EP2551467B1 - Systèm de contrôle de jeu actif pour moteur à turbine à gaz et procédé associé - Google Patents

Systèm de contrôle de jeu actif pour moteur à turbine à gaz et procédé associé Download PDF

Info

Publication number
EP2551467B1
EP2551467B1 EP12177516.7A EP12177516A EP2551467B1 EP 2551467 B1 EP2551467 B1 EP 2551467B1 EP 12177516 A EP12177516 A EP 12177516A EP 2551467 B1 EP2551467 B1 EP 2551467B1
Authority
EP
European Patent Office
Prior art keywords
pad
turbine
case
control system
conduit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12177516.7A
Other languages
German (de)
English (en)
Other versions
EP2551467A1 (fr
Inventor
Ken Lagueux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RTX Corp
Original Assignee
United Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United Technologies Corp filed Critical United Technologies Corp
Publication of EP2551467A1 publication Critical patent/EP2551467A1/fr
Application granted granted Critical
Publication of EP2551467B1 publication Critical patent/EP2551467B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/14Adjusting or regulating tip-clearance, i.e. distance between rotor-blade tips and stator casing
    • F01D11/20Actively adjusting tip-clearance
    • F01D11/24Actively adjusting tip-clearance by selectively cooling-heating stator or rotor components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/201Heat transfer, e.g. cooling by impingement of a fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs

