EP2553694B1 - Elektromagnetischer betätiger mit positionssteuerung und verfahren zur verwendung eines derartigen betätigers - Google Patents

Elektromagnetischer betätiger mit positionssteuerung und verfahren zur verwendung eines derartigen betätigers Download PDF

Info

Publication number
EP2553694B1
EP2553694B1 EP11709999.4A EP11709999A EP2553694B1 EP 2553694 B1 EP2553694 B1 EP 2553694B1 EP 11709999 A EP11709999 A EP 11709999A EP 2553694 B1 EP2553694 B1 EP 2553694B1
Authority
EP
European Patent Office
Prior art keywords
electric current
value
operating position
coefficient
actuator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP11709999.4A
Other languages
English (en)
French (fr)
Other versions
EP2553694A1 (de
Inventor
Charles Blondel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP2553694A1 publication Critical patent/EP2553694A1/de
Application granted granted Critical
Publication of EP2553694B1 publication Critical patent/EP2553694B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/185Monitoring or fail-safe circuits with armature position measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1855Monitoring or fail-safe circuits using a stored table to deduce one variable from another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1861Monitoring or fail-safe circuits using derivative of measured variable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1888Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings using pulse width modulation

Definitions

  • the invention relates to an electromagnetic actuator having a processing unit for acting on control means generating a PWM-type amplitude-modulated control voltage.
  • the actuator comprises at least one actuating coil connected to the control means, means for measuring the electric current flowing in the actuating coil and drifting means calculating the value derived from the electric current.
  • the invention also relates to a method for determining an operating position of an electromagnetic actuator as defined above.
  • an electromagnetic actuator is related to its conditions of use. Certain external conditions depend in particular on the nature and / or number of equipment to be operated and / or temperature conditions in which the actuator is used and / or the supply voltage range of said actuator. Other internal conditions depend in particular on the state of aging of the actuator. Since operating conditions may change during use, it may be useful to know the closing and / or opening speeds. A knowledge of the position and / or the speed of the moving armature then makes it possible to adapt the value of the electric current in the excitation coil to minimize the impact forces of the moving parts against the fixed parts and / or for optimize the amount of electric current consumed during the closing phase or the holding phase.
  • Some solutions are to use additional sensors to know the values of the operating parameters of the actuator. For example, some solutions use position and / or speed sensors. However, the use of sensors is sometimes complex given the limited space available and a more or less hostile environment related for example to high temperatures.
  • the document FR2745913 discloses a method of measuring the position of a moving core of an electromagnet without the use of an additional sensor.
  • the measurement of the position is made from the measurement of the voltage and the current flowing in the excitation coil of this electromagnet.
  • the inductance of the magnetic circuit is constant when the magnetic circuit is in the open position and in the closed position, that is to say that it is assumed in particular that the magnetic circuit is saturated in the closed position.
  • the magnetic circuit is not completely saturated in the closed position, so as to make full use of the performance of the magnetic circuit.
  • the inductance in the closed position is not constant but varies widely as a function of the current flowing in the excitation coil. Therefore, such a method is not suitable.
  • the document US5481187 calculates the operating position based on the derivative of the flux with respect to the electric current (D (flow) / Di). However, since the flux variation is also dependent on the saturation level, it is difficult to accurately determine the position using only this formula.
  • a position table then makes it possible to provide a correlation between the calculated or measured values of the electric current I and the induction L and the position of an armature.
  • This method although satisfactory in theory, has some disadvantages. Indeed, the calculation of the inductance L depending on an integration operation, promotes a certain amount of error in each program cycle. For example, an error of 5% on the value of the inductance can induce errors of 20 to 30% on the calculation of the position.
  • an amplitude modulated voltage such as a PWM type modulation
  • Conventional PWM type modulation operates at frequencies between 20 and 40 KHz. The cycle times corresponding to such frequencies are between 50 ⁇ s and 25 ⁇ s.
  • the working frequency of the processing unit commonly used for this type of application is of the order of 100 ⁇ s.
  • the working time period of the processing unit is much greater than the cycle time of the PWM modulation, it becomes difficult under these conditions to make an accurate measurement of the voltage applied to the coil.
  • the use of the resistance value of the coil in the calculations makes it necessary to measure this parameter regularly. Indeed, the temperature significantly affects the latter.
  • the invention therefore aims to overcome the disadvantages of the state of the art, so as to provide an electromagnetic actuator having precise position control means.
  • the processing unit of the electromagnetic actuator comprises first storage means of a first value derived from electric current during a voltage supply period of the actuating coil, second storage means a second value derived from electric current during a period of non-voltage supply of said coil.
