EP2553694A1 - Electromagnetic actuator comprising position control means and method using such an actuator - Google Patents

Electromagnetic actuator comprising position control means and method using such an actuator

Info

Publication number
EP2553694A1
EP2553694A1 EP11709999A EP11709999A EP2553694A1 EP 2553694 A1 EP2553694 A1 EP 2553694A1 EP 11709999 A EP11709999 A EP 11709999A EP 11709999 A EP11709999 A EP 11709999A EP 2553694 A1 EP2553694 A1 EP 2553694A1
Authority
EP
European Patent Office
Prior art keywords
electric current
value
calculation coefficient
operating position
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP11709999A
Other languages
German (de)
French (fr)
Other versions
EP2553694B1 (en
Inventor
Charles Blondel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schneider Electric Industries SAS
Original Assignee
Schneider Electric Industries SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schneider Electric Industries SAS filed Critical Schneider Electric Industries SAS
Publication of EP2553694A1 publication Critical patent/EP2553694A1/en
Application granted granted Critical
Publication of EP2553694B1 publication Critical patent/EP2553694B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/185Monitoring or fail-safe circuits with armature position measurement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1855Monitoring or fail-safe circuits using a stored table to deduce one variable from another
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/1861Monitoring or fail-safe circuits using derivative of measured variable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F2007/1888Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings using pulse width modulation

Definitions

  • the invention relates to an electromagnetic actuator having a processing unit for acting on control means generating a PWM-type amplitude-modulated control voltage.
  • the actuator comprises at least one actuating coil connected to the control means, means for measuring the electric current flowing in the actuating coil and drifting means calculating the value derived from the electric current.
  • the invention also relates to a method for determining an operating position of an electromagnetic actuator as defined above.
  • an electromagnetic actuator is related to its conditions of use. Certain external conditions depend in particular on the nature and / or number of equipment to be operated and / or temperature conditions in which the actuator is used and / or the supply voltage range of said actuator. Other internal conditions depend in particular on the state of aging of the actuator. Since operating conditions may change during use, it may be useful to know the closing and / or opening speeds. A knowledge of the position and / or the speed of the moving armature then makes it possible to adapt the value of the electric current in the excitation coil to minimize the impact forces of the moving parts against the fixed parts and / or for optimize the amount of electric current consumed during the closing phase or the holding phase.
  • Some solutions are to use additional sensors to know the values of the operating parameters of the actuator. For example, some solutions use position and / or speed sensors. However, the use of sensors is sometimes complex given the limited space available and a more or less hostile environment related for example to high temperatures.
  • Document FR2745913 describes a method for measuring the position of a mobile core of an electromagnet without the use of additional sensors. The measurement of the position is made from the measurement of the voltage and the current flowing in the excitation coil of this electromagnet.
  • the inductance of the magnetic circuit is constant when the magnetic circuit is in the open position and in the closed position, that is to say that it is assumed in particular that the magnetic circuit is saturated in the closed position.
  • the magnetic circuit is not completely saturated in the closed position, so as to make full use of the performance of the magnetic circuit.
  • the inductance in the closed position is not constant but varies widely as a function of the current flowing in the excitation coil. Therefore, such a method is not suitable.
  • the document US5424637 describes a method of estimating the position thanks to a complete use of electrical, mechanical and magnetic (force) equations. It is then necessary to know all the electrical, mechanical and magnetic parameters of the system. However the modification of the mechanical parameters related in particular to the wear is not taken into account which reduces the precision of the estimate.
  • Document US5481187 calculates the operating position based on the derivative of the flux with respect to the electric current (D (flux) / Di). However, since the flux variation is also dependent on the saturation level, it is difficult to accurately determine the position using only this formula.
  • a position table then makes it possible to provide a correlation between the calculated or measured values of the electric current I and the induction L and the position of an armature.
  • This method although satisfying in theory, has some disadvantages. Indeed, the calculation of the inductance L depending on an integration operation, promotes a certain amount of error in each program cycle. For example, an error of 5% on the value of the inductance can induce errors of 20 to 30% on the calculation of the position.
  • an amplitude modulated voltage such as a PWM type modulation
  • Conventional PWM type modulation operates at frequencies between 20 and 40 KHz. The cycle times corresponding to such frequencies are between 50ps and 25ps.
  • the working frequency of the processing unit commonly used for this type of application is of the order of 100 s.
  • the working time period of the processing unit is much greater than the cycle time of the PWM modulation, it becomes difficult under these conditions to make an accurate measurement of the voltage applied to the coil.
  • the use of the resistance value of the coil in the calculations makes it necessary to measure this parameter regularly. Indeed, the temperature significantly affects the latter.
  • the invention therefore aims to overcome the disadvantages of the state of the art, so as to provide an electromagnetic actuator having precise position control means.
  • the processing unit of the electromagnetic actuator comprises first storage means of a first value derived from electric current during a voltage supply period of the actuating coil, second storage means a second value derived from electric current during a period of non-voltage supply of said coil.
  • the processing unit comprises calculation means for successively determining a first calculation coefficient dependent on the supply bus voltage, first and second values derived from electric current and comprises calculation means and an operating position of the electromagnetic actuator from a first correlation between the operating position, the first calculation coefficient and the value of the electric current.
  • the first and second memory means are connected to the control means so that the memorizations of the first and second derived values are respectively synchronized with the duration of the power supply and the duration of non-power supply. tension of the actuating coil.
  • the first correlation between the operating position, the first calculation coefficient and the value of the electric current is represented from a specific equation setting.
  • the first correlation between the operating position, the first calculation coefficient and the value of the electric current is represented from a first surface curve giving the operating position as a function of the first calculation coefficient and the value of the electric current.
  • the processing unit comprises storage means storing the first curve in the form of one or more equations.
  • the processing unit comprises storage means storing the first curve in the form of a data table containing a plurality of operating position values of the actuator, first calculation coefficients and values of the electric current. .
  • the processing unit comprises means for measuring a total resistance of the actuating coil from an electrical reference current and / or a reference voltage.
  • the unit further comprises calculating means for determining a second calculation coefficient depending on the first calculation coefficient, the total resistance of the coil, the second derived value and the electric current, and calculation means for determining a speed of rotation. operating the electromagnetic actuator from a second correlation between the operating speed, the second calculation coefficient and between the partial derivative value of the inductance with respect to the displacement at a constant current.
  • the second correlation between the partial derivative of the inductance with respect to the operating position at a constant current and the operating position and the electric current is shown from a second surface curve.
  • the processing unit comprises storage means storing the second curve in the form of a data table containing a plurality of operating points giving the correspondence between the partial derivative of the inductance with respect to the operating position. at a constant current depending on the operating position and the electric current.
  • the method according to the invention consists in measuring the electric current flowing in the actuating coil, calculating the value derived from the electric current, storing a first value derived from electric current during a voltage supply period of the coil of actuation, memorize a second value derived from electric current during a period of non-voltage supply of said coil, determining a first calculation coefficient dependent on a supply bus voltage, first and second values derived from electric current and determining an operating position of the electromagnetic actuator from a first correlation between the operating position, the first calculation coefficient and the value of the electric current.