Definitions

  • This disclosure generally relates to an active clearance control system for controlling clearances within a gas turbine engine. More particularly, this disclosure relates to an active clearance control system that provides improved impingement cooling for a turbine casing.
  • An active clearance control system for a gas turbine engine is commonly utilized to maintain a desired clearance between a rotating turbine blade and a shroud. It is desired to minimize the clearance between a tip of the turbine blade and the shroud to minimize the amount of working fluid that escapes past the turbine blade.
  • Active clearance control systems control a temperature of a turbine case with impingement airflow to control relative thermal expansion between the shroud and the turbine blade tip.
  • Known systems include annular ribs at the locations where control is desired. The conduits providing impingement flow must therefore be tailored to the annular ribs to provide the desired uniform cooling or heating. This configuration results in corresponding curved surfaces that must be matched within exacting tolerances that increase assembly and manufacture costs and reduces effectiveness.
  • Active clearance control systems having the features of the preamble of claim 1 are disclosed in US 2009/319150 A1 , US-B-7165937 , US-A-5399066 and US-A-5281085 .
  • a disclosed example active clearance control system utilizes a working fluid stream to control radial thermal growth and thereby a clearance between turbine blades and a corresponding shroud of a gas turbine engine.
  • the present invention provides an active clearance control system as set forth in claim 1.
  • the invention also provides a method as set forth in claim 13.
  • the disclosed example active clearance control system includes conduits disposed about a turbine case and proximate to pads defined within the turbine case.
  • the pads are an area of increased thickness in the turbine case that receives impingement flow from the conduits.
  • the increased thickness of the pads provides the thermal mass desired to effect thermal expansion and contraction responsive to the cooling airflow.
  • Axial grooves within the pads further enhance impingement cooling of the turbine case.
  • Each of the pads includes an axial width and extends entirely about the circumference of the turbine case.
  • the example conduits include a flow surface that is substantially parallel to a surface of the pads.
  • a radial spacing between the flow surface and the pad is uniform about the circumference of the turbine case to provide a uniform thermal contraction or expansion of the turbine case.
  • the pads are also substantially parallel to the turbine case and the axis of the gas turbine engine.
  • an example gas turbine engine 10 includes a fan section 12 and a compressor section 14.
  • the compressor section 14 includes a low pressure compressor 18 and a high pressure compressor 16.
  • Compressed air from the compressor section 14 is directed to a combustor 20 where the compressed air is mixed with fuel and ignited.
  • the ignited fuel generates a high speed flow stream that drives a turbine section 22.
  • the example turbine section 22 includes a high pressure turbine 24 and a low pressure turbine 26.
  • the high pressure turbine 24 drives a high spool 40 that in turn drives the high pressure compressor 16.
  • the low pressure turbine 26 drives a low spool 42 that in turn drives a low pressure compressor 18.
  • the example gas turbine engine 10 is disposed concentrically about an axis A and includes an active clearance control system 30.
  • the active clearance control system 30 controls clearances between turbine blades within the high pressure turbine section 24 and corresponding blade shrouds to minimize the leaking of the flow stream past the turbine blades.
  • the turbine section 22 includes the active clearance control system 30 that utilizes a working fluid stream to control radial thermal growth and thereby a clearance between turbine blades 46 and a corresponding shroud 48 ( Figure 3 ).
  • the example active clearance control system 30 locally regulates the temperature of a portion of the turbine case 28 to control thermal contraction or expansion.
  • the working fluid stream is modulated responsive to detected operating parameters to reduce the blade tip to shroud clearance.
  • the example active clearance control system 30 includes conduits 38 that receive airflow through inlet 32 from a supply 34. Airflow is modulated to regulate a temperature of a select portion of the turbine case 28 radially outward of a corresponding turbine blade 46. The airflow is supplied through the inlet 32 and manifold 36 in communication with the conduits 38 to provide uniform airflow about the circumference of the turbine case 28.
  • the active clearance control system 30 produces impingement airflow that circulates within the conduits 38 and impinges against specific portions of the turbine case 28.
  • the airflow impinging against the case 28 is then circulated along a corresponding pad 44 ( Figure 3 ) and exhausted axially.
  • Airflow utilized and communicated to impinge against the case 28 may be introduced from the atmosphere, for example, through ram air or through one of the compressor stages of the gas turbine engine 10. Airflow communicated from an early portion of the compressor section 14 or atmosphere is not yet subjected to the extreme operating conditions present within the gas turbine engine 10. Accordingly, the cooling airflow is at temperature lower than the operating temperature of the engine 10 and can provide a cooling affect. The airflow is channeled through the manifold 36 and enters the conduits 38 where the airflow is directed against specific portions of the case 28 to affect the desired clearance control.