  • the processing unit comprises calculation means for successively determining a first calculation coefficient dependent on the supply bus voltage, first and second values derived from electric current and comprises calculation means and an operating position of the electromagnetic actuator from a first correlation between the operating position, the first calculation coefficient and the value of the electric current.
  • the first and second storage means are connected to the control means so that the memorizations of the first and second derived values are respectively synchronized with the supply duration and the no-power duration. tension of the actuating coil.
  • the first correlation between the operating position, the first calculation coefficient and the value of the electric current is represented from a specific equation setting.
  • the first correlation between the operating position, the first calculation coefficient and the value of the electric current is represented from a first surface curve giving the operating position as a function of the first calculation coefficient and the value of the electric current. .
  • the processing unit comprises storage means storing the first curve in the form of one or more equations.
  • the processing unit comprises storage means storing the first curve in the form of a data table containing a plurality of operating position values of the actuator, first calculation coefficients and values of the electric current. .
  • the processing unit comprises means for measuring a total resistance of the actuating coil from an electrical reference current and / or a reference voltage.
  • the unit further comprises calculating means for determining a second calculation coefficient depending on the first calculation coefficient, the total resistance of the coil, the second derived value and the electric current, and calculation means for determining a speed of rotation. operating the electromagnetic actuator from a second correlation between the operating speed, the second calculation coefficient and between the partial derivative value of the inductance with respect to the displacement at a constant current.
  • the second correlation between the partial derivative of the inductance with respect to the operating position at a constant current and the operating position and the electric current is shown from a second surface curve.
  • the processing unit comprises storage means storing the second curve in the form of a data table containing a plurality of operating points giving the correspondence between the partial derivative of the inductance with respect to the operating position. at a constant current depending on the operating position and the electric current.
  • the method according to the invention consists in measuring the electric current flowing in the actuating coil, calculating the value derived from the electric current, storing a first value derived from electric current during a voltage supply period of the coil of actuation, memorize a second value derived from electric current during a period of non-voltage supply of said coil, determining a first calculation coefficient dependent on a supply bus voltage, first and second values derived from electric current and determining an operating position of the electromagnetic actuator from a first correlation between the operating position, the first calculation coefficient and the value of the electric current.
  • the method consists in measuring a total resistance of the actuating coil from a reference electric current and / or a reference voltage, to determining a second calculation coefficient. depending on the first calculation coefficient, the total resistance of the coil, the second derived value and the electric current and determining an operating speed of the electromagnetic actuator from a second correlation between the operating speed, the second coefficient of calculation and between the partial derivative value of the inductance with respect to displacement at a constant current.
  • the electromagnetic actuator 100 comprises processing means 2 intended to act on at least one actuating coil 3.
  • the electromagnetic actuator 100 comprises a magnetic circuit 1 having a fixed yoke 11 and a movable armature 12.
  • the movable armature 12 is mounted in the fixed yoke 11.
  • the movable armature 12 and the fixed yoke 11 thus form a magnetic circuit deformable having a variable air gap.
  • Said movable armature 12 is movable between an open position K1 and a closed position K2.
  • the processing means are powered by a continuous bus supply voltage U bus .
  • the processing means 2 comprise control means 20 generating a PWM modulated PWM modulated PWM control voltage.
  • the control means 20 are connected to the actuating coil 3 via a control transistor T1.
  • the control transistor T1 is controlled by its base by a voltage pulse generator 21.
  • the pulse generator 21 sends a succession of pulses during which the actuating coil 3 is energized during a so-called supply period T on .
  • the duration of supply T on are interspersed with so-called non-feeding time T off .
  • the cycle frequency between the T on and non-power supply T off times is 40 kHz.
  • the corresponding cycle time is equal to 25 ⁇ s.
  • the processing means 2 further comprise means for measuring the electric current I flowing in the actuating coil 3.
  • the measuring means may comprise in particular a shunt 24 connected in series with the actuating coil 3.
  • the shunt 24 authorizing a continuous measurement of the electrical current is connected to drifting means 25 continuously calculating a derived value di / dt of the electric current I.
  • the processing unit 2 comprises storage means M1, M2 of the derived value di / dt of the electric current I.
  • M1 of the first memory means is for storing a first value derived di 1 / dt is electric current I during the feeding time t on voltage of the actuator coil 3.
  • the first and second memory means M1, M2 are connected to the control means 20 and their respective operation is synchronized with the pulse generator 21 of the PWM type.
  • each first value derived di 1 / dt one recorded at a time T is then replaced by another first value recorded at a time T + T off and each second value derived di 2 / dt off recorded at a time T is then replaced by another second value recorded at a time T + T on .
