. 2, step (c) is envisaged in order to render the substrate hydrophobic.
- the substrate Prior to this silanization, the substrate is treated with an oxygen plasma (1 minute, 600 W power, with Plassys equipment) so as to create silanol groups on its surface.
- FDTS perfluorodecyl-trichlorosilane
- the drop angle is thus of the order of 108-110 °.
- the substrate is rinsed for 10 min with acetone with ultrasound, 10 min with ethanol with ultrasound and 10 min with ultrasound water then dried using the centrifuge for 10 min at 1000 rpm. / min. Following rinsing, the deposited silane is not removed. The resin is thus removed and, where the resin was located, the substrate is hydrophilic. 1.3. Localized deposits of sol-gel material.
- a sol-gel material comprising 4-amino-3-penten-2-one (Fluoral-P) is then deposited on the hydrophilic areas of the substrate.
- TMOS tetramethoxysilane
- the 2 mL of soil thus obtained is stored in a hermetically sealed pill box (stopper + parafilm).
- the soil is sonicated again for 15 minutes to avoid aggregation of the Fluoral-P molecules, and mechanically stirred up to the deposit.
- Soil deposition is carried out by spin-coating: deposition time 1 min, speed of 2000 revolutions per minute.
- deposition time 1 min
- speed of 2000 revolutions per minute the sol-gel formed concentrates on the hydrophilic parts of the substrate, occupying all the possible space .
- no trace of sol-gel is present.
- sol-gel deposits are obtained whose shape is well defined and the thickness well controlled by the conventional spin-coater deposition process (FIG. 4).
- Figure 4A is a photograph of a sol-gel pad obtained according to the method described in point I, of substantially round shape, having a diameter of 2 mm and a thickness of between 160 and 180 nm.
- FIG. 4B is a photograph of another sol-gel pad obtained according to the process described in FIG. I, of substantially round shape, having a diameter of 1 mm and a thickness of between 560 and 580 nm.
- the sol-gel material obtained by implementing the soil described in 1.3 has a specific surface area of 519 ⁇ 50 m 2 . g -1 and a micropore area of 85.9 ⁇ 5%.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Hematology (AREA)
- Immunology (AREA)
- Microbiology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
La présente invention concerne un procédé de formation d'un dépôt localisé et de forme définie d'un matériau à la surface d'un substrat comprenant les étapes consistant à (1) délimiter, par photolithographie, à la surface dudit substrat, au moins un site localisé et de forme définie, mouillable par une solution contenant ledit matériau ou à partir de laquelle ledit matériau est obtenu, les zones délimitant et notamment entourant ledit site étant non mouillables par ladite solution; (2) déposer, sur ledit site et lesdites zones, ladite solution; moyennant quoi ledit matériau est déposé au niveau dudit site.
Description
PROCEDE DE FORMATION D'UN DEPOT LOCALISE ET DE FORME DEFINIE D'UN MATERIAU A LA SURFACE D'UN SUBSTRAT
DESCRIPTION
DOMAINE TECHNIQUE
La présente invention concerne le domaine du traitement des surfaces et, plus particulièrement, du dépôt localisé de couches minces sur un substrat.
En effet, la présente invention propose un procédé de formation d'un dépôt localisé et de forme définie d'un matériau à la surface d'un substrat.
La présente invention concerne également le substrat sur lequel des couches minces ont été déposées de façon localisée ainsi que ses applications dans différents domaines tels que la fonctionnalisation chimique, l'analyse chimique et la protection des substrats .
ÉTAT DE LA TECHNIQUE ANTÉRIEURE
Plusieurs méthodes ont été développées pour le dépôt des couches minces, notamment de matériaux de type « sol-gel », sur un substrat donné. Le choix de la méthode de dépôt dépend des caractéristiques du substrat telles que sa géométrie ou sa taille et des propriétés recherchées. Les méthodes présentées ci- après sont les plus utilisées.
La méthode de formation de revêtements par immersion connue sous la dénomination anglaise « dip coating » consiste simplement à immerger le substrat dans une solution contenant le « sol » et à le retirer dans des conditions très contrôlées et stables pour
obtenir un film d'épaisseur régulière. Ainsi, lors de la remontée du substrat, la solution s'écoule sur le substrat. A la fin de cet écoulement, le substrat est recouvert d'un film de type « sol-gel », uniforme et poreux.
Le procédé de formation d'un revêtement par centrifugation connu sous l'appellation anglaise de « spin coating » est également une technique de dépôt de films minces. Le substrat est recouvert d'un excès de solution, avant d'être mis en rotation à haute vitesse. La solution s'étale, le solvant s'évapore et un film homogène est obtenu.
La méthode de dépôt par vaporisation ou pulvérisation manuelle connue sous l'appellation anglaise de « spray coating » permet de projeter le sol-gel au travers d'un masque de forme contrôlée. Il s'agit d'une technique simple, rapide mais dont la reproductibilité est difficile sans aérographe automatisé .
Le principe de l'impression par contact connue sous l'appellation anglaise de « contact printing » est de transférer des molécules par contact entre les motifs topologiques d'un timbre et le substrat. Cette impression comprend les étapes consistant à (1) encrer un timbre avec la solution à déposer, (2) mettre le timbre encré en contact avec le substrat et (3) déposer la solution du timbre sur le substrat. Pour ce faire, l'encrage du timbre notamment en polydiméthylsiloxane (PDMS) consiste, dans la majorité des cas, à déposer une goutte de solution sur la surface structurée du timbre, puis, après un laps de temps dépendant de la
solution, de la retirer et de sécher sous un flux d'azote. L'encrage est une étape clé du « contact printing » ; de l'uniformité et de la nature du dépôt de la solution sur le timbre dépendront la qualité et la nature du dépôt final. Le timbre encré est ensuite amené en contact avec le substrat. Idéalement, lors de ce contact, seul le sommet des motifs topographiques du timbre entre en contact avec le substrat. Les molécules adsorbées à sa surface sont donc transférées sur le substrat par contact si elles présentent une plus grande affinité avec le substrat qu'avec le timbre. Le timbre peut finalement être retiré, laissant ainsi les motifs de l'encre déposés sur le substrat.
La technologie « Microgoutte » (ou « Microdrop ») utilise le principe de la technologie d'impression par jet d'encre. La tête d'éjection mise en œuvre dans cette technologie est composée d'un capillaire de verre entouré d'un activateur piezo permettant d'éjecter la goutte. En appliquant une tension, le déclencheur piezo se contracte et une vague de pression se propage dans le liquide. A la sortie du capillaire, le différentiel de pression accélère le liquide. Une petite « colonne » de liquide quitte le capillaire, et donne une gouttelette qui vole librement dans l'air. Selon les tailles de bec (30 à 100 μΜ) , des volumes de 25 jusqu'à 500 μΐ sont produits permettant d'obtenir des gouttes présentant des diamètres de 35 à 100 μπι. Parmi toutes ces techniques, il apparaît que seules trois peuvent être envisagées pour réaliser des
dépôts localisés de type sol-gel sur lames de verre à savoir le « spray coating » utilisant un masque, le dépôt de goutte par « Microdrop » et le « contact printing ». Toutefois, ces techniques peuvent présenter des inconvénients, notamment lorsqu'elles sont utilisées pour déposer des solutions du type sol-gel.
De même, la demande internationale
WO 2008/040769 publiée le 10 avril 2008 propose un procédé pour former un film de polymère (s), notamment choisi (s) parmi le polyvinylalcool , le poly (hydroxy) styrène, le polyimide, polyéthylène oxyde et le polyvinylcarbazole, sur des sites prédéterminés d'un substrat. Le procédé proposé consiste à créer des zones hydrophiles et des zones hydrophobes sur le substrat en utilisant une résine photosensible et de la photolithographie. Le (ou les) polymère (s) est (sont) alors déposé (s) localement sur les zones hydrophiles en utilisant des techniques de microdéposition localisée et sélective du type actuateur piézoélectrique, « pin and ring », impression par jets d'encre, vis d'Archimède et micropipettage.