  • the cooling airflow cools the outer turbine case 28 and causes a thermal contraction in a radial direction. Uniform thermal control about the entire circumference of the turbine case 28 is desired to maintain a uniform clearance circumferentially between the blades 46 and shrouds 48.
  • the conduits 38 are disposed about the turbine case 28 and proximate to pads 44.
  • the pads 44 are an area of increased thickness in the turbine case 28 that receive impingement flow produced by the conduits 38.
  • the pads 44 include axial grooves 66 ( Figure 5 ) that further enhance impingement cooling of the turbine case 28.
  • the increased thickness of the pads 44 provides the thermal mass desired to effect thermal expansion and contraction responsive to the cooling airflow.
  • Each of the pads 44 include an axial width and extend entirely about the circumference of the turbine case 28. The axial width of each of the pads 44 is determined to provide the desired thermal movement of the turbine case 28 that provides for the desired control over a clearance 50 between each of the blades 46 and shrouds 48.
  • Hot combustion gases exhausted from the combustor 20 and directed against the turbine blades 46 increase temperatures within the turbine section 22.
  • the increased temperatures generate thermal expansion of the turbine blades 46 and shrouds 48.
  • the shrouds 48 are supported by the turbine case 28 and are exposed to the same hot gases encountered by the turbine blades 46. Differences in material composition and structure can result in differences in thermal expansion that can result in increases in the clearance 50 between the turbine blade 46 and the shroud 48.
  • the example active clearance control system 30 provides a cooling airflow to the pads 44 of the turbine case 28 to cause a relative radial contraction that regulates the clearance 50 between the turbine blade 46 and corresponding shroud 48.
  • the clearance 50 is minimized such that minimal amounts of hot gases generated within the combustor 20 bypass each of the turbine blades 46. Bypass flow past the turbine blades is essentially wasted energy that cannot be utilized for driving the high spool 40 and thereby the high pressure compressor section 16.
  • the turbine blades must maintain a minimum clearance such that contact is not made between moving and stationary parts of the turbine section 22.
  • an enlarged sectional view of the example active clearance control system 30 is illustrated within the high pressure turbine section 24. It should be understood that although the disclosed sample is utilized with the high pressure turbine section 24, it is within the contemplation of this disclosure that the example active clearance control system may also be utilized for low pressure turbine sections, or in other parts of the gas turbine engine 10 where clearance control is desired.
  • the conduits 38 are substantially rectangular in shape and define an internal flow area 56.
  • the internal flow area 56 directs the cooling airflow about the circumference of the turbine case 28 (best shown in Figures 2 and 6 ).
  • Each of the conduits 38 includes a flow surface 60 having a plurality of impingement openings 62.
  • the openings 62 direct impingement airflow 64 against pads 44 defined on the turbine case 28.
  • Each of the pads 44 includes a thickness 54 greater than the thickness 52 of other portions of the turbine case 28.
  • the additional material provided in the pad areas 44 provide the desired mass of material that can be affected by the impingement flow 64.
  • the pads 44 are disposed radially outward of the interface between the corresponding turbine blade 46 and shroud 48.
  • a separate pad 44 is provided for controlling the clearance 50 between each separate turbine blade 46. Accordingly, control of clearances between each individual turbine blade 46 and 48 may be controlled separately if desired.
  • impingement airflow 64 against the pads 44 is utilized to effect radial thermal contraction or expansion of the turbine case 28 in a direction indicated by arrows 58.
  • cooling of the turbine case 28 causes an accompanying thermal shrinking of the turbine case 28.
  • warmer or reduced cooling impingement airflow on the pads 44 provides circumferential expansion of the turbine case 28.
  • Thermal movement caused by the impingement flow 64 controls the clearance 50 between the turbine blade 46 and the shroud 48.
  • the example conduits 38 include a flow surface 60 that is substantially parallel to a surface of the pads 44.
  • the substantial parallel relationship between the flow surface 60 and the pad surfaces 44 provides for the desired clearance between the flow surface 60 and the pad 44.
  • a radial spacing between the flow surface 60 and the pad 44 is uniform about the circumference of the turbine case to provide a uniform thermal contraction or expansion of the turbine case 28.
  • the pads 44 are also substantially parallel to the turbine case 28 and the axis A. Accordingly the flow surface 60 and the pads 44 define corresponding parallel flat surfaces for the entire axial distance of each of the pads 44. Moreover, the corresponding parallel flat surfaces have uniform clearance at all axial positions along the axial length of each of the pads 44.