  • the first and second storage means of the first and second derived values di 1 / dt on , di 2 / dt off are respectively synchronized with the supply and non-power periods t on , t off in voltage of the actuating coil 3.
  • the processing means 2 comprise calculation means 23 for determining a first calculation coefficient A depending on the supply bus voltage U bus , first and second derived values di 1 / dt on , di 2 / d off of electric current.
  • This first calculation coefficient A is determined periodically, in particular according to a working frequency of the processing means 2.
  • the processing means comprise calculation means 23 having a micro processor ⁇ C having an equal working frequency. kHz is a corresponding cycle time equal to 100 ⁇ s.
  • the processing means 2 comprise calculation means 23 for determining an operating position x of the electromagnetic actuator 100 from a first correlation between the operating position x, the first calculation coefficient A and the current value.
  • the first correlation between the operating position x, the first calculation coefficient A and the value of the electric current I is represented from a first surface curve 10 as shown in FIG. figure 3 giving the operating position x as a function of the first calculation coefficient A and the value of the electric current I.
  • the processing unit 2 comprises storage means 22 storing the first surface curve 10 in the form of a data table containing a plurality of operating position values x of the actuator, first calculation coefficients A and values of the electric current I.
  • the first calculation coefficient A is therefore a variable which depends on the operating position x and the current I.
  • a first method consists in using computer modeling software such as, in particular, finite element method modeling.
  • This method involves knowing perfectly the design parameters of the actuator, including the geometry of the different parts, as well as their magnetic properties such as permeability.
  • This solution makes it possible to obtain for a given operating point (a gap and a coil current) the magnetic variables (induction, flux), mechanical (force) and electrical (inductance) variables. From these variables, it is possible to reconstruct the partial derivatives of the inductance as a function of the evolution of the current and / or the operating position x. As shown below in Table 1, it is then possible to obtain a table of operating points giving the correspondence between the first calculation coefficient A, the operating position x and the current I.
  • the first correlation between the operating position x, the first calculation coefficient A and the value of the electric current I is represented from a setting in specific equations.
  • the processing unit 2 can then comprise storage means 22 memorizing the first curve 10 in the form of one or more equations.
  • a second method consists in using the analytical method based in particular on the analysis of the reluctant schemas. This solution requires a rather complex definition of the equation linking the operating position to the current and to the inductance. Indeed, electromagnetic type actuators have many phenomena of leakage and saturation.
  • the processing means 2 comprise calculation means 23 for determining a second calculation coefficient B dependent on the first calculation coefficient A, the total resistance R of the coil, the second value derived di 2 / dt off and the electric current.
  • R is the resistance of the actuating coil 3 calculated from a reference electric current Iref and / or a reference voltage Uref.
  • This second calculation coefficient B is determined periodically, in particular according to the working frequency of the processing means 2.
  • the processing means 2 comprise calculation means 23 for determining an operating speed V of the electromagnetic actuator 100 from a second correlation between the operating speed V, the second calculation coefficient B and the partial derivative of the electromagnetic actuator. inductance with respect to the operating position x at a constant current.
  • the correlation between the partial derivative of the inductance L with respect to the operating position x at a constant current and the operating position x and the current is represented from a second surface curve 9 as shown in FIG. figure 4 .
  • the processing unit 2 comprises storage means 22 storing the second surface curve 9 in the form of a data table containing a plurality of values of the partial derivative of the inductance L with respect to the operating position x to a constant current and the operating position x and the electric current I.
  • the second calculation coefficient B is a measured value and is a variable that depends directly on the speed V and the partial derivative of the inductance L with respect to the operating position x at a constant current.
  • One method is to use computer modeling software such as finite element modeling. This method involves knowing perfectly the design parameters of the actuator, including the geometry of the different parts, as well as their properties. magnetic such as permeability. This solution makes it possible to obtain for a given operating point (a gap and a coil current) the magnetic variables (induction, flux), mechanical (force) and electrical (inductance) variables. From these variables, it is possible to reconstruct the partial derivatives of the inductance as a function of the evolution of the current and / or the operating position x. As shown below in Table 3 below, it is then possible to obtain a table of operating points giving the correspondence between the partial derivative of the inductance L with respect to the displacement x at a constant current according to of position x and current I.
  • control means 20 connected and controlled by the processing unit 2 deliver in the actuating coil 3 an electric current I controlled according to the calculated operating position x and / or the speed V of the actuator.
  • the invention also relates to a method for determining an operating position x of an electromagnetic actuator 100 according to the embodiments of the invention as defined above.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Claims (11)

