EP2564139B1 - Procédé et appareil de liquéfaction de gaz naturel - Google Patents
Procédé et appareil de liquéfaction de gaz naturel Download PDFInfo
- Publication number
- EP2564139B1 EP2564139B1 EP11717717.0A EP11717717A EP2564139B1 EP 2564139 B1 EP2564139 B1 EP 2564139B1 EP 11717717 A EP11717717 A EP 11717717A EP 2564139 B1 EP2564139 B1 EP 2564139B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- refrigerant
- natural gas
- cooled
- heat exchange
- expander
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 title claims description 210
- 239000003345 natural gas Substances 0.000 title claims description 102
- 238000000034 method Methods 0.000 title claims description 57
- 239000003507 refrigerant Substances 0.000 claims description 112
- 238000005057 refrigeration Methods 0.000 claims description 89
- 239000007789 gas Substances 0.000 claims description 86
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 53
- 239000007788 liquid Substances 0.000 claims description 45
- 229930195733 hydrocarbon Natural products 0.000 claims description 40
- 150000002430 hydrocarbons Chemical class 0.000 claims description 40
- 238000007906 compression Methods 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 26
- 239000000047 product Substances 0.000 claims description 24
- 230000006835 compression Effects 0.000 claims description 22
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 22
- 238000003860 storage Methods 0.000 claims description 17
- 238000011144 upstream manufacturing Methods 0.000 claims description 17
- 239000012809 cooling fluid Substances 0.000 claims description 9
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 9
- 239000003915 liquefied petroleum gas Substances 0.000 claims description 8
- 239000002253 acid Substances 0.000 claims description 6
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 claims description 6
- 229910052753 mercury Inorganic materials 0.000 claims description 6
- 239000013589 supplement Substances 0.000 claims description 5
- 239000013535 sea water Substances 0.000 claims description 3
- 230000002378 acidificating effect Effects 0.000 claims 2
- 238000003303 reheating Methods 0.000 claims 2
- 238000004172 nitrogen cycle Methods 0.000 description 30
- 239000003949 liquefied natural gas Substances 0.000 description 27
- 229910052757 nitrogen Inorganic materials 0.000 description 22
- 239000004215 Carbon black (E152) Substances 0.000 description 21
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 12
- 238000000926 separation method Methods 0.000 description 8
- 239000012530 fluid Substances 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- 239000001569 carbon dioxide Substances 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000007667 floating Methods 0.000 description 5
- 238000002203 pretreatment Methods 0.000 description 5
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 4
- 239000012535 impurity Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- 235000013844 butane Nutrition 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000012263 liquid product Substances 0.000 description 2
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 2
- 239000001294 propane Substances 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0035—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
- F25J1/0037—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/005—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0062—Light or noble gases, mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0062—Light or noble gases, mixtures thereof
- F25J1/0065—Helium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/007—Primary atmospheric gases, mixtures thereof
- F25J1/0072—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0082—Methane
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/0085—Ethane; Ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/008—Hydrocarbons
- F25J1/009—Hydrocarbons with four or more carbon atoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/006—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
- F25J1/0097—Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0204—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0205—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0203—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
- F25J1/0208—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle in combination with an internal quasi-closed refrigeration loop, e.g. with deep flash recycle loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
- F25J1/0216—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0275—Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
- F25J1/0277—Offshore use, e.g. during shipping
- F25J1/0278—Unit being stationary, e.g. on floating barge or fixed platform
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0285—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
- F25J1/0288—Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/0605—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the feed stream
- F25J3/061—Natural gas or substitute natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/0635—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/06—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation
- F25J3/063—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream
- F25J3/064—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by partial condensation characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2220/00—Processes or apparatus involving steps for the removal of impurities
- F25J2220/60—Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
- F25J2220/62—Separating low boiling components, e.g. He, H2, N2, Air
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/20—Integrated compressor and process expander; Gear box arrangement; Multiple compressors on a common shaft
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/30—Compression of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/02—Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2240/00—Processes or apparatus involving steps for expanding of process streams
- F25J2240/40—Expansion without extracting work, i.e. isenthalpic throttling, e.g. JT valve, regulating valve or venturi, or isentropic nozzle, e.g. Laval
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/14—External refrigeration with work-producing gas expansion loop
- F25J2270/16—External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
Definitions
- This invention relates to processes and apparatus for the liquefaction of natural gas.
- the invention relates to processes and apparatus in which expansion of a refrigerant through a turbo-expander as part of a refrigeration cycle is used to drive a compressor which increases the pressure of the natural gas feed to the liquefaction process.
- Natural gas fields are often located at large distances from consumer markets and effective and economical methods for the transportation of natural gas are an important aspect of the natural gas industry.
- the majority of natural gas is transported by pipelines, and pipeline networks are well-established in Europe, North America and the former Soviet Union.
- pipelines are costly to construct and are not economically viable for transporting gas from remote gas fields. Liquefaction of natural gas is therefore an important technology in enabling the exploitation of remote gas fields and the supply of natural gas to markets that are not adequately served by pipeline gas supplies.
- Liquefied natural gas has approximately 1/600 the volume of natural gas in the gaseous state.
- the reduction in volume makes the transportation of natural gas over large distances much more economical, for example using specially designed cryogenic sea vessels (LNG carriers) or cryogenic road tankers.
- turbo-expander is used to refer to a radial or axial flow turbine through which a pressurised gas is expanded to produce work.
- the work extracted from the expanding pressurised gas may be used to drive a compressor or generator.
- Expansion using turbo-expanders is a near isentropic process resulting in a low temperature expanded gas which is used to provide refrigeration in many industrial processes.
- Turbo-expander cycles using gaseous refrigerants are highly appropriate for floating LNG facilities, even at plant capacities of between 0.5 and 3.0 million tonnes per annum typically considered, as they are largely insensitive to vessel movement. They also avoid the liquid hydrocarbon refrigerant inventories associated with other liquefaction processes, giving improved safety, and importantly giving reduced space and weight requirements.
- turbo-expanders operating over different temperature levels is typically appropriate in liquefaction of natural gas.
