EP2560189B1 - Detector device - Google Patents

Detector device Download PDF

Info

Publication number
EP2560189B1
EP2560189B1 EP12179417.6A EP12179417A EP2560189B1 EP 2560189 B1 EP2560189 B1 EP 2560189B1 EP 12179417 A EP12179417 A EP 12179417A EP 2560189 B1 EP2560189 B1 EP 2560189B1
Authority
EP
European Patent Office
Prior art keywords
cooling component
housing
detector
light sensor
passive cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12179417.6A
Other languages
German (de)
French (fr)
Other versions
EP2560189A1 (en
Inventor
Bernd Widzgowski
Frank Schreiber
Holger Birk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leica Microsystems CMS GmbH
Original Assignee
Leica Microsystems CMS GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=47076064&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP2560189(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from DE201110052738 external-priority patent/DE102011052738A1/en
Priority claimed from DE102012101679A external-priority patent/DE102012101679A1/en
Application filed by Leica Microsystems CMS GmbH filed Critical Leica Microsystems CMS GmbH
Publication of EP2560189A1 publication Critical patent/EP2560189A1/en
Application granted granted Critical
Publication of EP2560189B1 publication Critical patent/EP2560189B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J43/00Secondary-emission tubes; Electron-multiplier tubes
    • H01J43/04Electron multipliers
    • H01J43/28Vessels, e.g. wall of the tube; Windows; Screens; Suppressing undesired discharges or currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J40/00Photoelectric discharge tubes not involving the ionisation of a gas
    • H01J40/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J40/00Photoelectric discharge tubes not involving the ionisation of a gas
    • H01J40/16Photoelectric discharge tubes not involving the ionisation of a gas having photo- emissive cathode, e.g. alkaline photoelectric cell

Definitions

  • the invention relates to a scanning microscope having a detector device which is designed to receive light and generate electrical signals, with a housing and a detector arranged in the housing, a cooling component being arranged within the housing and the cooling component facing the detector Housing electrically insulated or that the cooling component is at least part of an insulation that electrically insulates the detector from the housing.
  • US 2006/0140462 A1 discloses a scanning microscope from the prior art.
  • Detector devices of the type mentioned at the outset often have a temperature-dependent dark current, which causes noise. This dark current can be reduced by cooling.
  • an optoelectronic detector which has a cooling device, namely a Peltier element, which is thermally conductively connected to the detector.
  • a sensor is provided for determining an instantaneous value with regard to the ambient air humidity and the ambient dew point temperature.
  • the sensor is connected to a control unit which controls the cooling device depending on the value.
  • This optoelectronic detector has the advantage that cooling is not entirely dispensed with.
  • the actual cooling capacity is limited to a small extent; namely to the extent that no condensation occurs. The result of this is that detector noise is only insufficiently avoided.
  • Another detector device is mentioned in the same publication, in which the detector together with the cooling device, typically a Peltier element, is encapsulated in an airtight housing, which is filled with a dried gas or evacuated.
  • the waste heat of the cooling device can one in this device Heat sink are supplied, which is thermally conductively connected to the cooling device and / or used to heat other components, for example an entry window of the housing.
  • this detector device is identified as disadvantageous because the airtight encapsulation is complex.
  • cooling is often not very effective.
  • cooling is particularly difficult if the detector has to be at a different electrical potential level than the housing. In this case, the Peltier element cannot simply be arranged between the housing and the detector. Such a potential difference is usually necessary if photoelectrons are to be accelerated within the detector.
  • the object is achieved by a scanning microscope according to claim 1.
  • the detector is arranged in a housing, wherein the detector can be at least partially held within the housing by a cooling component designed as an electrical insulator.
  • a further cooling component is provided.
  • the further cooling component can advantageously be in heat-conducting contact with the cooling component.
  • cooling component and the further cooling component are mechanically and / or thermally connected in series and together isolate the detector from the housing.
  • a particularly effective cooling is advantageously achieved in that a light path for the light to be detected is defined which runs through the cooling component and the further cooling component.
  • the cooling component and / or the further cooling component surrounds the sensor surface that can be reached for the light to be detected, for example in a circular manner.
  • the cooling component and / or that further cooling component has a passage, in particular a through hole, through which the light to be detected reaches the light sensor.
  • the opening is conical and / or with inclined walls, in order to enable light incident at an angle to the surface of the light sensor to reach the light sensor through the cooling component and / or the further cooling component.
  • the cooling component and / or the further cooling component is constructed in two or more parts, the parts being arranged with respect to one another in such a way that an intermediate space remains through which the light path for the detecting light runs.
  • the further cooling component can also advantageously be designed as a heat-conducting, electrically insulating intermediate element.
  • the further cooling component can be designed as a passive cooling component, in particular as a heat-dissipating ring is arranged between the detector and an active cooling component, for example a Peltier element.
  • the cooling component is designed as a heat-conducting, electrically insulating intermediate element.
  • the heat can also be conducted away from the light sensor if the latter - for example in relation to a surrounding housing - is at a different voltage level, in particular at a voltage level of more than 1000 V, in particular more than 2000 V, in particular of over 4000 V, in particular of approximately 8000 V.
  • the intermediate element can be designed, for example, as a passive cooling component through which heat conduction takes place.
  • the further cooling component can also be arranged such that it is in direct contact with a light sensor of the detector, for example a photocatode.
  • a light sensor of the detector for example a photocatode.
  • the further cooling component is in direct contact with a substrate which carries a light sensor, for example a photocatode.
  • Particularly effective cooling is achieved by the direct contact of the cooling component and / or the further cooling component with a light sensor of the detector and / or with a substrate that carries a light sensor.
  • such an embodiment has the advantage that only the components that actually show temperature-dependent noise behavior are cooled.
  • cooling component and / or the further cooling component is designed as an active cooling component, for example as a Peltier element.
  • the cooling component and / or the further cooling component is designed as an active cooling component, therefore advantageously less waste heat, which must be transported to the outside.
  • the light sensor and the housing are connected in a heat-conducting manner by means of the cooling component and / or the further cooling component, the contact area of the cooling component and / or the further cooling component being smaller than the contact area of the cooling component and / or the further cooling component with the housing.
  • the cooling component and / or the further cooling component can advantageously be designed as an active cooling component, in particular as a Peltier element or as a heat pump or as a heat pipe.
  • the cooling component is designed as an annular Peltier element.
  • the cooling component and / or the further cooling component are arranged such that the waste heat from the cooling component and / or the further cooling component heats at least one entry window of the housing and / or an entry optics of the housing.
  • Such a design has the very special advantage that no condensation forms on the surfaces of the entrance window or on the surfaces of the entrance optics, for example a lens or an arrangement of several lenses. This is ensured in particular if the temperature of the surfaces of the entrance window or the optics is kept above the dew point while utilizing the waste heat.
  • the passive cooling component has good thermal conductivity in order to ensure rapid heat transfer.
  • the passive cooling component has a thermal conductivity greater than 1 W / mK, in particular greater than 10 W / mK, in particular greater than 100 W / mK, very particularly greater than 500 W / mK.
  • the passive cooling component and / or the further passive cooling component is shaped and dimensioned such that it fits snugly and as far as possible over the component of the detector device to be cooled, in particular against a light sensor and / or a substrate carrying light sensors can. In this way, particularly good cooling can be achieved.
  • the cooling component or the further cooling component is preferably always shaped in such a way that the function of the detector and / or the function of parts of the detector are not adversely affected, for example by shadowing an optical path.
  • the cooling component and / or the further cooling component is largely electrically insulating.
  • the cooling component and / or the further cooling component has an electrical conductivity less than 10 -7 S / m, in particular less than 10 -8 S / m.
  • the detector can be in mechanical contact with the housing via the cooling component or the further cooling component, while the detector is nevertheless electrically insulated at least to the extent that it can be operated at the required potential level.
  • the detector has an acceleration device for accelerating electrons generated by means of a photocathode, the accelerated electrons, for example, one Avalanche diode can be fed.
  • the detector contains a secondary electron multiplier. In this respect, it can happen that there must be an electrical voltage difference of several 1000 volts between the detector or parts of the detector and the housing.
  • the cooling component and / or the further cooling component is at least partially made of an electrically insulating and thermally conductive material, in particular boron nitride, aluminum nitride, aluminum oxide, diamond, synthetic diamond or a combination of these materials.
  • an electrically insulating and thermally conductive material in particular boron nitride, aluminum nitride, aluminum oxide, diamond, synthetic diamond or a combination of these materials.
  • the cooling component and / or the further cooling component is both an electrical insulator and a thermal conductor.
  • the cooling component and / or that further cooling component can at least partially consist of a composite material.
  • the cooling component and / or that further cooling component each have a core made of a thermally conductive material, for example made of a metal, such as aluminum or copper, which is at least partially surrounded by an electrical insulator.
  • the surrounding electrical insulator - based on the heat conduction direction - is thinner than the core.
  • the core can have a thickness of several millimeters or even several centimeters.
  • the cooling component and / or the further cooling component can be used as a composite component, in particular due to the easy machinability of one, for example metallic core can also be produced in unusual shapes with little effort.
  • the core functions as a spacer, for example between the light sensor and a housing or, for example, between the light sensor and a cooling component and / or further cooling component, in particular a Peltier element.
  • the property of the good thermal conductivity of the block is exploited.
  • the block is surrounded by an electrical insulator to provide electrical insulation.
  • the electrical insulator is designed as an insulator film, in particular as a plastic film.
  • a suitable plastic film for example a cardboard film, can have a very high dielectric strength even at a fraction of a millimeter, the electrical insulator film can be made much thinner than the core.
  • the electrical insulator foil has hardly any thermal insulation.
  • the special combination of the heat-conducting core with the thinner electrical insulation film leads to a cooling component and / or further cooling component that is both electrically insulating and thermally conductive.
  • the surrounding electrical insulator can also consist of an initially liquid material which is applied to the core, for example by brushing, spraying or dipping, and hardens there.
  • cooling component and / or the further cooling component increase the Leakage current resistance on an outer surface has a creepage distance extended by means of a labyrinth and / or by means of ribs and / or by means of at least one emergency and / or by means of at least one projection.
  • the cooling component and / or the further cooling component in particular to increase the tracking resistance, has at least one circumferential projection or at least one circumferential groove.
  • Such an embodiment has the particular advantage that the creepage distance along the surface of the cooling component or the further cooling component is lengthened, so that the risk of an electrical flashover is at least reduced.
  • cooling component and / or the further cooling component has gaps between them electrically insulating material are filled.
  • the filling material is designed to be both electrically and thermally insulating.
  • the cooling component and / or the further cooling component is designed as a thermoelectric converter, in particular as a Peltier element, the spaces between which are filled, in particular poured, with epoxy resin or silicone.
  • the cooling component and / or the further cooling component can be essentially annular or cylindrical.
  • this offers both special advantages with regard to the cooling component or the to bring additional cooling components for effective cooling cheaply, for example into contact with a light sensor or a substrate carrying a light sensor, and on the other hand the further advantage that there is a breakthrough for the light path of the light to be detected.
  • the cooling component and the further cooling component are thermally connected in series.
  • the cooling component is designed as a passive cooling component, for example as a boron nitride ring, and is in direct contact with a light sensor and / or with a light sensor-carrying substrate.
  • this cooling component is in thermal contact with a further cooling component which is designed as an active cooling component, for example as an annular Peltier element.
  • the ring-shaped cooling component and the ring-shaped further cooling component are preferably arranged coaxially to one another, the light path for the light to be detected running along the axis of symmetry of the cooling component and the further cooling component.
  • the further, active cooling component for example the hot side of a Peltier element
  • the waste heat of the active cooling component is advantageously used to avoid the formation of condensation on the entrance window or the entrance optics. If an electrically largely insulating material, for example boron nitride, is used as the cooling component in this arrangement, it is very advantageously possible to operate the detector at a potential level that differs from the potential level of the housing.
  • the housing is gas-tight and / or that a vacuum is present in the housing.
  • the gas-tight housing is filled with a gas, preferably a dried gas, the dew point of which is particularly low.
  • a drying agent into the housing. This is used to remove any remaining moisture or to absorb penetrating moisture.
  • the cooling component is a passive cooling component that conducts heat from the light sensor and / or from the substrate of the light sensor to a further, active cooling component, in particular a Peltier element, which does not work with the light sensor and not with one Substrate of the light sensor is in direct contact.
  • the further, active cooling component emits heat to the housing.
  • the special sequence of the arrangement means that the additional process heat of the active cooling component does not have to be conducted through the passive cooling component.
  • the detector device according to the invention can be used particularly advantageously with or in a confocal scanning microscope.
  • a confocal scanning microscope it has several of the detector devices according to the invention. E.g. It can be provided that different detection spectral ranges are assigned and / or can be assigned to the individual detector devices.
  • Figure 1 shows a detector device 1 which is designed to receive light 2 and to provide electrical signals at an electrical output 3.
  • the detector device 1 has a housing 4 in which a detector 5 is arranged.
  • the detector 5 has a light sensor 6, namely a photocathode 8 arranged on a substrate 7, which is operated in a transmission arrangement. This means that the photocathode 8 receives the light 2 to be detected on its side facing entry optics 9 of the housing 4 and emits photoelectrons on the side facing away from it.
  • the photocathode 8 and its substrate 7 are at a potential level of -8000 V, while the housing 4 is at a potential level of 0 V.
  • the detector 5 also has an avalanche diode 10, which is at a potential level of - 400 V.
  • the photoelectrons generated by the photocathode 8 are accelerated due to the potential difference existing between the photocathode 8 and the avalanche diode 10 and hit an avalanche diode 10 which outputs electrical signals via the electrical output 3.
  • the detector device 1 has a cooling component 11 within the housing 4, which is designed as a passive cooling component.
  • the cooling component 11 is designed as a heat-conducting, electrically insulating intermediate element 12.
  • the intermediate element 12 has an annular shape, the central axis of the intermediate element running coaxially to the light path of the light 2 to be detected.
  • the detector device 1 also has a further cooling component 13 within the housing 4, which is designed as an annular Peltier element 14.
  • the annular Peltier element 14 is arranged coaxially with the annular intermediate element 12.
  • the annular Peltier element 14 is in heat-conducting contact with the intermediate element 12.
  • the intermediate element 12 is in heat-conducting contact with the substrate 7.
  • the cooling capacity for cooling the substrate 7 and the photocathode 8 can be used particularly effectively via the heat-conducting, electrically insulating intermediate element 12.
  • the warm side of the annular Peltier element 14 faces the housing 4 and the entry optics 9.
  • the entry optics 9 are reheated so that no condensation water can precipitate.
  • the remaining space between the detector 5, the intermediate element 12 and the annular Peltier element 14 to the housing 4 is filled with a thermally and electrically insulating potting compound.
  • the area between the entrance optics 9 and the photocathode 8 is filled with a dried gas.
  • Figure 2 shows another detector device in which the intermediate element 12 is in direct, heat-conducting contact with the photocathode 8.
  • FIG 3 schematically shows an embodiment of a third detector device according to the invention, the basic structure of which essentially corresponds to the detector devices which are shown in FIGS Figures 1 and 2nd are shown.
  • the cooling component 11 which is designed as a heat-conducting, electrically insulating element 12, has a conical passage for the light 2 to be detected.
  • the further cooling component 14 is provided with a (compared to the embodiments that are shown in FIGS Figures 1 and 2nd are shown) provided with an enlarged diameter.
  • an enlarged entry window 9 of the housing 4 is installed.
  • This version has the particular advantage that the numerical aperture is significantly enlarged. As a result, falling light in particular can also reach the light sensor designed as a photocathode 8 at an angle.
  • the entrance window is made substantially larger than the light sensor, in this example the photocathode 8.
  • the radius of the free opening of the cooling component 11 and of the further cooling component 13 therefore increases from the photocathode 8 in the direction of the entrance window. This additionally ensures that the contact area between the cooling component 11 designed as an intermediate element 12 and the further cooling component 14, namely the Peltier element 14, is also significantly increased, which in particular ensures good heat dissipation.
  • the contact area of the cooling component 11 with the substrate 7 of the light sensor 6 is also larger than the contact area of the cooling component 11 with the further cooling component 14, without the cooling component 11 being in direct contact with other components of the detector 5.
  • the outer contour of the cooling component 11 is also conical.
  • annular thermal insulator 15 is provided which surrounds the cooling component 11.
  • Figure 4 shows schematically an embodiment of a fourth detector device according to the invention, which essentially the structure of the in Figure 3 shown execution corresponds.
  • the passage for the light 2 of the intermediate element 12 is provided with circumferential ribs 15.
  • the creepage distance from the light sensor 6 to the further cooling component 13 is increased and the risk of an electrical flashover is thereby substantially reduced.
  • FIG. 5 shows a detailed representation of a further embodiment of a detector device according to the invention
  • the spaces between the further cooling component 13, namely the Peltier element 14, are filled with an electrically insulating material 16, for example with silicone.
  • an electrically insulating material 16 By filling the spaces with an electrically insulating material 16, unwanted voltage flashovers can be effectively avoided. Filling with electrically insulating material 16 effectively prevents sparks from rolling over the surface of internal components, such as the columnar semiconductor elements 17 of the Peltier element 14.
  • the electrically insulating material 16 is provided on the outside and in the region of the passage for the light 2 with ribs 15 in order to extend the creepage distance.