  1. Elektromagnetisches Betätigungsglied (100) mit einer Verarbeitungseinheit (2) zur Beaufschlagung von Steuermitteln (21), die dazu dienen, eine pulsbreitenmodulierte PWM-Steuerspannung (Upwm) zu erzeugen, welches Betätigungsglied
    - mindestens eine an die Steuermittel (20) angeschlossene Betätigungsspule (3),
    - Messmittel (24) zur Messung des über die Betätigungsspule (3) fließenden elektrischen Stroms (I) und
    - Differenziermittel (25) zur Berechnung der Ableitung (di/dt) des elektrischen Stroms (I) umfasst,
    dadurch gekennzeichnet, dass die Verarbeitungseinheit (2)
    - erste Speichermittel (M1) zur Speicherung eines ersten Ableitungswerts (di1, /dton) des elektrischen Stroms während einer Einschaltzeit (ton), in der eine Versorgungsspannung an der Betätigungsspule (3) anliegt,
    - zweite Speichermittel (M2) zur Speicherung eines zweiten Ableitungswerts (di2 /dtoff) des elektrischen Stroms während einer Ausschaltzeit (toff), in der keine Versorgungsspannung an der genannten Betätigungsspule anliegt;
    - sowie Rechenmittel (23) zur sukzessiven Berechnung folgender Größen umfasst:
    - eines ersten Rechenkoeffizienten (A), der von der Versorgungsbusspannung (Ubus) sowie vom ersten und zweiten Ableitungswert (di1/dton, di2/dtoff) des elektrischen Stroms abhängt,
    - einer Arbeitsstellung (x) des elektromagnetischen Betätigungsglieds (100), die aus einem ersten Verhältnis zwischen der Arbeitsstellung (x), dem ersten Rechenkoeffizienten (A) und dem Wert des elektrischen Stroms (I) hergeleitet wird.
  2. Elektromagnetisches Betätigungsglied nach Anspruch 1, dadurch gekennzeichnet, dass die ersten und die zweiten Speichermittel (M1 , M2) mit den Steuermitteln (20) verbunden sind, um die Speicherung des ersten und des zweiten Ableitungswerts (di1/dton, di2/dtoff) mit der Einschaltzeit (ton) und der Ausschaltzeit (toff) der Spannungsversorgung der Betätigungsspule (3) zu synchronisieren.
  3. Elektromagnetisches Betätigungsglied nach Anspruch 1 oder 2, dadurch gekennzeichnet dass das erste Verhältnis zwischen der Arbeitsstellung (x), dem ersten Rechenkoeffizienten (A) und dem Wert des elektrischen Stroms (I) durch Erstellung spezifischer Funktionsgleichungen dargestellt wird.
  4. Elektromagnetisches Betätigungsglied nach Anspruch 1 oder 2, dadurch gekennzeichnet dass das erste Verhältnis zwischen der Arbeitsstellung (x), dem ersten Rechenkoeffizienten (A) und dem Wert des elektrischen Stroms (I) durch eine erste Flächenkurve (10) dargestellt wird, welche die Arbeitsstellung (x) in Abhängigkeit vom ersten Rechenkoeffizienten (A) und vom Wert des elektrischen Stroms (I) abbildet.
  5. Elektromagnetisches Betätigungsglied nach Anspruch 4, dadurch gekennzeichnet dass die Verarbeitungseinheit (2) Speichermittel (22) umfasst, welche die erste Kurve (10) in Form einer oder mehrerer Funktionsgleichungen speichert.
  6. Elektromagnetisches Betätigungsglied nach Anspruch 4, dadurch gekennzeichnet dass die Verarbeitungseinheit (2) Speichermittel (22) umfasst, welche die erste Kurve (10) in Form einer Wertetabelle speichert, die mehrere Werte für die Arbeitsstellung (x) des Betätigungsglieds, den ersten Rechenkoeffizienten (A) und den elektrischen Strom (I) enthält.
  7. Elektromagnetisches Betätigungsglied nach irgendeinem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verarbeitungseinheit
    - Messmittel zur Messung des Gesamtwiderstands (R) der Betätigungsspule (3) mithilfe eines elektrischen Referenzstrom (Iref) und/oder einer Referenzspannung (Uref) sowie
    - Rechenmittel (23) zur sukzessiven Bestimmung folgender Größen umfasst:
    - eines, vom ersten Rechenkoeffizienten (A), vom Gesamtwiderstand (R) der Spule, vom zweiten Ableitungswert (di2/dtoff) sowie vom elektrischen Strom (I) abhängigen zweiten Rechenkoeffizienten (B),