  • the method consists in measuring a total resistance of the actuating coil from a reference electric current and / or a reference voltage, to determining a second calculation coefficient. depending on the first calculation coefficient, the total resistance of the coil, the second derived value and the electric current and determining an operating speed of the electromagnetic actuator from a second correlation between the operating speed, the second coefficient of calculation and between the partial derivative value of the inductance with respect to displacement at a constant current.
  • FIG. 1 represents a schematic view of an electromagnetic actuator according to one embodiment of the invention
  • FIG. 2 represents a diagram of the processing means of an electromagnetic actuator according to FIG. 1;
  • FIG. 3 shows a first surface curve representative of the air gap of an electromagnetic actuator as a function of a first calculation coefficient of said actuator and of the electric current flowing in the coil;
  • FIG. 4 shows a second surface curve representative of the partial derivative of the inductance with respect to the operating position at a constant current as a function of the operating position and the electric current.
  • the electromagnetic actuator 100 comprises processing means 2 intended to act on at least one actuating coil 3.
  • the actuator electromagnetic circuit 100 comprises a magnetic circuit 1 having a fixed yoke 11 and a movable armature 12.
  • the movable armature 12 is mounted in the fixed yoke 11.
  • the movable armature 12 and the fixed yoke 11 thus form a deformable magnetic circuit having a gap variable.
  • Said movable armature 12 is movable between an open position K1 and a closed position K2.
  • the processing means are powered by a Ubus supply bus voltage continuous.
  • the processing means 2 comprise control means 20 generating a PWM modulated amplitude-modulated control voltage UPWM.
  • the control means 20 are connected to the actuating coil 3 via a control transistor T1.
  • the control transistor T1 is controlled by its base by a voltage pulse generator 21.
  • the pulse generator 21 sends a succession of pulses during which the actuating coil 3 is energized during a so-called supply period T on .
  • the duration of supply T on are interspersed with so-called non-feeding duration T 0 ff.
  • the cycle frequency between the T on and non-power supply times T 0 ff is equal to 40 kHz.
  • the corresponding cycle time is equal to 25ps.
  • the processing means 2 further comprise means for measuring the electric current I flowing in the actuating coil 3.
  • the measuring means may comprise in particular a shunt 24 connected in series with the actuating coil 3.
  • the shunt 24 authorizing a continuous measurement of the electric current is connected to diverter means 25 continuously calculating a derived value di / dt of the electric current I.
  • the processing unit 2 comprises storage means M1, M2 of the derived value di / dt of the electric current I.
  • M1 of the first memory means is for storing a first value derived di-i / dt is electric current I during the feeding time t on voltage of the actuator coil 3.
  • the first and second memory means M1, M2 are connected to the control means 20 and their respective operation is synchronized with the pulse generator 21 of the PWM type.
  • each first value derived dii / dt one recorded at a time T is then replaced by another first value recorded at a time T + ⁇ 0 "and each second value derived di 2 / dt 0 ff recorded at a time T is then replaced by another second value recorded at a time T + T on .
  • the first and second memory means of the first and second derived values dii / dt on , di 2 / dt 0 ff are respectively synchronized with the supply and non-power supply times ton, t 0 ff under voltage of the actuating coil 3.
  • the processing means 2 comprise calculation means 23 for determining a first calculation coefficient A depending on the supply bus voltage U U s, first and second derived values di 1 / dt on , di 2 / dt 0 ff of current electric.
  • the first calculation coefficient A is calculated from the following equation (1):
  • Ubus is the supply bus voltage of the processing means 2.
  • This first calculation coefficient A is periodically determined, in particular according to a working frequency of the processing means 2.
  • the processing means comprise calculation means 23 having a microprocessor pC having an equal working frequency. kHz is a corresponding cycle time equal to 100ps.
  • the processing means 2 comprise calculation means 23 for determining an operating position x of the electromagnetic actuator 100 from a first correlation between the operating position x, the first calculation coefficient A and the current value.
  • the first correlation between the operating position x, the first calculation coefficient A and the value of the electric current I is represented from a first surface curve 10 as shown in FIG. 3 giving the operating position. x as a function of the first calculation coefficient A and the value of the electric current I.
  • the processing unit 2 comprises storage means 22 storing the first surface curve 10 in the form of a data table containing a plurality of values operating position x of the actuator, first calculation coefficients A and values of the electric current I.
  • the first calculation coefficient A is a variable which depends directly on the inductance L and the current I. Indeed, the value of the first calculation coefficient A can be expressed in the form of equation (2) next :
  • the first calculation coefficient A is therefore a variable which depends on the operating position x and the current I.
  • a first method consists in using computer modeling software such as, in particular, finite element method modeling.
  • This method involves knowing perfectly the design parameters of the actuator, including the geometry of the different parts, as well as their magnetic properties such as permeability.
  • This solution makes it possible to obtain for a given operating point (a gap and a coil current) the magnetic variables (induction, flux), mechanical (force) and electrical (inductance) variables. From these variables, it is possible to reconstruct the partial derivatives of the inductance as a function of the evolution of the current and / or the operating position x. As shown below in Table 1, it is then possible to obtain a table of operating points giving the correspondence between the first calculation coefficient A, the operating position x and the current I.
  • the first correlation between the operating position x, the first calculation coefficient A and the value of the electric current I is represented from a setting in specific equations.
  • the processing unit 2 can then comprise storage means 22 memorizing the first curve 10 in the form of one or more equations.
  • a second method consists in using the analytical method based in particular on the analysis of the reluctant schemes.
  • This solution requires a rather complex definition of the equation linking the operating position to the current and to the inductance.
  • the electromagnetic type actuators has many phenomena of leakage and saturation.
  • the processing means 2 comprise calculation means 23 for determining a second calculation coefficient B dependent on the first calculation coefficient A, the total resistance R of the coil, the second derived value di2 / dt 0 ff and the electric current. I.
  • the second calculation coefficient B is calculated from the following equation (3):
  • R is the resistance of the actuating coil 3 calculated from a reference electric current Iref and / or a reference voltage Uref.
  • This second calculation coefficient B is determined periodically, in particular according to the working frequency of the processing means 2.
  • the processing means 2 comprise calculation means 23 for determining an operating speed V of the electromagnetic actuator 100 from a second correlation between the operating speed V, the second calculation coefficient B and the partial derivative of the electromagnetic actuator. inductance with respect to the operating position x at a constant current.
  • the correlation between the partial derivative of the inductance L with respect to the operating position x at a constant current and the operating position x and the current is represented from a second surface curve 9 as shown in FIG. 4.
  • the processing unit 2 comprises storage means 22 storing the second surface curve 9 in the form of a data table containing a plurality of values of the partial derivative of the inductance L with respect to the operating position. x at a constant current and the operating position x and the electric current I.
  • the second calculation coefficient B is a measured value and is a variable which depends directly on the speed V and the partial derivative of the inductance L with respect to the operating position x at a constant current.
  • the second calculation coefficient B can be written in the form of the following equation (4):
  • One method is to use computer modeling software such as finite element modeling. This method involves knowing perfectly the design parameters of the actuator, including the geometry of the different parts, as well as their properties. magnetic such as permeability. This solution makes it possible to obtain the magnetic variables (induction, flux), mechanical (force) and electrical (inductance) variables for a given operating point (an air gap and a coil current). From these variables, it is possible to reconstitute the partial derivatives of the inductance as a function of the evolution of the current and / or the operating position x. As shown below in Table 3 below, it is then possible to obtain a table of operating points giving the correspondence between the partial derivative of the inductance L with respect to the displacement x at a constant current according to of position x and current I.
  • control means 20 connected and controlled by the processing unit 2 deliver in the actuating coil 3 an electric current I controlled according to the calculated operating position x and / or the speed V of the actuator.
  • the invention also relates to a method for determining an operating position x of an electromagnetic actuator 100 according to the embodiments of the invention as defined above.
  • the method consists of
  • electromagnetic system 100 from a first correlation between the operating position x, the first calculation coefficient A and the value of the electric current I.
  • the method consists of:
  • calculation coefficient A total resistance R of the coil, the second value derived from 2 / dt 0 ff and the electric current I;