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Description

Die Erfindung betrifft ein Scanmikroskop aufweisend eine Detektorvorrichtung, die dazu ausgebildet ist Licht zu empfangen und elektrische Signale zu erzeugen, mit einem Gehäuse und einem in dem Gehäuse angeordneten Detektor, wobei innerhalb des Gehäuses ein Kühlbauteil angeordnet ist und wobei wobei das Kühlbauteil den Detektor gegenüber dem Gehäuse elektrisch isoliert oder dass das Kühlbauteil wenigstens Teil einer Isolierung ist, die den Detektor gegenüber dem Gehäuse elektrisch isoliert.The invention relates to a scanning microscope having a detector device which is designed to receive light and generate electrical signals, with a housing and a detector arranged in the housing, a cooling component being arranged within the housing and the cooling component facing the detector Housing electrically insulated or that the cooling component is at least part of an insulation that electrically insulates the detector from the housing.

US 2006/0140462 A1 offenbart ein Scanmikroskop aus dem Stand der Technik. US 2006/0140462 A1 discloses a scanning microscope from the prior art.

Detektorvorrichtungen der eingangs genannten Art weisen oft einen temperaturabhängigen Dunkelstrom auf, der Rauschen verursacht. Durch Kühlen kann dieser Dunkelstrom verringert werden.Detector devices of the type mentioned at the outset often have a temperature-dependent dark current, which causes noise. This dark current can be reduced by cooling.

Aus DE 10 2009 036 066 A1 ist ein optoelektronischer Detektor bekannt, der eine mit dem Detektor wärmeleitend verbundene Kühlvorrichtung, nämlich ein Peltier-Element, aufweist. Zur Vermeidung des Entstehens von Tauwasser auf einer Oberfläche des optoelektronischen Detektors, ist ein Sensor zur Ermittlung eines momentanen Werts bezüglich der Umgebungsluftfeuchte und der Umgebungstaupunkttemperatur vorgesehen. Der Sensor ist mit einer Steuereinheit verbunden, welche die Kühlvorrichtung in Abhängigkeit des Werts steuert. Dieser optoelektronische Detektor hat den Vorteil, dass auf eine Kühlung nicht gänzlich verzichtet ist. Er hat jedoch den Nachteil, das die tatsächliche Kühlleistung auf ein geringes Maß begrenzt ist; nämlich auf das Maß, bei dem kein Tauwasser entsteht. Dies hat im Ergebnis zur Folge, dass ein Detektorrauschen nur unzureichend vermieden ist.Out DE 10 2009 036 066 A1 an optoelectronic detector is known which has a cooling device, namely a Peltier element, which is thermally conductively connected to the detector. To avoid the formation of condensation on a surface of the optoelectronic detector, a sensor is provided for determining an instantaneous value with regard to the ambient air humidity and the ambient dew point temperature. The sensor is connected to a control unit which controls the cooling device depending on the value. This optoelectronic detector has the advantage that cooling is not entirely dispensed with. However, it has the disadvantage that the actual cooling capacity is limited to a small extent; namely to the extent that no condensation occurs. The result of this is that detector noise is only insufficiently avoided.

In derselben Druckschrift wird eine andere Detektorvorrichtung erwähnt, bei der Detektor samt der Kühlvorrichtung, typischerweise einem Peltier-Element, in einem luftdichten Gehäuse verkapselt ist, das mit einem getrockneten Gas gefüllt oder evakuiert ist. Die Abwärme der Kühlvorrichtung kann bei dieser Vorrichtung einem Kühlkörper zugeführt werden, der mit der Kühlvorrichtung wärmeleitend verbunden ist und/oder zum Beheizen anderer Bauteile, beispielsweise einem Eintrittsfenster des Gehäuses, verwendet werden. Diese Detektorvorrichtung wird jedoch als nachteilig ausgewiesen, weil die luftdichte Verkapselung aufwendig ist. Tatsächlich hat sich in der Praxis sogar gezeigt, dass diese Detektorvorrichtung noch weitere Nachteile hat. Insbesondere ist das Kühlen oft nicht sehr effektiv. Darüber hinaus gestaltet sich das Kühlen als besonders schwierig, wenn sich der Detektor auf einem anderen elektrischen Potentialniveau befinden muss, als das Gehäuse. In diesem Fall kann das Peltier-Element nicht einfach zwischen Gehäuse und Detektor angeordnet werden. Eine solche Potentialdifferenz ist zumeist dann notwendig, wenn innerhalb des Detektors eine Beschleunigung von Photoelektronen erfolgen soll.Another detector device is mentioned in the same publication, in which the detector together with the cooling device, typically a Peltier element, is encapsulated in an airtight housing, which is filled with a dried gas or evacuated. The waste heat of the cooling device can one in this device Heat sink are supplied, which is thermally conductively connected to the cooling device and / or used to heat other components, for example an entry window of the housing. However, this detector device is identified as disadvantageous because the airtight encapsulation is complex. In fact, it has been shown in practice that this detector device has further disadvantages. In particular, cooling is often not very effective. In addition, cooling is particularly difficult if the detector has to be at a different electrical potential level than the housing. In this case, the Peltier element cannot simply be arranged between the housing and the detector. Such a potential difference is usually necessary if photoelectrons are to be accelerated within the detector.

Beispielsweise aus US 5,508,740 , aus US 5,596,228 oder aus US 4,833,889 sind Detektorvorrichtungen bekannt, bei denen jeweils auf der einer Lichteinfallseite eines Lichtsensors abgewandten Seite eine aktive Kühlvorrichtung vorgesehen ist. Diese Detektorvorrichtungen haben den Nachteil, dass ein Großteil der Kühlleistung ungenutzt verloren geht.For example, from US 5,508,740 , out US 5,596,228 or off US 4,833,889 Detector devices are known in which an active cooling device is provided on the side facing away from a light incidence side of a light sensor. The disadvantage of these detector devices is that a large part of the cooling capacity is lost unused.