    - einer Arbeitsgeschwindigkeit (V) des elektromagnetischen Betätigungsgliedes (100), die aus einem zweiten Verhältnis zwischen der Arbeitsgeschwindigkeit V, dem zweiten Rechenkoeffizienten B und der partiellen Ableitung der Induktivität L in Bezug zur Verschiebung (x) bei einem konstanten Strom hergeleitet wird.
  8. Elektromagnetisches Betätigungsglied nach Anspruch 7, dadurch gekennzeichnet, dass das zweite Verhältnis zwischen der partiellen Ableitung der Induktivität in Bezug zur Arbeitsstellung (X) bei einem konstanten Strom sowie der Arbeitsstellung (x) und dem elektrischen Strom (I) durch eine zweite Flächenkurve (9) dargestellt wird.
  9. Elektromagnetisches Betätigungsglied nach Anspruch 8, dadurch gekennzeichnet dass die Verarbeitungseinheit (2) Speichermittel (22) umfasst, welche die zweite Flächenkurve (9) in Form einer Wertetabelle mit mehreren Arbeitspunkten speichert, welche Arbeitspunkte das Verhältnis zwischen der partiellen Ableitung der Induktivität (L) in Bezug zur Arbeitsstellung (x) bei konstantem Strom in Abhängigkeit von der Arbeitsstellung (x) und vom elektrischen Strom (I) abbilden.
  10. Verfahren zur Bestimmung der Arbeitsstellung (x) eines elektromagnetischen Betätigungsgliedes (100) nach den vorhergehenden Ansprüchen, welches Betätigungsglied:
    - eine Verarbeitungseinheit (2) zur Beaufschlagung von Steuermitteln (20), die dazu dienen, eine pulsbreitenmodulierte PWM-Steuerspannung (Upwm) zu erzeugen,
    - mindestens eine an die Steuermittel (21) angeschlossene Betätigungsspule (3),
    - Messmittel (24) zur Messung des über die Betätigungsspule (3) fließenden elektrischen Stroms (I) und
    - Differenziermittel (25) zur Berechnung der Ableitung (di/dt) des elektrischen Stroms (I) umfasst,
    dadurch gekennzeichnet, dass das Verfahren darin besteht,
    - den über die Betätigungsspule (3) fließenden elektrischen Strom (I) zu messen,
    - den Wert der Ableitung (di/dt) des elektrischen Stroms (I) zu berechnen,
    - einen ersten Ableitungswert (di1/dton) während einer Einschaltzeit (ton), in der eine Versorgungsspannung an der Betätigungsspule (3) anliegt, zu messen,
    - einen zweiten Ableitungswert (di2/dtoff) während einer Ausschaltzeit (toff), in der keine Versorgungsspannung an der genannten Betätigungsspule anliegt, zu messen,
    - einen ersten Rechenkoeffizienten (A) zu bestimmen, der von einer Versorgungsbusspannung (Ubus) sowie vom ersten und zweiten Ableitungswert (di1/dton, di2/dtoff) des elektrischen Stroms abhängt, sowie
    - eine Arbeitsstellung (x) des elektromagnetischen Betätigungsglieds (100) zu bestimmen, die aus einem ersten Verhältnis zwischen der Arbeitsstellung (x), dem ersten Rechenkoeffizienten (A) und dem Wert des elektrischen Stroms (I) hergeleitet wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass es darin besteht,
    - einen Gesamtwiderstand (R) der Betätigungsspule (3) mithilfe eines elektrischen Referenzstroms (Iref) und/oder einer Referenzspannung (Uref) zu messen,
    - einen, vom ersten Rechenkoeffizienten (A), vom Gesamtwiderstand (R) der Spule, vom zweiten Ableitungswert (di2/dtoff) sowie vom elektrischen Strom (I) abhängigen zweiten Rechenkoeffizienten (B) zu bestimmen, sowie
    - eine Arbeitsgeschwindigkeit (V) des elektromagnetischen Betätigungsgliedes (100) zu bestimmen, die aus einem zweiten Verhältnis zwischen der Arbeitsgeschwindigkeit V, dem zweiten Rechenkoeffizienten B und der partiellen Ableitung der Induktivität L in Bezug zur Verschiebung (x) bei einem konstanten Strom hergeleitet wird.
EP11709999.4A 2010-04-01 2011-02-21 Elektromagnetischer betätiger mit positionssteuerung und verfahren zur verwendung eines derartigen betätigers Not-in-force EP2553694B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001361A FR2958444B1 (fr) 2010-04-01 2010-04-01 Actionneur electromagnetique comportant des moyens de controle de position et procede utilisant un tel actionneur
PCT/FR2011/000104 WO2011121188A1 (fr) 2010-04-01 2011-02-21 Actionneur electromagnetique comportant des moyens de controle de position et procede utilisant un tel actionneur