- FIG. 1 An example of a typical double turbo-expander cycle using nitrogen refrigerant is shown in Figure 1 .
- Liquefaction feed gas 400 is fed to a multi-stream liquefaction heat exchanger 505 where it is condensed and sub-cooled against multiple nitrogen refrigerant streams, exiting the heat exchanger 505 as a sub-cooled liquid 425.
- Sub-cooled liquid 425 is let down to storage pressure across valve 430 to give a two-phase stream 435, which passes to a vapour-liquid separator 440 to separate a low pressure LNG product stream 450 for storage and a flash gas stream 445.
- Refrigeration to produce the LNG product stream is provided by a dual nitrogen turbo-expander refrigeration cycle.
- Nitrogen is compressed in a two-stage cycle compressor 580/590, incorporating inter- and after-coolers 575/585/595 (typically against air or water) to produce a high-pressure nitrogen stream 500.
- High-pressure nitrogen stream 500 is split between warm and cold turbo-expander cycles.
- Warm nitrogen cycle feed gas is cooled in the liquefaction heat exchanger 505 to produce a cooled nitrogen cycle gas stream 510 at an intermediate temperature by heat exchange with returning cold low-pressure nitrogen cycle gas 520/535.
- the resulting cooled nitrogen cycle gas 510 is work-expanded in a warm cycle turbo-expander 515 to give a cold low-pressure nitrogen cycle gas 520 and to drive the warm cycle brake compressor 545.
- Cold low pressure nitrogen cycle gas 520 is reheated in liquefaction heat exchanger 505, cooling the warm and cold nitrogen cycle feed gas streams and cooling, condensing and sub-cooling the natural gas stream 400.
- the reheated warm cycle low-pressure nitrogen gas stream 540 is fed to the warm cycle turbo-expander brake compressor 545, driven by the warm cycle turbo-expander 515.
- Cold nitrogen cycle feed gas is cooled in the liquefaction heat exchanger 505 to produce a cooled nitrogen cycle gas stream 525 at a temperature approaching that of the warm cycle turbo-expander discharge stream 520 by heat exchange with returning cold low-pressure nitrogen cycle gas 520/535.
- Cooled nitrogen cycle gas 525 is work-expanded in a cold cycle turbo-expander 530 to form a cold low-pressure nitrogen stream 535 and to drive cold cycle brake compressor 560.
- Cold low-pressure nitrogen cycle gas 535 has a pressure similar to that of the warm expander discharge stream 520 and is reheated in the liquefaction heat exchanger 505, cooling the warm and cold nitrogen cycle feed gas streams and cooling, condensing and sub-cooling the natural gas stream 400.
- the reheated warm cycle low-pressure nitrogen gas stream 555 is fed to the cold cycle turbo-expander brake compressor 560, driven by the cold cycle turbo-expander 530.
- Liquefaction process thermodynamic efficiency is normally expressed as specific power consumption - for example kWh/kg LNG produced.
- Reduced specific power consumption can translate either to: (i) lower power consumption for a given capacity; or (ii) higher capacity for a given power consumption. The latter can be of significant benefit to project economics if power is constrained by the output of a particular compressor driver or a particular power generation configuration.
- Low feed pressure to the liquefaction plant may be a consequence of a low field reservoir pressure or may result from upstream processing for extraction of heavy hydrocarbons and other impurities.
- the removal of heavy hydrocarbons and other impurities is usually required to prevent solidification of these components during the liquefaction process.
- deeper hydrocarbon removal is also used to recover a saleable liquid petroleum gas (LPG) product comprising C3 and C4 hydrocarbons in addition to a condensate product to increase revenue, or to adjust LNG composition to meet gas quality specifications.
- LPG saleable liquid petroleum gas
- the process of the present invention power is recovered from work-expansion of the refrigerant in the refrigeration cycle to boost feed gas pressure instead of boosting refrigerant pressure. More specifically, a feed gas compressor is driven directly by a turbo-expander in the refrigeration cycle. All power to drive the feed gas compressor is therefore indirectly provided by the refrigeration cycle compressor and its driver. In this way, a reduction in specific power consumption is achieved without the requirement for additional feed gas compression equipment.
- the process of this invention can therefore facilitate upstream processing for the removal of heavy hydrocarbons and other impurities by enabling feed pressure to the liquefaction plant to be specified largely independently of the upstream processing without the need for additional feed gas compression equipment.
- this invention provides a process for liquefaction of natural gas according to claim 1.
- Power input to the process is provided by compression of the fluid refrigerant in step (i), and heat is removed from the refrigeration cycle by heat exchange between the refrigerant and a cooling fluid in step (ii).
- Any suitable cooling fluid may be used, for instance, water or air.
- sea water may be a suitable cooling fluid for use with offshore processes or for onshore processing plants which are conventionally located close to the sea.
- the compressed natural gas stream is fully condensed and sub-cooled in step (d).
- the process of the present invention is not limited to refrigeration cycles using one turbo-expander.
- double turbo expander refrigeration cycles may be used.
- the first refrigeration cycle further comprises the steps of:
- the reheated refrigerants from steps (iv) and (vii) may be combined prior to being returned to step (i).
- the second portion of the cooled compressed refrigerant is work-expanded in step (vi) in a second turbo-expander.
- the second turbo-expander may be used to drive a compressor to provide a portion of the compression in step (i).
- the second turbo-expander may be used to drive a compressor to provide additional compression of the natural gas feed stream in step (c).
- one or more further portions of the cooled refrigerant may be work-expanded in one or more further turbo-expanders.
- the one or more further turbo expanders may be used to drive one or more compressors to provide a portion of the compression in step (i), and/or to provide additional compression of the natural gas stream in step (c).
- the first portion and/or the second portion of the cooled compressed refrigerant from step (ii) may be further cooled by heat exchange in the liquefaction heat exchange system prior to expansion.
- the first refrigeration cycle comprises both a first turbo-expander and a second turbo-expander
- the first portion of the cooled compressed refrigerant is fed to the first turbo-expander at a higher temperature than the second portion of the cooled compressed refrigerant fed to the second turbo-expander.
