EP2553364A1 - Traitement d'hydrocarbures gazeux - Google Patents

Traitement d'hydrocarbures gazeux

Info

Publication number
EP2553364A1
EP2553364A1 EP11763225A EP11763225A EP2553364A1 EP 2553364 A1 EP2553364 A1 EP 2553364A1 EP 11763225 A EP11763225 A EP 11763225A EP 11763225 A EP11763225 A EP 11763225A EP 2553364 A1 EP2553364 A1 EP 2553364A1
Authority
EP
European Patent Office
Prior art keywords
stream
receive
components
cooled
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11763225A
Other languages
German (de)
English (en)
Inventor
Andrew F. Johnke
Larry W. Lewis
Don L. Tyler
John D. Wilkinson
Joe T. Lynch
Hank M. Hudson
Kyle T. Cuellar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ortloff Engineers Ltd
SME Products LP
Original Assignee
Ortloff Engineers Ltd
SME Products LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/372,604 external-priority patent/US20100206542A1/en
Priority claimed from US12/689,616 external-priority patent/US9021831B2/en
Priority claimed from US12/750,862 external-priority patent/US8881549B2/en
Priority claimed from PCT/US2010/029331 external-priority patent/WO2010144172A1/fr
Priority claimed from US12/772,472 external-priority patent/US9933207B2/en
Priority claimed from US12/781,259 external-priority patent/US9939195B2/en
Priority claimed from US13/048,315 external-priority patent/US9052136B2/en
Priority claimed from US13/051,682 external-priority patent/US9074814B2/en
Application filed by Ortloff Engineers Ltd, SME Products LP filed Critical Ortloff Engineers Ltd
Priority claimed from US13/052,348 external-priority patent/US9052137B2/en
Publication of EP2553364A1 publication Critical patent/EP2553364A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0209Natural gas or substitute natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0242Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/02Processes or apparatus using separation by rectification in a single pressure main column system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/70Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/76Refluxing the column with condensed overhead gas being cycled in a quasi-closed loop refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/80Processes or apparatus using separation by rectification using integrated mass and heat exchange, i.e. non-adiabatic rectification in a reflux exchanger or dephlegmator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/60Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being (a mixture of) hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/02Expansion of a process fluid in a work-extracting turbine (i.e. isentropic expansion), e.g. of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/20Boiler-condenser with multiple exchanger cores in parallel or with multiple re-boiling or condensing streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/02Internal refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/12External refrigeration with liquid vaporising loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/60Closed external refrigeration cycle with single component refrigerant [SCR], e.g. C1-, C2- or C3-hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/40Vertical layout or arrangement of cold equipments within in the cold box, e.g. columns, condensers, heat exchangers etc.
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/42Modularity, pre-fabrication of modules, assembling and erection, horizontal layout, i.e. plot plan, and vertical arrangement of parts of the cryogenic unit, e.g. of the cold box