Publications (2)

Publication Number Publication Date
EP2553694A1 EP2553694A1 (de) 2013-02-06
EP2553694B1 true EP2553694B1 (de) 2015-04-08

Family

ID=42767970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11709999.4A Not-in-force EP2553694B1 (de) 2010-04-01 2011-02-21 Elektromagnetischer betätiger mit positionssteuerung und verfahren zur verwendung eines derartigen betätigers

Country Status (4)

Country Link
EP (1) EP2553694B1 (de)
CN (1) CN102934179B (de)
FR (1) FR2958444B1 (de)
WO (1) WO2011121188A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR102014019695A2 (pt) * 2014-08-08 2016-05-03 Whirlpool Sa método de controle de válvula solenóide provida de cursor magnético
WO2021058723A1 (de) * 2019-09-25 2021-04-01 Magna powertrain gmbh & co kg Verfahren zur bestimmung der position eines ankers eines elektromagnetischen linearaktuators

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481187A (en) * 1991-11-29 1996-01-02 Caterpillar Inc. Method and apparatus for determining the position of an armature in an electromagnetic actuator
US5424637A (en) * 1993-03-15 1995-06-13 Caterpillar Inc. Method and apparatus for determining the position of an armature in an electromagnetic actuator using observer theory
FR2745913B1 (fr) 1996-03-11 1998-04-10 Electricite De France Dispositif et procede de controle d'un mecanisme equipe d'une bobine a noyau plongeur
US6657847B1 (en) 1999-07-13 2003-12-02 Siemens Automotive Corporation Method of using inductance for determining the position of an armature in an electromagnetic solenoid
FR2835061B1 (fr) 2002-01-24 2004-04-09 Schneider Electric Ind Sa Procede de mesure de la position de l'armature mobile d'un electroaimant