Ce procédé est appliqué à des solutions de polymère (s) peu visqueuses et donc fortement diluées, ce qui rend l'étape de séchage pour éliminer le solvant nécessaire et obligatoire.
Pour des solutions du type sol, les dépôts obtenus sur des lames de verre en utilisant une vaporisation ou pulvérisation manuelle ne sont pas homogènes et sont difficilement reproductibles. Cette
technique ne convient donc pas pour un procédé impliquant des solutions telles que des solutions aptes à produire des dépôts de type sol-gel.
Lors d'essais de dépôt par microgouttes de sol et notamment en utilisant le procédé de la demande internationale WO 2008/040769, le capillaire s'est obstrué. Différents essais de nettoyage ont été tentés afin de déboucher le capillaire en vain et montrent la difficulté de travailler avec cette technique de dépôt pour synthétiser un sol-gel. Pour s'affranchir du problème d'obstruction dans le capillaire, il est envisageable de modifier la synthèse du sol-gel, par exemple en diluant, mais au risque de modifier la morphologie du sol-gel, et donc les performances de la couche obtenue. De plus, cette technique ne permet pas d' obtenir des formes de dépôt très variées qui se présentent essentiellement sous forme de gouttes ou de plots circulaires, et le contrôle de l'épaisseur n'est pas aisé car obtenu par accumulation de gouttes.
Enfin, la technique d'impression par contact impose de travailler sur les interactions PDMS / sol- gel. A chaque synthèse développée, une étude de faisabilité et d'adhérence entre le PDMS et le sol-gel doit être réalisée. De plus, quand un timbre en PDMS entre en contact avec la surface du substrat, il libère rapidement quelques molécules présentant un caractère hydrophobe . Cette contamination change la mouillabilité d'une surface hydrophile en hydrophobe, ce qui peut engendrer des modifications de comportement du sol-gel à la surface du substrat.
Il existe donc un réel besoin quant à un procédé facile à mettre en œuvre et reproductible pour déposer, de façon prédéterminée, localisée et définie, un matériau de type sol-gel.
EXPOSÉ DE L' INVENTION
La présente invention permet de résoudre les inconvénients des procédés de l'état de la technique. En effet, la présente invention propose un procédé permettant le dépôt localisé d'un matériau de type sol- gel. De façon remarquable, le procédé de la présente invention s'applique non seulement à tout type de matériau de type sol-gel mais aussi à d'autres matériaux et notamment à tout matériau polymère. Il convient de souligner que le procédé selon l'invention n'est pas affecté par la nature et notamment la viscosité de la solution contenant ledit matériau ou à partir de laquelle ledit matériau peut être obtenu.
Le procédé selon la présente invention permet un dépôt localisé et bien défini du matériau. Il présente également une bonne reproductibilité .
De plus, de telles performances ne nécessitent pas de nombreuses étapes coûteuses puisque le procédé selon l'invention est peu cher et peut être mis en œuvre en série. Par exemple, il peut être utilisé pour produire des puces réalisées sur wafer 200/300 mm.
Plus particulièrement, la présente invention propose un procédé de formation d'un dépôt localisé et de forme définie d'un matériau à la surface d'un substrat comprenant les étapes consistant à :
délimiter, par photolithographie, à la surface dudit substrat, au moins un site localisé et de forme définie, mouillable par une solution contenant ledit matériau ou à partir de laquelle ledit matériau est obtenu, les zones délimitant ledit site étant non mouillables par ladite solution ;
- déposer, sur ledit site et lesdites zones, ladite solution ;
moyennant quoi ledit matériau est déposé au niveau dudit site directement sur le substrat,
ledit site et lesdites zones étant coplanaires à la surface du substrat.
Par « dépôt localisé et de forme définie d'un matériau à la surface d'un substrat », on entend dans le cadre de la présente invention un dépôt du matériau sur un (ou plusieurs) site (s) prédéfini (s) et chimiquement matérialisé ( s ) à la surface du substrat.
En effet, le procédé selon la présente invention comprend une première étape qui permet de préparer, à la surface du substrat, un (ou plusieurs) site (s) mouillable ( s ) par la solution contenant le matériau d' intérêt ou à partir de laquelle ce matériau est obtenu, délimité (s), par exemple entouré (s), par des zones non mouillables par cette solution. Cette première étape mise en œuvre préalablement au dépôt de la solution permet donc de contrôler la surface sur laquelle est effectué le dépôt.
Cette première étape de délimitation met en œuvre successivement une résine photosensible, une photolithographie et un matériel non mouillable par la
solution contenant le matériau d' intérêt ou à partir de laquelle ce matériau est obtenu, i.e. un matériel présentant un caractère hydrophile ou hydrophobe distinct de celui dudit matériau.
Le substrat ainsi obtenu peut être soit utilisé immédiatement pour y déposer la solution, soit stocké de 2 h à 12 mois et notamment de 6 h à 6 mois avant que le dépôt de la solution ne soit réalisé. Cette possibilité de stockage sans que les propriétés du substrat préparé ne soient affectées est un autre avantage du procédé selon l'invention. Cette possibilité de stockage permet à l'utilisateur d'avoir un substrat prêt à être manipulé, une fois le matériau à déposer choisi et permet ainsi d'anticiper les besoins de l'utilisateur.
La présente invention se base sur un choix judicieux d'un substrat comprenant des sites présentant une mouillabilité vis-à-vis de la solution contenant le matériau d' intérêt ou à partir de laquelle ce matériau est obtenu, tandis que les zones délimitant et notamment entourant les sites sont non mouillables vis- à-vis de cette solution. Grâce à un tel choix, il est ainsi possible d'obtenir un matériau uniquement présent au niveau du (ou des) site (s) mouillable (s) et ce, même en déposant la solution contenant le matériau d' intérêt ou à partir de laquelle ce matériau est obtenu, sur la totalité de la surface du substrat c'est-à-dire à la fois sur le (ou les) site (s) et les zones tels que précédemment définis. La présente invention utilise les propriétés de mouillabilité du substrat éventuellement pré-traité pour choisir la solution contenant le
matériau d' intérêt ou à partir de laquelle ce matériau est obtenu.
La mouillabilité est définie par l'angle de contact (ou angle de raccordement) que forme une goutte de la solution avec le substrat au niveau du site de dépôt de cette goutte.
Ainsi, lorsque l'on précise que les sites de dépôt sont mouillables vis-à-vis de la solution, cela signifie, généralement, qu'une goutte de cette solution déposée va former par rapport au site de dépôt un angle de contact présentant généralement une valeur inférieure à 70° et notamment inférieure à 60° tandis que, pour les zones non mouillables entourant ledit site, cela signifie que l'angle de contact formé entre une goutte de la solution et ces zones présente généralement une valeur supérieure à 90° et notamment supérieure à 95°. D'un point de vue pratique, cela signifie que la solution, lorsqu'elle est déposée sur l'ensemble de la surface du substrat, se concentre au niveau des sites mouillables par cette solution et ne reste pas ou peu au niveau des zones non mouillables.
D'un point de vue chimique, un liquide va mouiller un substrat solide s'il présente une affinité chimique vis-à-vis de celui-ci. Ainsi un substrat solide hydrophobe va être mouillable vis-à-vis des liquides hydrophobes et inversement.
Par « déposé au niveau dudit site directement sur le substrat », on entend, dans le cadre de la présente invention, qu' il existe un contact direct entre le substrat et la solution contenant ledit matériau ou à partir de laquelle ledit matériau est
obtenu et, au final, entre le substrat et le matériau. Ainsi, aucune sous-couche séparant le substrat de la solution et, au final, séparant le substrat du matériau n'existe. Par « substrat », il faut entendre le substrat au moment de la mise en œuvre du procédé de la présente, ce dernier ayant pu, préalablement à cette mise en œuvre, subir un pré-traitement. L'absence d'une sous-couche ou couche intermédiaire permet d'éviter d'éventuelles interactions entre cette dernière et le matériau déposé.