Definitions

  • Ethylene, ethane, propylene, propane, and/or heavier hydrocarbons can be recovered from a variety of gases, such as natural gas, refinery gas, and synthetic gas streams obtained from other hydrocarbon materials such as coal, crude oil, naphtha, oil shale, tar sands, and lignite.
  • Natural gas usually has a major proportion of methane and ethane, i.e., methane and ethane together comprise at least 50 mole percent of the gas.
  • the gas also contains relatively lesser amounts of heavier hydrocarbons such as propane, butanes, pentanes, and the like, as well as hydrogen, nitrogen, carbon dioxide, and other gases.
  • the present invention is generally concerned with the recovery of ethylene, ethane, propylene, propane, and heavier hydrocarbons from such gas streams.
  • a typical analysis of a gas stream to be processed in accordance with this invention would be, in approximate mole percent, 90.3% methane, 4.0% ethane and other C 2 components, 1.7% propane and other C 3 components, 0.3% iso-butane, 0.5% normal butane, and 0.8% pentanes plus, with the balance made up of nitrogen and carbon dioxide. Sulfur containing gases are also sometimes present.
  • a feed gas stream under pressure is cooled by heat exchange with other streams of the process and/or external sources of refrigeration such as a propane compression-refrigeration system.
  • liquids may be condensed and collected in one or more separators as high-pressure liquids containing some of the desired C 2 + components.
  • the high-pressure liquids may be expanded to a lower pressure and fractionated. The vaporization occurring during expansion of the liquids results in further cooling of the stream. Under some conditions, pre-cooling the high pressure liquids prior to the expansion may be desirable in order to further lower the temperature resulting from the expansion.
  • the expanded stream comprising a mixture of liquid and vapor, is fractionated in a distillation (demethanizer or deethanizer) column.
  • the expansion cooled stream(s) is (are) distilled to separate residual methane, nitrogen, and other volatile gases as overhead vapor from the desired C 2 components, C 3 components, and heavier hydrocarbon components as bottom liquid product, or to separate residual methane, C 2 components, nitrogen, and other volatile gases as overhead vapor from the desired C 3 components and heavier hydrocarbon components as bottom liquid product.
  • the feed gas is not totally condensed (typically it is not), the vapor remaining from the partial condensation can be split into two streams.
  • One portion of the vapor is passed through a work expansion machine or engine, or an expansion valve, to a lower pressure at which additional liquids are condensed as a result of further cooling of the stream.
  • the pressure after expansion is essentially the same as the pressure at which the distillation column is operated.
  • the combined vapor-liquid phases resulting from the expansion are supplied as feed to the column.
  • condensation by heat exchange with other process streams e.g., the cold fractionation tower overhead.
  • Some or all of the high-pressure liquid may be combined with this vapor portion prior to cooling.
  • the resulting cooled stream is then expanded through an appropriate expansion device, such as an expansion valve, to the pressure at which the demethanizer is operated. During expansion, a portion of the liquid will vaporize, resulting in cooling of the total stream.
  • the flash expanded stream is then supplied as top feed to the demethanizer.
  • the vapor portion of the flash expanded stream and the demethanizer overhead vapor combine in an upper separator section in the fractionation tower as residual methane product gas.
  • the cooled and expanded stream may be supplied to a separator to provide vapor and liquid streams.
  • the vapor is combined with the tower overhead and the liquid is supplied to the column as a top column feed.
  • the residue gas leaving the process will contain substantially all of the methane in the feed gas with essentially none of the heavier hydrocarbon components and the bottoms fraction leaving the demethanizer will contain substantially all of the heavier hydrocarbon components with essentially no methane or more volatile components.
  • this ideal situation is not obtained because the conventional demethanizer is operated largely as a stripping column.
  • the methane product of the process therefore, typically comprises vapors leaving the top fractionation stage of the column, together with vapors not subjected to any rectification step.
  • the preferred processes for hydrocarbon separation use an upper absorber section to provide additional rectification of the rising vapors.
  • the source of the reflux stream for the upper rectification section is typically a recycled stream of residue gas supplied under pressure.
  • the recycled residue gas stream is usually cooled to substantial condensation by heat exchange with other process streams, e.g., the cold fractionation tower overhead.
  • the resulting substantially condensed stream is then expanded through an appropriate expansion device, such as an expansion valve, to the pressure at which the demethanizer is operated. During expansion, a portion of the liquid will usually vaporize, resulting in cooling of the total stream.
  • the flash expanded stream is then supplied as top feed to the demethanizer.
  • the vapor portion of the expanded stream and the demethanizer overhead vapor combine in an upper separator section in the fractionation tower as residual methane product gas.
  • the cooled and expanded stream may be supplied to a separator to provide vapor and liquid streams, so that thereafter the vapor is combined with the tower overhead and the liquid is supplied to the column as a top column feed.
  • Typical process schemes of this type are disclosed in U.S. Patent Nos. 4,889,545; 5,568,737; and 5,881 ,569, co-pending application nos. 1 1/430,412; 11/971,491 ; and 12/717,394, and in Mowrey, E. Ross, "Efficient, High Recovery of Liquids from Natural Gas Utilizing a High Pressure Absorber", Proceedings of the Eighty-First Annual Convention of the Gas Processors Association, Dallas, Texas, March 11-13, 2002.