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Linear Motors (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)

Abstract

Electromagnetic actuator (100) having a processing unit (2) designed to act on control means (21) generating a control voltage (Upwm) across the terminals of an actuating coil (3). The processing unit (2) includes first memory means (M1) for storing a first derivative (di1/dton) during a supply period (ton), second memory means (M2) for storing a second derivative (di2/dtoff) during a non-supply period (toff) and computing means (23). Said computing means determine, in succession, a first computing coefficient (A) dependent on the supply bus voltage (Ubus), first and second derivatives (di1/dton, di2/dtoff) and an operating position (x) on the basis of a first correlation between the operating position (x), the first computing coefficient (A) and the electric current (I).

Description

ACTIONNEUR ELECTROMAGNETIQUE COMPORTANT DES MOYENS DE CONTROLE DE POSITION ET PROCEDE UTILISANT UN TEL ACTIONNEUR  ELECTROMAGNETIC ACTUATOR HAVING POSITION CONTROL MEANS AND METHOD USING SUCH ACTUATOR
DOMAINE TECHNIQUE DE L'INVENTION TECHNICAL FIELD OF THE INVENTION
L'invention est relative à un actionneur électromagnétique ayant une unité de traitement destinée à agir sur des moyens commande générant une tension de commande modulée en amplitude de type PWM. L'actionneur comprend au moins une bobine d'actionnement reliée aux moyens commande, des moyens de mesure du courant électrique circulant dans la bobine d'actionnement et des moyens dérivateurs calculant la valeur dérivée du courant électrique. L'invention est aussi relative à un procédé pour déterminer une position de fonctionnement d'un actionneur électromagnétique tel que défini ci-dessus. The invention relates to an electromagnetic actuator having a processing unit for acting on control means generating a PWM-type amplitude-modulated control voltage. The actuator comprises at least one actuating coil connected to the control means, means for measuring the electric current flowing in the actuating coil and drifting means calculating the value derived from the electric current. The invention also relates to a method for determining an operating position of an electromagnetic actuator as defined above.
ETAT DE LA TECHNIQUE ANTERIEURE STATE OF THE PRIOR ART
Une connaissance de certains paramètres de fonctionnement des actionneurs électromagnétiques permet de garantir un fonctionnement optimal dudit actionneur. Le fonctionnement d'un actionneur électromagnétique est lié à ses conditions d'utilisation. Certaines conditions externes dépendent notamment de la nature et/ou du nombre d'appareillages à actionner et/ou des conditions de température dans lesquelles l'actionneur est utilisé et/ou de la plage de tension d'alimentation dudit actionneur. D'autres conditions internes dépendent notamment de l'état de vieillissement de l'actionneur. Les conditions de fonctionnement pouvant changer en cours d'utilisation, il peut être utile de connaître les vitesses de fermeture et/ou d'ouverture. Une connaissance de la position et/ou de la vitesse de l'armature mobile permet alors d'adapter la valeur du courant électrique dans la bobine d'excitation pour minimiser les forces d'impact des parties mobiles contre les parties fixes et/ou pour optimiser la quantité de courant électrique consommé pendant la phase de fermeture ou la phase de maintien. Knowledge of certain operating parameters of the electromagnetic actuators makes it possible to guarantee optimum operation of said actuator. The operation of an electromagnetic actuator is related to its conditions of use. Certain external conditions depend in particular on the nature and / or number of equipment to be operated and / or temperature conditions in which the actuator is used and / or the supply voltage range of said actuator. Other internal conditions depend in particular on the state of aging of the actuator. Since operating conditions may change during use, it may be useful to know the closing and / or opening speeds. A knowledge of the position and / or the speed of the moving armature then makes it possible to adapt the value of the electric current in the excitation coil to minimize the impact forces of the moving parts against the fixed parts and / or for optimize the amount of electric current consumed during the closing phase or the holding phase.
Certaines solutions consistent à utiliser des capteurs additionnels permettant de connaître les valeurs des paramètres de fonctionnement de l'actionneur. Par exemple, certaines solutions utilisent des capteurs de position et/ou de vitesse. Cependant, l'utilisation de capteur est parfois complexe compte tenu du peu de place disponible et d'un environnement plus ou moins hostile lié par exemple à des températures élevées. Some solutions are to use additional sensors to know the values of the operating parameters of the actuator. For example, some solutions use position and / or speed sensors. However, the use of sensors is sometimes complex given the limited space available and a more or less hostile environment related for example to high temperatures.
Le document FR2745913 décrit une méthode de mesure de la position d'un noyau mobile d'un électroaimant sans l'utilisation de capteur additionnel. La mesure de la position est réalisée à partir de la mesure de la tension et du courant circulant dans la bobine d'excitation de cet électroaimant. Cependant, dans cette méthode, on fait l'hypothèse que l'inductance du circuit magnétique est constante lorsque le circuit magnétique est en position ouverte et en position fermée, c'est- à-dire que l'on fait notamment l'hypothèse que le circuit magnétique est saturé en position fermée. Or, dans beaucoup d'appareils interrupteurs de type contacteur ou contacteur-disjoncteur, le circuit magnétique n'est pas complètement saturé en position fermée, de façon à utiliser pleinement les performances du circuit magnétique. Ainsi, l'inductance en position fermée n'est pas constante mais varie largement en fonction du courant circulant dans la bobine d'excitation. C'est pourquoi, une telle méthode n'est alors pas adaptée. Document FR2745913 describes a method for measuring the position of a mobile core of an electromagnet without the use of additional sensors. The measurement of the position is made from the measurement of the voltage and the current flowing in the excitation coil of this electromagnet. However, in this method, it is assumed that the inductance of the magnetic circuit is constant when the magnetic circuit is in the open position and in the closed position, that is to say that it is assumed in particular that the magnetic circuit is saturated in the closed position. However, in many contactor or contactor-breaker type switchgear devices, the magnetic circuit is not completely saturated in the closed position, so as to make full use of the performance of the magnetic circuit. Thus, the inductance in the closed position is not constant but varies widely as a function of the current flowing in the excitation coil. Therefore, such a method is not suitable.
D'autres solutions telles que décrites dans les documents FR2835061 , US5424637, décrivent aussi des procédés de mesure de la position de l'armature mobile d'un électroaimant sans l'utilisation de capteur additionnel. Ces solutions utilisent la mesure de la tension et du courant électrique dans la bobine d'excitation pour déterminer la position de l'armature mobile. Other solutions as described in documents FR2835061, US5424637, also describe methods for measuring the position of the moving armature of an electromagnet without the use of additional sensors. These solutions use the measurement of voltage and electric current in the excitation coil to determine the position of the moving armature.
Le document US5424637 décrit une méthode d'estimation de la position grâce à une utilisation complète des équations électriques, mécaniques et magnétiques (force). Il est alors nécessaire de connaître tous les paramètres électriques, mécaniques et magnétiques du système. Cependant la modification des paramètres mécaniques liée notamment à l'usure n'est pas prise en compte ce qui réduit la précision de l'estimation. Le document US5481187 permet de calculer la position de fonctionnement en se basant sur la dérivée du flux par rapport au courant électrique (D(flux)/Di). Cependant, la variation du flux étant aussi dépendante du niveau de saturation, il est donc difficile de déterminer précisément la position en utilisant uniquement cette formule. The document US5424637 describes a method of estimating the position thanks to a complete use of electrical, mechanical and magnetic (force) equations. It is then necessary to know all the electrical, mechanical and magnetic parameters of the system. However the modification of the mechanical parameters related in particular to the wear is not taken into account which reduces the precision of the estimate. Document US5481187 calculates the operating position based on the derivative of the flux with respect to the electric current (D (flux) / Di). However, since the flux variation is also dependent on the saturation level, it is difficult to accurately determine the position using only this formula.
Les documents EP1069284, FR2835061 décrivent une méthode de détermination de la position d'une armature d'un électro-aimant à l'aide de la valeur de l'inductance. Le principe consiste à réaliser le calcul de l'inductance suivant la formule suivante : Documents EP1069284 and FR2835061 describe a method for determining the position of an armature of an electromagnet using the value of the inductance. The principle consists in carrying out the calculation of the inductance according to the following formula:
U - RI U - RI
L =  L =
I  I
Une table position permet ensuite de fournir une corrélation entre d'une part les valeurs calculées ou mesurées du courant électrique I et de l'induction L et d'autre part la position d'une armature. Cette méthode bien que satisfaisant en théorie présente quelques inconvénients. En effet, le calcul de l'inductance L dépendant d'une opération d'intégration, favorise un certain cumul d'erreur à chaque cycle programme. A titre d'exemple, une erreur de 5% sur la valeur de l'inductance peut induire des erreurs de 20 à 30% sur le calcul de la position. Cependant, lorsque la bobine est alimentée par une tension modulée en amplitude telle qu'une modulation de type PWM, il y a dans ce cas une inadéquation entre la génération de la tension de commande et le système de mesure. Une modulation de type PWM classique fonctionne à des fréquences comprises entre 20 et 40 KHz. Les temps de cycle correspondant à de telles fréquences sont compris entre 50ps et 25ps. Une précision d'un pourcent implique alors une mesure inférieure à la microseconde. La fréquence de travail de l'unité de traitement couramment utilisée pour ce type d'application est de l'ordre de 100 s. Ainsi, compte tenu que la période de temps de travail de l'unité de traitement est largement supérieure au temps de cycle de la modulation PWM, il devient alors difficile dans ces conditions de réaliser une mesure précise de la tension appliquée à la bobine. Pour palier à ce dernier problème, il faudrait utiliser des unités de traitement comportant des microcontrôleurs plus rapides mais généralement trop coûteux pour ce type d'application. L'utilisation de la valeur de résistance de la bobine dans les calculs oblige à réaliser une mesure de ce paramètre régulièrement. En effet, la température influe de façon importante sur ce dernier. A position table then makes it possible to provide a correlation between the calculated or measured values of the electric current I and the induction L and the position of an armature. This method, although satisfying in theory, has some disadvantages. Indeed, the calculation of the inductance L depending on an integration operation, promotes a certain amount of error in each program cycle. For example, an error of 5% on the value of the inductance can induce errors of 20 to 30% on the calculation of the position. However, when the coil is powered by an amplitude modulated voltage such as a PWM type modulation, there is in this case a mismatch between the generation of the control voltage and the measurement system. Conventional PWM type modulation operates at frequencies between 20 and 40 KHz. The cycle times corresponding to such frequencies are between 50ps and 25ps. An accuracy of one percent then implies a measurement less than one microsecond. The working frequency of the processing unit commonly used for this type of application is of the order of 100 s. Thus, since the working time period of the processing unit is much greater than the cycle time of the PWM modulation, it becomes difficult under these conditions to make an accurate measurement of the voltage applied to the coil. To overcome this problem, it should use processing units with faster microcontrollers but generally too expensive for this type of application. The use of the resistance value of the coil in the calculations makes it necessary to measure this parameter regularly. Indeed, the temperature significantly affects the latter.