La première étape de délimitation permet d' obtenir une structuration chimique de la surface du substrat en ne jouant que sur la mouillabilité . En effet, cette étape ne met pas en œuvre une structuration physique impliquant des éléments en relief du type microstructures notamment telles que décrites dans la demande de brevet US 2003/148401. En d'autres termes, les sites mouillables et les zones non mouillables par rapport à la solution contenant le matériau d'intérêt ou à partir de laquelle ce matériau est obtenu, présents à la surface du substrat sont coplanaires .
Le substrat mis en œuvre dans le cadre de la présente invention est un substrat solide sensiblement plan. Il peut s'agir d'un quelconque substrat permettant de mettre en œuvre cette invention. A titre d'exemple de substrat, on peut citer un support de biopuce ou une lame de microscope tels que ceux classiquement utilisés en silicium, en verre, en métal,
en polymère ou en plastique. Il peut être de taille et de forme variées.
Le substrat peut, préalablement à la mise en œuvre du procédé selon l'invention, avoir subi un traitement préparatoire de façon à modifier et/ou à améliorer, les propriétés hydrophiles ou hydrophobes de sa surface. Ce traitement peut consister en une modification chimique de la surface du support par des traitements tels que des traitements oxydants ou en déposant un revêtement sur cette surface par les techniques habituelles de dépôt connues de l'homme du métier. Ce revêtement peut être par exemple du silicium ; du verre ; du dioxyde de silicium ou un polymère (per) fluoré.
En variante, le substrat peut, préalablement à la mise en œuvre du procédé selon l'invention, n'avoir subi aucun traitement préparatoire de façon à modifier et/ou à améliorer, les propriétés hydrophiles ou hydrophobes de sa surface.
Le matériau déposé sur ledit substrat peut être un matériau hydrophile ou hydrophobe . En effet, le procédé selon la présente invention est utilisable que le matériau à déposer soit hydrophile ou hydrophobe.
Le matériau déposé sur ledit substrat est avantageusement un matériau poreux. La porosité d'un matériau permet d'établir une nomenclature en fonction de la taille des pores. En effet, selon les règles établies par l'International Union of Pure & Applied Chemistry (IUPAC), on peut distinguer, selon le diamètre moyen des pores dans un matériau, les
micropores (moins de 20 Â) , des mésopores (20-500 Â) et des macropores (plus de 500 Â) . Le matériau mis en œuvre dans le cadre de la présente invention est, plus généralement, microporeux. En variante, le matériau mis en œuvre dans le cadre de la présente invention est mésoporeux ou macroporeux. Que le matériau soit macroporeux, mésoporeux ou microporeux, il présente une surface spécifique de 200 à 800 m2. g-1, notamment de 300 à 700 m2. g-1 et, en particulier, de 400 à 600 m2. g-1
Dans une première forme de mise en œuvre, le matériau déposé sur le substrat conformément au procédé de l'invention est un matériau polymère et avantageusement un matériau polymère poreux.
Par « matériau polymère », on entend, dans le cadre de la présente invention, un (co) polymère naturel ou synthétique, soluble ou insoluble et notamment organique, ledit matériau étant avantageusement poreux. Le matériau polymère utilisé dans la présente invention peut être un hydrogel.
Ainsi, le matériau polymère utilisable dans le cadre de la présente invention est choisi parmi l'agarose ; la gélatine ; la cellulose ; la carboxyméthylcellulose ; un alginate ; une polyoléfine ; un polymère styrénique comme une résine polystyrène avantageusement poreuse ; un polymère hydrocarboné halogéné comme du polytétrafluoroéthylène ou du poly (chlorotrifluoroéthylène) ; un polymère vinylique comme un poly(vinyl décanoate) ou du polyalcool de vinyle ; un polymère (méth) acrylique comme un poly(n-butyl acétate) ou un poly(benzyl
méthacrylate) ; du polyéthylène glycol ; du poly (propylène fumarate) ; du poly (éthylène fumarate) ; un poly (alpha-hydroxyester) ; un poly (orthoester) ; un polyanhydride ; un poly (phosphazène) ; un poly (ester amide) ; un acide polylactique ; un acide polyglycolique ; le polycaprolacton (PCL) ; le polydioxanone (PDO) ; un polyuréthane ; un gel de cholesteryl anthraquinone-2-carboxylate et de polyméthylsiloxane ; un gel de 1,3 : 2 , 4-dibenzylidene- sorbitol et d' octaméthylcyclotétrasiloxane ; un gel de diamide aromatique à chaîne perfluorée et de perfluorotributylamine notamment décrit dans l'article de Loiseau et al., 2002, Tetrahedron, vol. 58, pages 4049-4052.
Dans une seconde forme de mise en œuvre, le matériau déposé sur le substrat conformément au procédé de l'invention est un matériau de type sol-gel.
Par « matériau de type sol-gel » ou « matériau sol-gel », les deux expressions étant équivalentes et interchangeables, on entend un matériau obtenu par un procédé sol-gel consistant à utiliser comme précurseurs des alcoxydes métalliques, identiques ou différents, de formule M(OR)n(R' ) m dans laquelle M est un métal tel que le silicium, R et R' représentent un groupement alkyle et m et n des entiers avec m + n = 4, 2 ≤ n ≤ 4 et 0 ≤ m ≤ 2. Les matériaux sol-gel sont généralement préparés dans un solvant, qui est de préférence miscible à l'eau et évaporable dans des conditions douces, dans lequel les précurseurs sont solubles. Dans le cas des alcoxydes de silicium, on peut notamment citer les alcools, tels
que le méthanol, l'éthanol ; les éthers, tels que le diéthyléther et le tétrahydrofurane ; les solvants chlorés, tels que le chloroforme, CH2CI2, C2H5CI2 ou d'autres solvants aprotiques comme CH3CN, l'acétone, la méthyléthylcétone, ou le dioxane ou protiques comme l'acide acétique, le formamide. En présence d'eau, l'hydrolyse des groupements alcoxyde (-OR) intervient et ces derniers sont transformés en groupements silanol (Si-OH) qui se condensent en formant des groupements siloxane (Si-O-Si) . De petites particules de taille généralement inférieure à 1 nanomètre sont alors formées. Elles s'agrègent et forment des amas lacunaires en suspension dans le liquide : c'est le sol. La polycondensation se poursuivant au cours du temps, la viscosité du sol augmente jusqu'à gélification : le sol devient un gel. Un matériau sol- gel solide est obtenu par séchage du gel. Au cours de cette étape, les solvants résiduels et interstitiels s'échappent du réseau polymérique formé et s'évaporent, ce qui provoque la contraction du matériau. On obtient un matériau final dont le volume est réduit par comparaison au volume occupé par le sol. Le sol correspond donc à une solution à partir de laquelle le matériau d'intérêt à déposer, en l'occurrence, le matériau sol-gel est obtenu.
Le matériau sol-gel mis en œuvre dans le cadre de la présente invention est essentiellement préparé à partir de 1 à 4 précurseurs alcoxysilanes et essentiellement obtenu à partir de l'hydrolyse de 1 à 4 précurseurs alcoxysilanes. Le matériau sol-gel mis en œuvre dans le cadre de la présente invention est donc
essentiellement constitué d'unités issues de l'hydrolyse d'un seul précurseur alcoxysilane ou issues de 2, 3 ou 4 précurseurs alcoxysilanes différents.
A titre de précurseur alcoxysilane utilisable dans le cadre de la présente invention, on peut citer le tétraméthoxysilane (TMOS) , le tétraéthoxysilane (TEOS), le tétrapropoxysilane (TPOS) , le tétrabutoxysilane (TBOS) , le méthyltriméthoxysilane (MTMOS), l' éthyltriméthoxysilane (ETMOS) , le propyltriméthoxysilane (PTMOS) , le méthyltriéthoxysilane (MTEOS) , 1 ' éthyltriéthoxysilane (ETEOS), le propyltriéthoxysilane (PTEOS) , le 3- aminopropyltriéthoxysilane (APTES) , le 3- aminopropyltriméthoxysilane (APTMS) , le (3- (méthylamino) propyl) triméthoxysilane, le 3- carboxypropyltriéthoxysilane, le 3- carboxypropyltriméthoxysilane, le 1,2- bis (triéthoxysilyl) éthane, le 1,2- bis (triméthoxysilyl) éthane, le (3,3,3- trichloropropyl) triéthoxysilane, le 3,3,3- trifluoropropyl-triméthoxysilane et leurs mélanges.