Es ist die Aufgabe der vorliegenden Erfindung, ein Scanmikroskop aufweisend eine Detektorvorrichtung anzugeben, die ein effizienteres Kühlen auch bei Verwendung von Detektoren, die auf einem anderen elektrischen Potentialniveau liegen, als das Gehäuse, ermöglicht.It is the object of the present invention to provide a scanning microscope having a detector device which enables more efficient cooling even when using detectors which are at a different electrical potential level than the housing.

Die Aufgabe wird durch ein Scanmikroskop gemäß Anspruch 1 gelöst.The object is achieved by a scanning microscope according to claim 1.

Insbesondere für eine Ausführungen, bei denen der Lichtsensor und/oder ein den Lichtsensor aufweisender Detektor mit einer gefährlichen Spannung betrieben wird, aber auch zum Schutz des Lichtsensors und/oder der nachgeschalteten Elektronik ist es von Vorteil, dass der Detektor in einem Gehäuse angeordnet ist, wobei der Detektor zumindest teilweise durch ein als elektrischer Isolator ausgebildetes Kühlbauteil innerhalb des Gehäuses gehalten sein kann.In particular for designs in which the light sensor and / or a detector having the light sensor is operated with a dangerous voltage, but also for protecting the light sensor and / or the downstream electronics, it is advantageous that the detector is arranged in a housing, wherein the detector can be at least partially held within the housing by a cooling component designed as an electrical insulator.

Erfindungsgemäß ist ein weiteres Kühlbauteil vorgesehen. Insbesondere kann vorteilhaft das weitere Kühlbauteil mit dem Kühlbauteil in Wärme leitendem Kontakt stehen.According to the invention, a further cooling component is provided. In particular, the further cooling component can advantageously be in heat-conducting contact with the cooling component.

Es kann auch vorgesehen sein, dass das Kühlbauteil und das weitere Kühlbauteil mechanisch und/oder thermisch in Reihe geschaltet sind und gemeinsam den Detektor gegenüber dem Gehäuse isolieren.It can also be provided that the cooling component and the further cooling component are mechanically and / or thermally connected in series and together isolate the detector from the housing.

Eine besonders effektive Kühlung wird vorteilhaft dadurch erreicht, dass ein Lichtweg für das zu detektierende Licht festgelegt ist, der durch das Kühlbauteil und das weitere Kühlbauteil hindurch verläuft. Insbesondere kann vorgesehen sein, dass das Kühlbauteil und/oder das weitere Kühlbauteil die für das zu detektierende Licht erreichbare Sensorfläche - beispielsweise kreisförmig - umgibt.A particularly effective cooling is advantageously achieved in that a light path for the light to be detected is defined which runs through the cooling component and the further cooling component. In particular, it can be provided that the cooling component and / or the further cooling component surrounds the sensor surface that can be reached for the light to be detected, for example in a circular manner.

Beispielsweise kann vorgesehen sein, dass das Kühlbauteil und/oder dass weitere Kühlbauteil einen Durchgang, insbesondere eine Durchgangsbohrung, aufweist, durch die hindurch das zu detektierende Licht zu dem Lichtsensor gelangt. Hierbei kann insbesondere vorgesehen sein, dass der Durchbruch konisch und/oder mit schrägen Wandungen ausgeführt ist, um zu ermöglichen, dass auch schräg zur Oberfläche des Lichtsensors einfallendes Licht ungehindert durch das Kühlbauteil und/oder das weitere Kühlbauteil hindurch zu dem Lichtsensor gelangen kann.For example, it can be provided that the cooling component and / or that further cooling component has a passage, in particular a through hole, through which the light to be detected reaches the light sensor. In this case, it can be provided in particular that the opening is conical and / or with inclined walls, in order to enable light incident at an angle to the surface of the light sensor to reach the light sensor through the cooling component and / or the further cooling component.

Es jedoch auch vorgesehen sein, dass das Kühlbauteil und/oder das weitere Kühlbauteil zwei- oder mehrteilig aufgebaut ist, wobei die Teile derart zueinander angeordnet sind, dass ein Zwischenraum verbleibt, durch den hindurch der Lichtweg für das detektierende Licht verläuft.However, it can also be provided that the cooling component and / or the further cooling component is constructed in two or more parts, the parts being arranged with respect to one another in such a way that an intermediate space remains through which the light path for the detecting light runs.

Auch das weitere Kühlbauteil kann vorteilhaft als wärmeleitendes, elektrisch isolierendes Zwischenelement ausgebildet sein. Insbesondere kann, was im Detail im Folgenden noch beschrieben wird, das weitere Kühlbauteil als passives Kühlbauteil, insbesondere als wärmeableitender Ring, ausgebildet sein, der zwischen dem Detektor und einem aktiven Kühlbauteil, bspw. einen Peltier-Element, angeordnet ist.The further cooling component can also advantageously be designed as a heat-conducting, electrically insulating intermediate element. In particular, what will be described in detail below, the further cooling component can be designed as a passive cooling component, in particular as a heat-dissipating ring is arranged between the detector and an active cooling component, for example a Peltier element.

Bei einer besonderen Ausführung ist das Kühlbauteil als wärmeleitendes, elektrisch isolierendes Zwischenelement ausgebildet. Eine solche Ausführung hat den besonderen Vorteil, dass die Wärme auch dann von dem Lichtsensor weg geleitet werden kann, wenn dieser - beispielsweise gegenüber einem umgebenden Gehäuse - auf einem anderen Spannungsniveau, insbesondere auf einem Spannungsniveau von über 1000 V, insbesondere von über 2000 V, insbesondere von über 4000 V, insbesondere von ca. 8000 V, liegt. Insbesondere kann ein solches Wärmeleitung des, elektrisch isolieren das Zwischenelement beispielsweise als passives Kühlbauteil, durch das hindurch eine Wärmeleitung stattfindet, ausgebildet sein.In a special embodiment, the cooling component is designed as a heat-conducting, electrically insulating intermediate element. Such an embodiment has the particular advantage that the heat can also be conducted away from the light sensor if the latter - for example in relation to a surrounding housing - is at a different voltage level, in particular at a voltage level of more than 1000 V, in particular more than 2000 V, in particular of over 4000 V, in particular of approximately 8000 V. In particular, such heat conduction of the, electrically isolating, the intermediate element can be designed, for example, as a passive cooling component through which heat conduction takes place.

Auch das weitere Kühlbauteil kann bei einer vorteilhaften Ausführung derart angeordnet sein, dass es in unmittelbarem Kontakt zu einem Lichtsensor des Detektors, bspw. einer Photokatode, steht. Es kann - alternativ oder zusätzlich - auch vorgesehen sein, dass das weitere Kühlbauteil in unmittelbarem Kontakt zu einem Substrat steht, das einen Lichtsensor, bspw. eine Photokatode, trägt.In an advantageous embodiment, the further cooling component can also be arranged such that it is in direct contact with a light sensor of the detector, for example a photocatode. As an alternative or in addition, it can also be provided that the further cooling component is in direct contact with a substrate which carries a light sensor, for example a photocatode.

Durch den unmittelbaren Kontakt des Kühlbauteils und/oder des weiteren Kühlbauteils zu einem Lichtsensor des Detektors und/oder zu einem Substrat, das einen Lichtsensor trägt, wird eine besonders effektive Kühlung erreicht. Insbesondere hat eine solche Ausführung den Vorteil, dass lediglich die Bauteile gekühlt werden, die tatsächlich ein temparaturabhängiges Rauschverhalten zeigen.Particularly effective cooling is achieved by the direct contact of the cooling component and / or the further cooling component with a light sensor of the detector and / or with a substrate that carries a light sensor. In particular, such an embodiment has the advantage that only the components that actually show temperature-dependent noise behavior are cooled.

Darüber hinaus ist bei einer solchen Ausführung vorteilhafter Weise eine wesentlich geringere Kühlleistung erforderlich, was insbesondere von Vorteil ist, wenn das Kühlbauteil und/oder das weitere Kühlbauteil als aktives Kühlbauteil, bspw. als Peltier-Element, ausgebildet ist. In dem Fall, dass das Kühlbauteil und/oder das weitere Kühlbauteil als aktives Kühlbauteil ausgebildet ist, fällt in vorteilhafter Weise daher auch weniger Abwärme an, die nach außen transportiert werden muss.In addition, a much lower cooling capacity is advantageously required in such an embodiment, which is particularly advantageous if the cooling component and / or the further cooling component is designed as an active cooling component, for example as a Peltier element. In the event that the cooling component and / or the further cooling component is designed as an active cooling component, therefore advantageously less waste heat, which must be transported to the outside.

Bei einer besonderen Ausführung ist vorgesehen, dass der Lichtsensor und das Gehäuse mittels des Kühlbauteils und/oder des weiteren Kühlbauteils wärmeleitend verbunden sind, wobei die Kontaktfläche des Kühlbauteils und/oder des weiteren Kühlbauteils mit dem Lichtsensor kleiner ist, als die Kontaktfläche des Kühlbauteils und/oder des weiteren Kühlbauteils mit dem Gehäuse. Eine solche Ausführung hat den ganz besonderen Vorteil, dass einerseits ein besonders guter Wärme Abtransport von dem Lichtsensor weg gewährleistet ist, während andererseits die freie Zugänglichkeit der lichtempfindlichen Oberfläche des Lichtsensors für das zu detektierende Licht allenfalls geringfügig eingeschränkt ist.In a special embodiment it is provided that the light sensor and the housing are connected in a heat-conducting manner by means of the cooling component and / or the further cooling component, the contact area of the cooling component and / or the further cooling component being smaller than the contact area of the cooling component and / or the further cooling component with the housing. Such a design has the very special advantage that, on the one hand, particularly good heat removal from the light sensor is ensured, while on the other hand the free accessibility of the light-sensitive surface of the light sensor is at most slightly restricted for the light to be detected.

Wie bereits erwähnt, können das Kühlbauteil und/oder das weitere Kühlbauteil vorteilhaft als aktives Kühlbauteil, insbesondere als Peltier-Element oder als Wärmepumpe oder als Heat-Pipe ausgebildet sein. Bei einer ganz besonders vorteilhaften Ausführung ist das Kühlbauteil als ringförmiges Peltier-Element ausgebildet. Eine solche Ausführung bietet den Vorteil, dass durch die Ringmitte der Lichtweg für das zu detektierende Licht verlaufen kann, so dass der Lichtweg beim Durchtritt durch das ringförmige Peltier-Element im Wesentlichen koaxial zur Rotationssymmetrieachse des ringförmigen Peltier-Elements angeordnet ist.As already mentioned, the cooling component and / or the further cooling component can advantageously be designed as an active cooling component, in particular as a Peltier element or as a heat pump or as a heat pipe. In a very particularly advantageous embodiment, the cooling component is designed as an annular Peltier element. Such an embodiment offers the advantage that the light path for the light to be detected can run through the center of the ring, so that the light path is arranged essentially coaxially with the axis of rotational symmetry of the ring-shaped Peltier element when it passes through the ring-shaped Peltier element.