EXPOSE DE L'INVENTION SUMMARY OF THE INVENTION
L'invention vise donc à remédier aux inconvénients de l'état de la technique, de manière à proposer un actionneur électromagnétique comportant des moyens de contrôle de position précis. The invention therefore aims to overcome the disadvantages of the state of the art, so as to provide an electromagnetic actuator having precise position control means.
L'unité de traitement de l'actionneur électromagnétique selon l'invention comporte des premiers moyens de mémorisation d'une première valeur dérivée de courant électrique pendant une durée d'alimentation en tension de la bobine d'actionnement, des seconds moyens de mémorisation d'une seconde valeur dérivée de courant électrique pendant une durée de non-alimentation en tension de ladite bobine. L'unité de traitement comporte des moyens de calcul pour déterminer successivement un premier coefficient de calcul dépendant de la tension bus d'alimentation, des premières et seconds valeurs dérivées de courant électrique et comporte des moyens de calcul et une position de fonctionnement de l'actionneur électromagnétique à partir d'une première corrélation entre la position de fonctionnement, du premier coefficient de calcul et de la valeur du courant électrique. The processing unit of the electromagnetic actuator according to the invention comprises first storage means of a first value derived from electric current during a voltage supply period of the actuating coil, second storage means a second value derived from electric current during a period of non-voltage supply of said coil. The processing unit comprises calculation means for successively determining a first calculation coefficient dependent on the supply bus voltage, first and second values derived from electric current and comprises calculation means and an operating position of the electromagnetic actuator from a first correlation between the operating position, the first calculation coefficient and the value of the electric current.
Selon un mode préférentiel de réalisation, les premiers et second moyens de mémorisation sont reliés aux moyens de commande afin que les mémorisations de la première et de la seconde valeurs dérivées soient respectivement synchronisées avec la durée d'alimentation et la durée de non-alimentation en tension de la bobine d'actionnement. According to a preferred embodiment, the first and second memory means are connected to the control means so that the memorizations of the first and second derived values are respectively synchronized with the duration of the power supply and the duration of non-power supply. tension of the actuating coil.
De préférence, la première corrélation entre la position de fonctionnement, le premier coefficient de calcul et la valeur du courant électrique est représentée à partir d'une mise en équations spécifiques. Preferably, the first correlation between the operating position, the first calculation coefficient and the value of the electric current is represented from a specific equation setting.
La première corrélation entre la position de fonctionnement, le premier coefficient de calcul et la valeur du courant électrique est représentée à partir d'une première courbe de surface donnant la position de fonctionnement en fonction du premier coefficient de calcul et de la valeur du courant électrique. De préférence, l'unité de traitement comporte des moyens de mémorisation mémorisant la première courbe sous forme d'une ou plusieurs équations. The first correlation between the operating position, the first calculation coefficient and the value of the electric current is represented from a first surface curve giving the operating position as a function of the first calculation coefficient and the value of the electric current. . Preferably, the processing unit comprises storage means storing the first curve in the form of one or more equations.
De préférence, l'unité de traitement comporte des moyens de mémorisation mémorisant la première courbe sous forme d'un tableau de données contenant une pluralité de valeurs de position de fonctionnement de l'actionneur, de premiers coefficients de calcul et de valeurs du courant électrique. Preferably, the processing unit comprises storage means storing the first curve in the form of a data table containing a plurality of operating position values of the actuator, first calculation coefficients and values of the electric current. .
Selon un mode de développement de l'invention, l'unité de traitement comporte des moyens de mesure d'une résistance totale de la bobine d'actionnement à partir d'un courant électrique de référence et/ou d'une tension de référence. L'unité comprend en outre des moyens de calcul pour déterminer un second coefficient de calcul dépendant du premier coefficient de calcul, de résistance totale de la bobine, de la seconde valeur dérivée et du courant électrique et des moyens de calcul pour déterminer une vitesse de fonctionnement de l'actionneur électromagnétique à partir d'une seconde corrélation entre la vitesse de fonctionnement, le second coefficient de calcul et entre la valeur de dérivée partielle de l'inductance par rapport au déplacement à un courant constant. According to a development mode of the invention, the processing unit comprises means for measuring a total resistance of the actuating coil from an electrical reference current and / or a reference voltage. The unit further comprises calculating means for determining a second calculation coefficient depending on the first calculation coefficient, the total resistance of the coil, the second derived value and the electric current, and calculation means for determining a speed of rotation. operating the electromagnetic actuator from a second correlation between the operating speed, the second calculation coefficient and between the partial derivative value of the inductance with respect to the displacement at a constant current.
La seconde corrélation entre la dérivée partielle de l'inductance par rapport à la position de fonctionnement à un courant constant et la position de fonctionnement et le courant électrique est représentée à partir d'une deuxième courbe de surface. The second correlation between the partial derivative of the inductance with respect to the operating position at a constant current and the operating position and the electric current is shown from a second surface curve.
De préférence, l'unité de traitement comporte des moyens de mémorisation mémorisant la seconde courbe sous forme d'un tableau de données contenant une pluralité de points de fonctionnement donnant la correspondance entre la dérivée partielle de l'inductance par rapport à la position de fonctionnement à un courant constant en fonction de la position de fonctionnement et du courant électrique. Preferably, the processing unit comprises storage means storing the second curve in the form of a data table containing a plurality of operating points giving the correspondence between the partial derivative of the inductance with respect to the operating position. at a constant current depending on the operating position and the electric current.
Le procédé selon l'invention consiste à mesurer le courant électrique circulant dans la bobine d'actionnement, à calculer la valeur dérivée du courant électrique, mémoriser une première valeur dérivée de courant électrique pendant une durée d'alimentation en tension de la bobine d'actionnement, mémoriser une seconde valeur dérivée de courant électrique pendant une durée de non-alimentation en tension de ladite bobine, déterminer un premier coefficient de calcul dépendant d'une tension bus d'alimentation, des premières et secondes valeurs dérivées de courant électrique et à déterminer une position de fonctionnement de l'actionneur électromagnétique à partir d'une première corrélation entre la position de fonctionnement, du premier coefficient de calcul et de la valeur du courant électrique. The method according to the invention consists in measuring the electric current flowing in the actuating coil, calculating the value derived from the electric current, storing a first value derived from electric current during a voltage supply period of the coil of actuation, memorize a second value derived from electric current during a period of non-voltage supply of said coil, determining a first calculation coefficient dependent on a supply bus voltage, first and second values derived from electric current and determining an operating position of the electromagnetic actuator from a first correlation between the operating position, the first calculation coefficient and the value of the electric current.
Selon un mode de développement de l'invention, le procédé consiste à mesurer une résistance totale de la bobine d'actionnement à partir d'un courant électrique de référence et/ou d'une tension de référence, à déterminer un second coefficient de calcul dépendant du premier coefficient de calcul, de résistance totale de la bobine, de la seconde valeur dérivée et du courant électrique et à déterminer une vitesse de fonctionnement de l'actionneur électromagnétique à partir d'une seconde corrélation entre la vitesse de fonctionnement, le second coefficient de calcul et entre la valeur de dérivée partielle de l'inductance par rapport au déplacement à un courant constant. According to a development mode of the invention, the method consists in measuring a total resistance of the actuating coil from a reference electric current and / or a reference voltage, to determining a second calculation coefficient. depending on the first calculation coefficient, the total resistance of the coil, the second derived value and the electric current and determining an operating speed of the electromagnetic actuator from a second correlation between the operating speed, the second coefficient of calculation and between the partial derivative value of the inductance with respect to displacement at a constant current.
BREVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention, donnés à titre d'exemples non limitatifs, et représentés aux dessins annexés sur lesquels : Other advantages and features will emerge more clearly from the following description of particular embodiments of the invention, given by way of non-limiting examples, and represented in the accompanying drawings in which:
- la figure 1 représente une vue schématique d'un actionneur électromagnétique selon un mode de réalisation de l'invention ; FIG. 1 represents a schematic view of an electromagnetic actuator according to one embodiment of the invention;
- la figure 2 représente un schéma des moyens de traitement d'un actionneur électromagnétique selon la figure 1 ; FIG. 2 represents a diagram of the processing means of an electromagnetic actuator according to FIG. 1;
- la figure 3 montre une première courbe de surface représentative de l'entrefer d'un actionneur électromagnétique en fonction d'un premier coefficient de calcul dudit actionneur et du courant électrique circulant dans la bobine ; - la figure 4 montre une seconde courbe de surface représentative de la dérivée partielle de l'inductance par rapport à la position de fonctionnement à un courant constant en fonction de la position de fonctionnement et du courant électrique. DESCRIPTION DETAILLEE D'UN MODE DE REALISATION FIG. 3 shows a first surface curve representative of the air gap of an electromagnetic actuator as a function of a first calculation coefficient of said actuator and of the electric current flowing in the coil; FIG. 4 shows a second surface curve representative of the partial derivative of the inductance with respect to the operating position at a constant current as a function of the operating position and the electric current. DETAILED DESCRIPTION OF AN EMBODIMENT