  • the axial orientation or alignment between the conduits 38 and each of the pads 44 can be varied without changing the distance between the flow surface 60 and the pads 44. Slight relative axial variation of alignment between the conduit 38 and the pads 44 will not significantly affect impingement flow against the pads 44. It should be understood that deviations in a desired distance between a flow surface 60 and the pad surface 44 influences the degree of thermal growth and control provided by the active clearance control system 30. Accordingly, it is desired to provide a substantially uniform and consistent annular spacing between the flow surface 60 of the conduits 38 and the surface of the pads 44.
  • the pads 44 include the plurality of axial grooves 66.
  • the axial grooves 66 increase surface area of the pads 44 to further enhance impingement cooling of the turbine casing 28.
  • the grooves 66 extend from one axial side 43 of the pads 44 to a second axial side 45.
  • the grooves 66 extend parallel to the axis A of the engine 10.
  • the grooves 66 direct impingement flow 64 axially away from the pads 44 such that airflow is not trapped and is exhausted thereby providing that a uniform constant flow of cooling airflow circulates across the pads 44.
  • FIG. 6A and 6B a schematic representation of the conduits perpendicular to the axis A is illustrated.
  • the example conduits 38 are formed in sections.
  • a first section 38A defines essentially half of the conduit 38 circumference about the turbine engine case 28.
  • a second section 38B defines a second half that is connected to the first section 38A to define a complete circumferential flow path about the turbine case 28.
  • the example conduit 38 is disclosed as including two sections 38A and 38B, more sections could also be utilized and are within the contemplation of this disclosure.
  • the inlet 32 and manifold 36 are provided at one end of the conduits 38. Accordingly, incoming airflow enters at one circumferential location and flows towards a bottom location. It is desired to provide uniform impingement airflow about the entire circumference of the turbine engine case 28.
  • This uniform airflow is provided by including a flow area 56 that eliminates potentially flow disrupting effects that may interrupt the desired uniform airflow through the impingement openings 62.
  • the flow area 56 is of such an area as to produce uniform pressure throughout the circumference of each of the conduits 38 thereby eliminating any deviations between impingement airflow at any portion about the circumferential distance of the turbine case 28.
  • an example conduit 68A includes an alternate distribution of flow areas to provide uniform airflow about the circumference of the turbine case 28.
  • the flow area provided by the impingement openings 62 increases in a direction away from an inlet 32.
  • the increase in flow area is provided by a non-uniform distribution of impingement openings.
  • the number of impingement openings for a defined area increases in a direction away from the inlet.
  • a first section 70 includes the least amount of impingement openings.
  • a middle or second section 72 includes a greater density of impingement openings than the first section 70.
  • a last or third section 74 includes the greatest density of impingement openings. The number and density of impingement openings accommodate potential differences in pressure within the conduit 68A.
  • another example conduit 68B includes impingement openings 82, 84 and 86 that vary in size corresponding to a distance from the inlet 32.
  • a first plurality of impingement openings 82 within a first section 76 are of a first size.
  • a second section 78 spaced a distance greater than the first section 76 includes a second plurality of impingement openings 84 with an opening size greater than the first group 76.
  • a last or third section 78 include impingement openings 86 spaced furthest away from the inlet 32 that are larger than those in the previous sections 76, 78.
  • the differences in hole sizes define a varying flow area based on a distance from the inlet 32 that provide a balanced and uniform impingement flow about the circumference of the turbine case 28.
  • the holes are varied in size.
  • each of the example conduits 38 is substantially square or rectangular in cross-section. However it is within the contemplation of this disclosure that other cross-sectional shapes could also be utilized.
  • the flow surface 60 is parallel with each of the pads 44 such that a uniform clearance is provided about the entire circumference of the case 28.
  • the conduit 88 includes a curved outer surface. Accordingly alternate shapes may be utilized that include the flat flow surface 60 disposed substantially parallel to the corresponding pad 44.
  • FIG. 10 another example conduit 90 is shown and extends across two pads 44.
  • Each of the pads 44 is substantially parallel to the axis A. Accordingly, the axial orientation or alignment between the conduit 90 and each of the pads 44 can be varied without changing the distance between the flow surface 60 and the pads 44. Slight relative axial variation of alignment between the conduit 90 and the pads 44 will not significantly affect impingement flow against the pads 44.
  • the conduit 84 is substantially rectangular and includes flow surfaces 62 that are disposed proximate each of the corresponding pads 44.
  • the conduit 90 extends across both of the pads 44. However, the areas in which impingement openings 62 are provided and the flow surfaces 60 remain only in the areas that are aligned with the corresponding pad 44.
  • the disclosed example active clearance control system 30 provides for the uniform impingement of cooling flow about the entire circumference of the turbine case 28 and eases alignment burdens during assembly and manufacture thereby improving the control provided by the example active clearance control system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (15)