- the first portion of the cooled compressed refrigerant is fed to the first turbo-expander at a lower temperature than the second portion of the cooled compressed refrigerant fed to the second turbo-expander.
- the temperature of the respective portions of the cooled compressed refrigerant may be controlled by heat exchange in the liquefaction heat exchange system, as described above.
- the first refrigeration cycle is a gas refrigeration cycle.
- the fluid refrigerant is a gas which is successively compressed, cooled, expanded and reheated without changing phase.
- the gaseous fluid refrigerant consists essentially of nitrogen.
- gases which do not undergo a phase transition in the refrigeration cycle may also be used, for example air, helium or neon.
- Gas refrigeration cycles are advantageous when used in offshore applications, and particularly when used in floating applications, as the avoidance of liquid refrigerants through use of an inert gaseous refrigerant translates into reduced space and weight, insensitivity to floating vessel motion, and improved safety.
- the liquefied natural gas product obtained from the liquefaction heat exchange system is at a higher pressure than the storage systems commonly used in the art, which are usually at or slightly above atmospheric pressure, and usually no more than 125 kPa (absolute).
- the process of the present invention desirably comprises the step of:
- the cooled and at least partly condensed natural gas product withdrawn from the liquefaction heat exchange system is expanded to storage pressure using a liquid expander.
- the liquid expander will typically be coupled to an electrical generator but may be used to drive a compressor to further compress the fluid refrigerant in step (i) or to further compress the natural gas feed stream in step (c).
- the cooled and at least partly condensed natural gas product withdrawn from the liquefaction heat exchange system may be expanded to storage pressure under adiabatic conditions using a Joule-Thomson valve.
- the natural gas product will usually comprise a mixture of liquid and vapour, which may be separated in a vapour-liquid separator to provide a LNG product for storage and a vapour stream known as "flash gas".
- flash gas may optionally be recompressed and combined with the natural gas feed stream and returned to the liquefaction process.
- the liquefaction heat exchange system used in the process of the present invention may function by passing the expanded cooled refrigerant from step (iii) in indirect heat exchange with the compressed natural gas stream in step (d), via an intermediate heat exchange fluid or via an intermediate refrigeration cycle.
- one or more additional refrigeration cycles may be used to supplement the refrigeration provided by the first refrigeration cycle.
- the one or more additional refrigeration cycles may run in parallel and/or in series with the first refrigeration cycle and may be of any type, including gas and vapour-compression refrigeration cycles.
- gas and vapour-compression refrigeration cycles In a vapour-compression refrigeration cycle, the refrigerant changes phase between vapour and liquid at the various stages of the refrigeration cycle.
- Suitable refrigerants for vapour-compression refrigeration cycles include light hydrocarbons, such as methane, ethane, propane and butanes or mixtures thereof.
- a portion of the natural gas feed may be diverted to act as the refrigerant in a vapour-compression refrigeration cycle.
- refrigerants include the class of hydrofluorocarbon refrigerants.
- one or more additional refrigeration cycles may be of the type described above, in which a turbo-expander is used to drive a compressor to compress the natural gas feed stream.
- the cooling fluid in step (ii) may be a fluid refrigerant from an additional refrigeration cycle.
- the expanded cooled refrigerant from step (iii) may be used as a cooling fluid for an intermediate refrigeration cycle.
- Cascades of refrigeration cycles are known in the art and, in accordance with the invention, the first refrigeration cycle may occupy any stage of a cascade comprising two or more refrigeration cycles.
- the expanded cooled refrigerant from step (iii) and the one or more additional refrigerants may each be passed in direct or indirect heat exchange with the compressed natural gas feed stream (step (d)) in the liquefaction heat exchange system.
- one or more additional refrigerants may be used to pre-cool the compressed natural gas stream in step (d) prior to heat exchange contact with the expanded cooled refrigerant from step (iii).
- the one or more additional refrigerants may be used to sub-cool the cooled and at least partially condensed natural gas from step (d) following heat exchange contact with the expanded cooled refrigerant from step (iii).
- the one or more additional refrigerants and the expanded cooled refrigerant from step (iii) may simultaneously be used to cooled and at least partially condense the compressed natural gas stream in step (d), for example where a multi-stream heat exchanger is used in the liquefaction heat exchange system.
- the compressed natural gas stream is cooled and at least partially condensed in step (d) entirely by heat exchange with the expanded cooled refrigerant from step (iii).
- the process of the invention does not involve the use of an additional refrigeration cycle. Where only the first refrigeration cycle is used, space and weight requirements are reduced. As noted above, this is advantageous in offshore processes.
- the heat exchangers used in the liquefaction heat exchange system may be of any type known in the art of natural gas liquefaction.
- shell and tube heat exchangers, plate heat exchangers, plate-fin heat exchangers, spiral wound heat exchangers and diffusion bonded heat exchangers may all be used in the process of the invention.
- the liquefaction heat exchange system may comprise more than one heat exchanger, for example when an additional refrigeration cycle is run in parallel with the first refrigeration cycle. Multi-stream heat exchangers may also be used.
- the natural gas feed stream in step (b) preferably has a pressure in the range of from 2000 to 5000 kPa (absolute).
- the compressed natural gas feed stream from step (c) preferably has a pressure in the range of from 4000 to 10000 kPa (absolute).
- the natural gas feed stream in step (b) is obtained from an upstream process for the removal of heavy hydrocarbons and/or LPG components and/or water and/or mercury and/or acid gas components.
- the compressed natural gas stream from step (c) is passed to a process for the removal of heavy hydrocarbons and/or LPG components and/or water and/or mercury and/or acid gas components prior to being passed to the liquefaction heat exchange system in step (d).
- the apparatus of the invention is adapted to fully condense and sub-cool the compressed natural gas stream in step (d).
- the means for expanding a second portion of the cooled compressed refrigerant from step (ii) may comprise a second turbo-expander.
- the second turbo-expander may advantageously be adapted to drive a second refrigerant compressor in step (i).
- the second turbo-expander may be adapted to drive a compressor to provide supplementary compression of the natural gas feed stream in step (c).