Selon un premier mode préférentiel de réalisation, l'actionneur électromagnétique 100 comporte des moyens de traitement 2 destinés à agir sur au moins une bobine d'actionnement 3. A titre d'exemple de réalisation tel que représenté sur la figure 1 , l'actionneur électromagnétique 100 comprend un circuit magnétique 1 ayant une culasse fixe 11 et une armature mobile 12. L'armature mobile 12 est montée dans la culasse fixe 11. L'armature mobile 12 et la culasse fixe 11 forment ainsi un circuit magnétique déformable présentant un entrefer variable. Ladite armature mobile 12 est mobile entre une position ouverte K1 et une position fermée K2. According to a first preferred embodiment, the electromagnetic actuator 100 comprises processing means 2 intended to act on at least one actuating coil 3. As an example embodiment such as represented in FIG. 1, the actuator electromagnetic circuit 100 comprises a magnetic circuit 1 having a fixed yoke 11 and a movable armature 12. The movable armature 12 is mounted in the fixed yoke 11. The movable armature 12 and the fixed yoke 11 thus form a deformable magnetic circuit having a gap variable. Said movable armature 12 is movable between an open position K1 and a closed position K2.
Les moyens de traitement sont alimentés par une tension bus d'alimentation Ubus continue. Les moyens de traitement 2 comportent des moyens commande 20 générant une tension de commande UPWM modulée en amplitude de type PWM. A titre d'exemple de réalisation, les moyens de commande 20 sont reliés à la bobine d'actionnement 3 via un transistor de commande T1. Le transistor de commande T1 est commandé par sa base par un générateur d'impulsions de tension 21. A titre d'exemple de réalisation, le générateur d'impulsion 21 envoie une succession d'impulsions durant lesquelles la bobine d'actionnement 3 est alimentée pendant une durée dite d'alimentation Ton. Les durée d'alimentation Ton sont entrecoupées de durée dites de non-alimentation T0ff. La fréquence du cycle entre les durées d'alimentation Ton et de non-alimentation T0ff est égale à 40 kHz. Le temps de cycle correspondant est égal à 25ps. The processing means are powered by a Ubus supply bus voltage continuous. The processing means 2 comprise control means 20 generating a PWM modulated amplitude-modulated control voltage UPWM. As an exemplary embodiment, the control means 20 are connected to the actuating coil 3 via a control transistor T1. The control transistor T1 is controlled by its base by a voltage pulse generator 21. As an exemplary embodiment, the pulse generator 21 sends a succession of pulses during which the actuating coil 3 is energized during a so-called supply period T on . The duration of supply T on are interspersed with so-called non-feeding duration T 0 ff. The cycle frequency between the T on and non-power supply times T 0 ff is equal to 40 kHz. The corresponding cycle time is equal to 25ps.
Les moyens de traitement 2 comportent en outre des moyens de mesure du courant électrique I circulant dans la bobine d'actionnement 3. Les moyens de mesure peuvent comprendre notamment un shunt 24 connecté en série avec la bobine d'actionnement 3. Le shunt 24 autorisant une mesure en continue du courant électrique est relié à des moyens dérivateurs 25 calculant en continue une valeur dérivée di/dt du courant électrique I. The processing means 2 further comprise means for measuring the electric current I flowing in the actuating coil 3. The measuring means may comprise in particular a shunt 24 connected in series with the actuating coil 3. The shunt 24 authorizing a continuous measurement of the electric current is connected to diverter means 25 continuously calculating a derived value di / dt of the electric current I.
Selon un mode préférentiel de réalisation de l'invention, l'unité de traitement 2 comporte des moyens de mémorisation M1 , M2 de la valeur dérivée di/dt du courant électrique I. According to a preferred embodiment of the invention, the processing unit 2 comprises storage means M1, M2 of the derived value di / dt of the electric current I.
Des premiers moyens de mémorisation M1 sont destinées à mémoriser une première valeur dérivée di-i/dton de courant électrique I pendant la durée d'alimentation ton en tension de la bobine d'actionnement 3. Des seconds moyens de mémorisation M2 d'une seconde valeur dérivée di2/dt0ff de courant électrique pendant la durée de non-alimentation t0ff en tension de ladite bobine d'actionnement 3. M1 of the first memory means is for storing a first value derived di-i / dt is electric current I during the feeding time t on voltage of the actuator coil 3. second storage means M2 of a second value derived di 2 / dt 0 ff of electric current during the duration of non-supply t 0 ff voltage of said actuator coil 3.
Les premier et second moyens de mémorisation M1 , M2 sont reliés au moyens de commande 20 et leur fonctionnement respectif est synchronisé avec le générateur d'impulsion 21 de type PWM. Autrement dit, chaque première valeur dérivée dii/dton enregistrée à un temps T est ensuite remplacée par une autre première valeur enregistrée à un temps T+ Τ0« et chaque seconde valeur dérivée di2/dt0ff enregistrée à un temps T est ensuite remplacée par une autre seconde valeur enregistrée à un temps T+ Ton. Ainsi, les premier et second moyens de mémorisations de la première et de la seconde valeur dérivée dii/dton, di2/dt0ff sont respectivement synchronisées avec les durées d'alimentation et de non- alimentation ton, t0ff en tension de la bobine d'actionnement 3. The first and second memory means M1, M2 are connected to the control means 20 and their respective operation is synchronized with the pulse generator 21 of the PWM type. In other words, each first value derived dii / dt one recorded at a time T is then replaced by another first value recorded at a time T + Τ 0 "and each second value derived di 2 / dt 0 ff recorded at a time T is then replaced by another second value recorded at a time T + T on . Thus, the first and second memory means of the first and second derived values dii / dt on , di 2 / dt 0 ff are respectively synchronized with the supply and non-power supply times ton, t 0 ff under voltage of the actuating coil 3.
Les moyens de traitements 2 comportent des moyens de calcul 23 pour déterminer un premier coefficient de calcul A dépendant de la tension bus d'alimentation U Us, des premières et secondes valeurs dérivées dii/dton, di2/dt0ff de courant électrique. Le premier coefficient de calcul A est calculé à partir de l'équation (1 ) suivante : The processing means 2 comprise calculation means 23 for determining a first calculation coefficient A depending on the supply bus voltage U U s, first and second derived values di 1 / dt on , di 2 / dt 0 ff of current electric. The first calculation coefficient A is calculated from the following equation (1):
^ ^ dix di2 ^ ^ di x di 2
dton dtoff dt on dt off
Où Ubus est la tension bus d'alimentation des moyens de traitement 2. Ce premier coefficient de calcul A est déterminé périodiquement, notamment selon une fréquence de travail des moyens de traitement 2. A titre d'exemple, les moyens de traitement comportent des moyens de calcul 23 ayant un micro processeur pC ayant une fréquence de travail égale 10 kHz soit un temps de cycle correspondant égale à 100ps. Where Ubus is the supply bus voltage of the processing means 2. This first calculation coefficient A is periodically determined, in particular according to a working frequency of the processing means 2. By way of example, the processing means comprise calculation means 23 having a microprocessor pC having an equal working frequency. kHz is a corresponding cycle time equal to 100ps.
Les moyens de traitements 2 comportent des moyens de calcul 23 pour déterminer une position de fonctionnement x de l'actionneur électromagnétique 100 à partir d'une première corrélation entre la position de fonctionnement x, le premier coefficient de calcul A et de la valeur du courant électrique I. La première corrélation entre la position de fonctionnement x, le premier coefficient de calcul A et la valeur du courant électrique I est représentée à partir d'une première courbe de surface 10 telle que représentée sur la figure 3 donnant la position de fonctionnement x en fonction du premier coefficient de calcul A et de la valeur du courant électrique I. L'unité de traitement 2 comporte des moyens de mémorisation 22 mémorisant la première courbe de surface 10 sous forme d'un tableau de données contenant une pluralité de valeurs de position de fonctionnement x de l'actionneur, de premiers coefficients de calcul A et de valeurs du courant électrique I. The processing means 2 comprise calculation means 23 for determining an operating position x of the electromagnetic actuator 100 from a first correlation between the operating position x, the first calculation coefficient A and the current value. The first correlation between the operating position x, the first calculation coefficient A and the value of the electric current I is represented from a first surface curve 10 as shown in FIG. 3 giving the operating position. x as a function of the first calculation coefficient A and the value of the electric current I. The processing unit 2 comprises storage means 22 storing the first surface curve 10 in the form of a data table containing a plurality of values operating position x of the actuator, first calculation coefficients A and values of the electric current I.
En effet, le premier coefficient de calcul A est une variable qui dépend directement de l'inductance L et du courant I. En effet, la valeur du premier coefficient de calcul A peut s'exprimer sous la forme de l'équation (2) suivante : Indeed, the first calculation coefficient A is a variable which depends directly on the inductance L and the current I. Indeed, the value of the first calculation coefficient A can be expressed in the form of equation (2) next :
Sachant que l'inductance L et que la dérivée partielle de l'inductance L par rapport au courant I à une position de fonctionnement x constante sont dépendantes de la position de fonctionnement x de l'actionneur et du courant I de la bobine, le premier coefficient de calcul A est donc une variable qui dépend de la position de fonctionnement x et du courant I.  Knowing that the inductance L and the partial derivative of the inductance L with respect to the current I at a constant operating position x are dependent on the operating position x of the actuator and the current I of the coil, the first calculation coefficient A is therefore a variable which depends on the operating position x and the current I.
Pour déterminer une correspondance entre la valeur du premier coefficient de calcul A, la position de fonctionnement x et le courant I, deux méthodes sont possibles pour calculer une table de points de fonctionnement. To determine a correspondence between the value of the first coefficient of calculation A, the operating position x and the current I, two methods are possible to calculate a table of operating points.
Une première méthode consiste à utiliser un logiciel informatique de modélisation tel que, notamment une modélisation par méthode des éléments finis. Cette méthode implique de connaître parfaitement les paramètres de conception de l'actionneur, notamment la géométrie des différentes pièces, ainsi que leurs propriétés magnétiques telle que la perméabilité. Cette solution permet d'obtenir pour un point de fonctionnement donné (un entrefer et un courant bobine) les variables magnétiques (induction, flux), mécanique (force) et électrique (inductance). A partir de ces variables, il est possible de reconstituer les dérivées partielles de l'inductance en fonction de l'évolution du courant et/ou de la position de fonctionnement x. Tel que représentée ci-dessous sur le tableau 1 , il est alors possible d'obtenir une table de points de fonctionnement donnant la correspondance entre le premier coefficient de calcul A, la position de fonctionnement x et le courant I. A first method consists in using computer modeling software such as, in particular, finite element method modeling. This method involves knowing perfectly the design parameters of the actuator, including the geometry of the different parts, as well as their magnetic properties such as permeability. This solution makes it possible to obtain for a given operating point (a gap and a coil current) the magnetic variables (induction, flux), mechanical (force) and electrical (inductance) variables. From these variables, it is possible to reconstruct the partial derivatives of the inductance as a function of the evolution of the current and / or the operating position x. As shown below in Table 1, it is then possible to obtain a table of operating points giving the correspondence between the first calculation coefficient A, the operating position x and the current I.
Tableau 1Table 1