Avantageusement, le précurseur alcoxysilane mis en œuvre dans le cadre de la présente invention est le TMOS .
Le matériau sol-gel peut en outre contenir des composés structurants tels que des polymères organiques, comme les ionomères et notamment les polymères organiques fluorés dérivés de l'éthylène à fonction acide, tel que du NAFION®, et également des tensioactifs généralement neutres.
Le matériau sol-gel final contient en général au plus 95% en masse de dérivés d' alcoxysilanes , notamment au plus 85% en masse de dérivés d' alcoxysilanes et, en particulier, de 60 à 80% en masse de dérivés d' alcoxysilanes .
Enfin, que le matériau déposé sur le substrat selon le procédé de l'invention soit un matériau polymère ou un matériau de type sol-gel, il peut comprendre en outre au moins une molécule-sonde. En d'autres termes, au moins une molécule-sonde est incorporée au matériau mis en œuvre dans le cadre de la présente invention.
Par « molécule-sonde », on entend, dans le cadre de la présente invention, une molécule spécifique à un (ou plusieurs) analyte (s) pour laquelle la mise en contact avec au moins un de ces analytes entraîne au moins une modification des propriétés spectrales de cette molécule-sonde.
La molécule-sonde mise en œuvre dans le cadre de la présente invention est une molécule qui présente des propriétés fluorogène ou chromogène, c'est-à-dire qu'elle devient fluorescente ou se colore lorsqu'elle interagit avec au moins un analyte spécifique. D'une façon générale, l'interaction de la molécule-sonde avec au moins un analyte spécifique produit un signal optique détectable. L'interaction peut consister en la création d'une liaison irréversible et sélective, notamment de type liaison covalente entre la molécule- sonde et au moins un analyte spécifique.
L'homme du métier connaît différentes molécules-sondes utilisables dans le cadre de la présente invention et connues pour détecter des analytes spécifiques, volatils ou liquides comme un adhéhyde, du formaldéhyde, de l' acétaldéhyde, du naphtalène, une aminé primaire notamment aromatique, de l'indole, du scatole, du tryptophane, de
1 ' urobilinogène, du pyrrole, du benzène, du toluène, du xylène, du styrène, du napthalène et les biomarqueurs volatils tels que le 1-méthyl napthtalène, le p-méthyl anisate, le méthyl nicotinate et le o-phényl anisole. De telles molécules-sondes sont notamment choisies parmi les énaminomes et les couples β-dicétone/amine correspondants, les imines et les hydrazines, le 4- aminopent-3-en-2-one (Fluoral-P) , l'acide croconique et les molécules-sondes à fonction aldéhyde que sont le p- diméthylaminobenzaldéhyde (DMABA ou DAB) , le p- diméthylaminocinnamaldéhyde (DMACA) , le p- méthoxybenzaldéhyde (MOB) et le 4-méthoxy-l- naphtaldéhyde (MON) , les mélanges et les sels dérivés de ces composés. Des informations complémentaires sur les molécules-sondes utilisables peuvent être trouvées dans la demande internationale WO 2007/031657 publiée le 22 mars 2007.
Lorsqu'il comprend au moins une molécule-sonde, le matériau mis en œuvre dans le cadre de la présente invention est, de préférence, un matériau poreux tel que précédemment défini. Ainsi, la (ou les) molécule ( s ) -sonde ( s ) se trouve (nt) à la surface des pores du matériau polymère ou de type sol-gel. Les molécules-sondes peuvent être adsorbées à la surface
des pores de ce matériau et/ou liées à cette surface par des liaisons non-covalentes (liaisons hydrogène ou liaisons ioniques) et/ou par des liaisons covalentes. Généralement les molécules-sondes sont réparties dans l'ensemble du volume du matériau. L'utilisation d'un matériau poreux permet ainsi de contrôler la diffusion des analytes notamment gazeux et de favoriser leur mise en contact avec les molécules-sonde.
De même, lorsque le matériau mis en œuvre dans le cadre de la présente invention comprend au moins une molécule-sonde, le substrat est avantageusement transparent ou translucide pour ne pas affecter la détection du signal émis par la molécule-sonde en présence d'au moins un analyte spécifique.
Le pourcentage pondéral de molécules-sondes est avantageusement de 0,01 à 30%, en particulier de 0,1 à 20% et, tout particulièrement, de 1 à 10% rapporté au poids total du matériau polymère ou de type sol-gel poreux .
Le procédé selon la présente invention comprend, plus particulièrement, les étapes consistant à :
a) déposer sur la surface dudit substrat une couche de résine photosensible ;
b) éliminer par photolithographie la couche de résine en des zones données moyennant quoi la résine subsiste sur au moins un site localisé et de forme définie délimité et notamment entouré par lesdites zones ;
c) déposer, sur lesdites zones, un composé plus hydrophobe ou plus hydrophile que la surface dudit substrat ;
d) éliminer la résine photosensible subsistante moyennant quoi ledit site localisé et de forme définie ne présente plus de résine à sa surface ;
e) déposer, sur ledit site et lesdites zones, une solution contenant ledit matériau ou à partir de laquelle ledit matériau est obtenu, ledit site étant mouillable par ladite solution et lesdites zones non mouillables par cette dernière.
Le procédé selon la présente invention présente deux variantes basées sur le caractère hydrophile ou hydrophobe de la surface du substrat.
En effet, dans le cas où cette surface est hydrophile, la solution contenant le matériau à déposer ou à partir de laquelle ce matériau est obtenu est également hydrophile. Cette première variante comprend les étapes consistant à :
ai) déposer sur la surface hydrophile dudit substrat une couche de résine photosensible ;
bi) éliminer par photolithographie la couche de résine en des zones données moyennant quoi la résine subsiste sur au moins un site localisé et de forme définie délimité et notamment entouré par lesdites zones ;
Ci) déposer, sur lesdites zones, un composé plus hydrophobe que la surface dudit substrat ;
di) éliminer la résine photosensible subsistante moyennant quoi ledit site localisé et de
forme définie est plus hydrophile que le composé déposé à l'étape ( ci ) ;
e i ) déposer, sur ledit site et lesdites zones, une solution hydrophile contenant ledit matériau ou à partir de laquelle ledit matériau est obtenu.
La seconde variante concerne le cas où la surface du substrat et la solution contenant le matériau à déposer ou à partir de laquelle ce matériau est obtenu sont hydrophobes. Cette seconde variante comprend les étapes consistant à :
a2 ) déposer sur la surface hydrophobe dudit substrat une couche de résine photosensible ;
b2) éliminer par photolithographie la couche de résine en des zones données moyennant quoi la résine subsiste sur au moins un site localisé et de forme définie délimité et notamment entouré par lesdites zones ;
c2) déposer, sur lesdites zones, un composé plus hydrophile que la surface dudit substrat ;
d2) éliminer la résine photosensible subsistante moyennant quoi ledit site localisé et de forme définie est plus hydrophobe que le composé déposé à l'étape (c2) ;
e2) déposer, sur ledit site et lesdites zones, une solution hydrophobe contenant ledit matériau ou à partir de laquelle ledit matériau est obtenu.
Dans le procédé selon la présente invention et ses variantes, les étapes (a), ( ai ) et ( a2 ) consistent à déposer une couche mince d'une résine photosensible sur
la surface du substrat. Il peut être nécessaire, préalablement à cette étape de dépôt, de soumettre la surface du substrat à un traitement oxydant, ou par une couche d'accroché à l'aide d'un prometteur d'adhésion tel que le HMDS (pour hexaméthyldiméthylsiloxane) . L'objectif de cette étape préalable est d'obtenir une meilleure adhésion de la résine qui sera appliquée par la suite. Par « couche mince », on entend une couche présentant une épaisseur sensiblement uniforme, comprise entre 10 nm et 100 ym et notamment entre 50 nm et 20 ym. Ce dépôt peut être effectué par toute technique permettant d' obtenir une couche mince de résine. Avantageusement, ledit dépôt est effectué par immersion (« dip coating ») , par vaporisation (« spray coating») ou par centrifugation (« spin coating ») , ce dernier permettant d'étaler à l'aide de forces centrifuges sur une tournette une petite quantité de résine photosensible sur un substrat.