- the apparatus of the present invention may comprise one or more further turbo expanders adapted to work-expand one or more further portions of the cooled refrigerant.
- the one or more further turbo-expanders may be adapted to drive one or more compressors to provide a portion of the compression in step (i), or to provide additional compression of the natural gas stream in step (c).
- the apparatus of the invention may also comprise means for conveying the first portion and/or the second portion of the cooled compressed refrigerant from step (ii) to the liquefaction heat exchange system for further cooling prior to expansion.
- the apparatus of the present invention may further comprise one or more additional refrigeration systems, running in parallel or in series with the first refrigeration system, and which are adapted to supplement the refrigeration provided by the first refrigeration system.
- the apparatus comprises means for removing heavy hydrocarbons and/or LPG components and/or water and/or mercury and/or acid gas components from the natural gas feed stream prior to liquefaction, which may be disposed upstream or downstream from the natural gas feed compressor.
- the present invention provides a ship comprising an apparatus as defined above.
- the present invention provides an offshore platform comprising an apparatus as defined above.
- the offshore platform may be, for example, a fixed platform, a compliant tower platform, a semi-submersible platform, a jack-up platform, a tension-leg platform, a spar platform or a conductor-support platform.
- Refrigeration to produce the LNG product stream is provided by a nitrogen refrigeration cycle.
- Nitrogen is compressed in a two-stage cycle compressor 580/590, incorporating inter and after-coolers 585/595 (typically against air or water) to produce a high-pressure nitrogen stream 500.
- High-pressure nitrogen stream 500 is cooled in the liquefaction heat exchanger 505 by heat exchange with returning cold low-pressure nitrogen cycle gas 535.
- Cooled nitrogen cycle gas 525 is work-expanded in a turbo-expander 530 to give a cold low-pressure nitrogen cycle gas 535, which is reheated in the liquefaction heat exchanger 505, cooling the high pressure nitrogen stream 500 and cooling, condensing and sub-cooling the natural gas stream 420.
- the re-warmed low-pressure nitrogen cycle gas stream 550 is fed to the cycle compressors 580/590 for compression.
- liquefaction feed gas 400 is compressed in cold cycle brake compressor 405, driven by the cold cycle turbo-expander 530.
- Compressed feed 410 is cooled to ambient conditions in a heat exchanger 415 (typically against air or water) and the cooled compressed gas stream 420 is fed to a multi-stream liquefaction heat exchanger 505 where it is de-superheated, condensed and sub-cooled against multiple nitrogen refrigerant streams, exiting the exchanger as a sub-cooled liquid 425.
- Liquid product 425 is let down to storage pressure across valve 430 to give two-phase stream 435, which passes to vapour-liquid separator 440 separating an LNG flash gas stream 445 and low pressure LNG product stream 450 for storage.
- Refrigeration to produce the LNG product stream is provided by a dual nitrogen refrigeration cycle.
- Nitrogen is compressed in a two-stage cycle compressor 580/590, incorporating inter- and after-coolers 585/595 (typically against air or water) to produce a high-pressure nitrogen stream 500.
- High-pressure nitrogen stream 500 is split between warm and cold turbo-expander cycles.
- Warm nitrogen cycle gas is cooled in the liquefaction heat exchanger 505 to produce a cooled nitrogen gas stream 510 at an intermediate temperature by heat exchange with returning cold low-pressure nitrogen cycle gas 520/535.
- the resulting cooled nitrogen cycle gas 510 is work-expanded in a warm cycle turbo-expander 515 to give a cold low-pressure nitrogen cycle gas 520 and to drive the warm cycle brake compressor 545.
- Cold low pressure nitrogen cycle gas 520 is reheated in liquefaction heat exchanger 505, cooling the warm and cold nitrogen cycle feed gas streams and cooling, condensing and sub-cooling the natural gas stream 420.
- Cold nitrogen cycle gas is cooled in the liquefaction heat exchanger 505 to produce a cooled nitrogen cycle gas stream 525 at a temperature approaching that of the warm cycle turbo-expander discharge stream 520 by heat exchange with returning cold low-pressure nitrogen cycle gas 520/535.
- Cooled nitrogen cycle gas 525 is work-expanded in a cold cycle turbo-expander 530 to form a cold low-pressure nitrogen stream 535 and to drive cold cycle brake compressor 405.
- Cold low-pressure nitrogen cycle gas 535 has a pressure similar to that of the warm expander discharge stream 520 and is reheated in the liquefaction heat exchanger 505, cooling the warm and cold nitrogen cycle feed gas streams and cooling, condensing and sub-cooling the natural gas stream 420.
- the reheated warm and cold cycle low-pressure nitrogen gas streams 540 are fed to the warm cycle turbo-expander brake compressor 545, driven by the warm cycle turbo-expander 515.
- the nitrogen cycle gas, boosted in pressure 550, is cooled in a heat exchanger 575 (typically against air or water) and fed to the cycle compressors 580/595 for compression.
- the liquefaction apparatus shown in Figure 3 is integrated with a heavy hydrocarbon removal process based on Joule Thomson expansion of feed gas.
- Wet natural gas 100 enters the process at elevated pressure.
- the natural gas feed stream 100, together with liquid stream 395 removed in downstream heavy hydrocarbon removal facilities is fed to an Inlet Separation and Condensate Stabilisation system 105.
- a liquid stream exits the system as stabilised condensate 110.
- a vapour stream 200 with reduced heavy hydrocarbon content is fed to the pre-treatment system 210 for removal of acid gas (carbon dioxide) 205 and water 215.
- Treated gas 300 is cooled to an intermediate temperature and partially condensed by heat exchange with cold residue gas 360 and liquid hydrocarbon 390 in multi-stream heat exchanger 305.
- the two-phase stream 310 is let down in pressure across valve 315 and fed to a vapour-liquid separator 325.
- Liquid stream 330 is let down in pressure across valve 370 and combined with liquid stream 380 from the second cold separator 355.
- Vapour stream 335 at an intermediate pressure is further cooled and condensed in heat exchanger 305.
- the two-phase stream 340 is let down in pressure across valve 345 and fed to a second vapour-liquid separator 355.