  • the present invention employs a novel means of performing the various steps described above more efficiently and using fewer pieces of equipment. This is accomplished by combining what heretofore have been individual equipment items into a common housing, thereby reducing the plot space required for the processing plant and reducing the capital cost of the facility. Surprisingly, applicants have found that the more compact arrangement also significantly reduces the power consumption required to achieve a given recovery level, thereby increasing the process efficiency and reducing the operating cost of the facility. In addition, the more compact arrangement also eliminates much of the piping used to interconnect the individual equipment items in traditional plant designs, further reducing capital cost and also eliminating the associated flanged piping connections.
  • piping flanges are a potential leak source for hydrocarbons (which are volatile organic compounds, VOCs, that contribute to greenhouse gases and may also be precursors to atmospheric ozone formation), eliminating these flanges reduces the potential for atmospheric emissions that can damage the environment.
  • the present invention although applicable at lower pressures and warmer
  • FIG. 1 is a flow diagram of a prior art natural gas processing plant in accordance with United States Patent No. 5,568,737;
  • FIG. 2 is a flow diagram of a natural gas processing plant in accordance with the present invention.
  • FIGS. 3 through 17 are flow diagrams illustrating alternative means of application of the present invention to a natural gas stream.
  • FIG. 1 is a process flow diagram showing the design of a processing plant to recover C 2 + components from natural gas using prior art according to U.S. Pat. No. 5,568,737.
  • inlet gas enters the plant at 110°F [43°C] and 915 psia [6,307 kPa(a)] as stream 31. If the inlet gas contains a concentration of sulfur compounds which would prevent the product streams from meeting specifications, the sulfur compounds are removed by appropriate
  • the feed stream is usually dehydrated to prevent hydrate (ice) formation under cryogenic conditions.
  • Solid desiccant has typically been used for this purpose.
  • the feed stream 31 is divided into two portions, streams 32 and 33.
  • Stream 32 is cooled to -26°F [-32°C] in heat exchanger 10 by heat exchange with cool distillation vapor stream 41a, while stream 33 is cooled to -32°F [-35°C] in heat exchanger 11 by heat exchange with demethanizer reboiler liquids at 41°F [5°C] (stream 43) and side reboiler liquids at -49°F [-45°C] (stream 42).
  • Streams 32a and 33a recombine to form stream 31a, which enters separator 12 at -28°F [-33°C] and 893 psia [6,155 kPa(a)] where the vapor (stream 34) is separated from the condensed liquid (stream 35).
  • Stream 36 containing about 27% of the total vapor, is combined with the separator liquid (stream 35), and the combined stream 38 passes through heat exchanger 13 in heat exchange relation with cold distillation vapor stream 41 where it is cooled to substantial condensation.
  • the resulting substantially condensed stream 38a at -139°F [-95°C] is then flash expanded through expansion valve 14 to the operating pressure (approximately 396 psia [2,730 kPa(a)]) of fractionation tower 18. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream.
  • the expanded stream 38b leaving expansion valve 14 reaches a temperature of -140°F [-95°C] and is supplied to fractionation tower 18 at a first mid-column feed point.
  • the remaining 73% of the vapor from separator 12 enters a work expansion machine 15 in which mechanical energy is extracted from this portion of the high pressure feed.
  • the machine 15 expands the vapor substantially isentropically to the tower operating pressure, with the work expansion cooling the expanded stream 39a to a temperature of approximately -95°F [-71°C].
  • the typical commercially available expanders are capable of recovering on the order of 80-85% of the work theoretically available in an ideal isentropic expansion.
  • the work recovered is often used to drive a centrifugal compressor (such as item 16) that can be used to re-compress the heated distillation vapor stream (stream 41b), for example.
  • the partially condensed expanded stream 39a is thereafter supplied as feed to fractionation tower 18 at a second mid-column feed point.
  • the recompressed and cooled distillation vapor stream 41e is divided into two streams.
  • One portion, stream 46, is the volatile residue gas product.
  • the other portion, recycle stream 45 flows to heat exchanger 10 where it is cooled to -26°F [-32°C] by heat exchange with cool distillation vapor stream 41a.
  • the cooled recycle stream 45a then flows to exchanger 13 where it is cooled to -139°F [-95°C] and substantially condensed by heat exchange with cold distillation vapor stream 41.
  • the substantially condensed stream 45b is then expanded through an appropriate expansion device, such as expansion valve 22, to the demethanizer operating pressure, resulting in cooling of the total stream to -147°F [-99°C].
  • the expanded stream 45c is then supplied to fractionation tower 18 as the top column feed.
  • the vapor portion (if any) of stream 45c combines with the vapors rising from the top fractionation stage of the column to form distillation vapor stream 41, which is withdrawn from an upper region of the tower.
  • the demethanizer in tower 18 is a conventional distillation column containing a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing.
  • the fractionation tower may consist of two sections.
  • the upper section 18a is a separator wherein the partially vaporized top feed is divided into its respective vapor and liquid portions, and wherein the vapor rising from the lower distillation or demethanizing section 18b is combined with the vapor portion of the top feed to form the cold demethanizer overhead vapor (stream 41) which exits the top of the tower at -144°F [-98°C].