  1. Système de contrôle actif de jeux (30) pour un moteur à turbine à gaz (10), le système (30) comprenant :
    un carter de turbine (28) disposé autour d'un axe (A) et incluant au moins un tampon (44) encerclant le carter de turbine (28), l'au moins un tampon (44) étant sensiblement parallèle à une surface extérieure du carter de turbine (28) ; et
    un conduit (38 ; 68 ; 88 ; 90) encerclant de manière circonférentielle le carter de turbine (28) et l'au moins un tampon (44), le conduit (38 ; 68 ; 88 ; 90) incluant une surface d'écoulement (60) parallèle à et espacée de l'au moins un tampon (44), la surface d'écoulement (60) incluant des ouvertures d'impact (62 ; 82, 84, 86) permettant de diriger un flux d'écoulement sur l'au moins un tampon (44) afin de contrôler un jeu ; caractérisé en ce que :
    l'au moins un tampon (44) inclut des rainures axiales (66) qui s'étendent parallèles à l'axe (A) afin de guider un écoulement d'air d'impact.
  2. Système de contrôle actif de jeux selon la revendication 1, dans lequel le carter de turbine (28) inclut une première épaisseur et l'au moins un tampon (44) comprend une seconde épaisseur supérieure à la première épaisseur, dans lequel, éventuellement, la seconde épaisseur s'étend sur une distance axiale égale ou inférieure à la surface d'écoulement (60) du conduit (38 ; 68 ; 88 ; 90).
  3. Système de contrôle actif de jeux selon la revendication 1 ou 2, dans lequel les rainures axiales (66) fournissent une superficie accrue du tampon (44) correspondant pour accroître le refroidissement par impact.
  4. Système de contrôle actif de jeux selon une quelconque revendication précédente, incluant un orifice d'entrée (32) communiquant le flux d'écoulement dans le conduit (68B), dans lequel une superficie d'ouverture des ouvertures d'impact (62 ; 82, 84, 86) s'accroît dans une direction opposée à l'orifice d'entrée (32).
  5. Système de contrôle actif de jeux selon la revendication 4, dans lequel une taille de chacune des ouvertures d'impact (82, 84, 86) s'accroît dans une direction opposée à l'orifice d'entrée (32), ou dans lequel un nombre d'ouvertures d'impact pour une superficie définie s'accroît dans une direction opposée à l'orifice d'entrée (32).
  6. Système de contrôle actif de jeux selon une quelconque revendication précédente, incluant au moins un rotor de turbine rotatif autour de l'axe dans le carter de turbine (28) et l'au moins un tampon (44) comprend au moins un tampon (44) correspondant à chacun de l'au moins un rotors de turbine.
  7. Système de contrôle actif de jeux selon une quelconque revendication précédente, dans lequel le conduit (38) comprend une coupe transversale sensiblement rectangulaire.
  8. Système de contrôle actif de jeux selon une quelconque revendication précédente, dans lequel le conduit (38) comprend une première partie (38A) s'étendant à une première distance circonférentielle autour du carter de turbine (28) et une seconde partie (38B) s'étendant à une seconde distance circonférentielle autour du carter de turbine (28), et dans lequel, éventuellement, chacune de la première partie (38A) et de la seconde partie (38B) est en communication de fluide avec un orifice d'entrée commun (32).
  9. Système de contrôle actif de jeux selon une quelconque revendication précédente, dans lequel la surface d'écoulement (60) du conduit (38 ; 68 ; 88 ; 90) est espacée à une distance fixe commune sur une distance axiale entière de l'au moins un tampon (44) .
  10. Système de contrôle actif de jeux selon une quelconque revendication précédente, incluant une enveloppe d'aube disposée de manière radiale vers l'extérieur d'une aube de turbine, et dans lequel la croissance radiale contrôlée du carter de turbine en utilisation contrôle un jeu entre l'enveloppe d'aube et un bout de l'aube de turbine.
  11. Système de contrôle actif de jeux selon une quelconque revendication précédente, dans lequel l'au moins un tampon (44) comprend au moins deux tampons (44) et le conduit (90) inclut une longueur axiale qui s'étend sur les au moins deux tampons (44) .
  12. Système de contrôle actif de jeux selon la revendication 4 ou 5 ou l'une quelconque des revendications 6 à 11 dépendant directement ou indirectement de la revendication 4 ou 5, dans lequel le conduit (38 ; 68 ; 88 ; 90) définit une superficie d'écoulement déterminée pour fournir un écoulement d'air sensiblement égal à travers chacune des ouvertures d'impact (62 ; 82, 84, 86).
  13. Procédé consistant à contrôler de manière active des jeux dans un moteur à turbine à gaz comprenant :
    la fourniture d'un carter (28) disposé autour d'un axe (A) et incluant un tampon (44) d'une épaisseur supérieure à des parties environnantes du carter (28), le tampon (44) encerclant le carter (28) et s'étendant sensiblement parallèle à une surface du carter (28) ;
    la fourniture d'un conduit (38 ; 68 ; 88 ; 90) encerclant le tampon (44) et espacé de manière circonférentielle du tampon (44) à une distance définie le long d'une longueur axiale du conduit (38 ; 68 ; 88 ; 90) ; et
    l'écoulement d'un fluide de travail à travers le conduit (38 ; 68 ; 88 ; 90) et une pluralité d'ouvertures d'impact (62 ; 82, 84, 86) sur le tampon (44), le tampon (44) incluant des rainures axiales (66) qui s'étendent parallèles à l'axe (A) ; et
    le contrôle de la croissance thermique du carter en modulant un écoulement de fluide de travail s'écoulant sur le tampon (44) et en faisant s'écouler le fluide de travail de manière axiale à travers les rainures axiales (66).
  14. Procédé consistant à contrôler de manière active des jeux dans un moteur à turbine à gaz selon la revendication 13, dans lequel le carter (28) comprend un carter de turbine (28) qui soutient une enveloppe (48) mobile en réponse à la croissance thermique contrôlée du carter de turbine (28) et définissant un jeu entre l'enveloppe (48) et un bout d'une aube de turbine (46) en contrôlant la croissance thermique du carter de turbine, et/ou en incluant un contrôle de manière uniforme de la croissance thermique autour d'une circonférence du carter.
  15. Procédé consistant à contrôler de manière active des jeux dans un moteur à turbine à gaz selon la revendication 13 ou 14, dans lequel le conduit (38 ; 68 ; 88 ; 90) inclut une surface d'écoulement (60) qui est sensiblement parallèle au carter (28) et au tampon (44), les ouvertures d'impact (62 ; 82 ; 84 ; 86) étant disposées dans la surface d'écoulement (60).
EP12177516.7A 2011-07-26 2012-07-23 Systèm de contrôle de jeu actif pour moteur à turbine à gaz et procédé associé Active EP2551467B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13/190,674 US20130028705A1 (en) 2011-07-26 2011-07-26 Gas turbine engine active clearance control