- Liquid stream 365 is let down in pressure across valve 375 and combined with the liquid stream 385 from the first separator.
- Combined liquid stream 390 is partially vaporised in heat exchanger 305, providing refrigeration to cool the high pressure gas stream 300 and passed to the upstream Inlet Separator and Condensate Stabilisation system 105.
- Vapour product 360 with low heavy hydrocarbon content is reheated by heat exchange with high-pressure feed gas 300.
- the warmed vapour stream 400 is fed to the liquefaction plant.
- the liquefaction apparatus shown in Figure 3 is integrated with a heavy hydrocarbon removal process based on work-expansion of feed gas.
- the natural gas feed stream 100, together with liquid stream 380 removed in downstream heavy hydrocarbon removal facilities is fed to an Inlet Separation and Condensate Stabilisation system 105.
- a liquid stream exits the system as stabilised condensate 110.
- a vapour stream 200 with reduced heavy hydrocarbon content is fed to the pre-treatment system 210 for removal of acid gas (carbon dioxide) 205 and water 215.
- the treated gas stream 300 is cooled and partially condensed by heat exchange with cold residue gas 345 and liquid hydrocarbon 375 in a multi-stream heat exchanger 305.
- the two-phase stream 310 is fed to a vapour-liquid separator 315.
- Liquid stream 325 is let down in pressure across valve 365 and combined with the liquid stream 360 from a second cold separator 340.
- Vapour stream 320 is work-expanded in turbo-expander 330.
- the resulting two-phase stream 335 is fed to a second vapour-liquid separator 340.
- Liquid stream 350 is let down in pressure across valve 355 and combined with the liquid stream 370 from the first separator 315.
- Combined liquid stream 375 is partially vaporised in heat exchanger 305, providing refrigeration to cool the high pressure gas stream 300 and passed to the upstream Inlet Separator and Condensate Stabilisation system 105.
- Vapour product 345 with low heavy hydrocarbon content is reheated by heat exchange with high-pressure feed gas 300.
- Warmed vapour stream 385 is compressed in the turbo-expander brake compressor 390, driven by the turbo-expander 330.
- Treated natural gas, boosted in pressure 395, is cooled in heat exchanger 399 (typically against air or water) and fed to the liquefaction plant as stream 400.
- Predicted performance data is provided for two Examples of this invention. Both Examples demonstrate the recovery of power from work expansion of the refrigeration cycle gas to boost the pressure of the feed gas to liquefaction.
- the LNG product is sub-cooled such that 5 mol% is flashed on let down to storage pressure across a valve to provide at least part of the plant fuel gas demand.
- a liquid expander which would generate power, reduce flash vapour generation and reduce refrigeration requirements for sub-cooling.
- This Example corresponds to the embodiment of the invention shown in Figure 4 , in which a Joule Thomson process is included for upstream removal of heavy hydrocarbons.
- the number of separation stages required to achieve the required heavy hydrocarbon removal is dependent on the natural gas feed conditions and composition, in this example two separation stages are required.
- the Joule Thomson process of for heavy hydrocarbon removal is relatively simple, and is able to handle a wide range of flows with high reliability, low space requirements and low weight.
- This Example corresponds to the embodiment of the invention shown in Figure 5 , in which a turbo-expander process is included for upstream removal of heavy hydrocarbons.
- the expansion work generated is used to boost the feed to liquefaction.
- the number of separation stages required to achieve the required heavy hydrocarbon removal is dependent on the natural gas feed conditions and composition, in this example two separation stages are required.
- the turbo-expander process for heavy hydrocarbon removal of Example 2 has the benefit of recovering power from work expansion of the inlet gas. This is used to drive a feed gas compressor, enabling even higher feed pressure to liquefaction and reduced specific power.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Ocean & Marine Engineering (AREA)
- Separation By Low-Temperature Treatments (AREA)
Claims (18)
- Procédé de liquéfaction de gaz naturel comprenant les étapes suivantes :(a) fourniture d'un cycle de réfrigération comprenant les étapes suivantes :(i) compression d'un réfrigérant gazeux (550, 540) qui est essentiellement constitué de gaz d'azote ;(ii) refroidissement du réfrigérant comprimé de l'étape (i) dans un échange thermique avec un fluide de refroidissement pour fournir un réfrigérant gazeux comprimé refroidi (510, 525) ;(iii) détente d'au moins une première partie (525) du réfrigérant gazeux comprimé refroidi (510, 525) de l'étape (ii) dans un premier turbodétendeur (530) pour fournir un réfrigérant refroidi détendu (535) ;(iv) réchauffement du réfrigérant refroidi détendu (535) de l'étape (iii) dans un système d'échange thermique de liquéfaction (505) pour fournir un réfrigérant réchauffé (550, 540) ; et(v) renvoi du réfrigérant réchauffé (550, 540) de l'étape (iv) à l'étape (i) ;(b) fourniture d'un flux de charge de gaz naturel (400) ;(c) compression du flux de charge de gaz naturel (400) ;(d) passage du flux de charge de gaz naturel comprimé (410) directement ou indirectement pour réaliser un échange thermique avec le réfrigérant refroidi détendu (535) de l'étape (iii) dans le système d'échange thermique de liquéfaction (505) ; et(e) retrait d'un produit de gaz naturel refroidi et au moins partiellement condensé (425) du système d'échange thermique de liquéfaction (505) ;dans lequel le terme « turbodétendeur » désigne une turbine à écoulement radial ou axial à travers laquelle un gaz pressurisé est détendu ; caractérisé en ce que le premier turbodétendeur (530) est utilisé pour entraîner un compresseur (405) pour comprimer le flux de charge de gaz naturel (400) dans l'étape (c).
- Procédé selon la revendication 1, dans lequel le flux de charge de gaz naturel comprimé (410) est entièrement condensé et sous-refroidi dans l'étape (d).