La résine photosensible mise en œuvre dans le cadre de la présente invention peut être une résine dite « positive », c'est-à-dire une résine dont les zones insolées sont éliminées par le développeur chimique ou une résine dite « négative » c'est-à-dire une résine dont les zones non insolées sont éliminées par le développeur chimique.
Toute résine photosensible positive ou négative connue de l'homme du métier est utilisable dans le cadre de la présente invention. A titre d'exemples non limitatifs, on peut citer la résine TELR-P0003PV (Tokyo Ohka Kogyo Co . Ltd) en propylène glycol monométhyl éther acétate, la résine SU-8 (Shell
Chemical) à base d' époxy octofonctionnelle avec un sel de triarylsulfonium comme photoiniateur ou la résine de type Novolac, à base de phénolformaldéhydique avec du diazonaphtoquinone (DNQ) comme photoiniateur.
Suite au dépôt de la résine photosensible et préalablement aux étapes (b) , (bi) et (b2) , la résine peut être chauffée à une température comprise entre 80°C et 125°C et notamment entre 90°C et 115°C pendant une durée dépendant de l'épaisseur de la couche et généralement comprise entre 1 et 30 min. Cette étape de recuit permet d'éliminer le solvant.
Les étapes (b) , (bi) et (b2) du procédé selon l'invention consistent à irradier la couche de résine au moyen d'un rayonnement UV à travers un masque définissant des zones insolées et des zones non insolées et ainsi le contour (ou les limites) du (ou des) site (s) localisé (s) et de forme définie puis à éliminer soit les zones insolées, soit les zones non insolées.
La localisation, la taille et la forme du masque utilisé définissent la localisation, la taille et la forme du (ou des) site (s) tel (s) que précédemment défini (s) et donc la localisation, la taille et la forme du dépôt de matériau selon le procédé de l'invention. Par un choix approprié du masque utilisé lors des étapes (b) , (bi) et (b2) , le (ou les) site (s) tel (s) que précédemment défini (s) et donc le (ou les) dépôt (s) de matériau peu (ven) t se présenter sous forme de plots ou de spots présentant un diamètre compris entre 1 ym et 5 cm ou sous forme de bandes dont la
longueur peut atteindre jusqu'à 20 cm et dont la largeur est comprise entre 1 ym et 2 cm. Tout masque habituellement utilisé en photolithographie est utilisable dans le cadre de la présente invention. A titre d'exemples non limitatifs, un tel masque peut être réalisé en quartz et/ou en chrome.
Typiquement, l'irradiation (ou l'insolation) UV est comprise entre 100 et 1500 mJ.cm2 et notamment entre 200 à 1000 mJ.cm2. L'irradiation UV peut être effectuée pendant une durée comprise entre 1 sec et 2 min et notamment entre 5 sec et 1 min. Le cas échéant, une étape de recuit de la résine peut être nécessaire pour compléter la photopolymérisation induite par l'irradiation UV. Cette étape de recuit est effectuée, avantageusement, entre 80°C et 110°C et notamment entre 90°C et 95°C pendant 15 à 30 min.
Les zones insolées i.e. photopolymérisées ou les zones non insolées deviennent insensibles à une grande majorité de solvants. Par contre, les zones insolées pour les résines positives ou les zones non insolées pour les résines négatives peuvent ultérieurement être dissoutes par un solvant, laissant apparaître la surface du substrat au niveau des zones telles que précédemment définies. L'homme du métier connaît, en fonction de la résine photosensible utilisée, le solvant également appelé le développeur à mettre en œuvre pour éliminer certaines zones de la résine après son irradiation UV. A titre d'exemples non limitatifs, on peut citer, comme solvant utilisable, l'hydroxyde de tétraméthylamonium
(TMA 238), la gammabutyrolactone (GBL) , le propylène
glycol méthyle éthyle acétate (PGMEA) , le KOH ou le NaOH.
Après les étapes (b) , (bi) et (b2) et préalablement aux étapes (c) , (ci) et (c2) , la résine peut être soumise à une étape de recuisson à une température comprise entre 80 °C et 150 °C et notamment entre 90°C et 130°C et pendant une durée comprise entre 30 sec et 30 min et notamment entre 1 et 10 min. Les étapes (c) , (ci) et (c2) du procédé selon la présente invention consistent à déposer, sur la surface du substrat au niveau des zones où la résine photosensible a été éliminée lors des étapes (b) , (bi) et (b2) , un composé plus hydrophile ou plus hydrophobe que la surface du substrat.
Ce composé est avantageusement choisi parmi le polytétrafluoroéthylène comme le TEFLON® ; l'oxycarbure de silicium ; un silane à chaîne hydrophobe comme le trichlorométhylsilane (TCMS) , le trichloroéthylsilane, le trichloro (n-propyl) silane, triméthoxyméthylsilane, le triéthoxyméthylsilane, le ( 3-phénylpropyl ) - méthyldichlorosilane (PMDS) , le benzyltrichlorosilane, le méthylbenzyltrichlorosilane, le trifluorométhylbenzyltrichlorosilane, le méthyltriéthoxysilane, le ( 3-phénylpropyl ) - méthyldiméthoxysilane, le ( 3-phénylpropyl ) - méthyldiéthoxysilane ou le ( 1H, 1H, 2H, 2H) - perfluorodécyl-trichlorosilane (FDTS) ; ou un silane à chaîne hydrophile comme le 3- aminopropyltriéthoxysilane, le 3- aminopropylméthyldiéthoxysilane,
1' aminoéthylaminopropylméthyldiméthoxysilane, le (N- phénylamino) méthyltriméthoxysilane, le morpholinylpropyltriméthoxysilane, le méthyldiméthoxysilane, le diméthyléthoxysilane, le propyltriméthoxysilane, le butyltriméthoxysilane ou le dodécyltriméthoxysilane .
Le composé est déposé sur les zones telles que définies par toute technique de dépôt connue de l'homme du métier. Toutefois, pour garantir un maintien de ce composé au niveau de ces zones, les étapes (c) , ( ci ) et (c2) du procédé selon la présente invention consistent à greffer ce composé au niveau des zones telles que précédemment définies. Par « greffer », on entend créer une liaison covalente entre le composé et la surface du substrat, ladite liaison impliquant un atome du composé et un atome de la surface du substrat. Lorsque le composé est un silane, cette étape de greffage peut consister en une étape de silanisation .
Il peut être nécessaire, préalablement à cette étape de greffage, de soumettre la surface du substrat au niveau des zones à un traitement oxydant. Par « traitement oxydant », on entend, dans le cadre de la présente invention, un traitement (ou pré-traitement) visant à oxyder la surface du substrat mis en œuvre et/ou à préparer la surface à une future oxydation par formation de radicaux. Une oxydation modifie la surface du substrat notamment en y fixant et/ou en y introduisant des groupements riches en oxygène tels que des groupements de type carboxylique (-COOH) , hydroxyle (-OH) , alcoxyle (-OX avec X représentant un groupe alkyle, un groupe acyle ou un groupe aroyle) , carbonyle
(-C=0), percarbonique (-C-0-OH) , silanol (-SiOH) et parfois amide (-CONH) .
Un tel traitement oxydant repose sur deux grands types de modifications de surface fondés sur :
- des traitements physiques tels qu'un traitement par plasma notamment d'oxygène, un traitement aux UV, un traitement aux rayons X ou γ, un traitement par irradiation aux électrons et aux ions lourds ou
- des traitements chimiques tels qu'un traitement à la potasse alcoolique, un traitement par un acide fort (HC1, H2SO4, HNO3, HCIO4) , un traitement à la soude, un traitement par un oxydant fort (KMnC^, K2Cr207, KCIO3 ou Cr03 dans l'acide chlorhydrique, l'acide sulfurique ou dans l'acide nitrique) et un traitement à l'ozone.