Publications (2)

Publication Number Publication Date
EP2551467A1 EP2551467A1 (fr) 2013-01-30
EP2551467B1 true EP2551467B1 (fr) 2018-10-10

Family

ID=46750170

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12177516.7A Active EP2551467B1 (fr) 2011-07-26 2012-07-23 Systèm de contrôle de jeu actif pour moteur à turbine à gaz et procédé associé

Country Status (2)

Country Link
US (1) US20130028705A1 (fr)
EP (1) EP2551467B1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2927433B1 (fr) 2014-04-04 2018-09-26 United Technologies Corporation Contrôle actif de jeu pour moteur de turbine à gaz
US9874105B2 (en) 2015-01-26 2018-01-23 United Technologies Corporation Active clearance control systems
FR3038655B1 (fr) * 2015-07-06 2017-08-25 Snecma Ensemble comprenant un carter rainure et des moyens de refroidissement du carter, turbine comprenant ledit ensemble, et turbomachine comprenant ladite turbine
EP3153671A1 (fr) 2015-10-08 2017-04-12 MTU Aero Engines GmbH Dispositif de protection pour turbomachine
US10344614B2 (en) 2016-04-12 2019-07-09 United Technologies Corporation Active clearance control for a turbine and case
US20180019576A1 (en) * 2016-07-14 2018-01-18 BWT Beijing Ltd. Laser beam combination apparatus
FR3054000B1 (fr) * 2016-07-15 2020-02-14 Safran Aircraft Engines Dispositif de refroidissement d'un carter de turbine pour une turbomachine
US20180334962A1 (en) * 2017-05-22 2018-11-22 United Technologies Corporation Active bleed flow modulation
FR3079874B1 (fr) * 2018-04-09 2020-03-13 Safran Aircraft Engines Dispositif de refroidissement pour une turbine d'une turbomachine
FR3081911B1 (fr) * 2018-06-04 2021-05-28 Safran Aircraft Engines Dispositif de refroidissement d'un carter de turbine pour turbomachine
JP6508499B1 (ja) * 2018-10-18 2019-05-08 三菱日立パワーシステムズ株式会社 ガスタービン静翼、これを備えているガスタービン、及びガスタービン静翼の製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719748A (en) * 1985-05-14 1988-01-19 General Electric Company Impingement cooled transition duct
GB2378730A (en) * 2001-08-18 2003-02-19 Rolls Royce Plc Cooling of shroud segments of turbines
US6612808B2 (en) * 2001-11-29 2003-09-02 General Electric Company Article wall with interrupted ribbed heat transfer surface