- Procédé selon la revendication 1 ou la revendication 2, dans lequel le cycle de réfrigération comprend en outre les étapes suivantes :(vi) détente d'une deuxième partie (510) du réfrigérant gazeux comprimé refroidi (510, 525) de l'étape (ii) ;(vii) passage du réfrigérant refroidi détendu (520) de l'étape (vi) au système d'échange thermique de liquéfaction (505) pour fournir un réfrigérant réchauffé (540) ; et(viii) renvoi du réfrigérant réchauffé (540) des étapes (iv) et (vii) l'étape (i).
- Procédé selon la revendication 3, dans lequel les réfrigérants réchauffés (550, 540) des étapes (iv) et (vii) sont combinés avant d'être renvoyés à l'étape (i), et facultativement dans lequel la deuxième partie (510) du réfrigérant refroidi (510, 525) de l'étape (ii) est détendue dans l'étape (vi) dans un deuxième turbodétendeur (515), préférablement dans lequel le deuxième turbodétendeur (515) est utilisé pour entraîner un compresseur (545) pour fournir une partie de la compression dans l'étape (i) ou pour entraîner un compresseur à fournir une compression supplémentaire du flux de charge de gaz naturel (400) dans l'étape (c).
- Procédé selon la revendication 3 ou la revendication 4, dans lequel :(1) la première partie (525) du réfrigérant gazeux comprimé refroidi (510, 525) de l'étape (ii) est refroidie davantage par échange thermique dans le système d'échange thermique de liquéfaction (505) avant la détente ; et/ou(2) la deuxième partie (510) du réfrigérant gazeux comprimé refroidi (510, 525) de l'étape (ii) est refroidie davantage par échange thermique dans le système d'échange thermique de liquéfaction (505) avant la détente ; et/ou(3) dans lequel la première partie (525) du réfrigérant gazeux comprimé refroidi (510, 525) alimente le premier turbodétendeur (530) à une température inférieure à celle de la deuxième partie (510) du réfrigérant gazeux comprimé refroidi (510, 525) alimentant le deuxième turbodétendeur (515), ou la première partie (525) du réfrigérant gazeux comprimé refroidi (510, 525) alimente le premier turbodétendeur (530) à une température supérieure à celle de la deuxième partie (510) du réfrigérant gazeux comprimé refroidi (510, 525) alimentant le deuxième turbodétendeur (515).
- Procédé selon l'une quelconque des revendications précédentes dans lequel le réfrigérant est constitué de gaz d'azote.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel un ou plusieurs systèmes de réfrigération supplémentaires sont utilisés en parallèle ou en série avec le premier cycle de réfrigération pour compléter la réfrigération fournie par le premier cycle de réfrigération, préférablement dans lequel les un ou plusieurs systèmes de réfrigération supplémentaires comprennent un cycle de réfrigération par compression de vapeur.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le fluide de refroidissement dans l'étape (ii) est de l'eau de mer et/ou de l'air, ou un réfrigérant circulant dans un cycle de réfrigération supplémentaire.
- Procédé selon l'une quelconque des revendications précédentes, comprenant en outre l'étape suivante :(f) détente du produit de gaz naturel refroidi et au moins partiellement détendu (425) retiré du système d'échange thermique de liquéfaction (505) jusqu'à la pression de stockage, préférablement en utilisant une vanne Joule-Thomson (430) ou un détendeur de liquide, dans lequel le détendeur de liquide est de préférence utilisé pour entraîner un compresseur pour comprimer davantage le réfrigérant gazeux (550, 540) dans l'étape (i) ou pour comprimer davantage le flux de charge de gaz naturel (400) dans l'étape (c).
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le système d'échange thermique de liquéfaction (505) comprend un échangeur thermique à flux multiples, et/ou dans lequel le système d'échange thermique de liquéfaction (505) comprend plus d'un échangeur thermique.
- Procédé selon l'une quelconque des revendications précédentes, dans lequel le flux de charge de gaz naturel (400) dans l'étape (b) : 1) a une pression dans la plage de 2 000 à 5 000 kPa (absolue) ; et/ou 2) le flux de charge de gaz naturel (400) est obtenu à partir d'un procédé en amont pour le retrait d'hydrocarbures lourds et/ou de composants de GPL et/ou d'eau et/ou de mercure et/ou de composants gazeux acides ; et/ou 3) le flux de charge de gaz naturel comprimé (410) de l'étape (c) a une pression dans la plage de 4 000 à 10 000 kPa (absolue) ; et/ou 4) le flux de gaz naturel comprimé (410) est passé jusqu'à un procédé de retrait d'hydrocarbures lourds et/ou de composants GPL et/ou d'eau et/ou de mercure et/ou de composants acides avant d'être passés jusqu'au système d'échange thermique de liquéfaction.
- Appareil de liquéfaction de gaz naturel comprenant :(a) a système d'échange thermique de liquéfaction (505) ;(b) un système de réfrigération comprenant :(i) au moins un premier compresseur de réfrigérant (580, 590, 545) destiné à comprimer un réfrigérant gazeux (550, 540) qui est essentiellement constitué de gaz d'azote ;(ii) un moyen destiné à refroidir (575, 585, 595) le réfrigérant comprimé de l'étape (i) dans un échange thermique avec un fluide de refroidissement pour fournir un réfrigérant gazeux comprimé refroidi (525) ;(iii) un premier turbodétendeur (530) conçu pour détendre au moins une première partie (525) du réfrigérant gazeux comprimé refroidi (510, 525) de l'étape (ii) pour fournir un réfrigérant refroidi détendu (535) ;
et(iv) un moyen destiné à réchauffer le réfrigérant refroidi détendu (535) de l'étape (iii) dans le système d'échange thermique de liquéfaction (505) pour fournir un réfrigérant réchauffé (550, 540) ; et(v) un moyen destiné à transférer le réfrigérant réchauffé (550, 540) de l'étape (iv) à l'étape (i) ;(c) un compresseur de charge de gaz naturel (405) destiné à comprimer un flux de charge de gaz naturel (400) ;(d) un moyen destiné à transférer un flux de charge de gaz naturel comprimé (410) du compresseur de gaz naturel (405) directement ou indirectement pour réaliser un échange thermique avec le réfrigérant refroidi détendu (535) de l'étape (iii) dans le système d'échange thermique de liquéfaction (505) ; et(e) un moyen destiné à retirer un produit de gaz naturel refroidi et au moins partiellement condensé (425) du système d'échange thermique de liquéfaction (505) ;dans lequel le terme « turbodétendeur » désigne une turbine à écoulement radial ou axial à travers laquelle un gaz pressurisé est détendu ; caractérisé en ce que le premier turbodétendeur (530) est conçu pour entraîner le compresseur de charge de gaz naturel (405) pour comprimer le flux de charge de gaz naturel (400) dans l'étape (c). - Appareil selon la revendication 12, qui est conçu pour condenser entièrement et sous-refroidir le flux de gaz naturel comprimé (410) dans l'étape (d).