Also Published As

Publication number Publication date
FR2958444B1 (fr) 2012-05-04
CN102934179A (zh) 2013-02-13
FR2958444A1 (fr) 2011-10-07
WO2011121188A1 (fr) 2011-10-06
EP2553694A1 (de) 2013-02-06
CN102934179B (zh) 2015-11-25

Similar Documents

Publication Publication Date Title
Remmlinger et al. State-of-health monitoring of lithium-ion batteries in electric vehicles by on-board internal resistance estimation
EP2584575B1 (de) Verfahren zur Diagnose eines Betriebszustands für einen Schütz und Schütz zur Implementierung dieses Verfahrens
EP2966454A1 (de) Verfahren zum Messen eines physikalischen Parameters, und elektronischer Schaltkreis zu dessen Umsetzung
FR3002048A1 (fr) Procede de detection amelioree de collision d'un robot avec son environnement, systeme et produit programme d'ordinateur mettant en œuvre le procede
US9367079B2 (en) Compressed sampling and memory
FR2963109A1 (fr) Procede de determination d'un parametre d'au moins un accumulateur d'une batterie
EP1813953A2 (de) Fluxgate-Magnetometer mit gepulster Anregung und Probenerfassung
FR2999721B1 (fr) Procede et dispositif de caracterisation d'un module de stockage d'energie par effet capacitif.
FR2972583A1 (fr) Procede de commande mis en œuvre dans un convertisseur de puissance pour identifier des parametres lies a la saturation magnetique d'un moteur electrique
FR2938071A1 (fr) Procede de determination de l'etat de charge d'une batterie en phase de charge ou de decharge
EP2553694B1 (de) Elektromagnetischer betätiger mit positionssteuerung und verfahren zur verwendung eines derartigen betätigers
FR3014206A1 (fr) Estimation de la resistance d'isolement entre une batterie de vehicule automobile et la masse
EP2148339B1 (de) Elektromechanisches Stellglied, das autoadaptive Funktionskontrollmittel beinhaltet und Verfahren, bei dem dieses Stellglied zum Einsatz kommt
FR2858140A1 (fr) Procede et dispositif de correction de non-linearite pour donnees de sortie de conversion a/n
EP3936878A1 (de) Verfahren zur bestimmung einer alterungsfunktion eines akkumulators
EP2403119B1 (de) Steuerungsverfahren und System zur Kompensation von Totzeiten für Pulsweitenmodulationssteuerung
EP2828968B1 (de) Mikropositionierungsvorrichtung mit mehreren freiheitsgraden für piezoelektrische aktuatoren und zugehörige verfahren
Caliwag et al. Optimal least square vector autoregressive moving average for battery state of charge estimation and forecasting
EP2618163B1 (de) Verfahren zum Messen eines physikalischen Parameters, und elektronischer Schnittstellenschaltkreis eines kapazitiven Sensors zur Umsetzung dieses Verfahrens
EP0678960A1 (de) Verfahren und Einrichtung zur Korrektur eines Stromsignals
EP3189379B1 (de) Aufpralldetektionsschaltung
FR3072794A1 (fr) Procede de determination des parametres d'un modele simplifie d'un systeme de stockage de l'energie, procede de pilotage utilisant un tel modele et dispositif associe
EP3320461B1 (de) Simulationsverfahren der funktionsfähigkeit eines elektronischen schaltkreises und programm
EP3470884B1 (de) Filterverfahren eines antwortsignals eines geophons, und entsprechender sensor
EP1348968B1 (de) Digitale Schaltung zur Signalleistungsmessung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141013

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 721081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011015449

Country of ref document: DE

Effective date: 20150521

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 721081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150408

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150808

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011015449

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150408

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

26N No opposition filed

Effective date: 20160111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160221

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180221

Year of fee payment: 8

Ref country code: DE

Payment date: 20180206

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180206

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011015449

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228