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337016A (en) * 1979-12-13 1982-06-29 United Technologies Corporation Dual wall seal means
US5281085A (en) * 1990-12-21 1994-01-25 General Electric Company Clearance control system for separately expanding or contracting individual portions of an annular shroud
US5399066A (en) * 1993-09-30 1995-03-21 General Electric Company Integral clearance control impingement manifold and environmental shield
US7165937B2 (en) * 2004-12-06 2007-01-23 General Electric Company Methods and apparatus for maintaining rotor assembly tip clearances
US8296037B2 (en) * 2008-06-20 2012-10-23 General Electric Company Method, system, and apparatus for reducing a turbine clearance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4719748A (en) * 1985-05-14 1988-01-19 General Electric Company Impingement cooled transition duct
GB2378730A (en) * 2001-08-18 2003-02-19 Rolls Royce Plc Cooling of shroud segments of turbines
US6612808B2 (en) * 2001-11-29 2003-09-02 General Electric Company Article wall with interrupted ribbed heat transfer surface

Also Published As

Publication number Publication date
US20130028705A1 (en) 2013-01-31
EP2551467A1 (fr) 2013-01-30

Similar Documents

Publication Publication Date Title
EP2551467B1 (fr) Systèm de contrôle de jeu actif pour moteur à turbine à gaz et procédé associé
EP2788590B1 (fr) Commande d'espacement actif radial pour un moteur de turbine à gaz
EP2546471B1 (fr) Contrôle du jeu des extrémités d'aubes de turbine
EP1630385B1 (fr) Procédé et appareil pour maintenir le jeu des extrémités des aubes d'un rotor de turbine
EP1798381B1 (fr) Contrôle thermique de l'anneau de turbine pour régulation active de jeu dans les turbines à gaz
US7114914B2 (en) Device for controlling clearance in a gas turbine
US9464538B2 (en) Shroud block segment for a gas turbine
US7165937B2 (en) Methods and apparatus for maintaining rotor assembly tip clearances
US4662821A (en) Automatic control device of a labyrinth seal clearance in a turbo jet engine
US10544803B2 (en) Method and system for cooling fluid distribution
GB2033020A (en) Gas turbine working fluid seal
JPH0120320B2 (fr)
EP1013882B1 (fr) Circuit d'air de refroidissement de turbine à gaz
EP2458159B1 (fr) Turbine à gaz de type à flux axial
EP0877149A2 (fr) Refroidissement du carter d'une turbine à gaz
US4804310A (en) Clearance control apparatus for a bladed fluid flow machine
EP2458155B1 (fr) Turbine à gaz à flux axial
EP2382376B1 (fr) Moteur à turbine à gaz
US11047258B2 (en) Turbine assembly with ceramic matrix composite vane components and cooling features
EP3060763B1 (fr) Découragement d'écoulement dans un écart d'aubes de turbine tolérant aux incidents
JP7508211B2 (ja) ガスタービンエンジンのシュラウド冷却のためのシステムおよび方法
US20140017061A1 (en) Gas turbomachine including a purge flow reduction system and method
JP2014037831A (ja) タービンシステムの温度勾配管理装置およびタービンシステムの温度勾配管理方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20130729

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

17Q First examination report despatched

Effective date: 20150203

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UNITED TECHNOLOGIES CORPORATION

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1051488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602012051968

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20181010

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1051488

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190111

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190210

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602012051968

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

26N No opposition filed

Effective date: 20190711

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190723

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20120723

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20181010

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 602012051968

Country of ref document: DE

Owner name: RAYTHEON TECHNOLOGIES CORPORATION (N.D.GES.D.S, US

Free format text: FORMER OWNER: UNITED TECHNOLOGIES CORPORATION, FARMINGTON, CONN., US

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230520

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240620

Year of fee payment: 13