  • the lower, demethanizing section 18b contains the trays and/or packing and provides the necessary contact between the liquids falling downward and the vapors rising upward.
  • the demethanizing section 18b also includes reboilers (such as the reboiler and the side reboiler described previously) which heat and vaporize a portion of the liquids flowing down the column to provide the stripping vapors which flow up the column to strip the liquid product, stream 44, of methane and lighter components.
  • the demethanizer overhead vapor stream 41 passes countercurrently to the incoming feed gas and recycle stream in heat exchanger 13 where it is heated to -40°F [-40°C] (stream 41a) and in heat exchanger 10 where it is heated to 104°F [40°C] (stream 41b).
  • the distillation vapor stream is then
  • the first stage is compressor 16 driven by expansion machine 15.
  • the second stage is compressor 20 driven by a supplemental power source which compresses the residue gas (stream 4 Id) to sales line pressure.
  • stream 41e is split into the residue gas product (stream 46) and the recycle stream 45 as described earlier.
  • Residue gas stream 46 flows to the sales gas pipeline at 915 psia [6,307 kPa(a)], sufficient to meet line requirements (usually on the order of the inlet pressure).
  • FIG. 2 illustrates a flow diagram of a process in accordance with the present invention.
  • the feed gas composition and conditions considered in the process presented in FIG. 2 are the same as those in FIG. 1. Accordingly, the FIG. 2 process can be compared with that of the FIG. 1 process to illustrate the advantages of the present invention.
  • inlet gas enters the plant as stream 31 and is divided into two portions, streams 32 and 33.
  • the first portion, stream 32 enters a heat exchange means in the upper region of feed cooling section 118a inside processing assembly 118.
  • This heat exchange means may be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers.
  • the heat exchange means is configured to provide heat exchange between stream 32 flowing through one pass of the heat exchange means and a distillation vapor stream arising from separator section 118b inside processing assembly 118 that has been heated in a heat exchange means in the lower region of feed cooling section 118a.
  • Stream 32 is cooled while further heating the distillation vapor stream, with stream 32a leaving the heat exchange means at -25°F [-32°C].
  • the second portion, stream 33 enters a heat and mass transfer means in demethanizing section 118e inside processing assembly 118.
  • This heat and mass transfer means may also be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers.
  • the heat and mass transfer means is configured to provide heat exchange between stream 33 flowing through one pass of the heat and mass transfer means and a distillation liquid stream flowing downward from absorbing section 118d inside processing assembly 118, so that stream 33 is cooled while heating the distillation liquid stream, cooling stream 33a to -47°F [-44°C] before it leaves the heat and mass transfer means.
  • the heat and mass transfer means provides continuous contact between the stripping vapors and the distillation liquid stream so that it also functions to provide mass transfer between the vapor and liquid phases, stripping the liquid product stream 44 of methane and lighter components.
  • Streams 32a and 33a recombine to form stream 31a, which enters separator section 118f inside processing assembly 118 at -32°F [-36°C] and 900 psia [6,203 kPa(a)], whereupon the vapor (stream 34) is separated from the condensed liquid (stream 35).
  • Separator section 118f has an internal head or other means to divide it from demethanizing section 118e, so that the two sections inside processing assembly 118 can operate at different pressures.
  • the vapor (stream 34) from separator section 118f is divided into two streams, 36 and 39.
  • Stream 36 containing about 27% of the total vapor, is combined with the separated liquid (stream 35, via stream 37), and the combined stream 38 enters a heat exchange means in the lower region of feed cooling section 118a inside processing assembly 118.
  • This heat exchange means may likewise be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers.
  • the heat exchange means is configured to provide heat exchange between stream 38 flowing through one pass of the heat exchange means and the distillation vapor stream arising from separator section 118b, so that stream 38 is cooled to substantial condensation while heating the distillation vapor stream.
  • the liquids in stream 38b combine with the liquids falling from rectifying section 118c and are directed to absorbing section 118d, while any vapors combine with the vapors rising from absorbing section 118d and are directed to rectifying section 118c. [0032] The remaining 73% of the vapor from separator section 118f (stream
  • the partially condensed expanded stream 39a is thereafter supplied as feed to the lower region of absorbing section 118d inside processing assembly 118.
  • the recompressed and cooled distillation vapor stream 41c is divided into two streams.
  • One portion, stream 46, is the volatile residue gas product.
  • the other portion, recycle stream 45, enters a heat exchange means in the feed cooling section 118a inside processing assembly 118.
  • This heat exchange means may also be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers.
  • the heat exchange means is configured to provide heat exchange between stream 45 flowing through one pass of the heat exchange means and the distillation vapor stream arising from separator section 118b, so that stream 45 is cooled to substantial condensation while heating the distillation vapor stream.