- Appareil selon la revendication 12 ou la revendication 13, dans lequel le système de réfrigération comprend en outre :(vi) un moyen destiné à détendre une deuxième partie (510) du réfrigérant gazeux comprimé refroidi (510, 525) de l'étape (ii), préférablement dans lequel le moyen destiné à détendre une deuxième partie (510) du réfrigérant gazeux comprimé refroidi (510, 525) de l'étape (ii) comprend un deuxième turbodétendeur (515), plus préférablement dans lequel le deuxième turbodétendeur (515) est conçu pour entraîner un deuxième compresseur de réfrigérant (545) dans l'étape (i), ou pour entraîner un compresseur conçu pour fournir une compression supplémentaire du flux de charge de gaz naturel (400) dans l'étape (c) ;(vii) un moyen destiné à transférer le réfrigérant refroidi détendu (520) de l'étape (vi) jusqu'au système d'échange thermique de liquéfaction (505) pour fournir un réfrigérant réchauffé (540) ; et(viii) un moyen destiné à transférer le réfrigérant réchauffé (540) des étapes (iv) et (vii) à l'étape (i) ; etfacultativement comprenant en outre un moyen destiné à combiner le réfrigérant réchauffé (550) de l'étape (iv) avec le réfrigérant réchauffé (540) de l'étape (vii) avant l'étape (viii),
et/ou un moyen destiné à transférer la première partie (525) et/ou la deuxième partie (510) du réfrigérant gazeux comprimé refroidi de l'étape (ii) jusqu'au système d'échange thermique de liquéfaction (505) pour un refroidissement supplémentaire avant la détente. - Appareil selon l'une quelconque des revendications 12 à 14, comprenant un moyen destiné à détendre le produit de gaz naturel refroidi et au moins partiellement condensé (425) à partir du système d'échange thermique de liquéfaction (505) jusqu'à la pression de stockage, préférablement dans lequel le moyen destiné à détendre le produit de gaz naturel refroidi et au moins partiellement condensé à partir du système d'échange thermique de liquéfaction jusqu'à la pression de stockage comprend une vanne Joule-Thomson valve (430) ou un détendeur de liquide.
- Appareil selon l'une quelconque des revendications 12 à 15, dans lequel l'appareil comprend en outre un ou plusieurs systèmes de réfrigération supplémentaires fonctionnant en parallèle ou en série avec le premier système de réfrigération, et qui sont conçus pour compléter la réfrigération fournie par le premier système de réfrigération ; et/ou dans lequel l'appareil comprend un moyen destiné à retirer des hydrocarbures lourds et/ou des composants de GPL et/ou de l'eau et/ou du mercure et/ou des composants acides du flux de charge de gaz naturel (400) avant la liquéfaction.
- Navire ou plateforme offshore comprenant un appareil tel que défini dans l'une quelconque des revendications 12 à 16.
- Utilisation d'un ou de plusieurs turbodétendeurs (530) pour comprimer la charge de gaz naturel (400) jusqu'à l'appareil de liquéfaction de gaz naturel tel que défini dans la revendication 12
dans laquelle les un ou plusieurs turbodétendeurs (530) sont entraînés par la détente du réfrigérant qui est essentiellement constitué de gaz d'azote comme une partie du cycle de réfrigération utilisé pour fournir un refroidissement à l'installation de liquéfaction,
dans laquelle le terme « turbodétendeur » désigne une turbine à écoulement radial ou axial à travers laquelle un gaz pressurisé est détendu.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1007297.3A GB2479940B (en) | 2010-04-30 | 2010-04-30 | Process and apparatus for the liquefaction of natural gas |
PCT/GB2011/050779 WO2011135335A2 (fr) | 2010-04-30 | 2011-04-19 | Procédé et appareil de liquéfaction de gaz naturel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2564139A2 EP2564139A2 (fr) | 2013-03-06 |
EP2564139B1 true EP2564139B1 (fr) | 2020-06-17 |
Family
ID=42289936
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11717717.0A Active EP2564139B1 (fr) | 2010-04-30 | 2011-04-19 | Procédé et appareil de liquéfaction de gaz naturel |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP2564139B1 (fr) |
AU (1) | AU2011247081B2 (fr) |
GB (1) | GB2479940B (fr) |
WO (1) | WO2011135335A2 (fr) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2494627A (en) * | 2011-09-07 | 2013-03-20 | Liquid Gas Equipment Ltd | Method and apparatus for cooling boil off gas on a ship, barge or floating platform |
US10385832B2 (en) | 2013-06-28 | 2019-08-20 | Exxonmobil Upstream Research Company | Systems and methods of utilizing axial flow expanders |
CN105324554B (zh) | 2013-06-28 | 2017-05-24 | 三菱重工压缩机有限公司 | 轴流膨胀机 |
US20160003526A1 (en) * | 2014-07-03 | 2016-01-07 | Uop Llc | Methods and apparatuses for liquefying hydrocarbon streams |
US10619918B2 (en) | 2015-04-10 | 2020-04-14 | Chart Energy & Chemicals, Inc. | System and method for removing freezing components from a feed gas |
TWI707115B (zh) | 2015-04-10 | 2020-10-11 | 美商圖表能源與化學有限公司 | 混合製冷劑液化系統和方法 |
US10072889B2 (en) | 2015-06-24 | 2018-09-11 | General Electric Company | Liquefaction system using a turboexpander |
WO2017013475A1 (fr) | 2015-07-23 | 2017-01-26 | Mehrpooya Mehdi | Liquéfaction de gaz naturel |
CN105222524A (zh) * | 2015-11-05 | 2016-01-06 | 天津市振津石油天然气工程有限公司 | 一种小型移动式天然气液化撬 |
CN105605882B (zh) * | 2015-12-23 | 2018-06-05 | 中石化石油工程技术服务有限公司 | 一种复合制冷天然气液化方法 |
KR101792708B1 (ko) * | 2016-06-22 | 2017-11-02 | 삼성중공업(주) | 유체냉각장치 |
WO2018013099A1 (fr) * | 2016-07-13 | 2018-01-18 | Fluor Technologies Corporation | Élimination d'hydrocarbures lourds à partir d'un gaz pauvre pour liquéfaction de gnl |
AU2018264606B2 (en) * | 2017-05-12 | 2021-05-27 | Samsung Heavy Ind.Co., Ltd | Natural gas liquefaction apparatus |