Bei einer ganz besonders vorteilhaften Ausführung sind das Kühlbauteil und/oder das weitere Kühlbauteil derart angeordnet, dass die Abwärme des Kühlbauteils und/oder des weiteren Kühlbauteils wenigstens ein Eintrittsfenster des Gehäuses und/oder eine Eintrittsoptik des Gehäuses erwärmt. Eine solche Ausführung hat den ganz besonderen Vorteil, dass sich auf den Oberflächen des Eintrittsfensters bzw. auf den Oberflächen der Eintrittsoptik, bspw. eine Linse oder eine Anordnung mehrerer Linsen, kein Tauwasser absetzt. Dies ist insbesondere dann gewährleistet, wenn unter Ausnutzung der Abwärme die Temperatur der Oberflächen des Eintrittsfensters bzw. der Optik oberhalb des Taupunktes gehalten wird.In a very particularly advantageous embodiment, the cooling component and / or the further cooling component are arranged such that the waste heat from the cooling component and / or the further cooling component heats at least one entry window of the housing and / or an entry optics of the housing. Such a design has the very special advantage that no condensation forms on the surfaces of the entrance window or on the surfaces of the entrance optics, for example a lens or an arrangement of several lenses. This is ensured in particular if the temperature of the surfaces of the entrance window or the optics is kept above the dew point while utilizing the waste heat.

Von besonderem Vorteil ist es, wenn das passive Kühlbauteil eine gute Wärmeleitfähigkeit aufweist, um einen schnellen Wärmetransport zu gewährleisten. Insoweit kann vorteilhaft vorgesehen sein, dass das passive Kühlbauteil eine Wärmeleitfähigkeit größer 1 W/mK, insbesondere größer 10 W/mK, insbesondere größer 100 W/mK, ganz insbesondere größer 500 W/mK aufweist.It is particularly advantageous if the passive cooling component has good thermal conductivity in order to ensure rapid heat transfer. To this extent, it can advantageously be provided that the passive cooling component has a thermal conductivity greater than 1 W / mK, in particular greater than 10 W / mK, in particular greater than 100 W / mK, very particularly greater than 500 W / mK.

Bei einer ganz besonders vorteilhaften Ausführung ist das passive Kühlbauteil und/oder das weitere passive Kühlbauteil derart geformt und dimensioniert, dass es sich passgenau und möglichst großflächig an das zu kühlende Bauteil der Detektorvorrichtung, insbesondere an einen Lichtsensor und/oder an ein lichtsensortragendes Substrat, anschmiegen kann. Hierdurch ist eine besonders gute Kühlung erreichbar. Die Ausformung des Kühlbauteils bzw. des weiteren Kühlbauteils erfolgt jedoch vorzugsweise stets derart, dass die Funktion des Detektors und/oder die Funktion von Teilen des Detektors nicht nachteilig, bspw. durch Abschattung eines Lichtweges, beeinträchtigt wird.In a very particularly advantageous embodiment, the passive cooling component and / or the further passive cooling component is shaped and dimensioned such that it fits snugly and as far as possible over the component of the detector device to be cooled, in particular against a light sensor and / or a substrate carrying light sensors can. In this way, particularly good cooling can be achieved. However, the cooling component or the further cooling component is preferably always shaped in such a way that the function of the detector and / or the function of parts of the detector are not adversely affected, for example by shadowing an optical path.

Bei einer ganz besonders vorteilhaften Ausführung, die insbesondere dann einsetzbar ist, wenn der Detektor und/oder Teile des Detektors auf einem anderen elektrischen Potentialniveau liegen, als das Gehäuse, ist das Kühlbauteil und/oder das weitere Kühlbauteil elektrisch weitgehend isolierend ausgebildet. Insbesondere kann vorgesehen sein, dass das Kühlbauteil und/oder das weitere Kühlbauteil eine elektrische Leitfähigkeit kleiner als 10-7 S/m, insbesondere kleiner als 10-8 S/m aufweist.In a very particularly advantageous embodiment, which can be used in particular when the detector and / or parts of the detector are at a different electrical potential level than the housing, the cooling component and / or the further cooling component is largely electrically insulating. In particular, it can be provided that the cooling component and / or the further cooling component has an electrical conductivity less than 10 -7 S / m, in particular less than 10 -8 S / m.

Eine solche Ausführung hat den ganz besonderen Vorteil, dass der Detektor über das Kühlbauteil bzw. das weitere Kühlbauteil in mechanischem Kontakt zum Gehäuse stehen kann, während der Detektor dennoch elektrisch zumindest soweit isoliert ist, dass er auf dem erforderlichen Potentialniveau betrieben werden kann. Beispielsweise kann vorgesehen sein, dass der Detektor eine Beschleunigungsvorrichtung zum Beschleunigen von mittels einer Photokathode erzeugter Elektronen aufweist, wobei die beschleunigten Elektronen bspw. einer Avalanchediode zugeleitet werden können. Es kann alternativ auch vorgesehen sein, dass der Detektor einen Sekundärelektronenvervielfacher beinhaltet. Insoweit kann es vorkommen, dass zwischen dem Detektor oder Teilen des Detektors und dem Gehäuse eine elektrische Spannungsdifferenz von mehreren 1000 Volt anliegen muss.Such a design has the very special advantage that the detector can be in mechanical contact with the housing via the cooling component or the further cooling component, while the detector is nevertheless electrically insulated at least to the extent that it can be operated at the required potential level. For example, it can be provided that the detector has an acceleration device for accelerating electrons generated by means of a photocathode, the accelerated electrons, for example, one Avalanche diode can be fed. Alternatively, it can also be provided that the detector contains a secondary electron multiplier. In this respect, it can happen that there must be an electrical voltage difference of several 1000 volts between the detector or parts of the detector and the housing.

Insbesondere um solchen Spannungsdifferenzen standhalten zu können, ist bei einer besonderen Ausführungsform des Detektors vorgesehen, dass das Kühlbauteil und/oder das weitere Kühlbauteil zumindest teilweise aus einem elektrisch isolierenden und thermisch leitenden Material, insbesondere aus Bornitrid, Aluminiumnitrid, Aluminiumoxid, Diamant, synthetischem Diamant oder einer Kombination aus diesen Materialien besteht. Diese Stoffe zeichnen sich einerseits durch eine hohe Wärmeleitfähigkeit und andererseits durch eine sehr geringe elektrische Leitfähigkeit aus. Darüber hinaus bieten diese Materialien den Vorteil, dass sie, bspw. durch Schleifen, Drehen oder Fräsen, einfach und genau bearbeitbar sind.In particular, to be able to withstand such voltage differences, it is provided in a special embodiment of the detector that the cooling component and / or the further cooling component is at least partially made of an electrically insulating and thermally conductive material, in particular boron nitride, aluminum nitride, aluminum oxide, diamond, synthetic diamond or a combination of these materials. These substances are characterized on the one hand by a high thermal conductivity and on the other hand by a very low electrical conductivity. In addition, these materials offer the advantage that they can be machined easily and precisely, for example by grinding, turning or milling.

Wie bereits erläutert kann vorteilhaft vorgesehen sein, dass das Kühlbauteil und/oder das weitere Kühlbauteil sowohl ein elektrischer Isolator, als auch ein thermischer Leiter ist. Insbesondere um dies zu erreichen, können das Kühlbauteil und/oder dass weitere Kühlbauteil zumindest teilweise aus einem Kompositmaterial bestehen. Beispielsweise können das Kühlbauteil und/oder dass weitere Kühlbauteil jeweils einen Kern aus einem thermisch leitenden Material, beispielsweise aus einem Metall, wie beispielsweise Aluminium oder Kupfer, aufweisen, der wenigstens teilweise von einem elektrischen Isolator umgeben ist. Insbesondere kann vorgesehen sein, dass der umgebende elektrische Isolator - bezogen auf die Wärme Leitungsrichtung - dünner ist, als der Kern. Insbesondere kann der Kern eine Dicke von mehreren Millimetern oder gar mehreren Zentimetern aufweisen.As already explained, it can advantageously be provided that the cooling component and / or the further cooling component is both an electrical insulator and a thermal conductor. In particular in order to achieve this, the cooling component and / or that further cooling component can at least partially consist of a composite material. For example, the cooling component and / or that further cooling component each have a core made of a thermally conductive material, for example made of a metal, such as aluminum or copper, which is at least partially surrounded by an electrical insulator. In particular, it can be provided that the surrounding electrical insulator - based on the heat conduction direction - is thinner than the core. In particular, the core can have a thickness of several millimeters or even several centimeters.

Als Kompositbauteil können das Kühlbauteile und/oder das weitere Kühlbauteil, insbesondere aufgrund der leichten Bearbeitbarkeit eines beispielsweise metallischen Kerns, ohne größeren Aufwand auch in außergewöhnlichen Formen hergestellt werden.The cooling component and / or the further cooling component can be used as a composite component, in particular due to the easy machinability of one, for example metallic core can also be produced in unusual shapes with little effort.

Einerseits fungiert der Kern als Abstandhalter beispielsweise zwischen dem Lichtsensor und einem Gehäuse oder beispielsweise zwischen dem Lichtsensor und einem, insbesondere als Peltierelement ausgeführten, Kühlbauteil und/oder weiteren Kühlbauteil. Darüber hinaus wird die Eigenschaft der guten Wärmeleitfähigkeit des Blocks ausgenutzt. Zur Herbeiführung einer elektrischen Isolation ist der Block von einem elektrischen Isolator umgeben. Bei einer besonderen Ausführung ist der elektrische Isolator als Isolatorfolie, insbesondere als Kunststofffolie ausgeführt. Beispielsweise bietet sich die Verwendung einer Kaptonfolie an. Da eine geeignete Kunststofffolie, beispielsweise eine Kartonfolie, bereits bei einer Dicke von Bruchteilen eines Millimeters eine sehr hohe elektrische Durchschlagfestigkeit aufweisen kann, kann die elektrische Isolatorfolie wesentlich dünner ausgebildet sein, als der Kern. Hierdurch wird insbesondere erreicht, dass die elektrische Isolatorfolie kaum thermisch isolierend wirkt. Die besondere Kombination des wärmeleitenden Kerns mit der dünneren elektrischen Isolationsfolie führt zu einem Kühlbauteil und/oder weiteren Kühlbauteil, dass sowohl elektrisch isolierend, als auch thermisch leitend ist.On the one hand, the core functions as a spacer, for example between the light sensor and a housing or, for example, between the light sensor and a cooling component and / or further cooling component, in particular a Peltier element. In addition, the property of the good thermal conductivity of the block is exploited. The block is surrounded by an electrical insulator to provide electrical insulation. In a special embodiment, the electrical insulator is designed as an insulator film, in particular as a plastic film. For example, the use of a Kapton film is recommended. Since a suitable plastic film, for example a cardboard film, can have a very high dielectric strength even at a fraction of a millimeter, the electrical insulator film can be made much thinner than the core. In this way it is achieved in particular that the electrical insulator foil has hardly any thermal insulation. The special combination of the heat-conducting core with the thinner electrical insulation film leads to a cooling component and / or further cooling component that is both electrically insulating and thermally conductive.

Der umgebende elektrische Isolator kann auch aus einem zunächst flüssigen Material bestehen, das beispielsweise durch Streichen, Aufspritzen oder Tauchen auf den Kern aufgebracht wird und dort aushärtet.The surrounding electrical insulator can also consist of an initially liquid material which is applied to the core, for example by brushing, spraying or dipping, and hardens there.

Insbesondere für Ausführungsformen, bei denen hohe Potentialdifferenzen vorliegen kann - nach einem unabhängigen Erfindungsgedanken, der auch losgelöst von einer speziellen Anordnung des Kühlbauteils und/oder des weiteren Kühlbauteils umsetzbar ist - vorteilhaft vorgesehen sein, dass das Kühlbauteil und/oder das weitere Kühlbauteil zur Erhöhung der Kriechstromfestigkeit an einer Außenfläche einen mittels eines Labyrinths und/oder mittels Rippen und/oder mittels wenigstens eine Not und/oder mittels wenigstens einem Vorsprung verlängerten Kriechweg aufweist.In particular for embodiments in which there may be high potential differences - according to an independent inventive concept, which can also be implemented separately from a special arrangement of the cooling component and / or the further cooling component - it is advantageously provided that the cooling component and / or the further cooling component increase the Leakage current resistance on an outer surface has a creepage distance extended by means of a labyrinth and / or by means of ribs and / or by means of at least one emergency and / or by means of at least one projection.