  • the substantially condensed recycle stream 45a leaves the heat exchange means in feed cooling section 118a at -138°F [-95°C] and is flash expanded through expansion valve 22 to the operating pressure of rectifying section 118c inside processing assembly 118. During expansion a portion of the stream is vaporized, resulting in cooling of the total stream. In the process illustrated in FIG. 2, the expanded stream 45b leaving expansion valve 22 reaches a temperature of -146°F [-99°C] and is supplied to separator section 118b inside processing assembly 118. The liquids separated therein are directed to rectifying section 118c, while the remaining vapors combine with the vapors rising from rectifying section 118c to form the distillation vapor stream that is heated in cooling section 118a.
  • Rectifying section 118c and absorbing section 118d each contain an absorbing means consisting of a plurality of vertically spaced trays, one or more packed beds, or some combination of trays and packing.
  • the trays and/or packing in rectifying section 118c and absorbing section 118d provide the necessary contact between the vapors rising upward and cold liquid falling downward.
  • the liquid portion of the expanded stream 39a commingles with liquids falling downward from absorbing section 118d and the combined liquid continues downward into
  • demethanizing section 118e The stripping vapors arising from demethanizing section 118e combine with the vapor portion of the expanded stream 39a and rise upward through absorbing section 118d, to be contacted with the cold liquid falling downward to condense and absorb most of the C 2 components, C 3 components, and heavier components from these vapors.
  • the vapors arising from absorbing section 118d combine with any vapor portion of the expanded stream 38b and rise upward through rectifying section 118c, to be contacted with the cold liquid portion of expanded stream 45b falling downward to condense and absorb most of the C 2 components, C 3 components, and heavier components remaining in these vapors.
  • the liquid portion of the expanded stream 38b commingles with liquids falling downward from rectifying section 118c and the combined liquid continues downward into absorbing section 118d.
  • distillation liquid flowing downward from the heat and mass transfer means in demethanizing section 118e inside processing assembly 118 has been stripped of methane and lighter components.
  • the resulting liquid product (stream 44) exits the lower region of demethanizing section 118e and leaves processing assembly 118 at 65°F [18°C].
  • the distillation vapor stream arising from separator section 118b is warmed in feed cooling section 118a as it provides cooling to streams 32, 38, and 45 as described previously, and the resulting distillation vapor stream 41 leaves processing assembly 118 at 105°F [40°C].
  • the distillation vapor stream is then re-compressed in two stages, compressor 16 driven by expansion machine 15 and compressor 20 driven by a supplemental power source.
  • stream 41b is cooled to 110°F [43 °C] in discharge cooler 21 to form stream 41c
  • recycle stream 45 is withdrawn as described earlier, forming residue gas stream 46 which thereafter flows to the sales gas pipeline at 915 psia [6,307 kPa(a)].
  • the present invention represents more than a 6% improvement over the prior art of the FIG. 1 process.
  • the improvement in recovery efficiency provided by the present invention over that of the prior art of the FIG. 1 process is primarily due to two factors.
  • rectifying section 118c and absorbing section 118d in processing assembly 118 of the present invention can operate at higher pressure than fractionation column 18 of the prior art while maintaining the same recovery level.
  • This higher operating pressure plus the reduction in pressure drop for the distillation vapor stream due to eliminating the interconnecting piping, results in a significantly higher pressure for the distillation vapor stream entering compressor 20, thereby reducing the power required by the present invention to restore the residue gas to pipeline pressure.
  • the present invention offers two other advantages over the prior art in addition to the increase in processing efficiency.
  • Second, elimination of the interconnecting piping means that a processing plant utilizing the present invention has far fewer flanged connections compared to the prior art, reducing the number of potential leak sources in the plant.
  • Hydrocarbons are volatile organic compounds (VOCs), some of which are classified as greenhouse gases and some of which may be precursors to atmospheric ozone formation, which means the present invention reduces the potential for atmospheric releases that can damage the environment.
  • VOCs volatile organic compounds
  • exchanger 10 is representative of either a multitude of individual heat exchangers or a single multi-pass heat exchanger, or any
  • Each such heat exchanger may be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers.
  • circumstances may favor combining a portion of liquid stream 35 (stream 37) with the vapor in stream 36 (FIGS. 2, 6, 10, and 14) or with cooled second portion 33a (FIGS. 4, 8, 12, and 16) to form combined stream 38 and routing the remaining portion of liquid stream 35 to the lower region of absorbing section 118d via streams 40/40a.
  • Some circumstances may favor combining the expanded liquid stream 40a with expanded stream 39a (FIGS. 2, 6, 10, and 14) or expanded stream 34a (FIGS. 4, 8, 12, and 16) and thereafter supplying the combined stream to the lower region of absorbing section 118d as a single feed.
  • the quantity of liquid separated in stream 35 may be great enough to favor placing an additional mass transfer zone in
  • demethanizing section 118e between expanded stream 39a and expanded liquid stream 40a as shown in FIGS. 3, 7, 11 , and 15, or between expanded stream 34a and expanded liquid stream 40a as shown in FIGS. 5, 9, 13, and 17.
  • the heat and mass transfer means in demethanizing section 118e may be configured in upper and lower parts so that expanded liquid stream 40a can be introduced between the two parts. As shown by the dashed lines, some circumstances may favor combining a portion of liquid stream 35 (stream 37) with the vapor in stream 36
  • Vapor stream 34 enters work expansion machine 15 and is expanded substantially isentropically to the operating pressure of absorbing section 118d, whereupon expanded stream 34a is supplied as feed to the lower region of absorbing section 118d inside processing assembly 118.