GB2582763A (en) * | 2019-04-01 | 2020-10-07 | Linde Ag | Method and device for the recovery of waste energy from refrigerant compression systems used in gas liquefaction processes |
CN110260148B (zh) * | 2019-06-28 | 2024-06-25 | 四川泰博流体科技有限公司 | 一种液态空气的储存设备、方法及空气液化装置 |
CN110345376A (zh) * | 2019-06-28 | 2019-10-18 | 四川泰博流体科技有限公司 | 一种纯化气液化的方法、储存的方法及液化的装置 |
US12123646B2 (en) | 2021-04-16 | 2024-10-22 | Praxair Technology, Inc. | System and method to produce liquefied natural gas using a three pinion integral gear machine |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5768912A (en) * | 1994-04-05 | 1998-06-23 | Dubar; Christopher Alfred | Liquefaction process |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3355903A (en) * | 1965-01-04 | 1967-12-05 | Fleur Corp | System of power-refrigeration |
US4065278A (en) * | 1976-04-02 | 1977-12-27 | Air Products And Chemicals, Inc. | Process for manufacturing liquefied methane |
US4970867A (en) * | 1989-08-21 | 1990-11-20 | Air Products And Chemicals, Inc. | Liquefaction of natural gas using process-loaded expanders |
KR101259192B1 (ko) * | 2004-08-06 | 2013-04-29 | 비피 코포레이션 노쓰 아메리카 인코포레이티드 | 천연 가스 액화 공정 |
US7673476B2 (en) * | 2005-03-28 | 2010-03-09 | Cambridge Cryogenics Technologies | Compact, modular method and apparatus for liquefying natural gas |
-
2010
- 2010-04-30 GB GB1007297.3A patent/GB2479940B/en active Active
-
2011
- 2011-04-19 AU AU2011247081A patent/AU2011247081B2/en not_active Ceased
- 2011-04-19 WO PCT/GB2011/050779 patent/WO2011135335A2/fr active Application Filing
- 2011-04-19 EP EP11717717.0A patent/EP2564139B1/fr active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5768912A (en) * | 1994-04-05 | 1998-06-23 | Dubar; Christopher Alfred | Liquefaction process |
Also Published As
Publication number | Publication date |
---|---|
AU2011247081A1 (en) | 2012-12-13 |
GB2479940A (en) | 2011-11-02 |
AU2011247081B2 (en) | 2017-02-09 |
WO2011135335A2 (fr) | 2011-11-03 |
GB2479940B (en) | 2012-09-05 |
EP2564139A2 (fr) | 2013-03-06 |
GB201007297D0 (en) | 2010-06-16 |
WO2011135335A3 (fr) | 2015-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2564139B1 (fr) | Procédé et appareil de liquéfaction de gaz naturel | |
US9625208B2 (en) | Method and apparatus for liquefying a gaseous hydrocarbon stream | |
RU2743095C2 (ru) | Способ сжижения природного газа и извлечения из него жидкостей, которые могут в нем находиться, включающий два полузамкнутых холодильных цикла для природного газа и замкнутый холодильный цикл для газа-хладагента | |
US7637121B2 (en) | Natural gas liquefaction process | |
CN101156038B (zh) | 用于液化天然气流的方法和设备 | |
CN110418929B (zh) | 用于天然气液化的设备和方法 | |
US8250883B2 (en) | Process to obtain liquefied natural gas | |
KR101712496B1 (ko) | 액화 천연 가스를 생성하는 방법 및 시스템 | |
EP1939564A1 (fr) | Procédé d'obtention de gaz naturel liquéfié | |
US20100175424A1 (en) | Methods and apparatus for liquefaction of natural gas and products therefrom | |
AU2009321449A1 (en) | Method for producing a stream of subcooled liquefied natural gas using a natural gas feedstream, and associated facility | |
US11815308B2 (en) | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion | |
RU2743094C2 (ru) | Улучшенный способ и система для охлаждения углеводородного потока с применением хладагента в газовой фазе | |
AU2018342117B2 (en) | Natural gas liquefaction by a high pressure expansion process | |
US11806639B2 (en) | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion | |
CA3076605C (fr) | Liquefaction de gaz naturel au moyen d'un procede de detente a haute pression | |
US11604025B2 (en) | Standalone high-pressure heavies removal unit for LNG processing | |
Jones et al. | A new process for improved liquefaction efficiency |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121115 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
R17D | Deferred search report published (corrected) |
Effective date: 20150326 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20170823 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20200108 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: COSTAIN OIL, GAS & PROCESS LIMITED |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: EASTWOOD, TIMOTHY Inventor name: JOHNSON, GRANT |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011067343 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1281802 Country of ref document: AT Kind code of ref document: T Effective date: 20200715 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200918 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200917 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20200617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200917 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 1281802 Country of ref document: AT Kind code of ref document: T Effective date: 20200617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201019 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201017 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011067343 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
26N | No opposition filed |
Effective date: 20210318 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210419 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210419 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20201017 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110419 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230427 Year of fee payment: 13 Ref country code: DE Payment date: 20230418 Year of fee payment: 13 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20200617 |