Avantageusement, le composé déposé lors des étapes (c) , (ci) et (c2) présente une épaisseur comprise entre 1 et 100 nm et notamment entre 2 et 50 nm.
Les étapes (d) , (di) et (d2) du procédé selon la présente invention consistent à éliminer la résine photosensible restant sur le (ou les) site (s) tel (s) que précédemment défini (s) . Ces étapes nécessitent l'utilisation d'un traitement et d'une (ou plusieurs) solution (s) ou solvant (s) apte (s) à retirer la résine et donc à mettre à nu la surface du substrat au niveau de ces sites, sans éliminer le composé déposé et avantageusement greffé au niveau des zones du substrat lors des étapes (c) , (ci) et (c2) . De ce fait, lorsque le substrat est hydrophile, les étapes (d) , (di) et (d2)
permettent de délimiter un (ou des) site (s) hydrophile ( s ) et inversement, lorsque le substrat est hydrophobe .
L'homme du métier connaît les traitements et solutions à utiliser en fonction de la résine à éliminer. A titre d'exemples, un tel traitement peut se faire sous ultrasons et en utilisant un (ou plusieurs) bain (s) dans un solvant ou dans plusieurs solvants identiques ou différents tels qu'acétone, méthanol ou éthanol.
Suite au traitement des étapes (d) , (di) et (d2) , le substrat et, plus particulièrement, le (ou les) sites du substrat au niveau desquels la résine a été éliminée lors des étapes (c) , (ci) et (c2) peu (ven) t être séché (s) .
De fait, il est évident que les sites et le substrat sont en un même matériau, ils sont de même nature chimique et ont donc la même composition chimique. Lors de la mise en œuvre du procédé, la surface du substrat n'est pas fonctionnalisée au niveau des sites, contrairement à la surface au niveau des zones. Cette absence de fonctionnalisation permet d'éviter des interactions chimiques avec la solution contenant le matériau ou à partir de laquelle le matériau est obtenu et, de fait, évitant une éventuelle dénaturation chimique de cette dernière ou du matériau obtenu .
Les étapes (e) , (ei) et (e2) consistent au dépôt du matériau d'intérêt au niveau du (ou des) site (s) tel (s) que précédemment défini (s) . Toutefois, ces
étapes se caractérisent par le fait que la solution contenant ce matériau ou à partir de laquelle ce matériau est obtenu est déposée non seulement au niveau de ce ou ce (s) site (s) mais également au niveau des zones le (ou les) délimitant et notamment le (ou les) entourant. Ainsi, le procédé de dépôt mis en œuvre lors des étapes (e) , (ei) et (e2) est avantageusement choisi dans le groupe constitué par un dépôt par immersion tel que le « dip coating », un dépôt par vaporisation (« spray coating») , un dépôt par centrifugation (« spin coating ») et un dépôt par enduction. D'une façon générale, il s'agit de techniques de dépôt de film mince, par opposition aux techniques de dépôt de microgouttes. Le procédé de dépôt lors des étapes (e) , (ei) et (e2) est, plus particulièrement, un dépôt par centrifugation (« spin coating ») .
L'homme du métier connaît, en fonction de la nature du polymère à déposer, la solution le contenant ou à partir de laquelle ce matériau est obtenu, à utiliser. Cette solution se définit comme une phase liquide contenant le polymère, le sol-gel ou leurs précurseurs. Ainsi, la solution mise en œuvre lors des étapes (d) , (di) et (d2) peut être un sol, un sol-gel en formation, un sol-gel, une solution dans laquelle le matériau est dissous, une solution dans laquelle le matériau est en suspension, une émulsion contenant le matériau, une dispersion contenant le matériau ou une solution comprenant les précurseurs de ce matériau tels que des monomères identiques ou différents.
Lorsque le matériau d'intérêt comprend en outre une (ou plusieurs) molécule ( s ) -sonde ( s ) , elle (s)
peu (ven) t être incorporée ( s ) au matériau, après la préparation de ce dernier. Dans ce cas, l'incorporation peut se faire par diffusion en voie gazeuse en mettant en contact la molécule-sonde sous forme gazeuse directement avec le matériau (sous vide partiel ou par circulation du gaz) ou en voie liquide en mettant le matériau directement dans une solution (aqueuse ou solvant) contenant la molécule-sonde dissoute ou diluée. Cette incorporation peut également se faire par fonctionnalisation ou post-dopage consistant à créer une liaison covalente entre le matériau et la molécule- sonde .
En variante préférée, la (ou les) molécule (s) - sonde (s) peu (ven) t être directement ajoutée (s) dans la solution contenant le matériau ou à partir de laquelle le matériau est obtenu, ce qui entraîne l' encapsulation directe de la molécule-sonde dans le matériau permettant ainsi une meilleure répartition des molécules-sondes dans le matériau.
Le dépôt de matériau suite aux étapes (e) , ( e i ) et (e2) peut présenter un volume important, typiquement, compris entre 50 ym3 et 200 mm3 et, en particulier, entre 100 ym3 et 5 mm3, avec une épaisseur comprise entre 30 nm et 100 ym et, en particulier, entre 100 nm et 5 ym.
En effet, le procédé selon la présente invention permet de contrôler l'épaisseur de matériau déposée, cette dernière dépendant principalement de la viscosité de la solution contenant le matériau ou à partir de laquelle il est obtenu. En maîtrisant ces paramètres que sont la viscosité de la solution et les
paramètres lors du dépôt des étapes (e) , ( e i ) et ( e2 ) , le procédé permet de déposer une quantité reproductible de matériau. Le dépôt d'une quantité reproductible de matériau est particulièrement vérifié, lors de l'utilisation d'une solution de type sol puisque le procédé de préparation d'une solution de type sol permet d'en maîtriser la viscosité. Avantageusement, les solutions utilisées dans le cadre de la présente invention et notamment les solutions de type sol ont une viscosité comprise entre 10~3 et 1 Pa.s (entre 1 et 1000 cp) et, en particulier, entre 2.10-3 et 0,1 Pa.s (entre 2 et 100 cp) , pour un cisaillement de 100 rpm et à température ambiante (i.e. 21°C ± 2°C) .
Enfin, une fois le dépôt de la solution effectuée, le matériau obtenu peut être soumis à des étapes de post-traitement tel qu'un séchage ou un durcissement notamment thermique du type recuit ou sous irradiation. Cependant, contrairement au procédé décrit dans la demande internationale WO 2008/040769 publiée le 10 avril 2008, l'étape de séchage n'est pas obligatoire. Lorsqu'elle est mise en œuvre et une fois le séchage complet obtenu, les matériaux de type sol- gel déposés à la surface du substrat peuvent également être appelés « monolithes » ou « xérogels ».
La présente invention concerne également un substrat à la surface duquel un matériau a été déposé en au moins un site localisé et de forme définie selon le procédé de la présente invention, ledit matériau étant un matériau de type sol-gel tel que précédemment défini. Le matériau de type sol-gel peut comprendre en
outre une molécule-sonde telle que précédemment définie. Un exemple particulier d'un tel substrat est un substrat présentant à sa surface au moins un dépôt d'un matériau sol-gel obtenu à partir de tétraméthoxysilane (TMOS ou tétraméthylorthosilicate) et comprenant du Fluoral-P comme molécule-sonde. Un tel matériau est décrit dans la demande internationale WO 2007/031657 publiée le 22 mars 2007.
La présente invention concerne, de plus, un substrat à la surface duquel un matériau a été déposé en au moins un site localisé et de forme définie selon le procédé de la présente invention, ledit matériau étant un matériau polymère tel que précédemment défini comprenant au moins une molécule-sonde telle que précédemment définie.
Enfin, la présente invention concerne l'utilisation d'un tel substrat pour piéger et/ou détecter et éventuellement quantifier au moins un composé chimique. Dans ce cas, le composé chimique est un analyte de la molécule-sonde incorporée dans le matériau déposé sur le substrat.