  • the cooled second portion 33a is combined with the separated liquid (stream 35, via stream 37), and the combined stream 38 is directed to the heat exchange means in the lower region of feed cooling section 118a inside processing assembly 118 (or in heat exchanger 10 external to processing assembly 118) and cooled to substantial condensation.
  • the substantially condensed stream 38a is flash expanded through expansion valve 14 to the operating pressure of rectifying section 118c and absorbing section 118d, whereupon expanded stream 38b is supplied to processing assembly 118 between rectifying section 118c and absorbing section 118d.
  • Some circumstances may favor combining only a portion (stream 37) of liquid stream 35 with the cooled second portion 33a, with the remaining portion (stream 40) supplied to the lower region of absorbing section 118d via expansion valve 17.
  • Other circumstances may favor sending all of liquid stream 35 to the lower region of absorbing section 118d via expansion valve 17.
  • separator 12 can be used to separate cooled feed stream 31a into vapor stream 34 and liquid stream 35.
  • separator 12 can be used to separate cooled first portion 32a into vapor stream 34 and liquid stream 35.
  • the cooled feed stream 31a entering separator section 118f in FIGS. 2, 3, 10, and 1 1 or separator 12 in FIGS. 6, 7, 14, and 15 may not contain any liquid (because it is above its dewpoint, or because it is above its cricondenbar). In such cases, there is no liquid in streams 35 and 37 (as shown by the dashed lines), so only the vapor from separator section 118f in stream 36 (FIGS. 2, 3, 10, and 11), the vapor from separator 12 in stream 36 (FIGS.
  • Feed gas conditions, plant size, available equipment, or other factors may indicate that elimination of work expansion machine 15, or replacement with an alternate expansion device (such as an expansion valve), is feasible.
  • an alternate expansion device such as an expansion valve
  • individual stream expansion is depicted in particular expansion devices, alternative expansion means may be employed where appropriate.
  • conditions may warrant work expansion of the substantially condensed portion of the feed stream (stream 38a) or the substantially condensed recycle stream (stream 45a).
  • the use of external refrigeration to supplement the cooling available to the inlet gas from the distillation vapor and liquid streams may be employed, particularly in the case of a rich inlet gas.
  • a heat and mass transfer means may be included in separator section 118f (or a gas collecting means in such cases when the cooled feed stream 31a or the cooled first portion 32a contains no liquid) as shown by the dashed lines in FIGS. 2 through 5 and 10 through 13, or a heat and mass transfer means may be included in separator 12 as shown by the dashed lines in FIGS. 6 though 9 and 14 through 17.
  • This heat and mass transfer means may be comprised of a fin and tube type heat exchanger, a plate type heat exchanger, a brazed aluminum type heat exchanger, or other type of heat transfer device, including multi-pass and/or multi-service heat exchangers.
  • the heat and mass transfer means is configured to provide heat exchange between a refrigerant stream (e.g., propane) flowing through one pass of the heat and mass transfer means and the vapor portion of stream 31a (FIGS. 2, 3, 6, 7, 10, 1 1 , 14, and 15) or stream 32a (FIGS. 4, 5, 8, 9, 12, 13, 16, and 17) flowing upward, so that the refrigerant further cools the vapor and condenses additional liquid, which falls downward to become part of the liquid removed in stream 35.
  • a refrigerant stream e.g., propane
  • conventional gas chiller(s) could be used to cool stream 32a, stream 33a, and/or stream 31a with refrigerant before stream 31a enters separator section 118f (FIGS. 2, 3, 10, and 1 1) or separator 12 (FIGS. 6, 7, 14, and 15) or stream 32a enters separator section 118f (FIGS. 4, 5, 12, and 13) or separator 12 (FIGS. 8, 9, 16, and 17).
  • demethanizing section 118e to meet the product specifications.
  • the heat and mass transfer means in demethanizing section 118e may include provisions for providing supplemental heating with heating medium as shown by the dashed lines in FIGS. 2 through 17.
  • another heat and mass transfer means can be included in the lower region of demethanizing section 118e for providing
  • supplemental heating, or stream 33 can be heated with heating medium before it is supplied to the heat and mass transfer means in demethanizing section 118e.
  • the multi-pass and/or multi-service heat transfer device will include appropriate means for distributing, segregating, and collecting stream 32, stream 38, stream 45, and the distillation vapor stream in order to accomplish the desired cooling and heating.
  • a mass transfer means can be located below where expanded stream 39a (FIGS. 2, 3, 6, 7, 10, 1 1, 14, and 15) or expanded stream 34a (FIGS. 4, 5, 8, 9, 12, 13, 16, and 17) enters the lower region of absorbing section 118d and above where cooled second portion 33a leaves the heat and mass transfer means in demethanizing section 118e.
  • FIGS. 2, 3, 6, 7, 10, 1 1, 14, and 15 embodiments of the present invention is providing a separator vessel for cooled first portion 32a, a separator vessel for cooled second portion 33a, combining the vapor streams separated therein to form vapor stream 34, and combining the liquid streams separated therein to form liquid stream 35.
  • Another less preferred option for the present invention is cooling stream 37 in a separate heat exchange means inside feed cooling section 118a in FIGS. 2, 3, 6, and 7 or a separate pass in heat exchanger 10 in FIGS.
  • the present invention provides improved recovery of C 2 components
  • An improvement in utility consumption required for operating the process may appear in the form of reduced power requirements for compression or re-compression, reduced power requirements for external refrigeration, reduced energy requirements for supplemental heating, or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