Par une recherche de points et une interpolation, il est alors possible de calculer une nouvelle table de points de fonctionnement donnant la correspondance entre le premier coefficient de calcul A, le courant I et la position de fonctionnement x. Tel que représentée ci-dessous sur le tableau 2, des valeurs de position de fonctionnement x sont associée à des valeurs du premier coefficient de calcul A et du courant I :  By a search of points and an interpolation, it is then possible to calculate a new table of operating points giving the correspondence between the first calculation coefficient A, the current I and the operating position x. As shown below in Table 2, operating position values x are associated with values of the first calculation coefficient A and the current I:
Selon un mode perfectionné de réalisation de la première méthode, la première corrélation entre la position de fonctionnement x, le premier coefficient de calcul A et la valeur du courant électrique I est représentée à partir d'une mise en équations spécifiques. On obtient ces équations à partir de logiciels de calcul qui vont « interpoler » les tableaux ci-dessus. L'unité de traitement 2 peut alors comporter des moyens de mémorisation 22 mémorisant la première courbe 10 sous forme d'une ou plusieurs équations. According to an improved embodiment of the first method, the first correlation between the operating position x, the first calculation coefficient A and the value of the electric current I is represented from a setting in specific equations. We obtain these equations from computer programs that will "interpolate" the tables above. The processing unit 2 can then comprise storage means 22 memorizing the first curve 10 in the form of one or more equations.
Une seconde méthode consiste à utiliser la méthode analytique se basant notamment sur l'analyse les schémas réluctants. Cette solution requiert une définition assez complexe de l'équation liant la position de fonctionnement au courant et à l'inductance. En effet, les actionneurs type électromagnétique présente de nombreux phénomènes de fuites et de saturation. A second method consists in using the analytical method based in particular on the analysis of the reluctant schemes. This solution requires a rather complex definition of the equation linking the operating position to the current and to the inductance. Indeed, the electromagnetic type actuators has many phenomena of leakage and saturation.
Les moyens de traitement 2 comportent des moyens de calcul 23 pour déterminer un second coefficient de calcul B dépendant du premier coefficient de calcul A, de la résistance totale R de la bobine, de la seconde valeur dérivée di2/dt0ff et du courant électrique I. Le second coefficient de calcul B est calculé à partir de l'équation (3) suivante : The processing means 2 comprise calculation means 23 for determining a second calculation coefficient B dependent on the first calculation coefficient A, the total resistance R of the coil, the second derived value di2 / dt 0 ff and the electric current. I. The second calculation coefficient B is calculated from the following equation (3):
Où R est la résistance de la bobine d'actionnement 3 calculée à partir d'un courant électrique de référence Iref et/ou d'une tension de référence Uref. Where R is the resistance of the actuating coil 3 calculated from a reference electric current Iref and / or a reference voltage Uref.
Ce second coefficient de calcul B est déterminé périodiquement, notamment selon la fréquence de travail des moyens de traitement 2. This second calculation coefficient B is determined periodically, in particular according to the working frequency of the processing means 2.
Les moyens de traitements 2 comportent des moyens de calcul 23 pour déterminer une vitesse de fonctionnement V de l'actionneur électromagnétique 100 à partir d'une seconde corrélation entre la vitesse de fonctionnement V, le second coefficient de calcul B et la dérivée partielle de l'inductance par rapport à la position de fonctionnement x à un courant constant. La corrélation entre la dérivée partielle de l'inductance L par rapport à la position de fonctionnement x à un courant constant et la position de fonctionnement x et le courant est représentée à partir d'une seconde courbe de surface 9 telle que représentée sur la figure 4. L'unité de traitement 2 comporte des moyens de mémorisation 22 mémorisant la seconde courbe de surface 9 sous forme d'un tableau de données contenant une pluralité de valeurs de la dérivée partielle de l'inductance L par rapport à la position de fonctionnement x à un courant constant et la position de fonctionnement x et le courant électrique I. En effet, le second coefficient de calcul B est une valeur mesurée et est une variable qui dépend directement de la vitesse V et de la dérivée partielle de l'inductance L par rapport à la position de fonctionnement x à un courant constant. Le second coefficient de calcul B peut s'écrire sous la forme de l'équation (4) suivante : The processing means 2 comprise calculation means 23 for determining an operating speed V of the electromagnetic actuator 100 from a second correlation between the operating speed V, the second calculation coefficient B and the partial derivative of the electromagnetic actuator. inductance with respect to the operating position x at a constant current. The correlation between the partial derivative of the inductance L with respect to the operating position x at a constant current and the operating position x and the current is represented from a second surface curve 9 as shown in FIG. 4. The processing unit 2 comprises storage means 22 storing the second surface curve 9 in the form of a data table containing a plurality of values of the partial derivative of the inductance L with respect to the operating position. x at a constant current and the operating position x and the electric current I. Indeed, the second calculation coefficient B is a measured value and is a variable which depends directly on the speed V and the partial derivative of the inductance L with respect to the operating position x at a constant current. The second calculation coefficient B can be written in the form of the following equation (4):
De l'équation (4) précédente, la valeur de la vitesse V peut être calculée. La vitesse peut s'exprimer sous la forme de l'équation (5) suivante : From the above equation (4), the value of the speed V can be calculated. Speed can be expressed as the following equation (5):
Une méthode consiste à utiliser un logiciel informatique de modélisation tel que, notamment une modélisation par méthode des éléments finis. Cette méthode implique de connaître parfaitement les paramètres de conception de l'actionneur, notamment la géométrie des différentes pièces, ainsi que leurs propriétés magnétiques telle que la perméabilité. Cette solution permet d'obtenir pour un point de fonctionnement donné (un entrefer et un courant bobine) les variables magnétiques (induction, flux), mécanique (force) et électrique (inductance), A partir de ces variables, il est possible de reconstituer les dérivées partielles de l'inductance en fonction de l'évolution du courant et/ou de la position de fonctionnement x. Tel que représenté ci-dessous sur le tableau 3 ci-dessous, il est alors possible d'obtenir une table de points de fonctionnement donnant la correspondance entre la dérivée partielle de l'inductance L par rapport au déplacement x à un courant constant en fonction de la position x et le courant I. One method is to use computer modeling software such as finite element modeling. This method involves knowing perfectly the design parameters of the actuator, including the geometry of the different parts, as well as their properties. magnetic such as permeability. This solution makes it possible to obtain the magnetic variables (induction, flux), mechanical (force) and electrical (inductance) variables for a given operating point (an air gap and a coil current). From these variables, it is possible to reconstitute the partial derivatives of the inductance as a function of the evolution of the current and / or the operating position x. As shown below in Table 3 below, it is then possible to obtain a table of operating points giving the correspondence between the partial derivative of the inductance L with respect to the displacement x at a constant current according to of position x and current I.
Connaissant la valeur de dérivée partielle de l'inductance L par rapport à la position de fonctionnement x à un courant constant ainsi que la valeur du second coefficient de calcul B, il est possible de déterminer la valeur de vitesse à partir de l'équation (5). Knowing the partial derivative value of the inductance L with respect to the operating position x at a constant current as well as the value of the second calculation coefficient B, it is possible to determine the velocity value from the equation ( 5).
Selon un mode de réalisation de l'invention, les moyens de commande 20 reliés et pilotés par l'unité de traitement 2 délivrent dans la bobine d'actionnement 3 un courant électrique I asservi en fonction de la position de fonctionnement x calculée et/ou de la vitesse V de l'actionneur. According to one embodiment of the invention, the control means 20 connected and controlled by the processing unit 2 deliver in the actuating coil 3 an electric current I controlled according to the calculated operating position x and / or the speed V of the actuator.
L'invention est aussi relative à un procédé pour déterminer une position de fonctionnement x d'un actionneur électromagnétique 100 selon les modes de réalisation de l'invention tels que définis ci-dessus. The invention also relates to a method for determining an operating position x of an electromagnetic actuator 100 according to the embodiments of the invention as defined above.
Selon un premier mode de fonctionnement, le procédé consiste à  According to a first mode of operation, the method consists of
- mesurer le courant électrique I circulant dans la bobine d'actionnement 3 ; measuring the electric current I flowing in the actuating coil 3;
- calculer la valeur dérivée di/dt du courant électrique I ; - mémoriser une première valeur dérivée dii/dton de courant électrique pendant une durée d'alimentation ton en tension de la bobine - calculate the derived value di / dt of the electric current I; - storing a first value derived dii / dt is electric current during a feeding time t on voltage of the coil
d'actionnement 3 ;  actuator 3;
- mémoriser une seconde valeur dérivée dÏ2 dt0ff de courant électrique - memorize a second value derived from 2 dt 0 ff of electric current
pendant une durée de non-alimentation t0ff en tension de ladite bobine ;during a period of non-supply t 0 ff voltage of said coil;
- déterminer un premier coefficient de calcul A dépendant de la tension bus d'alimentation UbUs. des premières et secondes valeurs dérivées dii/dton, dÏ2/dt0ff de courant électrique ; - Determine a first calculation coefficient A depending on the supply bus voltage U bU s. first and second values derived dii / dt on , d2 / dt 0 ff electric current;
- déterminer une position de fonctionnement x de l'actionneur  - determine an operating position x of the actuator
électromagnétique 100 à partir d'une première corrélation entre la position de fonctionnement x, du premier coefficient de calcul A et de la valeur du courant électrique I.  electromagnetic system 100 from a first correlation between the operating position x, the first calculation coefficient A and the value of the electric current I.
Selon un mode particulier de fonctionnement, le procédé consiste à : According to a particular mode of operation, the method consists of:
- mesurer une résistance totale R de la bobine d'actionnement 3 à partir d'un courant électrique de référence Iref et/ou d'une tension de référence Uref. - Measure a total resistance R of the actuating coil 3 from a reference electric current Iref and / or a reference voltage Uref.
- déterminer un second coefficient de calcul B dépendant du premier determining a second calculation coefficient B depending on the first
coefficient de calcul A, de résistance totale R de la bobine, de la seconde valeur dérivée dÏ2/d t0ff et du courant électrique I ; calculation coefficient A, total resistance R of the coil, the second value derived from 2 / dt 0 ff and the electric current I;
- déterminer une vitesse de fonctionnement V de l'actionneur  determine an operating speed V of the actuator
électromagnétique 100 à partir d'une seconde corrélation entre la vitesse de fonctionnement V, le second coefficient de calcul B et entre la valeur de dérivée partielle de l'inductance L par rapport à la position de  electromagnetic system 100 from a second correlation between the operating speed V, the second calculation coefficient B and the partial derivative value of the inductance L with respect to the position of
fonctionnement x à un courant constant.  operation x at a constant current.