La présente invention propose un procédé pour protéger un substrat consistant à former à la surface du substrat un dépôt d'un matériau notamment polymère ou de type sol-gel selon le procédé de l'invention. Dans cette utilisation particulière du procédé selon l'invention, la protection recherchée peut être une protection contre la corrosion ou contre l'usure. En fonction de la protection recherchée, l'homme du métier saura choisir le matériau le mieux adapté pour
atteindre ce but. A titre d'exemples non-limitatifs de matériaux utilisables, on peut citer par exemple des revêtements à base de S1O2 - Zr02 résistant à l'abrasion et qui peuvent être déposés sur des métaux pour protéger ces derniers contre la corrosion.
BRÈVE DESCRIPTION DES DESSINS
La Figure 1 présente une schématisation des étapes (a) et (b) d'une variante du procédé selon la présente invention mettant en œuvre un substrat en verre, un matériau à déposer hydrophile du type sol-gel contenant une molécule-sonde et une résine photosensible positive.
La Figure 2 présente une schématisation des étapes (c) et (d) de la variante du procédé selon la présente invention de la Figure 1.
La Figure 3 présente une schématisation de l'étape (e) de la variante du procédé selon la présente invention de la Figure 1, cette étape consistant en un dépôt du matériau sol-gel.
La Figure 4 présente des photographies de deux dépôts sol-gel obtenus selon le procédé de la présente invention (Figure 4A et 4B) . EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS
I . Procédé selon la présente invention.
I .1. Préparation des dépôts localisés de résine photosensible .
Le substrat utilisé est une lame de verre.
Dans cet exemple, la résine utilisée est la
TELR-P0003PV (propylène glycol monométhyl éther
acétate, Tokyo Ohka Kogyo Co . Ltd) dont la viscosité est égale à 5 mPa . s (Figure 1, étape (a) ) . Après dépôt de la résine au moyen d'un « spin coater », une étape de cuisson est nécessaire afin d'éliminer rapidement une partie des solvants et d'assurer la polymérisation de la matrice. Ce recuit est effectué, pendant 1 min, à la température de 110°C.
L'insolation consiste en l'exposition de certaines zones de la résine, par le biais d'un système de masquage, à un rayonnement ultraviolet (Figure 1, étape (b) ) . Le masque mis en œuvre est un masque de photolithographie réalisé en quartz et en chrome. L' insolation est réalisée avec une lampe UV de type MA8, le temps d'insolation est de 20 sec à une puissance de 390 W.
La résine est ensuite révélée à l'aide d'un développeur TMA 238 fourni par JSR. Ce développeur est une solution aqueuse basique (normalité 0,28 N) contenant classiquement de l'hydroxyde de tétraméthylammonium, du KOH et du NaOH. Elle permet d'éliminer la résine insolée (Figure 1, étape (b) ) . Puis une étape de recuit est nécessaire afin d'éliminer les solvants résiduels et de réticuler la résine. Ce recuit est effectué pendant 2 min à 130°C.
1.2. Préparation des plots hydrophobes. Après le recuit, le substrat i.e. la lame de verre, possède encore des propriétés hydrophiles (angle de contact (eau) = 35-40°) . Ainsi, une étape de silanisation (Figure 2, étape (c) ) est envisagée afin de rendre hydrophobe le substrat. Préalablement à cette
silanisation, le substrat est traité par un plasma oxygène (1 minute, puissance 600 W, avec l'équipement Plassys) de façon à créer à sa surface des groupements silanol .
La silanisation est réalisée par MVD (pour
« Molecular Vapor Déposition ») avec, comme silane, le ( 1H, 1H, 2H, 2H) -perfluorodécyl-trichlorosilane (FDTS) de formule :
A cette étape, un dépôt de quelques nm de silane est réalisé sur le substrat. L'angle de goutte est ainsi de l'ordre de 108-110°.
La résine est ensuite éliminée (Figure 2, étape
(d) ) . Pour ce faire, le substrat est rincé pendant 10 min à l'acétone aux ultrasons, 10 min à l'éthanol aux ultrasons et 10 min à l'eau aux ultrasons puis séchés à l'aide de la centrifugeuse pendant 10 min à 1000 tr/min. A la suite des rinçages, le silane déposé n'est pas éliminé. La résine est ainsi éliminée et, à l'endroit où la résine était localisée, le substrat est hydrophile . 1.3. Dépôts localisés de matériau sol-gel.
Un matériau sol-gel comprenant de la 4-amino-3- pentèn-2-one (Fluoral-P) est ensuite déposé sur les zones hydrophiles du substrat.
Ce matériau dopé de Fluoral-P est obtenu à partir d'un précurseur silicé, le tétraméthoxysilane
(TMOS) . Initialement, 100 mg de Fluoral-P sont dissous par sonication dans 1030 yL d'éthanol de qualité spectroscopique . Sont alors ajoutés 651 yL de TMOS et 318 yL d'eau millipore (R = 18 ΜΩ) .
Les 2 mL de sol ainsi obtenus sont conservés dans un pilulier fermé hermétiquement (bouchon + parafilm) . Le sol est à nouveau soniqué pendant 15 min pour éviter l'agrégation des molécules de Fluoral-P, et agité mécaniquement jusqu'au dépôt.
Le dépôt du sol est effectué par spin-coating : temps de dépôt 1 min, vitesse de 2000 tours par minute. Lors du dépôt du sol sur toute la surface du substrat i.e. sur les plots hydrophiles et les plots hydrophobes encerclant ces zones hydrophiles (Figure 3) , le sol-gel formé se concentre sur les parties hydrophiles du substrat, en occupant tout l'espace possible. Ainsi, sur les parties hydrophobes, aucune trace de sol-gel n'est présente.
De cette façon, sont obtenus des dépôts de sol- gel dont la forme est bien définie et l'épaisseur bien contrôlée par le procédé de dépôt classique du spin- coater (Figure 4) .
II . Plots de sol-gel obtenus par le procédé selon I .
La Figure 4A est une photographie d'un plot de sol-gel obtenu selon le procédé décrit au point I, de forme sensiblement ronde, présentant un diamètre de 2 mm et une épaisseur comprise entre 160 et 180 nm.
La Figure 4B est une photographie d'un autre plot de sol-gel obtenu selon le procédé décrit au point
I, de forme sensiblement ronde, présentant un diamètre de 1 mm et une épaisseur comprise entre 560 et 580 nm.
Le matériau sol-gel obtenu en mettant en œuvre le sol décrit au point 1.3 présente une surface spécifique de 519 ± 50 m2. g-1 et une surface de micropores de 85,9 ± 5%.
Claims
REVENDICATIONS
1) Procédé de formation d'un dépôt localisé et de forme définie d'un matériau à la surface d'un substrat comprenant les étapes consistant à :
délimiter, par photolithographie, à la surface dudit substrat, au moins un site localisé et de forme définie, mouillable par une solution contenant ledit matériau ou à partir de laquelle ledit matériau est obtenu, les zones délimitant ledit site étant non mouillables par ladite solution ;
- déposer, sur ledit site et lesdites zones, ladite solution ;
moyennant quoi ledit matériau est déposé au niveau dudit site directement sur le substrat,
ledit site et lesdites zones étant coplanaires à la surface du substrat.
2) Procédé selon la revendication 1, caractérisé en ce que ledit matériau est poreux.
3) Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit matériau est un matériau polymère .
4) Procédé selon la revendication 1 ou 2, caractérisé en ce que ledit matériau est un matériau de type sol-gel.
5) Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que ledit matériau comprend au moins une molécule-sonde. 6) Procédé selon l'une quelconque des revendications précédentes, ledit procédé comprenant les étapes consistant à :
a) déposer sur la surface dudit substrat une couche de résine photosensible ;
b) éliminer par photolithographie la couche de résine en des zones données moyennant quoi la résine subsiste sur au moins un site localisé et de forme définie délimité par lesdites zones ;
c) déposer, sur lesdites zones, un composé plus hydrophobe ou plus hydrophile que la surface dudit substrat ;
d) éliminer la résine photosensible subsistante moyennant quoi ledit site localisé et de forme définie ne présente plus de résine à sa surface ;
e) déposer, sur ledit site et lesdites zones, une solution contenant ledit matériau ou à partir de laquelle ledit matériau est obtenu, ledit site étant mouillable par ladite solution et lesdites zones non mouillables par cette dernière.