Bei einer ganz besonderen Ausführungsform ist vorgesehen, dass das Kühlbauteil und/oder das weitere Kühlbauteil, insbesondere zur Erhöhung der Kriechstromfestigkeit, wenigstens einen umlaufenden Vorsprung oder wenigstens eine umlaufende Nut aufweist. Eine solche Ausführung hat den besondern Vorteil, dass der Kriechweg entlang der Oberfläche des Kühlbauteils bzw. des weiteren Kühlbauteils verlängert wird, so dass die Gefahr eines elektrischen Überschlags zumindest vermindert ist.In a very special embodiment it is provided that the cooling component and / or the further cooling component, in particular to increase the tracking resistance, has at least one circumferential projection or at least one circumferential groove. Such an embodiment has the particular advantage that the creepage distance along the surface of the cooling component or the further cooling component is lengthened, so that the risk of an electrical flashover is at least reduced.

Insbesondere für Ausführungsformen, bei denen hohe Potentialdifferenzen vorliegen kann - nach einem unabhängigen Erfindungsgedanken, der auch losgelöst von einer speziellen Anordnung des Kühlbauteils und/oder des weiteren Kühlbauteils umsetzbar ist - vorteilhaft vorgesehen sein, dass Zwischenräume des Kühlbauteils und/oder des weiteren Kühlbauteils mit einem elektrisch isolierenden Material gefüllt sind. Insbesondere bei der Verwendung eines thermoelektrischen Wandlers, insbesondere eines Peltierelements, kann zusätzlich vorteilhaft vorgesehen sein, dass das Füllmaterial sowohl elektrisch, als auch thermisch isolierend ausgebildet ist. Bei einer besonderen Ausführung ist das Kühlbauteil und/oder das weitere Kühlbauteil als thermoelektrischer Wandler, insbesondere als Peltierelement ausgebildet, dessen Zwischenräume mit Epoxidharz oder Silikon gefüllt, insbesondere ausgegossen, sind.In particular, for embodiments in which there may be high potential differences - according to an independent inventive concept, which can also be implemented separately from a special arrangement of the cooling component and / or the further cooling component - it is advantageously provided that the cooling component and / or the further cooling component has gaps between them electrically insulating material are filled. In particular, when using a thermoelectric converter, in particular a Peltier element, it can additionally be advantageously provided that the filling material is designed to be both electrically and thermally insulating. In a special embodiment, the cooling component and / or the further cooling component is designed as a thermoelectric converter, in particular as a Peltier element, the spaces between which are filled, in particular poured, with epoxy resin or silicone.

Durch das Füllen der Zwischenräume des Kühlbauteils und/oder des weiteren Kühlbauteils mit einem elektrisch isolierenden Material können ungewollte Spannungsüberschläge wirkungsvoll vermieden werden. Durch das Füllen mit elektrisch isolierenden Material ist ein Überschlagen von Funken entlang der Oberfläche von inneren Bauteilen, wie beispielsweise der zumeist säulenförmigen Halbleiterelemente eines Peltierelements, wirkungsvoll unterbunden.By filling the spaces between the cooling component and / or the further cooling component with an electrically insulating material, undesired voltage flashovers can be effectively avoided. Filling with electrically insulating material effectively prevents sparks from rolling over the surface of internal components, such as the mostly columnar semiconductor elements of a Peltier element.

In vorteilhafter Weise können das Kühlbauteil und/öder das weitere Kühlbauteil im Wesentlichen ringförmig oder zylinderförmig ausgebildet sein. Wie bereits erwähnt, bietet dies sowohl besondere Vorteile im Hinblick darauf, das Kühlbauteil bzw. das weitere Kühlbauteil für eine effektive Kühlung günstig, bspw. in Kontakt zu einem Lichtsensor oder einem einen lichtsensortragenden Substrat, zu bringen und andererseits den weiteren Vorteil, dass ein Durchbruch für den Lichtweg des zu detektierenden Lichts besteht.In an advantageous manner, the cooling component and / or the further cooling component can be essentially annular or cylindrical. As already mentioned, this offers both special advantages with regard to the cooling component or the to bring additional cooling components for effective cooling cheaply, for example into contact with a light sensor or a substrate carrying a light sensor, and on the other hand the further advantage that there is a breakthrough for the light path of the light to be detected.

Bei einer besonders effektiv und zuverlässig arbeitenden Ausführungsform sind das Kühlbauteil und das weitere Kühlbauteil thermisch in Reihe geschaltet. Insbesondere kann ganz besonders vorteilhaft vorgesehen sein, dass das Kühlbauteil als passives Kühlbauteil, bspw. als Bornitridring, ausgebildet ist und in unmittelbarem Kontakt zu einem Lichtsensor und/oder zu einem lichtsensortragenden Substrat steht.In a particularly effective and reliable embodiment, the cooling component and the further cooling component are thermally connected in series. In particular, it can be provided in a particularly advantageous manner that the cooling component is designed as a passive cooling component, for example as a boron nitride ring, and is in direct contact with a light sensor and / or with a light sensor-carrying substrate.

Darüber hinaus kann vorteilhaft vorgesehen sein, dass dieses Kühlbauteil mit einem weiteren Kühlbauteil thermisch in Kontakt steht, das als aktives Kühlbauteil, bspw. als ringförmiges Peltier-Element ausgebildet ist.In addition, it can advantageously be provided that this cooling component is in thermal contact with a further cooling component which is designed as an active cooling component, for example as an annular Peltier element.

Vorzugsweise sind das ringförmige Kühlbauteil und das ringförmige weitere Kühlbauteil koaxial zueinander angeordnet, wobei der Lichtweg für das zu detektierende Licht entlang der Rotationssymmetrieachse des Kühlbauteils und des weiteren Kühlbauteils verläuft. Darüber hinaus kann in vorteilhafter Weise vorgesehen sein, dass das weitere, aktive Kühlbauteil, bspw. die heiße Seite eines Peltier-Elements, in Kontakt zu einem Eintrittsfenster oder einer Eintrittsoptik des Gehäuses steht. Eine solche Anordnung zeichnet sich dadurch aus, dass ein Lichtsensor des Detektors besonders effektiv gekühlt werden kann, weil ein direkter Wärmetransport von dem Lichtsensor bzw. seinem Substrat über das passive Kühlbauteil zu dem aktiven Kühlbauteil erfolgt. Darüber hinaus wird in vorteilhafter Weise die Abwärme des aktiven Kühlbauteils zur Vermeidung des Entstehens von Tauwasser auf dem Eintrittsfenster bzw. der Eintrittsoptik verwendet. Wenn bei dieser Anordnung als Kühlbauteil ein elektrisch weitgehend isolierendes Material eingesetzt wird, bspw. Bornitrid, so ist es in sehr vorteilhafter Weise ermöglicht, den Detektor auf einem Potentialniveau zu betreiben, das sich vom Potentialniveau des Gehäuses unterscheidet.The ring-shaped cooling component and the ring-shaped further cooling component are preferably arranged coaxially to one another, the light path for the light to be detected running along the axis of symmetry of the cooling component and the further cooling component. In addition, it can advantageously be provided that the further, active cooling component, for example the hot side of a Peltier element, is in contact with an entry window or an entry optics of the housing. Such an arrangement is characterized in that a light sensor of the detector can be cooled particularly effectively because a direct heat transfer takes place from the light sensor or its substrate via the passive cooling component to the active cooling component. In addition, the waste heat of the active cooling component is advantageously used to avoid the formation of condensation on the entrance window or the entrance optics. If an electrically largely insulating material, for example boron nitride, is used as the cooling component in this arrangement, it is very advantageously possible to operate the detector at a potential level that differs from the potential level of the housing.

Insbesondere zur Vermeidung des Entstehens von Tauwasser kann vorteilhaft vorgesehen sein, dass das Gehäuse gasdicht ist und/oder das in dem Gehäuse ein Vakuum vorliegt. Bspw. kann auch vorgesehen sein, dass das gasdichte Gehäuse mit einem Gas, vorzugsweise einem getrockneten Gas, gefüllt wird, dessen Taupunkt besonders niedrig liegt. Beispielsweise kann es vorteilhaft sein, ein Trocknungsmittel in das Gehäuse einzubringen. Dieses dient dazu, eventuell noch vorhandene Restfeuchte zu entfernen oder eindringende Feuchtigkeit zu absorbieren.In particular, in order to avoid the formation of condensation, it can advantageously be provided that the housing is gas-tight and / or that a vacuum is present in the housing. E.g. can also be provided that the gas-tight housing is filled with a gas, preferably a dried gas, the dew point of which is particularly low. For example, it can be advantageous to introduce a drying agent into the housing. This is used to remove any remaining moisture or to absorb penetrating moisture.

Bei einer besonders effizient kühlenden Ausführung ist das Kühlbauteil ein passives Kühlbauteil, das Wärme von dem Lichtsensor und/oder von dem Substrat des Lichtsensors zu einem weiteren, aktiven Kühlbauteil, insbesondere einem Peltier-Element, leitet, das nicht mit dem Lichtsensor und nicht mit einem Substrat des Lichtsensors in unmittelbarem Kontakt steht. Zusätzlich ist vorgesehen, dass das weitere, aktive Kühlbauteil Wärme an das Gehäuse abgibt. Durch die besondere Reihenfolge der Anordnung ist erreicht, dass die zusätzliche Prozesswärme des aktiven Kühlbauteils nicht durch das passive Kühlbauteil hindurch geleitet werden muss.In a particularly efficient cooling design, the cooling component is a passive cooling component that conducts heat from the light sensor and / or from the substrate of the light sensor to a further, active cooling component, in particular a Peltier element, which does not work with the light sensor and not with one Substrate of the light sensor is in direct contact. In addition, it is provided that the further, active cooling component emits heat to the housing. The special sequence of the arrangement means that the additional process heat of the active cooling component does not have to be conducted through the passive cooling component.

Ganz besonders vorteilhaft lässt sich die erfindungsgemäße Detektorvorrichtung mit oder in einem konfokalen Scanmikroskop, einsetzen. Bei einer ganz besonders vorteilhaften Ausführung eines konfokalen Scanmikroskopes weist dieses mehrere der erfindungsgemäßen Detektorvorrichtungen auf. Bspw. kann vorgesehen sein, dass den einzelnen Detektorvorrichtungen unterschiedliche Detektionsspektralbereiche zugeordnet sind und/oder zuordenbar sind.The detector device according to the invention can be used particularly advantageously with or in a confocal scanning microscope. In a very particularly advantageous embodiment of a confocal scanning microscope, it has several of the detector devices according to the invention. E.g. It can be provided that different detection spectral ranges are assigned and / or can be assigned to the individual detector devices.

Weitere Ziele, Vorteile, Merkmale und Anwendungsmöglichkeiten der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispieles anhand der Zeichnung.Further objectives, advantages, features and possible uses of the present invention result from the following description of an exemplary embodiment with reference to the drawing.