Claims

REVENDICATIONS
1. Actionneur électromagnétique (100) ayant une unité de traitement (2) destinée à agir sur des moyens commande (21 ) générant une tension de commande (Upwm) modulée en amplitude de type PWM, actionneur comprenant : An electromagnetic actuator (100) having a processing unit (2) for acting on control means (21) generating a PWM-type amplitude-modulated control voltage (Upwm), the actuator comprising:
- au moins une bobine d'actionnement (3) reliée aux moyens commande (20),  at least one actuating coil (3) connected to the control means (20),
- des moyens de mesure (24) du courant électrique (I) circulant dans la  measuring means (24) for the electric current (I) flowing in the
bobine d'actionnement (3) ;  actuating coil (3);
- des moyens dérivateurs (25) calculant la valeur dérivée (di/dt) du courant électrique (I) ;  - Derivative means (25) calculating the derived value (di / dt) of the electric current (I);
actionneur, caractérisé en ce que l'unité de traitement (2) comporte :  actuator, characterized in that the processing unit (2) comprises:
- des premiers moyens de mémorisation (M1 ) d'une première valeur dérivée (d /dton) de courant électrique pendant une durée d'alimentation (ton) en tension de la bobine d'actionnement (3) ; first storage means (M1) of a first derived value (d / dton) of electric current during a power supply period (t on ) of the actuating coil (3);
- des seconds moyens de mémorisation (M2) d'une seconde valeur dérivée (dÏ2/dt0ff) de courant électrique pendant une durée de non-alimentation (t0ff) en tension de ladite bobine ; second storage means (M2) of a second derived value (d2 / dt 0 ff) of electric current during a non-supply period (t 0 ff) in voltage of said coil;
- des moyens de calcul (23) pour déterminer successivement :  calculating means (23) for successively determining:
- un premier coefficient de calcul (A) dépendant de la tension bus  a first calculation coefficient (A) depending on the bus voltage
d'alimentation (Ut>Us). des premières et seconds valeurs dérivées (dii/dton, di2/dt0ff) de courant électrique ; power supply (Ut> U s). first and second derived values (dii / dt on , di 2 / dt 0 ff) of electric current;
- une position de fonctionnement (x) de l'actionneur électromagnétique (100) à partir d'une première corrélation entre la position de  an operating position (x) of the electromagnetic actuator (100) from a first correlation between the position of
fonctionnement (x), du premier coefficient de calcul (A) et de la valeur du courant électrique (I).  operation (x), the first calculation coefficient (A) and the value of the electric current (I).
2. Actionneur électromagnétique selon la revendication 1 , caractérisé que les premier et second moyens de mémorisation (M1 , M2) sont reliés aux moyens de commande (20) afin que les mémorisations de la première et de la seconde valeur dérivée (dii/dton, dÎ2/dt0ff) soient respectivement synchronisées avec la durée d'alimentation (ton) et la durée de non-alimentation (toff) en tension de la bobine d'actionnement (3). durée d'alimentation (ton) et la durée de non-alimentation (t0ff) en tension de la bobine d'actionnement (3). 2. Electromagnetic actuator according to claim 1, characterized in that the first and second storage means (M1, M2) are connected to the control means (20) so that the memorizations of the first and second derived values (dii / dt on , d2 / dt 0 ff) are respectively synchronized with the supply duration (t on ) and the duration of no power supply (toff) in voltage of the actuating coil (3). supply duration (t on ) and the duration of non-supply (t 0ff ) in voltage of the actuating coil (3).
3. Actionneur électromagnétique selon la revendication 1 ou 2, caractérisé que la première corrélation entre la position de fonctionnement (x), le premier coefficient de calcul (A) et la valeur du courant électrique (I) est représentée à partir d'une mise en équations spécifiques. An electromagnetic actuator according to claim 1 or 2, characterized in that the first correlation between the operating position (x), the first calculation coefficient (A) and the value of the electric current (I) is represented from a setting in specific equations.
4. Actionneur électromagnétique selon la revendication 1 ou 2, caractérisé que la première corrélation entre la position de fonctionnement (x), le premier coefficient de calcul (A) et la valeur du courant électrique (I) est représentée à partir d'une première courbe de surface (10) donnant la position de An electromagnetic actuator according to claim 1 or 2, characterized in that the first correlation between the operating position (x), the first calculation coefficient (A) and the value of the electric current (I) is represented from a first surface curve (10) giving the position of
fonctionnement (x) en fonction du premier coefficient de calcul (A) et de la valeur du courant électrique (I).  operation (x) according to the first calculation coefficient (A) and the value of the electric current (I).
5. Actionneur électromagnétique selon la revendication 4, caractérisé que l'unité de traitement (2) comporte des moyens de mémorisation (22) mémorisant la première courbe (10) sous forme d'une ou plusieurs équations. 5. Electromagnetic actuator according to claim 4, characterized in that the processing unit (2) comprises storage means (22) storing the first curve (10) in the form of one or more equations.
6. Actionneur électromagnétique selon la revendication 4, caractérisé que l'unité de traitement (2) comporte des moyens de mémorisation (22) mémorisant la première courbe (10) sous forme d'un tableau de données contenant une pluralité de valeurs de position de fonctionnement (x) de l'actionneur, de premiers coefficients de calcul (A) et de valeurs du courant électrique (I). Electromagnetic actuator according to claim 4, characterized in that the processing unit (2) has storage means (22) storing the first curve (10) in the form of a data table containing a plurality of position values of operation (x) of the actuator, first calculation coefficients (A) and values of the electric current (I).
7. Actionneur électromagnétique selon l'une quelconque des revendications précédentes, caractérisé que l'unité de traitement comporte : Electromagnetic actuator according to one of the preceding claims, characterized in that the processing unit comprises:
- des moyens de mesure d'une résistance totale (R) de la bobine  means for measuring a total resistance (R) of the coil
d'actionnement (3) à partir d'un courant électrique de référence (Iref) et / ou d'une tension de référence (Uref).  actuating circuit (3) from an electric reference current (Iref) and / or a reference voltage (Uref).
- des moyens de calcul (23) pour déterminer successivement :  calculating means (23) for successively determining:
- un second coefficient de calcul (B) dépendant du premier coefficient de calcul (A), de la résistance totale (R) de la bobine, de la seconde valeur dérivée (di2/d t0ff) et du courant électrique (I) ; - une vitesse de fonctionnement (V) de l'actionneur électromagnétique (100) à partir d'une seconde corrélation entre la vitesse de - a second calculation coefficient (B) dependent on the first calculation coefficient (A), the total resistance (R) of the coil, the second derived value (di2 / dt 0 ff) and the electric current (I); an operating speed (V) of the electromagnetic actuator (100) from a second correlation between the speed of
fonctionnement V, le second coefficient de calcul B et entre la valeur de dérivée partielle de l'inductance L par rapport au déplacement (x) à un courant constant.  operation V, the second calculation coefficient B and between the partial derivative value of the inductance L with respect to the displacement (x) at a constant current.
8. Actionneur électromagnétique selon la revendication 7, caractérisé que la Electromagnetic actuator according to claim 7, characterized in that the
seconde corrélation entre la dérivée partielle de l'inductance par rapport à la position de fonctionnement (x) à un courant constant et la position de fonctionnement (x) et le courant électrique (I) est représentée à partir d'une deuxième courbe de surface (9).  second correlation between the partial derivative of the inductance with respect to the operating position (x) at a constant current and the operating position (x) and the electric current (I) is represented from a second surface curve (9).
9. Actionneur électromagnétique selon la revendication 8, caractérisé que l'unité de traitement (2) comporte des moyens de mémorisation (22) mémorisant la seconde courbe de surface (9) sous forme d'un tableau de données contenant une pluralité de points de fonctionnement donnant la correspondance entre la dérivée partielle de l'inductance (L) par rapport à la position de fonctionnement (x) à un courant constant en fonction de la position de fonctionnement (x) et du courant électrique (I). An electromagnetic actuator according to claim 8, characterized in that the processing unit (2) has storage means (22) storing the second surface curve (9) in the form of a data table containing a plurality of data points. operation giving the correspondence between the partial derivative of the inductance (L) with respect to the operating position (x) at a constant current as a function of the operating position (x) and the electric current (I).
10. Procédé pour déterminer une position de fonctionnement (x) d'un actionneur électromagnétique (100) selon les revendications précédentes, actionneur comprenant : 10. A method for determining an operating position (x) of an electromagnetic actuator (100) according to the preceding claims, the actuator comprising:
- une unité de traitement (2) destinée à agir sur des moyens commande a processing unit (2) intended to act on control means
(20) générant une tension de commande (Upwrtl) modulée en amplitude de type PWM, (20) generating a PWM-type amplitude modulated control voltage (U pwrtl ),
- au moins une bobine d'actionnement (3) reliée aux moyens commande at least one actuating coil (3) connected to the control means
(21 ) , (21),
- des moyens de mesure (24) du courant électrique (I) circulant dans la bobine d'actionnement (3),  measuring means (24) for the electric current (I) flowing in the actuating coil (3),
- des moyens dérivateurs (25) calculant la valeur dérivée (di/dt) du courant électrique;  - Derivative means (25) calculating the derived value (di / dt) of the electric current;
procédé, caractérisé en ce en qu'il consiste à : - mesurer le courant électrique (I) circulant dans la bobine d'actionnement (3) ; characterized in that it consists of: - measuring the electric current (I) flowing in the actuating coil (3);
- calculer la valeur dérivée (di/dt) du courant électrique (I) ;  - calculate the derived value (di / dt) of the electric current (I);
- mémoriser une première valeur dérivée (di-i/dton) pendant une durée  storing a first derived value (di-i / dton) for a duration
d'alimentation (ton) en tension de la bobine d'actionnement (3) ; energizing (t on ) voltage of the actuating coil (3);
- mémoriser une seconde valeur dérivée (dÏ2/dt0ff) pendant une durée de non-alimentation (t0ff) en tension de ladite bobine ; storing a second derivative value (d 2 / dt 0 ff) during a non-supply period (t 0 ff) in voltage of said coil;
- déterminer un premier coefficient de calcul (A) dépendant d'une tension bus d'alimentation (UbUs), des premières et secondes valeurs dérivées (dh/dton, di2/dt0ff) de courant électrique ; - determining a first calculation coefficient (A) dependent on a supply bus voltage (Ub U s), first and second derived values (dh / dton, di 2 / dt 0 ff) of electric current;
- déterminer une position de fonctionnement (x) de l'actionneur  - determine an operating position (x) of the actuator
électromagnétique (100) à partir d'une première corrélation entre la position de fonctionnement (x), du premier coefficient de calcul (A) et de la valeur du courant électrique (I).  electromagnetic (100) from a first correlation between the operating position (x), the first calculation coefficient (A) and the value of the electric current (I).
11. Procédé selon la revendication 10, caractérisé en ce en qu'il consiste à : 11. Process according to claim 10, characterized in that it consists of:
- mesurer une résistance totale (R) de la bobine d'actionnement (3) à partir d'un courant électrique de référence (Iref) et / ou d'une tension de référence (Uref).  - measure a total resistance (R) of the actuating coil (3) from an electric reference current (Iref) and / or a reference voltage (Uref).
- déterminer un second coefficient de calcul (B) dépendant du premier coefficient de calcul (A), de résistance totale (R) de la bobine, de la seconde valeur dérivée (dÏ2/dt0ff) et du courant électrique (I) ; - determining a second calculation coefficient (B) dependent on the first calculation coefficient (A), total resistance (R) of the coil, the second derived value (d2 / dt 0 ff) and the electric current (I);
- déterminer une vitesse de fonctionnement (V) de l'actionneur  - determine an operating speed (V) of the actuator
électromagnétique (100) à partir d'une seconde corrélation entre la vitesse de fonctionnement (V), le second coefficient de calcul (B) et entre la valeur de dérivée partielle de l'inductance (L) par rapport au déplacement (x) à un courant constant.  electromagnetic (100) from a second correlation between the operating speed (V), the second calculation coefficient (B) and between the partial derivative value of the inductance (L) with respect to the displacement (x) at a constant current.
EP11709999.4A 2010-04-01 2011-02-21 Electromagnetic actuator comprising position control means and method using such an actuator Not-in-force EP2553694B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1001361A FR2958444B1 (en) 2010-04-01 2010-04-01 ELECTROMAGNETIC ACTUATOR HAVING POSITION CONTROL MEANS AND METHOD USING SUCH ACTUATOR
PCT/FR2011/000104 WO2011121188A1 (en) 2010-04-01 2011-02-21 Electromagnetic actuator comprising position control means and method using such an actuator