7) Procédé selon la revendication 6, caractérisé en ce que ladite étape (c) consiste à greffer ledit composé au niveau desdites zones. 8) Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce ledit
dépôt, sur ledit site et lesdites zones, de ladite solution est choisie dans le groupe constitué par un dépôt par immersion tel que le « dip coating », un dépôt par vaporisation (« spray coating») , un dépôt par centrifugation (« spin coating ») ou un dépôt par enduction .
9) Substrat à la surface duquel un matériau a été déposé en au moins un site localisé et de forme définie selon un procédé tel que défini à l'une quelconque des revendications 1 à 8,
ledit matériau étant un matériau de type sol- gel . 10) Substrat à la surface duquel un matériau a été déposé en au moins un site localisé et de forme définie selon un procédé tel que défini à l'une quelconque des revendications 1 à 8,
ledit matériau étant un matériau polymère comprenant au moins une molécule-sonde.
11) Utilisation d'un substrat selon la revendication 9 ou 10, pour piéger et/ou détecter et éventuellement quantifier au moins un composé chimique.
12) Procédé pour protéger un substrat consistant à former à la surface du substrat un dépôt d'un matériau selon un procédé tel que défini à l'une quelconque des revendications 1 à 8.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1054450A FR2960799A1 (fr) | 2010-06-07 | 2010-06-07 | Procede de formation d'un depot localise et de forme definie d'un materiau a la surface d'un substrat |
PCT/EP2011/059394 WO2011154404A1 (fr) | 2010-06-07 | 2011-06-07 | Procede de formation d'un depot localise et de forme definie d'un materiau a la surface d'un substrat |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2576058A1 true EP2576058A1 (fr) | 2013-04-10 |
Family
ID=43067420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11724618.1A Withdrawn EP2576058A1 (fr) | 2010-06-07 | 2011-06-07 | Procede de formation d'un depot localise et de forme definie d'un materiau a la surface d'un substrat |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130091965A1 (fr) |
EP (1) | EP2576058A1 (fr) |
FR (1) | FR2960799A1 (fr) |
WO (1) | WO2011154404A1 (fr) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3003790B1 (fr) | 2013-03-28 | 2015-05-01 | Commissariat Energie Atomique | Procede de fabrication d'un objet de forme complexe en un materiau inorganique ou organique durci |
FR3003789B1 (fr) | 2013-03-28 | 2015-05-01 | Commissariat Energie Atomique | Procede de fabrication d'un objet comprenant au moins un filet, ledit objet etant en un materiau inorganique ou organique durci |
FR3103120A1 (fr) | 2019-11-18 | 2021-05-21 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Dispositif microfluidique pour la mesure de concentrations d’especes dans un fluide corporel utilisant un faible volume |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2423668A1 (fr) * | 2010-08-31 | 2012-02-29 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Système et procédé de détection d'analytes présents dans un échantillon gazeux |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050014151A1 (en) * | 2001-09-12 | 2005-01-20 | Marcus Textor | Device with chemical surface patterns |
AU2002360361A1 (en) * | 2001-11-09 | 2003-06-10 | Biomicroarrays, Inc. | High surface area substrates for microarrays and methods to make same |
US7159421B2 (en) * | 2002-07-16 | 2007-01-09 | Agere Systems Inc. | Manufacture of planar waveguides using sol-gel techniques |
CN103382434B (zh) * | 2005-01-18 | 2016-05-25 | 生物概念股份有限公司 | 利用含排列成图案的立柱的微通道分离细胞 |
FR2890745B1 (fr) | 2005-09-15 | 2007-11-30 | Commissariat Energie Atomique | Materiau nanoporeux d'aldehydes a transduction optique directe |
FR2906810B1 (fr) * | 2006-10-04 | 2009-01-16 | Commissariat Energie Atomique | Procede de formation d'un film de polymere(s) sur des sites predetermines d'un substrat. |
-
2010
- 2010-06-07 FR FR1054450A patent/FR2960799A1/fr not_active Withdrawn
-
2011
- 2011-06-07 EP EP11724618.1A patent/EP2576058A1/fr not_active Withdrawn
- 2011-06-07 US US13/702,298 patent/US20130091965A1/en not_active Abandoned
- 2011-06-07 WO PCT/EP2011/059394 patent/WO2011154404A1/fr active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2423668A1 (fr) * | 2010-08-31 | 2012-02-29 | Commissariat à l'Énergie Atomique et aux Énergies Alternatives | Système et procédé de détection d'analytes présents dans un échantillon gazeux |
Non-Patent Citations (2)
Title |
---|
ANONYMOUS: "Coplanaire - Wikipédia", 5 April 2016 (2016-04-05), XP055296309, Retrieved from the Internet <URL:https://fr.wikipedia.org/wiki/Coplanaire> [retrieved on 20160818] * |
See also references of WO2011154404A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2011154404A1 (fr) | 2011-12-15 |
US20130091965A1 (en) | 2013-04-18 |
FR2960799A1 (fr) | 2011-12-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0184567B1 (fr) | Procédé de formation de motifs négatifs dans une couche de photorésist | |
CN101690871B (zh) | 制造具有锥形孔的膜的方法 | |
Herzer et al. | Fabrication of patterned silane based self-assembled monolayers by photolithography and surface reactions on silicon-oxide substrates | |
US7282241B2 (en) | Patterned, high surface area substrate with hydrophilic/hydrophobic contrast, and method of use | |
EP2271438B1 (fr) | Recouvrement d'un substrat par un film de polymere stable en milieu liquide | |
BE1019748A3 (fr) | Procede de fabrication d'un depot de nanoparticules inorganiques, comportant des micro-vides, sur un support transparent a la lumiere. | |
US20110064925A1 (en) | Aqueous curable imprintable medium and patterned layer forming method | |
EP2652533B1 (fr) | Element optique comprenant un aerogel sans fissure | |
EP2948817B1 (fr) | Procédés de nanofabrication de surface au moyen de nanomasques polymères autoassemblés | |
EP1114314A1 (fr) | Dispositif comprenant une pluralite de sites d'analyse sur un support | |
EP2423668B1 (fr) | Système et procédé de détection d'analytes présents dans un échantillon gazeux | |
EP2998981A1 (fr) | Procédé de grapho-épitaxie pour réaliser des motifs à la surface d'un substrat | |
WO2011154404A1 (fr) | Procede de formation d'un depot localise et de forme definie d'un materiau a la surface d'un substrat | |
EP2232532A2 (fr) | Procede de gravure localisee de la surface d'un substrat | |
JP2004098351A (ja) | パターン形成体 | |
Wang et al. | Shaping metallic nanolattices: design by microcontact printing from wrinkled stamps | |
EP2616235B1 (fr) | Procédé de fabrication d'une structure optique segmentée | |
WO2011114070A1 (fr) | Procede de preparation de bicouches ceramiques poreuses nanostructurees, bicouches ceramiques obtenues par ce procede et applications | |
EP0248779A1 (fr) | Procédé de formation de motifs positifs dans une couche de photorésist | |
EP1744828A1 (fr) | Procede sol-gel de fonctionnalisation d'une surface d'un substrat solide | |
Kohli et al. | Nanostructured crosslinkable micropatterns by amphiphilic dendrimer stamping | |
Woodward et al. | Micropatterning of plasma fluorinated super-hydrophobic surfaces | |
CN112441752A (zh) | 一种表面增强拉曼散射基底及其制备方法 | |
EP2725332B1 (fr) | Procédé de fabrication d'un capteur piézorésistif | |
WO2014170799A1 (fr) | Vernis reticulable et son procede d'application |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121217 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20131216 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170211 |