Es zeigen:

  • Fig. 1 schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Detektorvorrichtung,
  • Fig. 2 schematisch ein Ausführungsbeispiel einer anderen erfindungsgemäßen Detektorvorrichtung,
  • Fig. 3 schematisch ein Ausführungsbeispiel einer dritten erfindungsgemäßen Detektorvorrichtung und
  • Fig. 4 schematisch ein Ausführungsbeispiel einer vierten erfindungsgemäßen Detektorvorrichtung und
  • Fig. 5 eine Detaildarstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Detektorvorrichtung.
Show it:
  • Fig. 1 schematically an embodiment of a detector device according to the invention,
  • Fig. 2 schematically an embodiment of another detector device according to the invention,
  • Fig. 3 schematically an embodiment of a third detector device according to the invention and
  • Fig. 4 schematically an embodiment of a fourth detector device according to the invention and
  • Fig. 5 a detailed representation of a further embodiment of a detector device according to the invention.

Figur 1 zeigt eine Detektorvorrichtung 1, die dazu ausgebildet ist, Licht 2 zu empfangen und an einem elektrischen Ausgang 3 elektrische Signale bereitzustellen. Die Detektorvorrichtung 1 weist ein Gehäuse 4 auf, in dem ein Detektor 5 angeordnet ist. Figure 1 shows a detector device 1 which is designed to receive light 2 and to provide electrical signals at an electrical output 3. The detector device 1 has a housing 4 in which a detector 5 is arranged.

Der Detektor 5 weist einen Lichtsensor 6, nämlich eine auf einem Substrat 7 angeordnete Photokathode 8 auf, die in Transmissionsanordnung betrieben wird. Dies bedeutet, dass die Photokathode 8 auf ihrer einer Eintrittsoptik 9 des Gehäuses 4 zugewandten Seite das zu detektierende Licht 2 empfängt und auf der von dieser abgewandten Seite Fotoelektronen abgibt.The detector 5 has a light sensor 6, namely a photocathode 8 arranged on a substrate 7, which is operated in a transmission arrangement. This means that the photocathode 8 receives the light 2 to be detected on its side facing entry optics 9 of the housing 4 and emits photoelectrons on the side facing away from it.

Die Photokathode 8 und ihr Substrat 7 liegen auf einem Potentialniveau von - 8000 V, während das Gehäuse 4 auf einem Potentialniveau von 0 V liegt.The photocathode 8 and its substrate 7 are at a potential level of -8000 V, while the housing 4 is at a potential level of 0 V.

Der Detektor 5 weist darüber hinaus eine Avalanchediode 10 auf, die auf einem Potentialniveau von - 400 V liegt. Die von der Photokathode 8 erzeugten Fotoelektronen werden auf Grund der zwischen der Photokathode 8 und der Avalanchediode10 bestehenden Potentialdifferenz beschleunigt und treffen auf eine Avalanchediode10, die elektrische Signale über den elektrischen Ausgang 3 ausgibt.The detector 5 also has an avalanche diode 10, which is at a potential level of - 400 V. The photoelectrons generated by the photocathode 8 are accelerated due to the potential difference existing between the photocathode 8 and the avalanche diode 10 and hit an avalanche diode 10 which outputs electrical signals via the electrical output 3.

Die Detektorvorrichtung 1 weist innerhalb des Gehäuses 4 ein Kühlbauteil 11 auf, das als passives Kühlbauteil ausgebildet ist. Konkret ist das Kühlbauteil 11 als wärmeleitendes, elektrisch isolierendes Zwischenelement 12 ausgebildet. Das Zwischenelement 12 weist eine ringförmige Form auf, wobei die Mittelachse des Zwischenelements koaxial zum Lichtweg des zu detektierenden Lichts 2 verläuft.The detector device 1 has a cooling component 11 within the housing 4, which is designed as a passive cooling component. Specifically, the cooling component 11 is designed as a heat-conducting, electrically insulating intermediate element 12. The intermediate element 12 has an annular shape, the central axis of the intermediate element running coaxially to the light path of the light 2 to be detected.

Die Detektorvorrichtung 1 weist darüber hinaus innerhalb des Gehäuses 4 ein weiteres Kühlbauteil 13 auf, das als ringförmiges Peltier-Element 14 ausgebildet ist. Das ringförmige Peltier-Element 14 ist koaxial zu dem ringförmigen Zwischenelement 12 angeordnet.The detector device 1 also has a further cooling component 13 within the housing 4, which is designed as an annular Peltier element 14. The annular Peltier element 14 is arranged coaxially with the annular intermediate element 12.

Das ringförmige Peltier-Element 14 steht in wärmeleitendem Kontakt zu dem Zwischenelement 12. Das Zwischenelement 12 steht in wärmeleitendem Kontakt zum Substrat 7.The annular Peltier element 14 is in heat-conducting contact with the intermediate element 12. The intermediate element 12 is in heat-conducting contact with the substrate 7.

Über das wärmeleitende, elektrisch isolierende Zwischenelement 12 kann die Kühlleistung zur Kühlung des Substrats 7 und der Photokathode 8 besonders effektiv genutzt werden. Darüber hinaus ist vorgesehen, dass die warme Seite des ringförmigen Peltier-Elements 14 dem Gehäuse 4 und der Eintrittsoptik 9 zugewandt ist. Hierdurch wird die Eintrittsoptik 9 neu erwärmt, so dass sich kein Tauwasser niederschlagen kann. Der übrige Zwischenraum zwischen dem Detektor 5, dem Zwischenelement 12 und dem ringförmigen Peltier-Element 14 zu dem Gehäuse 4 ist mit einer thermisch und elektrisch isolierenden Vergussmasse gefüllt. Der Bereich zwischen der Eintrittsoptik 9 und der Photokathode 8 ist mit einem getrockneten Gas gefüllt.The cooling capacity for cooling the substrate 7 and the photocathode 8 can be used particularly effectively via the heat-conducting, electrically insulating intermediate element 12. In addition, it is provided that the warm side of the annular Peltier element 14 faces the housing 4 and the entry optics 9. As a result, the entry optics 9 are reheated so that no condensation water can precipitate. The remaining space between the detector 5, the intermediate element 12 and the annular Peltier element 14 to the housing 4 is filled with a thermally and electrically insulating potting compound. The area between the entrance optics 9 and the photocathode 8 is filled with a dried gas.

Figur 2 zeigt eine andere Detektorvorrichtung, bei der das Zwischenelement 12 in unmittelbarem, wärmeleitenden Kontakt zur Photokathode 8 steht. Figure 2 shows another detector device in which the intermediate element 12 is in direct, heat-conducting contact with the photocathode 8.

Figur 3 zeigt schematisch ein Ausführungsbeispiel einer dritten erfindungsgemäßen Detektorvorrichtung, die im Grundaufbau im Wesentlichen den Detektorvorrichtungen entspricht, die in den Figuren 1 und 2 gezeigt sind. Allerdings weist das Kühlbauteil 11, das als wärmeleitendes, elektrisch isolierende zwischen Element 12 ausgebildet ist, einen konischen Durchgang für das zu detektierende Licht 2 auf. Darüber hinaus ist das weitere Kühlbauteil 14 mit einem (gegenüber den Ausführungsformen, die in den Figuren 1 und 2 gezeigt sind) im Durchmesser vergrößerten Durchgang versehen. Außerdem ist ein vergrößertes Eintrittsfenster 9 des Gehäuses 4 eingebaut. Diese Ausführung hat den besonderen Vorteil, dass die numerische Apertur wesentlich vergrößert ist. Dadurch kann insbesondere auch schräg ein fallendes Licht ungehindert zu dem als Photokathode 8 ausgebildeten Lichtsensor gelangen. Figure 3 schematically shows an embodiment of a third detector device according to the invention, the basic structure of which essentially corresponds to the detector devices which are shown in FIGS Figures 1 and 2nd are shown. However, the cooling component 11, which is designed as a heat-conducting, electrically insulating element 12, has a conical passage for the light 2 to be detected. In addition, the further cooling component 14 is provided with a (compared to the embodiments that are shown in FIGS Figures 1 and 2nd are shown) provided with an enlarged diameter. In addition, an enlarged entry window 9 of the housing 4 is installed. This version has the particular advantage that the numerical aperture is significantly enlarged. As a result, falling light in particular can also reach the light sensor designed as a photocathode 8 at an angle.

Insbesondere ist das Eintrittsfenster wesentlich größer als der Lichtsensor, in diesem Beispiel die Photokathode 8, ausgeführt. Der Radius der freien Öffnung des Kühlbauteils 11 und des weiteren Kühlbauteils 13 nimmt daher von der Photokathode 8 ausgehend in Richtung zum Eintrittsfenster hin zu. Hierdurch wird zusätzlich erreicht, dass auch die Kontaktfläche zwischen dem als Zwischenelement 12 ausgeführten Kühlbauteil 11 und dem weiteren Kühlbauteil 14, nämlich dem Peltier-Element 14, wesentlich vergrößert ist, was insbesondere eine gute Wärmeableitung gewährleistet.In particular, the entrance window is made substantially larger than the light sensor, in this example the photocathode 8. The radius of the free opening of the cooling component 11 and of the further cooling component 13 therefore increases from the photocathode 8 in the direction of the entrance window. This additionally ensures that the contact area between the cooling component 11 designed as an intermediate element 12 and the further cooling component 14, namely the Peltier element 14, is also significantly increased, which in particular ensures good heat dissipation.

Bei der in Figur 3 dargestellten Ausführungsform ist außerdem die Kontaktfläche des Kühlbauteils 11 mit dem Substrat 7 des Lichtsensors 6 größer, als die Kontaktfläche des Kühlbauteils 11 mit dem weiteren Kühlbauteil 14, ohne dass das Kühlbauteil 11 unmittelbar in Kontakt mit weiteren Bauteilen des Detektors 5 steht. Insbesondere hierzu ist auch die Außenkontur des Kühlbauteils 11 konisch ausgebildet.At the in Figure 3 In the embodiment shown, the contact area of the cooling component 11 with the substrate 7 of the light sensor 6 is also larger than the contact area of the cooling component 11 with the further cooling component 14, without the cooling component 11 being in direct contact with other components of the detector 5. In particular, the outer contour of the cooling component 11 is also conical.

Zum bewirken einer zusätzlichen thermischen Isolation relativ zum Gehäuse ist ein ringförmiger thermischer Isolatoren 15 vorgesehen, der das Kühlbauteil 11 umgibt.To effect additional thermal insulation relative to the housing, an annular thermal insulator 15 is provided which surrounds the cooling component 11.

Figur 4 zeigt schematisch ein Ausführungsbeispiel einer vierten erfindungsgemäßen Detektorvorrichtung, die im Wesentlichen Aufbau der in Figur 3 gezeigten Ausführung entspricht. Zur Erhöhung der Kriechstromfestigkeit ist der Durchgang für das Licht 2 des Zwischenelements 12 mit umlaufenden Rippen 15 versehen. Hierdurch ist der Kriechweg von dem Lichtsensor 6 zu dem weiteren Kühlbauteil 13 vergrößert und dadurch die Gefahr eines elektrischen Überschlags wesentlich verringert. Figure 4 shows schematically an embodiment of a fourth detector device according to the invention, which essentially the structure of the in Figure 3 shown execution corresponds. To increase the tracking resistance, the passage for the light 2 of the intermediate element 12 is provided with circumferential ribs 15. As a result, the creepage distance from the light sensor 6 to the further cooling component 13 is increased and the risk of an electrical flashover is thereby substantially reduced.