L'invention concerne un procédé et un appareil pour une installation de traitement compacte afin de récupérer des composants en C2 (ou en C3) et des composants d'hydrocarbure plus lourds provenant d'un courant d'hydrocarbures gazeux. Le courant gazeux est refroidi et divisé en un premier et en un second courant. Le premier courant est davantage refroidi, subit une expansion à une pression inférieure, puis est amené comme alimentation entre un premier et un second moyen d'absorption. Le second courant subit une expansion à une pression inférieure, puis est amené en tant qu'alimentation par le bas au second moyen d'absorption. Un courant de vapeur de distillation provenant du premier moyen d'absorption est chauffé, comprimé à une pression plus élevée et divisé en une fraction de gaz résiduel volatile et en un courant de recyclage comprimé. Le courant de recyclage comprimé est refroidi, subit une expansion à une pression inférieure, puis est amené comme alimentation par le haut au premier moyen d'absorption. Un courant de liquide de distillation provenant du second moyen d'absorption est chauffé dans un moyen de transfert de chaleur et de masse pour le débarrasser de ses composants volatiles.
EP11763225A 2009-02-17 2011-03-21 Traitement d'hydrocarbures gazeux Withdrawn EP2553364A1 (fr)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US12/372,604 US20100206542A1 (en) 2009-02-17 2009-02-17 Combined multi-stream heat exchanger and conditioner/control unit
US18636109P 2009-06-11 2009-06-11
US12/689,616 US9021831B2 (en) 2009-02-17 2010-01-19 Hydrocarbon gas processing
US12/750,862 US8881549B2 (en) 2009-02-17 2010-03-31 Hydrocarbon gas processing
PCT/US2010/029331 WO2010144172A1 (fr) 2009-06-11 2010-03-31 Traitement de gaz d'hydrocarbures
US12/772,472 US9933207B2 (en) 2009-02-17 2010-05-03 Hydrocarbon gas processing
US12/781,259 US9939195B2 (en) 2009-02-17 2010-05-17 Hydrocarbon gas processing including a single equipment item processing assembly
US13/048,315 US9052136B2 (en) 2010-03-31 2011-03-15 Hydrocarbon gas processing
US13/051,682 US9074814B2 (en) 2010-03-31 2011-03-18 Hydrocarbon gas processing
PCT/US2011/029234 WO2011123276A1 (fr) 2009-02-17 2011-03-21 Traitement d'hydrocarbures gazeux
US13/052,348 US9052137B2 (en) 2009-02-17 2011-03-21 Hydrocarbon gas processing