Publications (2)

Publication Number Publication Date
EP2553694A1 true EP2553694A1 (en) 2013-02-06
EP2553694B1 EP2553694B1 (en) 2015-04-08

Family

ID=42767970

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11709999.4A Not-in-force EP2553694B1 (en) 2010-04-01 2011-02-21 Electromagnetic actuator comprising position control means and method using such an actuator

Country Status (4)

Country Link
EP (1) EP2553694B1 (en)
CN (1) CN102934179B (en)
FR (1) FR2958444B1 (en)
WO (1) WO2011121188A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016019448A1 (en) * 2014-08-08 2016-02-11 Whirlpool S.A. Solenoid valve controlling method provided with magnetic cursor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021058723A1 (en) * 2019-09-25 2021-04-01 Magna powertrain gmbh & co kg Method for determining the position of an armature of an electromagnetic linear actuator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5481187A (en) * 1991-11-29 1996-01-02 Caterpillar Inc. Method and apparatus for determining the position of an armature in an electromagnetic actuator
US5424637A (en) * 1993-03-15 1995-06-13 Caterpillar Inc. Method and apparatus for determining the position of an armature in an electromagnetic actuator using observer theory
FR2745913B1 (en) 1996-03-11 1998-04-10 Electricite De France DEVICE AND METHOD FOR CONTROLLING A MECHANISM EQUIPPED WITH A PLUNGER CORE
US6657847B1 (en) 1999-07-13 2003-12-02 Siemens Automotive Corporation Method of using inductance for determining the position of an armature in an electromagnetic solenoid
FR2835061B1 (en) 2002-01-24 2004-04-09 Schneider Electric Ind Sa METHOD FOR MEASURING THE POSITION OF THE MOBILE REINFORCEMENT OF AN ELECTROMAGNET

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011121188A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016019448A1 (en) * 2014-08-08 2016-02-11 Whirlpool S.A. Solenoid valve controlling method provided with magnetic cursor

Also Published As

Publication number Publication date
CN102934179A (en) 2013-02-13
EP2553694B1 (en) 2015-04-08
FR2958444B1 (en) 2012-05-04
WO2011121188A1 (en) 2011-10-06
FR2958444A1 (en) 2011-10-07
CN102934179B (en) 2015-11-25

Similar Documents

Publication Publication Date Title
CA2875493C (en) Monitoring a linear variable differential transformer sensor
EP2584575A1 (en) Method for diagnosing an operating state of a contactor and contactor for implementing said method
FR2972583A1 (en) CONTROL METHOD IMPLEMENTED IN A POWER CONVERTER FOR IDENTIFYING PARAMETERS RELATING TO THE MAGNETIC SATURATION OF AN ELECTRIC MOTOR
EP1813953A2 (en) Fluxgate magnetometer with pulsed excitation and sampled detection
FR2984032A1 (en) METHOD FOR NON-CONTACT CHARGING OF A BATTERY OF AN ELECTRIC MOTOR VEHICLE
EP2148339B1 (en) Electromagnetic actuator including the means for controlling self-adaptive operation and method using such an actuator.
EP2553694A1 (en) Electromagnetic actuator comprising position control means and method using such an actuator
EP3156809A1 (en) Electricity meter and method for controlling an opening and a closing of an interrupting member of the electricity meter
EP2403119B1 (en) Control method and system for compensating for the dead-times in PWM control
FR3028690A1 (en) METHOD FOR CONTROLLING A SYNCHRONOUS ROTOR COIL ELECTRIC MACHINE
FR3066277A1 (en) DEVICE AND METHOD FOR DETECTING AN ELECTRICAL CHARGE
EP3555652B1 (en) Method for dynamic compensation for the offset error of an acquisition system comprising a current sensor
FR3004581A1 (en) ELECTRICAL CONTACTOR AND METHOD FOR CONTROLLING AN ELECTROMAGNETIC COIL IN SUCH A CONTACTOR
EP2618163A1 (en) Method for measuring a physical parameter and electronic circuit to interface with a capacitive sensor for implementing same
EP2937987A2 (en) Control method and device for a soft-start system of an engine using a measurement of the current derivation
EP3320461B1 (en) Simulation method of the functionality of an electronic circuit and program
FR3045240B1 (en) METHOD FOR COMPENSATING THE NON-LINEAR EFFECTS OF A VOLTAGE INVERTER
WO2013061178A1 (en) Method of regulating the temperature of an element cooled by a cryorefrigerator with periodic operation, associated implementation device and cryogenic installation comprising this device
EP3389072A1 (en) Method for commanding an apparatus for breaking an electrical current, electromagnetic actuator comprising a circuit for implementing this method and electrical apparatus comprising this actuator
FR2999037A1 (en) Method for monitoring boost structure utilized for conversion of direct current into direct current, involves deducing estimate of value of inductance of each converter from consequent variation in duty cycle control
EP2304510A1 (en) Estimation of the impulse response of a system on the basis of binary observations
EP3470884A1 (en) Method for filtering a response signal from a geophone and associated sensor
Chow et al. Transient noise analysis for comparator-based switched-capacitor circuits
EP3171511B1 (en) Method and system to determine the current-voltage characteristics of a photovoltaic installation
FR2985621A1 (en) Method for controlling stator voltage of turbo-alternator to be coupled to electrical supply network, involves determining control signal by applying linearizing command by returning to state reconstructed from state observer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20120920

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20141013

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150108

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 721081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011015449

Country of ref document: DE

Effective date: 20150521

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 721081

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150408

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150708

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150808

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011015449

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150408

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

26N No opposition filed

Effective date: 20160111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160221

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160221

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180221

Year of fee payment: 8

Ref country code: DE

Payment date: 20180206

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180206

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011015449

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190221

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190903

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190228