Figur 5 zeigt eine Detaildarstellung eines weiteren Ausführungsbeispiels einer erfindungsgemäßen Detektorvorrichtung Figure 5 shows a detailed representation of a further embodiment of a detector device according to the invention

Bei dieser Ausführung sind die Zwischenräume des weiteren Kühlbauteils 13, nämlich des Peltier-Elements 14, mit einem elektrisch isolierenden Material 16, beispielsweise mit Silikon, gefüllt sind. Durch das Füllen der Zwischenräume mit einem elektrisch isolierenden Material 16 können ungewollte Spannungsüberschläge wirkungsvoll vermieden werden. Durch das Füllen mit elektrisch isolierenden Material 16 ist ein Überschlagen von Funken entlang der Oberfläche von inneren Bauteilen, wie den säulenförmigen Halbleiterelementen 17 des Peltier-Elements 14, wirkungsvoll unterbunden.In this embodiment, the spaces between the further cooling component 13, namely the Peltier element 14, are filled with an electrically insulating material 16, for example with silicone. By filling the spaces with an electrically insulating material 16, unwanted voltage flashovers can be effectively avoided. Filling with electrically insulating material 16 effectively prevents sparks from rolling over the surface of internal components, such as the columnar semiconductor elements 17 of the Peltier element 14.

Zusätzlich ist das elektrisch isolierende Material 16 an der Außenseite und im Bereich des Durchganges für das Licht 2 mit Rippen 15 versehen, um den Kriechweg zu verlängern.In addition, the electrically insulating material 16 is provided on the outside and in the region of the passage for the light 2 with ribs 15 in order to extend the creepage distance.

BezuaszeichenlisteReference list

11
DetektorvorrichtungDetector device
22nd
zu detektierendes Lichtlight to be detected
33rd
elektrischer Ausgangelectrical output
44th
Gehäusecasing
55
Detektordetector
66
LichtsensorLight sensor
77
SubstratSubstrate
88th
PhotokathodePhotocathode
99
EintrittsoptikEntry optics
1010th
AvalanchediodeAvalanche diode
1111
KühlbauteilCooling component
1212
ZwischenelementIntermediate element
1313
Weiteres KühlbauteilAnother cooling component
1414
Peltier-ElementPeltier element
1515
RippenRibs
1616
elektrisch isolierenden Materialelectrically insulating material
1717th
HalbleiterelementeSemiconductor elements

Claims (13)

  1. Scanning microscope, having a detector apparatus (1), which is configured to receive light (2) and to generate electrical signals, with a housing (4) and a detector (5) arranged in the housing (4), wherein a passive cooling component (11) is arranged in the housing (4), wherein the passive cooling component (11) electrically insulates the detector (5) with respect to the housing (4) or wherein the passive cooling component (11) is at least part of an insulation that electrically insulates the detector (5) with respect to the housing (4), wherein
    a. a further, active cooling component (13) is provided in the housing (4) and
    b. a light path for the light (2) to be detected is defined and passes through the passive cooling component (11) and the further, active cooling component (13),
  2. Scanning microscope according to Claim 1, characterized in that the detector (5) has a light sensor (6) with a light incidence side and in that the passive cooling component (11) is in immediate contact with the light sensor (6) and/or with a substrate (7) carrying the light sensor (6) on the light incidence side of the light sensor (6).
  3. Scanning microscope according to Claim 1 or 2, characterized in that the passive cooling component (11) is embodied in the form of a heat-conducting, electrically insulating intermediate element (12).
  4. Scanning microscope according to one of Claims 1 to 3, characterized in that
    a. the further cooling component (13) is in thermally conducting contact with the passive cooling component (11) and/or in that
    b. the further, active cooling component (13) electrically insulates the detector (5) and/or the passive cooling component (11) with respect to the housing (4) and/or in that
    c. the further, active cooling component (13) and the passive cooling component (11) are thermally connected in series and/or in that
    d. the housing (4) is gas-tight and/or in that a vacuum prevails in the housing (4).
  5. Scanning microscope according to Claim 4, characterized in that
    a. the further, active cooling component (13) is embodied in the form of a heat-conducting, electrically insulating intermediate element (12) and/or in that
    b. the further, active cooling component (13) is in immediate contact with a light sensor (6) of the detector (5), in particular with a photo cathode (8), and/or is in immediate contact with a substrate (7) carrying a light sensor (6), in particular a photo cathode (8).
  6. Scanning microscope according to one of Claims 1 to 5, characterized in that
    a. the further, active cooling component (13) is embodied in the form of a Peltier element (14) or a heat pump or a heat pipe, and/or in that
    b. the passive cooling component (11) and/or the further, active cooling component (13) is arranged such that the waste heat of the passive cooling component (11) and/or of the further, active cooling component (13) heats at least one entrance window of the housing (4) and/or an entrance optical unit (9) of the housing (4) .
  7. Scanning microscope according to one of Claims 1 to 6, characterized in that heat flows through the passive cooling component (11).
  8. Scanning microscope according to Claim 7, characterized in that
    a. the passive cooling component (11) and/or the further, active cooling component (13) consists at least partially of an electrically insulating and thermally conducting material, in particular of boron nitride, aluminium nitride, aluminium oxide, diamond, synthetic diamond or a combination of these materials, and/or in that
    b. the passive cooling component (11) and/or the further, active cooling component (13) is both an electric insulator and a thermal conductor and/or in that
    c. the passive cooling component (11) and/or the further, active cooling component (13) at least partially consists of a composite material and/or in that
    d. the passive cooling component (11) and/or the further, active cooling component (13) has a core made from a thermally conducting material, in particular aluminium, which is at least partially surrounded by an electric insulator, in particular an electric insulator film, for example a plastic film, and/or in that
    e. the passive cooling component (11) and/or the further, active cooling component (13) has a core made from a thermally conducting material, in particular aluminium, which is at least partially surrounded by an electric insulator, which is thinner with reference to the heat conduction direction than the core, and/or in that
    f. the passive cooling component (11) and/or the further, active cooling component (13) has a thermal conductivity of greater than 1 W/mK, in particular greater than 10 W/mK, in particular greater than 100 W/mK, in particular greater than 500 W/mK, and/or in that the passive cooling component (11) and/or the further, active cooling component (13) has an electric conductivity of less than 10-7 S/m, in particular less than 10-8 S/m, and/or in that
    g. the passive cooling component (11) and/or the further cooling component (13) is embodied to be substantially ring-shaped or cylindrical.
  9. Scanning microscope according to one of Claims 1 to 8, characterized in that
    a. the passive cooling component (11) and/or the further, active cooling component (13) exhibits tracking that is extended by a labyrinth and/or by ribs (15) and/or by at least one groove and/or by at least one projection on an outer surface in order to increase the tracking resistance, and/or in that
    b. intermediate spaces of the passive cooling component (11) and/or of the further, active cooling component (13) are filled with an electrically insulating material (16) and/or in that
    c. intermediate spaces of the passive cooling component (11) and/or of the further, active cooling component (13) are filled with an electrically and thermally insulating material and/or in that
    d. the passive cooling component (11) and/or the further, active cooling component (13) are embodied in the form of a thermoelectric transducer, in particular a Peltier element (14), the intermediate spaces of which are filled with an electrically insulating material (16), and/or in that
    e. the passive cooling component (11) and/or the further, active cooling component (13) are embodied in the form of a thermoelectric transducer, in particular a Peltier element (14), the intermediate spaces of which are filled with an electrically and thermally insulating material, and/or in that
    f. the passive cooling component (11) and/or the further, active cooling component (13) are embodied in the form of a thermoelectric transducer, in particular a Peltier element (14), the intermediate spaces of which are filled with epoxy resin or silicone.
  10. Scanning microscope according to one of Claims 1 to 9, characterized in that
    a. an electric potential difference is present between the detector (5) and the housing (4) and/or in that
    b. an electric potential difference of more than 1000 V, in particular of more than 2000 V, in particular of more than 4000 V, in particular of more than 6000 V, in particular of 8000 V, is present between the detector (5) and the housing (4).
  11. Scanning microscope according to one of Claims 1 to 10, characterized in that
    a. the light sensor (6) has at least one photo cathode (8) and/or in that
    b. the light sensor (6) or a detector (5) having the light sensor (6) has at least one photodiode (8), in particular an avalanche diode, and/or in that
    c. an electron accelerator and/or an electron multiplier is connected downstream of the light sensor (6) and/or in that
    d. the detector apparatus includes a detector (5) having the light sensor (6), which detector (5) is operated at a voltage of more than 1000 V, in particular of more than 2000 V, in particular of more than 4000 V, in particular of more than 6000 V, in particular of 8000 V.
  12. Scanning microscope according to one of Claims 2 to 11, characterized in that the light sensor (6) and the housing (4) are thermally conductively connected by way of the passive cooling component (11) and/or the further, active cooling component (13), wherein the contact surface of the passive cooling component (11) and/or of the further, active cooling component (13) with the light sensor (6) is smaller than the contact surface of the passive cooling component (11) and/or of the further, active cooling component (13) with the housing (4).
  13. Scanning microscope according to one of Claims 2 to 12, characterized in that the passive cooling component (11) conducts heat from the light sensor (6) and/or from the substrate (7) of the light sensor (6) to the further, active cooling component, which is not in immediate contact with the light sensor (6) or with a substrate (7) of the light sensor (6), and in that the further, active cooling component gives off heat to the housing.
EP12179417.6A 2011-08-16 2012-08-06 Detector device Active EP2560189B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201110052738 DE102011052738A1 (en) 2011-08-16 2011-08-16 detecting device
DE102012101679A DE102012101679A1 (en) 2011-08-16 2012-02-29 detecting device

Publications (2)

Publication Number Publication Date
EP2560189A1 EP2560189A1 (en) 2013-02-20
EP2560189B1 true EP2560189B1 (en) 2020-06-17

Family

ID=47076064

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12179417.6A Active EP2560189B1 (en) 2011-08-16 2012-08-06 Detector device

Country Status (1)

Country Link
EP (1) EP2560189B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114284367B (en) * 2021-12-24 2023-11-24 中国科学院长春光学精密机械与物理研究所 Detector packaging structure and packaging method thereof

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118997A1 (en) * 1981-05-13 1983-01-20 Apparatebau Gauting Gmbh, 8035 Gauting Method for detecting the risk of icing on traffic routes, and ice warning sensor for carrying out this method
JPH03147241A (en) * 1989-10-31 1991-06-24 Yokogawa Electric Corp Spray chamber
EP0595468A1 (en) * 1992-09-24 1994-05-04 Hamamatsu Photonics K.K. Image device
US5695393A (en) * 1994-11-26 1997-12-09 Loh Optikmaschinen Ag Tool for the precision processing of optical surfaces
JPH11329338A (en) 1998-05-13 1999-11-30 Hamamatsu Photonics Kk Electron tube device
EP1276135A1 (en) * 2000-04-03 2003-01-15 Hamamatsu Photonics K. K. Electron multiplier and photomultiplier
US20060140462A1 (en) * 2002-10-22 2006-06-29 Baylor College Of Medicine Random access high-speed confocal microscope
EP1892749A1 (en) * 2005-08-10 2008-02-27 Hamamatsu Photonics Kabushiki Kaisha Photomultiplier
EP1995761A1 (en) * 2006-02-28 2008-11-26 Hamamatsu Photonics K.K. Photomultiplier and radiation detecting apparatus

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3139733A (en) * 1962-01-15 1964-07-07 Transitron Electronic Corp Thermoelectric cooling device for heat conductive light transparent surfaces
US4833889A (en) 1988-06-17 1989-05-30 Microluminetics Thermoelectric refrigeration apparatus
JP3310404B2 (en) 1993-07-23 2002-08-05 浜松ホトニクス株式会社 Cooling type solid-state imaging device
US5596228A (en) 1994-03-10 1997-01-21 Oec Medical Systems, Inc. Apparatus for cooling charge coupled device imaging systems
EP1541979A4 (en) * 2002-08-01 2008-04-23 Hamamatsu Photonics Kk Optical sensor
JP2004163272A (en) * 2002-11-13 2004-06-10 Hamamatsu Photonics Kk Cooled photodetector
DE102009036066A1 (en) 2009-08-04 2011-02-10 Carl Zeiss Microimaging Gmbh Optoelectronic detector and method of operation for such