Publications (1)

Publication Number Publication Date
EP2553364A1 true EP2553364A1 (fr) 2013-02-06

Family

ID=44646126

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11763225A Withdrawn EP2553364A1 (fr) 2009-02-17 2011-03-21 Traitement d'hydrocarbures gazeux

Country Status (3)

Country Link
EP (1) EP2553364A1 (fr)
TN (1) TN2012000329A1 (fr)
WO (1) WO2011123276A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016003305A1 (de) * 2016-03-17 2017-09-21 Linde Aktiengesellschaft Verfahren zum Abtrennen einer ethanreichen Fraktion aus Erdgas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5568737A (en) * 1994-11-10 1996-10-29 Elcor Corporation Hydrocarbon gas processing
US5675054A (en) * 1995-07-17 1997-10-07 Manley; David Low cost thermal coupling in ethylene recovery
US5685170A (en) * 1995-11-03 1997-11-11 Mcdermott Engineers & Constructors (Canada) Ltd. Propane recovery process
US7310971B2 (en) * 2004-10-25 2007-12-25 Conocophillips Company LNG system employing optimized heat exchangers to provide liquid reflux stream
US6516631B1 (en) * 2001-08-10 2003-02-11 Mark A. Trebble Hydrocarbon gas processing
US6694775B1 (en) * 2002-12-12 2004-02-24 Air Products And Chemicals, Inc. Process and apparatus for the recovery of krypton and/or xenon
US7484385B2 (en) * 2003-01-16 2009-02-03 Lummus Technology Inc. Multiple reflux stream hydrocarbon recovery process

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2011123276A1 *

Also Published As

Publication number Publication date
WO2011123276A1 (fr) 2011-10-06
WO2011123276A8 (fr) 2012-03-22
TN2012000329A1 (en) 2013-12-12

Similar Documents

Publication Publication Date Title
US9052137B2 (en) Hydrocarbon gas processing
US9080811B2 (en) Hydrocarbon gas processing
CA2752291C (fr) Traitement de gaz hydrocarbure
US9068774B2 (en) Hydrocarbon gas processing
US20110226011A1 (en) Hydrocarbon Gas Processing
CA2763698C (fr) Traitement de gaz d'hydrocarbures
AU2010259176A1 (en) Hydrocarbon gas processing
AU2011233577B2 (en) Hydrocarbon gas processing
CA2764629C (fr) Traitement d'hydrocarbures gazeux
EP2553366A1 (fr) Traitement d'hydrocarbures gazeux
CA2764144C (fr) Traitement d'hydrocarbure gazeux
AU2011233590B2 (en) Hydrocarbon gas processing
WO2011123276A1 (fr) Traitement d'hydrocarbures gazeux
WO2011123253A1 (fr) Traitement d'hydrocarbures gazeux
EP2553368A1 (fr) Traitement d'hydrocarbures gazeux

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181002