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3118997A1 (en) * 1981-05-13 1983-01-20 Apparatebau Gauting Gmbh, 8035 Gauting Method for detecting the risk of icing on traffic routes, and ice warning sensor for carrying out this method
JPH03147241A (en) * 1989-10-31 1991-06-24 Yokogawa Electric Corp Spray chamber
EP0595468A1 (en) * 1992-09-24 1994-05-04 Hamamatsu Photonics K.K. Image device
US5695393A (en) * 1994-11-26 1997-12-09 Loh Optikmaschinen Ag Tool for the precision processing of optical surfaces
JPH11329338A (en) 1998-05-13 1999-11-30 Hamamatsu Photonics Kk Electron tube device
EP1276135A1 (en) * 2000-04-03 2003-01-15 Hamamatsu Photonics K. K. Electron multiplier and photomultiplier
US20060140462A1 (en) * 2002-10-22 2006-06-29 Baylor College Of Medicine Random access high-speed confocal microscope
EP1892749A1 (en) * 2005-08-10 2008-02-27 Hamamatsu Photonics Kabushiki Kaisha Photomultiplier
EP1995761A1 (en) * 2006-02-28 2008-11-26 Hamamatsu Photonics K.K. Photomultiplier and radiation detecting apparatus

Non-Patent Citations (20)

* Cited by examiner, † Cited by third party
Title
"Advanced Time-Correlated Single Photon Counting Techniques", 1 January 2005, SPRINGER, article BECKER W.: "PMT Modules", pages: 244 - 365, XP055967235
"Handbook of Biological Confocal Microscopy", 1 January 2006, SPRINGER, article PAWLEY JAMES B.: "The Photomultiplier Tube", pages: 28 - 31, XP055967251
"Thermoelectric Handbook", 1 January 2006, article MELCOR: "Thermoelectric History / General Information", pages: 1 - 13, XP055967253
ANONYMOUS: "Metal Package PMT with Cooler Photosensor Modules H7422 Series", HAMAMATSU - DATASHEET, 10 March 2001 (2001-03-10), pages 14 - 17, XP055967244, [retrieved on 20221003]
ANONYMOUS: "Photomultiplier tube", WIKIPEDIA, THE FREE ENCYCLOPEDIA, 14 July 2011 (2011-07-14), XP055967249, Retrieved from the Internet <URL:https://en.wikipedia.org/wiki/Photomultiplier_tube> [retrieved on 20221003]
ANONYMOUS: "PMTS FOR 2-HOTON IMAGING", LABRIGGER, 11 October 2010 (2010-10-11), XP055967232, Retrieved from the Internet <URL:http://labrigger.com/blog/2010/10/11/pmts-for-2-photon-imaging/> [retrieved on 20221003]
ANONYMOUS: "Thermo Module", KOMATSU ELECTRONICS - CATALOGUE, 9 June 2010 (2010-06-09), pages 1 - 12, XP055967247, [retrieved on 20221003]
BECKER W., SU B., HOLUB O., WEISSHART K.: "FLIM and FCS detection in laser-scanning microscopes: Increased efficiency by GaAsP hybrid detectors", MICROSCOPY RESEARCH AND TECHNIQUE., WILEY-LISS, CHICHESTER., GB, vol. 74, no. 9, 3 October 2010 (2010-10-03), GB , pages 804 - 811, XP055967250, ISSN: 1059-910X, DOI: 10.1002/jemt.20959
BELISLE JONATHAN: "Design and Assembly of a Multimodal Nonlinear Laser Scanning Mi- croscope", THESIS, 1 January 2006 (2006-01-01), XP055967230, [retrieved on 20221003]
BENDER KEVIN J., FORD CHRISTOPHER P., TRUSSELL LAURENCE O.: "Dopaminergic Modulation of Axon Initial Segment Calcium Channels Regulates Action Potential Initiation", NEURON, ELSEVIER, AMSTERDAM, NL, vol. 68, no. 3, 1 November 2010 (2010-11-01), AMSTERDAM, NL, pages 500 - 511, XP055967238, ISSN: 0896-6273, DOI: 10.1016/j.neuron.2010.09.026
CHRISTIE JASON M., JAHR CRAIG E.: "Dendritic NMDA Receptors Activate Axonal Calcium Channels", NEURON, ELSEVIER, AMSTERDAM, NL, vol. 60, no. 2, 1 October 2008 (2008-10-01), AMSTERDAM, NL, pages 298 - 307, XP055967242, ISSN: 0896-6273, DOI: 10.1016/j.neuron.2008.08.028
HAMAMATSU, PHOTOMULTIPLIER TUBES - BASICS AND APPLICATIONS, 2006
JAMES B. PAWLEY: "Handbook of Biological Confocal Microscopy", 1 January 2006, SPRINGER NEW YORK, NY, ISBN: 978-0-387-25921-5, article INOUÉ SHINYA: "Foundations of Confocal Scanned Imaging in Light Microscopy", pages: 16 - 17, XP093103891, DOI: 10.1007/978-0-387-45524-2
MARTINI JOERG, TOENSING KATJA, DICKOB MICHAEL, ANSELMETTI DARIO: "2-photon laser scanning microscopy on native human cartilage", SPIE SMART STRUCTURES AND MATERIALS + NONDESTRUCTIVE EVALUATION AND HEALTH MONITORING, 2005, SAN DIEGO, CALIFORNIA, UNITED STATES, SPIE, US, vol. 5860, 30 June 2005 (2005-06-30), US, pages 586003, XP055967229, ISSN: 0277-786X, ISBN: 978-1-5106-4548-6, DOI: 10.1117/12.632940
MOTOHIRO SUYAMA ET AL: "PHOTOMULTIPLIERS: Hybrid detector combines PMT and semiconductor-diode technologies", LASER FOCUS WORLD, 1 March 2008 (2008-03-01), pages 1 - 8, XP055565747, Retrieved from the Internet <URL:https://www.laserfocusworld.com/articles/2008/03/photomultipliers-hybrid-detector-combines-pmt-and-semiconductor-diode-technologies.html> [retrieved on 20190307] *
PAWLEY JAMES B.: "Handbook Of Biological Confocal Microscopy", 1 January 2006, SPRINGER , New York, NY , ISBN: 978-0-387-25921-5, article CANNELL MARK B, ANGUS MCMORLAND, CHRISTIAN SOELLER: "Image Enhancement by Deconvolution", pages: 498 - 499, XP093103919, DOI: 10.1007/978-0-387-45524-2
PAWLEY JAMES B.: "Handbook Of Biological Confocal Microscopy", 1 January 2006, SPRINGER , New York, NY , ISBN: 978-0-387-25921-5, article CHENG PING-CHIN: "The Contrast Formation in Optical Microscopy", pages: 200 - 201, XP093103906, DOI: 10.1007/978-0-387-45524-2
PAWLEY JAMES B.: "Handbook Of Biological Confocal Microscopy", 1 January 2006, SPRINGER , New York, NY , ISBN: 978-0-387-25921-5, article GRATTON ENRICO, MARTIN J. VANDEVEN: "Laser Sources for Confocal Microscopy", pages: 84 - 85, XP093103901, DOI: 10.1007/978-0-387-45524-2
PAWLEY JAMES B.: "Handbook Of Biological Confocal Microscopy", 1 January 2006, SPRINGER , New York, NY , ISBN: 978-0-387-25921-5, article PAWLEY JAMES B: "Fundamental Limits in Confocal Microscopy", pages: 38 - 41, XP093103896, DOI: 10.1007/978-0-387-45524-2
PAWLEY JAMES B.: "Handbook Of Biological Confocal Microscopy", 1 January 2006, SPRINGER , New York, NY , ISBN: 978-0-387-25921-5, article STELZER ERNST H-K: "The Intermediate Optical System of Laser-Scanning Confocal Microscopes", pages: 218 - 219, XP093103914, DOI: 10.1007/978-0-387-45524-2

Also Published As

Publication number Publication date
EP2560189A1 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
EP2615621B1 (en) Detector device
DE102013004297B4 (en) Target for X-ray generator, method of manufacturing the same and X-ray generator
DE102019201936A1 (en) Semiconductor device
DE102009025841B4 (en) Apparatus for a compact high voltage insulator for an X-ray and vacuum tube and method of assembling same
EP2560189B1 (en) Detector device
DE1079205B (en) Power rectifier
DE102012101679A1 (en) detecting device
DE102016115826A1 (en) X-ray analysis device
EP3149760A1 (en) X-ray generator
DE102008062888B4 (en) Particle-optical device with magnet arrangement
DE102005040236B3 (en) Thermoelectric generator electrical energy source has thermoelectric elements integrated around silicon base body with central hole for thermal input
EP0268081B1 (en) Cooling device for semiconductor components
Gostev et al. Updating of the toroidal electron spectrometer intended for a scanning electron microscope and its new applications in diagnostics of micro-and nanoelectronic structures
DE102017215715B4 (en) OPTICAL PICTORIAL STUDENTS FOR THE RECORDING OF TWO-DIMENSIONAL IMAGES IN THE NEAR INFRARED RANGE
KR101990050B1 (en) Method for controlling the sensitivity of optical device made by transition metal dichalcogenide
DE202015009294U1 (en) Ladder rail arrangement and switchgear
DE4202024A1 (en) Insulated cooling box convecting lost heat from semiconductor components esp. in electric rail vehicle - has electrically insulating inner housing, highly impermeable to water vapour in annular edge region, and water-vapour permeable electrical seals
DE102015108433A1 (en) Power generation device
DE7505830U (en) DEVICE FOR HIGH-VOLTAGE-PROOF AND GOOD THERMAL CONDUCTING INSTALLATION OF SEMICONDUCTOR COMPONENTS
DE102012205590A1 (en) Power module for use with inverter for engine mounted in e.g. electric vehicle, has capillary and/or porous element which is provided with three common boundary surfaces for mold compound, circuit carrier and heat sinks respectively
DE2901867A1 (en) Charged-particle detector sensitive to beam spatial profile - used e.g. in electron microscope having energy-loss spectrometric facility
DE102014225064A1 (en) A storage device for storing electrical energy with apparatus for passing signals through an outer wall of the storage device
DE102013101295A1 (en) Radiation detecting device, has housing, radiation detector arranged within housing and readout anode, which is assigned to radiation detector and is arranged on side of radiation detector opposite to radiation inlet
DE202014103436U1 (en) Optoelectronic assembly with heat sink

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130820

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170221

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20191105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHREIBER, FRANK

Inventor name: BIRK, HOLGER

Inventor name: WIDZGOWSKI, BERND

INTG Intention to grant announced

Effective date: 20200330

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012016148

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1282359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200715

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200918

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201019

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20201017

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 502012016148

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAN Information deleted related to communication of a notice of opposition and request to file observations + time limit

Free format text: ORIGINAL CODE: EPIDOSDOBS2

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26 Opposition filed

Opponent name: CARL ZEISS MICROSCOPY GMBH

Effective date: 20210317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200806

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200917

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200831

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200806

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200917

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1282359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200806

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200806

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200617

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: CARL ZEISS MICROSCOPY GMBH

Effective date: 20210317

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230414

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230828

Year of fee payment: 12